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Abstract: Lithium niobate photonic circuits have the salutary property
of permitting the generation, transmission, and processing of photons to be
accommodated on a single chip. Compact photonic circuits such as these,
with multiple components integrated on a single chip, are crucial for effi-
ciently implementing quantum information processing schemes. We present
a set of basic transformations that are useful for manipulating modal qubits
in Ti:LiNbO3 photonic quantum circuits. These include the mode analyzer,
a device that separates the even and odd components of a state into two
separate spatial paths; the mode rotator, which rotates the state by an angle
in mode space; and modal Pauli spin operators that effect related operations.
We also describe the design of a deterministic, two-qubit, single-photon,
CNOT gate, a key element in certain sets of universal quantum logic gates.
It is implemented as a Ti:LiNbO3 photonic quantum circuit in which the
polarization and mode number of a single photon serve as the control and
target qubits, respectively. It is shown that the effects of dispersion in the
CNOT circuit can be mitigated by augmenting it with an additional path.
The performance of all of these components are confirmed by numerical
simulations. The implementation of these transformations relies on selective
and controllable power coupling among single- and two-mode waveguides,
as well as the polarization sensitivity of the Pockels coefficients in LiNbO3.
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1. Introduction

We recently investigated the possibility of using spontaneous parametric down-conversion
(SPDC) in two-mode waveguides to generate guided-wave photon pairs entangled in mode
number, using a cw pump source. If one photon is generated in the fundamental (even) mode,
the other will be in the first-order (odd) mode, and vice versa [1]. We also considered a num-
ber of detailed photonic-circuit designs that make use of Ti:LiNbO3 diffused channel, two-
mode waveguides for generating and separating photons with various combinations of modal,
spectral, and polarization entanglement [2]. Selective mode coupling between combinations of
adjacent single-mode and two-mode waveguides is a key feature of these circuits.

Although potassium titanyl phosphate (KTiOPO4, KTP) single- and multi-mode waveguide
structures have also been used for producing spontaneous parametric down-conversion [3–7],
it appears that only the generation process, which makes use of a pulsed pump source, has been
incorporated on-chip. Substantial advances have also recently been made in the development
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of single-mode silica-on-silicon waveguide quantum circuits [8, 9], with an eye toward quan-
tum information processing applications [10–15]. For these materials, however, the photon-
generation process necessarily lies off-chip.

Lithium niobate photonic circuits have the distinct advantage that they permit the genera-
tion, transmission, and processing of photons all to be achieved on a single chip [2]. Moreover,
lithium niobate offers a number of ancillary advantages: 1) its properties are well-understood
since it is the basis of integrated-optics technology [16]; 2) circuit elements, such as two-mode
waveguides and polarization-sensitive mode-separation structures, have low loss [2]; 3) it ex-
hibits an electro-optic effect that can modify the refractive index at rates up to tens of GHz and is
polarization-sensitive [17, Sec. 20.1D]; and 4) periodic poling of the second-order nonlinear op-
tical coefficient is straightforward so that phase-matched parametric interactions [18, 19], such
as SPDC and the generation of entangled-photon pairs [20,21], can be readily achieved. More-
over, consistency between simulation and experimental measurement has been demonstrated
in a whole host of configurations [22–26]. To enhance tolerance to fabrication errors, pho-
tonic circuits can be equipped with electro-optic adjustments. For example, an electro-optically
switched coupler with stepped phase-mismatch reversal serves to maximize coupling between
fabricated waveguides [27, 28].

Compact photonic circuits with multiple components integrated on a single chip, such as the
ones considered here, are likely to be highly important for the efficient implementation of de-
vices in the domain of quantum information science. The Controlled-NOT (CNOT) gate is one
such device. It plays an important role in quantum information processing, in no small part be-
cause it is a key element in certain sets of universal quantum logic gates (such as CNOT plus ro-
tation) that enable all operations possible on a quantum computer to be executed [11,15,29,30].
Two qubits are involved in its operation: a control and a target. The CNOT gate functions by
flipping the target qubit if and only if the control qubit is in a particular state of the com-
putational basis. Two separate photons, or, alternatively, two different degrees-of-freedom of
the same photon, may be used for these two qubits. A deterministic, two-qubit, single-photon,
CNOT gate was demonstrated using bulk optics in 2004 [31]. More recently, a probabilistic,
two-photon, version of the CNOT gate was implemented as a silica-on-silicon photonic quan-
tum circuit; an external bulk-optics source of polarization qubits was required, however [8]. It is
worthy of mention that qubit decoherence is likely to be minimal in photonic quantum circuits;
however, decoherence resulting from loss in long waveguides can be mitigated by the use of
either a qubit amplifier [32] or teleportation and error-correcting techniques [33].

This paper describes a set of basic building blocks useful for manipulating modal qubits in
Ti:LiNbO3 photonic quantum circuits. Section 2 provides a brief description of the geometry
and properties of the diffused channel Ti:LiNbO3 waveguides used in the simulations. Modal
qubits are characterized in Sec. 3. Section 4 addresses the coupling of modes between two adja-
cent waveguides; several special cases are highlighted. The principle of operation of the mode
analyzer, which separates the even and odd components of an incoming state into two separate
spatial paths, is set forth in Sec. 5, as are the effects of the modal Pauli spin operator σz. The
mode rotator, which rotates the state by an angle in mode space, is examined in Sec. 6, as is the
modal Pauli spin operator σx. Section 7 is devoted to describing the design of a deterministic,
two-qubit, single-photon, CNOT gate implemented as a Ti:LiNbO3 photonic quantum circuit,
in which the polarization and mode number of a single photon serve as the control and target
qubits, respectively. The conclusion is presented in Sec. 8.

2. Diffused channel Ti:LiNbO3 waveguides

All of the simulations presented in this paper refer to structures that make use of Ti:LiNbO3 dif-
fused channel waveguides, as illustrated in Fig. 1. These waveguides are fabricated by diffusing
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Fig. 1. Cross-sectional view of the fabrication of a diffused channel Ti:LiNbO3 waveguide
(not to scale). A thin film of titanium of thickness δ ≈ 100 nm and width w is diffused into
a z-cut, y-propagating LiNbO3 crystal. The diffusion length D = 3 µm.

a thin film of titanium (Ti), with thickness δ ≈ 100 nm and width w, into a z-cut, y-propagating
LiNbO3 crystal. The diffusion length D is taken to be the same in the two transverse directions:
D = 3 µm. The TE mode polarized in the x-direction sees the ordinary refractive index no,
whereas the TM mode polarized in the z-direction (along the optic axis) sees the extraordinary
refractive index ne.

The ordinary and extraordinary refractive indices may be calculated by making use of the
Sellmeier equations [17, Chap. 5], [34,35]. The refractive-index increase introduced by titanium
indiffusion is characterized by ∆n = 2δρ erf(w/2D)/

√
π D, where ρ = 0.47 and 0.625 for

no and ne, respectively [36]. To accommodate wavelength dispersion, ∆n can be modified by
incorporating the weak factor ξ = 0.052 + 0.065/λ 2, where the wavelength λ is specified in
µm [37]. We calculate the effective refractive index neff of a confined mode in two ways: 1) by
using the effective-index method described in [38]; and 2) by making use of the commercial
photonic and network design software package RSoft. The propagation constant of a guided
mode is related to neff via β = 2πneff/λ .

Applying a steady electric field to this structure in the z-direction (along the optic axis)
changes the ordinary and extraordinary refractive indices of this uniaxial (trigonal 3m) material
by − 1

2n3
or13V/d and − 1

2n3
er33V/d , respectively [17, Example 20.2-1], where V is the applied

voltage; d is the separation between the electrodes; and r13 and r33 are the tensor elements of
the Pockels coefficient, which have values 10.9 and 32.6 pm/V, respectively [35].

3. Modal qubits

A qubit is a pure quantum state that resides in a two-dimensional Hilbert space. It represents a
coherent superposition of the basis states, generally denoted |0〉 and |1〉. A qubit can be encoded
in any of several degrees-of-freedom of a single photon, such as polarization [39], spatial parity
[40], or the mode number of a single photon confined to a two-mode waveguide [1, 2]. The
Poincaré sphere provides a geometrical representation for the state of a modal qubit, much as it
does for polarization [17, Sec. 6.1A] and spatial parity [41].

Indeed, polarization offers an intrinsically binary basis and is often used to realize a qubit.
However, the spatial modes of a photon in a two-mode waveguide, one of which is even and
the other odd, are also binary and can therefore also be used to represent a qubit. Modal qubits
are particularly suited to photonic quantum circuits since they can be both generated and easily
transformed on-chip by making use of elements such as mode analyzers, mode rotators, and
two-mode electro-optic directional couplers. The modal space of a two-mode waveguide there-
fore offers an appealing alternative to polarization for representing qubits in quantum photonic
circuits.

The comparison between modal and spatial-parity qubits is instructive. Spatial-parity qubits
are defined on a 2D Hilbert space in which the 1D transverse spatial modes of the photon are
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decomposed into even and odd spatial-parity components [40–42]. Modal qubits also relate to
parity, but in a simpler way. They are defined on a 2D Hilbert space in which the bases are a
single 1D even-parity function and a single 1D odd-parity function. These two functions are
the fundamental (even, m = 0) and first-order order (odd, m = 1) transverse spatial eigenmodes
of the Helmholtz equation for a two-mode waveguide.

Photon pairs can be exploited for use in quantum photonic circuits [2, 8], as well as for pro-
ducing heralded single-photon pure states [43] in well-defined spatiotemporal modes, which
are required for many quantum information technology applications such as quantum cryptog-
raphy [44] and linear optical quantum computing [30]. Care must be taken, however, to ensure
that the intrinsic quantum correlations between the twin photons are eliminated so that the sur-
viving photon is in a pure state [45–47]. One way of achieving this is to generate the twin
photons with a factorable joint amplitude [48–51]. We have previously shown that a Type-0 in-
teraction could be used to generate photon pairs that are degenerate in frequency and polariza-
tion, but with opposite mode number [2, Sec. 3]. Coupling these photons into two single-mode
waveguides would allow one of these photons to be used to herald the arrival of the other. The
heralded photon could then be coupled into a two-mode waveguide which, with the addition
of a mode rotator, would serve as a source of modal qubits. Such a source would be analogous
to the one fashioned from bulk optics by Fiorentino et al. [31] using Type-II SPDC. However,
the Type-0 source of modal qubits described above would be on-chip and would also make use
of the strongest nonlinear component of the second-order tensor, d33, thereby enhancing the
efficiency of the interaction [52].

The quantum state of a single photon in a two-mode waveguide, assuming that its polariza-
tion is TE or TM, can be expressed as |Ψ〉= α1|e〉+α2|o〉, where |e〉 and |o〉 represent the even
and odd basis states, respectively; and α1 and α2 are their weights. All operations on the single-
photon state are effected via auxiliary adjacent waveguides, which are sometimes single-mode
and sometimes two-mode. We exploit the concepts of selective and controllable coupling be-
tween waveguides, together with the isomorphism between waveguide coupling and the SO(2)
rotation matrix, to design a mode analyzer, a mode rotator, modal Pauli spin operators, and a
CNOT gate useful for quantum information processing.

4. Mode coupling between adjacent waveguides

The coupling between two lossless, single-mode waveguides is described by a unitary matrix
T that takes the form [17, Sec. 8.5B]

T =

[
A − jB

− jB∗ A∗

]
, (1)

where A = exp( j∆β L/2) [cosγL− j(∆β/2γ) sinγL] and B = (κ/γ) exp( j∆β L/2) sinγL .
Here, ∆β is the phase mismatch per unit length between the two coupled modes; L is the
coupling interaction length; κ is the coupling coefficient, which depends on the widths of the
waveguides and their separation as well as on the mode profiles; γ2 = κ2 + 1

4 ∆β 2; and the
symbol ∗ represents complex conjugation.

This unitary matrix T can equivalently be written in polar notation as [53]

T =

[
cos(θ/2) exp( jφA) − j sin(θ/2) exp( jφB)

− j sin(θ/2) exp(− jφB) cos(θ/2) exp(− jφA)

]
, (2)

where θ = 2sin−1 [(κ/γ)sinγL]; φA = φB + tan−1 [(−∆β/2γ) tanγL]; and φB = ∆βL/2.
Using this representation, the coupling between the two waveguides can be regarded as a cas-
cade of three processes: 1) phase retardation, 2) rotation, and 3) phase retardation. This becomes
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apparent if Eq. (2) is rewritten as

T = exp(− jφB)T3 T2 T1 , (3)

with

T1 =

[
1 0

0 e− jΓ1

]
; T2 =

[
cos(θ/2) − j sin(θ/2)

− j sin(θ/2) cos(θ/2)

]
; T3 =

[
e− jΓ2 0

0 1

]
, (4)

where Γ1 = φA−φB; Γ2 =−φA−φB; and T1, T2, and T3 represent, in consecutive order, phase
retardation, rotation, and phase retardation. The phase shift φB is a constant of no consequence.

For perfect phase matching between the coupled modes, i.e., for ∆β = 0 and an interaction
coupling length L = qπ/2κ , where q is an odd positive integer, the coupling matrix T reduces
to

T = exp

(
jqπ
2

)[
0 −1

−1 0

]
, (5)

indicating that the modes are flipped. Applying this operation twice serves to double flip the
vector, thereby reproducing the input, but with a phase shift twice that of qπ/2. On the other
hand, for γL = pπ , with p an integer, the matrix becomes

T = (−1)p

[
exp( jφA) 0

0 exp(− jφA)

]
. (6)

Finally, for weak coupling (κ ≈ 0 or κ � ∆β ), we have φA ≈ 0, whereupon T reduces to the
identity matrix.

Our interest is in three scenarios: 1) coupling between a pair of single-mode waveguides
(SMWs); 2) coupling between a pair of two-mode waveguides (TMWs); and 3) coupling be-
tween a SMW and a TMW. The matrix described in Eq. (2) is not adequate for describing the
coupling in the latter two cases; in general, a 4×4 matrix is clearly required for describing the
coupling between two TMWs. However, for the particular cases of interest here, the coupling
between the two waveguides is such that only a single mode in each waveguide participates;
this is because the phase-matching conditions between the interacting modes are either satis-
fied — or not satisfied. As an example for identical waveguides, similar modes couple whereas
dissimilar modes fail to couple as a result of the large phase mismatch. The net result is that, for
the cases at hand, the general matrix described in Eq. (2) reduces to submatrices of size 2×2,
each characterizing the coupling between a pair of modes.

5. Mode analyzer and modal Pauli spin operator σz

A mode analyzer is a device that separates the even and odd components of an incoming
state into two separate spatial paths. It is similar to the parity analyzer of one-photon parity
space [40]. For the problem at hand, its operating principle is based on the selective coupling
between adjacent waveguides of different widths. The even and odd modes of a TMW of width
w1 are characterized by different propagation constants. An auxiliary SMW (with appropriate
width w2, length L2, and separation distance b1 from the TMW) can be used to extract only the
odd component [2]. The result is a mode analyzer that separates the components of the incom-
ing state, delivering the the odd mode as an even distribution, as shown in Fig. 2(a). The end
of the SMW is attached to an S-bend waveguide, with initial and final widths w2, to obviate the
possibility of further unwanted coupling to the TMW and to provide a well-separated output
port for the extracted mode. If it is desired that the output be delivered as an odd distribution
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Fig. 2. (a) Sketch of a photonic circuit that serves as a mode analyzer (not to scale). It
is implemented by bringing a single-mode waveguide (SMW) of width w2 and length L2
into proximity with a two-mode waveguide (TMW) of width w1. The two waveguides are
separated by a distance b1. An S-bend waveguide of initial and final width w2, and bending
length Lb, is attached to the end of the SMW. The center-to-center separation between the
output of the S-bend and the TMW is denoted S. All S-bends considered in this paper have
dimensions Lb = 10 mm and S = 127 µm (the standard spatial separation [26]). The odd
mode is separated and delivered as an even distribution. (b) Sketch of a mode analyzer
(not to scale) that separates the odd mode and delivers it as an odd distribution. It is more
complex than the design presented in (a) because it incorporates a second TMW, again of
width w1, that is brought into proximity with a SMW of width w2 and length L2 placed
at the output of the S-bend. These two waveguides are again separated by a distance b1.
(c) Sketch of a photonic circuit (not to scale) that changes the sign of the odd mode while
leaving the even mode intact, thereby implementing the modal Pauli spin operator σz. An
electro-optic phase modulator is used to compensate for any unintended differences in the
phase delays encountered by the even and odd modes as they transit the circuit.

instead, another SMW to TMW coupling region (with the same parameters) may be arranged
at the output end of the S-bend, as illustrated in Fig. 2(b). This allows the propagating even
mode in the SMW to couple to the odd mode of the second TMW, thereby delivering an odd
distribution at the output. The appropriate coupler configuration is determined by the applica-
tion at hand. It is important to note that the mode analyzer is a bidirectional device: it can be
regarded as a mode combiner when operated in the reverse direction, as we will soon see.

The Pauli spin (or spatial-parity) operator σz introduces a phase shift of π (imparts a negative
sign) to the odd component of the photon state, leaving the even component unchanged; it
thus acts as a half-wave retarder in mode space. It can be implemented by exploiting modal
dispersion between the even and odd modes: a single TMW of length π/ |βe −βo|, where βe and
βo are the propagation constants of the even and odd modes, respectively, results in the desired
phase shift of π . For a weakly dispersive medium, however, a waveguide longer than practicable
might be required. An alternative approach for implementing the Pauli spin operator σz involves
cascading a mode analyzer and a mode combiner, as illustrated in Fig. 2(c). As established in
Eq. (5), perfect coupling between a pair of adjacent waveguides over an interaction length
L = qπ/2κ introduces a phase shift of qπ/2, where q is an odd positive integer. A cascade of
two such couplings thus results in a phase shift qπ , with q odd, thereby implementing the Pauli
spin operator σz. Proper design dictates that βeLe = βoLo, where Le and Lo are the distances
traveled by the even and odd modes, respectively. Imperfections in the fabrication of the circuit
may be compensated by making use of an electro-optic (EO) phase modulator, as sketched in
Fig. 2(c).

An example illustrating the operation of a mode analyzer, such as that shown in Fig. 2(a),
is provided in Fig. 3. The behavior of the normalized propagation constants β of the even
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Fig. 3. (a) Dependencies of the normalized propagation constants β of the fundamental
(m = 0) and first-order (m = 1) modes on the widths w of the diffused channel Ti:LiNbO3
waveguides. The input wave has wavelength λ = 0.812 µm and TM polarization. The solid
curves were obtained using the effective-index method described in [38], whereas the plus
signs were computed using the software package RSoft. The dotted vertical lines represent
the desired widths w1 and w2. (b) Simulated performance of a mode analyzer that takes
the form displayed in Fig. 2(a). The blue curve represents the evolution with distance of
the normalized amplitude of the odd mode in a TMW of width w1 = 5.6 µm, whereas the
green curve shows the evolution of the even mode in a SMW of dimensions w2 = 3.4 µm
and L2 = 6.2 mm. The separation between the TMW and the SMW is b1 = 4 µm and the
S-bend has dimensions Lb = 10 mm and S = 127 µm. The dip in the curve for the SMW is
associated with the tapered nature of the S-bend. The results were obtained with the help
of the software package RSoft.

(m = 0) and odd (m = 1) modes before Ti indiffusion, as a function of the waveguide width w,
is presented in Fig. 3(a) for TM polarization at a wavelength of λ = 0.812 µm. The horizontal
dotted line crossing the two curves represents the phase-matching condition for an even and an
odd mode in two waveguides of different widths. The simulation presented in Fig. 3(b) displays
the evolution of the normalized amplitudes of the two interacting modes with distance.

6. Mode rotator and modal Pauli spin operator σx

The mode rotator is an operator that rotates the state by an angle θ in mode space, just as
a polarization rotator rotates the polarization state. It is also analogous to the parity rotator
of one-photon spatial-parity space [40]. It achieves rotation by cascading a mode analyzer, a
directional coupler, and a mode combiner; the three devices are regulated by separate EO phase
modulators to which external voltages are applied. The mode analyzer splits the incoming one-
photon state into its even and odd projections; the directional coupler mixes them; and the mode
combiner recombines them into a single output.

Implementation of the mode rotator is simplified by making use of the factorization prop-
erty of the unitary matrix T that characterizes mode coupling in two adjacent waveguides (see
Sec. 4). As shown in Eqs. (3) and (4), the coupling between two lossless waveguides can be
regarded as a cascade of three stages: phase retardation, rotation, and phase retardation. If the
phase-retardation components were eliminated, only pure rotation, characterized by the SO(2)
operator, would remain.

The phase-retardation components can indeed be compensated by making use of a pair of
EO phase modulators to introduce phase shifts of Γ1 and Γ2, before and after the EO direc-
tional coupler, respectively. These simple U(1) transformations convert T1 and T3 in Eq. (4)
into identity matrices, whereupon Eq. (3) becomes the SO(2) rotation operator. For a mode of
wavelength λ , and an EO phase modulator of length L and distance d between the electrodes,
the voltage required to introduce a phase shift of Γ is V = λ d Γ/π r n3L , where the Pockels co-

#131866 - $15.00 USD Received 19 Jul 2010; revised 3 Sep 2010; accepted 3 Sep 2010; published 10 Sep 2010
(C) 2010 OSA 13 September 2010 / Vol. 18, No. 19 / OPTICS EXPRESS 20483



Fig. 4. Sketch of a photonic circuit that serves as a mode rotator (not to scale). It is im-
plemented by sandwiching a directional coupler between a mode analyzer and a mode
combiner. The coupling length of the directional coupler is π/2κ . To obtain a specified
angle of rotation θ , voltages V1, V2, and V3 are applied to the EO directional coupler, the
input EO phase modulator, and the output EO phase modulator, respectively.

efficient r assumes the values r13 and r33, for n = no and n = ne, respectively [17, Sec. 20.1B].
The standard EO directional coupler consists of two adjacent identical SMWs and makes

use of an EO phase modulator to control the transfer of modal power between them [17,
Sec. 20.1D]. When no voltage is applied to the EO modulator, the optical power is totally trans-
ferred from one waveguide to the other, provided that the interaction length L over which they
interact is an odd integer multiple of the coupling length, π/2κ [17, Sec. 8.5B]. The applica-
tion of a voltage to the EO modulator introduces a phase mismatch between the two interacting
modes that results in partial, rather than full, optical power transfer. In particular, if the voltage
is chosen such that |∆βL |=√

3π (or
√

7π,
√

11π, . . .), then no power is transferred between the
two waveguides. The voltage required to introduce a phase mismatch of ∆β is approximately
V = λ d ∆β/2π r n3 [17, Sec. 20.1D]. The waveguide beam combiner suggested by Buhl and
Alferness [53] operates on the same principle.

However, because our modal state resides in a TMW, rather than in a SMW associated with
the usual directional coupler, a mode analyzer with a configuration similar to that shown in
Fig. 2(a) is used to direct the odd component to one arm of the EO directional coupler, and the
even component to the other arm through an adiabatically tapered region, as shown in Fig. 4.
A mirror-image tapered region and mode combiner follow the directional coupler to recombine
the two components at the output of the device. Voltages V1, V2, and V3 are applied to the
EO directional coupler, the input EO phase modulator, and the output EO phase modulator,
respectively. The voltages V2 and V3 can be modified as necessary to ensure that the overall
phases acquired by the odd and even modes, both before and after the directional coupler, are
identical when V1 = 0.

An example showing the operating voltages V1,V2, and V3 required to obtain a specified angle
of rotation θ is provided in Fig. 5. The directional-coupler voltage V1 has an initial value (for
θ = 0) that corresponds to a phase mismatch |∆βL |=√

3π; decreasing V1 results in increasing
θ . When V1 = 0, the angle of rotation is π; the device then acts as the Pauli spin operator σx ,
which is a mode flipper (analogous to the parity flipper [40,41]). For V1 = 0, there are an infinite
number of solutions for the values of V2 and V3, provided, however, that V2 = −V3.

7. Controlled-NOT (CNOT) gate

Deterministic quantum computation that involves several degrees-of-freedom of a single photon
for encoding multiple qubits is not scalable inasmuch as it requires resources that grow expo-
nentially [31]. Nevertheless, few-qubit quantum processing can be implemented by exploiting
multiple-qubit encoding on single photons [54]. We propose a novel deterministic, two-qubit,
single-photon, CNOT gate, implemented as a Ti:LiNbO3 photonic quantum circuit, in which
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Fig. 5. Operating voltages for the mode rotator vs. the angle of rotation θ . Voltages V1
(solid blue curve), V2 (dashed green curve), and V3 (dashed-dotted red curve) are applied to
the EO directional coupler, the input EO phase modulator, and the output EO phase mod-
ulator, respectively. The input has wavelength λ = 0.812 µm and TM polarization. The
directional coupler comprises two identical SMWs separated by d = 5 µm; each SMW has
width 2.2 µm and length 1.73 mm. The input and output EO phase modulators have elec-
trode lengths of 5 mm and electrode separations of 5 µm. The curves represent theoretical
calculations while the symbols represent simulated data obtained using the RSoft program.

Fig. 6. Sketch of a Ti:LiNbO3 photonic quantum circuit that behaves as a novel determin-
istic, two-qubit, single-photon, CNOT gate (not to scale). The control qubit is polarization
and the target qubit is mode number. The circuit bears some similarity to the mode rotator
shown in Fig. 4; both are implemented by sandwiching an EO directional coupler between
a mode analyzer and a mode combiner. However, for the CNOT gate, the EO directional
coupler comprises a pair of TMWs, whereas the mode rotator uses a conventional EO di-
rectional coupler utilizing a pair of SMWs.

the polarization and mode number of a single photon serve as the control and target qubits,
respectively.

The operation of this gate is implemented via a polarization-sensitive, two-mode, electro-
optic directional coupler, comprising a pair of identical TMWs integrated with an electro-optic
phase modulator, and sandwiched between a mode analyzer and a mode combiner. It relies on
the polarization sensitivity of the Pockels coefficients in LiNbO3. A sketch of the circuit is
provided in Fig. 6. The mode analyzer spatially separates the even and odd components of the
state for a TM-polarized photon, sending the even component to one of the TMWs and the odd
component to the other. At a certain value of the EO phase-modulator voltage, as explained
below, the even and odd modes can exchange power. The modified even and odd components
are then brought together by the mode combiner.
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Fig. 7. Dependencies of the normalized propagation constants β on the voltage applied
to an EO TMW directional coupler comprising two waveguides [WG1 and WG2]. The
propagation constants differ for the even and odd modes except at one particular voltage
(vertical dashed line) where the even mode in one waveguide can be phase-matched to the
odd mode in the other waveguide. The TMWs are identical, each of width 4 µm, and they
are separated by 4 µm. The input has wavelength λ = 0.812 µm and TM polarization. The
symbols represent simulated data obtained using the RSoft program.

To show that the device portrayed in Fig. 6 operates as a CNOT gate, we first demonstrate
that the target qubit is indeed flipped by a TM-polarized control qubit, so that |1〉 ≡ |TM〉. The
polarization sensitivity of the Ti:LiNbO3 TMWs resides in the values of their refractive indices
n, which depend on the polarizations of the incident waves and the voltage applied to its EO
phase modulator; and on their Pockels coefficients r, which depend on the polarization [17,
Example 20.2-1]. For a photon with TM polarization, the two-mode EO directional coupler
offers two operating regions with markedly different properties. At low (or no) applied voltage,
interaction and power transfer take place only between like-parity modes in the two waveguides
because the propagation constants of the even and odd modes are different, so they are not
phase-matched. However, at a particular higher value of the applied voltage, the behavior of the
device changes in such a way that only the even mode in one waveguide, and the odd mode in
the other, can interact and exchange power. This arises because the refractive indices of the two
waveguides depend on the voltage applied to the device; they move in opposite directions as the
voltage increases since the electric-field lines go downward in one waveguide and upward in the
other. Figure 7 provides an example illustrating the dependencies of the propagation constants
of the even and odd modes, in the two TMWs, as a function of the applied voltage.

At a voltage indicated by the vertical dashed line in Fig. 7, the even mode in one waveguide is
phase-matched to the odd mode in the other. In a directional coupler with suitable parameters, a
TM-polarized control bit will then result in a flip of the modal bit, whereupon α1|e〉+α2|o〉→
α1|o〉+ α2|e〉. A TE-polarized control qubit, on the other hand, which sees no rather than ne,
will leave the target qubit unchanged because of phase mismatch, so that |0〉 ≡ |TE〉. Hence,
the target qubit is flipped if and only if the control qubit is |1〉, and is left unchanged if the
control qubit is |0〉, so that the device portrayed in Fig. 6 does indeed behave as a CNOT gate.
In principle, it would also be possible to use a TE-polarized control qubit to flip the target bit;
this option was not selected because it would require a higher value of EO phase-modulator
voltage since the TE Pockels coefficient r13 is smaller than the TM Pockels coefficient r33 [35].

A drawback of the photonic circuit illustrated in Fig. 6 is that it suffers from the effects of
dispersion, which is deleterious to the operation of circuits used for many quantum informa-
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Fig. 8. Sketch of a Ti:LiNbO3 photonic quantum circuit that behaves as a novel dispersion-
managed, deterministic, two-qubit, single-photon, CNOT gate (not to scale). The control
qubit is polarization and the target qubit is mode number. The design is more complex than
that shown in Fig. 6 because it accommodates dispersion management via path-length ad-
justments of the upper, middle, and lower paths. An EO TMW directional coupler is sand-
wiched between polarization-sensitive mode analyzers and polarization-sensitive mode
combiners. The lower and upper waveguides of the two-mode directional coupler are de-
noted WG1 and WG2, respectively. The paths taken by the components of the input state
|Ψi〉 are shown, as is the output state |Ψo〉.

tion applications. Dispersion results from the dependence of the propagation constant β on
frequency, mode number, and polarization. Polarization-mode dispersion generally outweighs
the other contributions, especially in a birefringent material such as LiNbO3.

Fortunately, however, it is possible to construct a photonic circuit in which the phase shifts
introduced by dispersion can be equalized. A Ti:LiNbO3 photonic quantum circuit that behaves
as a novel dispersion-managed, deterministic, two-qubit, single-photon, CNOT gate is sketched
in Fig. 8. It makes use of three paths (upper, middle, and lower), in which the path-lengths of the
three arms are carefully adjusted to allow for dispersion management. The third path provides
the additional degree-of-freedom that enables the optical path-lengths to be equalized.

The design relies on the use of polarization-dependent mode analyzers at the input to the
circuit. The TM-mode analyzer couples the odd-TM component of the state to the upper path,
while the TE-mode analyzer couples the odd-TE component to the lower path. The even-TM
and even-TE components continue along the middle path. Polarization-dependent mode com-
biners are used at the output of the circuit.

If the control qubit is in a superposition state, the general quantum state at the input to the
circuit, which resides in a 4D Hilbert space (2D for polarization and 2D for mode number), is
expressed as

|Ψi〉 = α1|e,TM〉+α2|o,TM〉+α3|e,TE〉+α4|o,TE〉
= |TM〉⊗ [α1|e〉+α2|o〉 ]+ |TE〉⊗ [α3|e〉+α4|o〉 ]
= |e〉⊗ [α1|TM〉+α3|TE〉 ]+ |o〉⊗ [α2|TM〉+α4|TE〉 ] ,

(7)

where |e〉 and |o〉 are the basis states of the modal subspace; |TM〉 and |TE〉 are the basis states
of the polarization subspace; the α’s represent the basis weights; and ⊗ indicates the tensor
product. Since the target (modal) qubit is flipped by a TM control qubit, the output state |Ψo〉

#131866 - $15.00 USD Received 19 Jul 2010; revised 3 Sep 2010; accepted 3 Sep 2010; published 10 Sep 2010
(C) 2010 OSA 13 September 2010 / Vol. 18, No. 19 / OPTICS EXPRESS 20487



becomes
|Ψo〉 = α1|o,TM〉+α2|e,TM〉+α3|e,TE〉+α4|o,TE〉

= |TM〉⊗ [α1|o〉+α2|e〉 ]+ |TE〉⊗ [α3|e〉+α4|o〉 ] ,
(8)

where it is clear that the two terms in the input state, α1|e,TM〉 and α2|o,TM〉, are converted to
α1|o,TM〉 and α2|e,TM〉, respectively, at the output, exemplifying the operation of this CNOT
gate. Figure 8 displays the paths taken by the components of the input state provided in Eq. (7);
the output state set forth in Eq. (8) is also indicated.

The output state in Eq. (8) is entangled in polarization and mode number; it is inseparable
and cannot be written in factorizable form. A particular property of the CNOT gate is the in-
duction of entanglement between factorized qubits: if the control qubit is in the superposition
state 1√

2
[ |TM〉+ |TE〉], and the target qubit is in one of the computational basis states, then

the output state of the CNOT gate is maximally entangled. An experimental test of the entan-
glement created between the polarization and modal degrees-of-freedom can be effected by
using quantum-state tomography. The input to the CNOT gate can be readily generated from
a product state, say |TM〉⊗ |e〉, by rotation using a waveguide-based EO TE�TM mode con-
verter [23, 55], in addition to a phase modulator, as described in Sec. 6.

It remains to demonstrate the manner in which dispersion management can be achieved in
the CNOT gate displayed in Fig. 8. The phase shift ϕ acquired by each component at the output
is given by

ϕ e,TM = βe,TM �1 +βo,TM �2 +β ′LD − (2q1 +q2)π/2

ϕ o,TM = ϕ e,TM

ϕ e,TE = 2βe,TE �1 +β ′′LD

ϕ o,TE = 2βo,TE �3 −q3π +2φA ,

(9)

where the β ’s are the mode propagation constants; β ′ is the propagation constant of either the
TM-even mode in WG1 or the TM-odd mode in WG2; β ′′ is the propagation constant of the
TE-even mode in WG1; q1, q2, and q3 are odd positive integers that depend on the lengths
of the TM-mode analyzer, directional coupler, and TE-mode analyzer, respectively; LD is the
length of the directional-coupler electrode; �1 is the path-length for the even modes before and
after the directional coupler, �2 is the path-length for the odd-TM mode before and after the
directional coupler; and 2�1 + LD, 2�2 + LD, and 2�3 are the overall physical lengths of the
middle, upper, and lower paths, respectively. The phase shift φA arises from the coupling that
affects the odd-TE component as it travels through the TM-mode analyzer. Phase shifts that
accrue for the even modes as they pass through the mode analyzers and mode combiners are
neglected because of large phase mismatches and weak coupling coefficients. By adjusting the
lengths �1, �2, and �3, we can equalize the phase shifts encountered by each component of the
state. Imperfections in the fabrication of the circuit may be compensated by making use of EO
phase modulators.

A simulation that demonstrates the performance of the polarization-dependent mode ana-
lyzers and EO TMW directional coupler is presented in Fig. 9. The lengths �1, �2, and �3 are
assumed to be adjusted such that they equalize the phase shifts encountered by each component
of the state so that dispersion is not an issue. The spatial evolution of the normalized amplitudes
of the odd and even modes inside the TM-mode analyzer, for TM- and TE-polarization, are dis-
played in Figs. 9(a) and 9(b), respectively. It is apparent that the TM-mode analyzer extracts
only the TM-odd component, while the TE-odd component remains in the TMW waveguide
until it couples to the lower path via the TE-mode analyzer [see Fig. 9(c)]. Figures 9(d), (e),
and (f) display the performance of the directional coupler for modal inputs that are TM-even,
TM-odd, and TE-even, respectively. It is apparent in Fig. 9(d) that the power in the even mode
in WG1 is transferred to the odd mode in WG2 for TM polarization. Figure 9(e) reveals comple-
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Fig. 9. Simulation demonstrating the performance of the polarization-dependent mode ana-
lyzers and the EO TMW directional coupler associated with the dispersion-managed, deter-
ministic, two-qubit, single-photon, CNOT gate set forth in Fig. 8. The input wavelength is
λ = 0.812 µm. The TM-mode-analyzer and mode-combiner parameters are w1 = 5.6 µm,
w2 = 3.4 µm, b1 = 4 µm, and L2 = 6.2 mm; the TE-mode-analyzer and mode-combiner
parameters are w2 = 3µm, b1 = 4µm, and L2 = 3.7 mm (see Fig. 2 for symbol definitions).
The S-bends have dimensions Lb = 10 mm and S = 127 µm. The TMW directional-coupler
has length L1 = 2.2 mm, waveguide width w1 = 5.6 µm, electrode separation d = 4 µm,
and an EO phase-modulator voltage V = 36 V applied to WG2, with WG1 at ground poten-
tial. All panels display the spatial evolution of the normalized amplitudes of the interacting
modes. (a) The curves display strong coupling between the odd and even modes for TM-
polarization inside the TM-mode analyzer. The input odd mode in the TMW is shown in
blue and the even mode transferred to the SMW is shown in green [the same color conven-
tions are used in panels (b) and (c)]. The even mode is ultimately coupled to another TMW
at the output of the TM-mode analyzer and once again becomes odd. (b) The curves show
negligible coupling between the odd and even modes for TE-polarization inside the TM-
mode analyzer. (c) The curves display good coupling between the odd and even modes for
TE-polarization inside the TE-mode analyzer. At the TE-mode combiner, the even mode in
the SMW once again becomes an odd mode in the TMW. Panels (d), (e), and (f) display
the performance of the directional coupler for modal inputs that are TM-even, TM-odd,
and TE-even, respectively. For a given polarization, the blue and green curves represent
the amplitudes of the even [denoted Even(1)] and odd [denoted Odd(1)] modes in WG1,
respectively, while the the red and black curves are the amplitudes of the even [denoted
Even(2)] and odd [denoted Odd(2)] modes in WG2, respectively. All simulated data in this
figure were obtained using the RSoft program.
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mentary behavior: the power in the odd mode in WG2 is transferred to the even mode in WG1.
Figure 9(f), on the other hand, shows that the TE-even mode travels through the directional
coupler with essentially no interaction. Figures 9(d), (e), and (f), taken together, along with the
observation that the TE-odd mode preserves its modal profile during propagation, demonstrate
a flip of the modal target qubit by the TM-polarized control qubit, and no flip by a TE-polarized
control qubit, confirming that the photonic circuit in Fig. 8 behaves as a CNOT gate.

The absence of a total power transfer from one waveguide to another in Figs. 9(d) and 9(e)
can be ascribed to sub-optimal simulation parameters. The conversion efficiency can be ex-
pected to improve upon: 1) optimizing the length of the two-mode directional coupler; 2)
minimizing bending losses by increasing the length of the S-bend; 3) mitigating the residual
phase mismatch by more careful adjustment of the voltage; and 4) improving numerical ac-
curacy. Moreover, the deleterious effects of dc drift and temperature on the operating voltage
and stability of the two-mode directional coupler can be minimized by biasing it via electronic
feedback [56]; a novel technique based on inverting the domain of one of its arms can also be
used to reduce the required operating voltage [57]. Finally, it is worthy of note that decoherence
associated with the use of a cascade of CNOT gates, such as might be encountered in carrying
out certain quantum algorithms, may be mitigated by the use of either a qubit amplifier [32] or
teleportation and error-correcting techniques [33].

8. Conclusion

The modes of a single photon in a two-mode Ti:LiNbO3 waveguide have been co-opted as basis
states for representing the quantum state of the photon as a modal qubit. Various photonic quan-
tum circuit designs have been presented for carrying out basic operations on modal qubits for
quantum information processing applications. These include a mode analyzer, a mode rotator,
and modal Pauli spin operators. We have also described the design of a deterministic, two-qubit,
single-photon, CNOT gate, as well as a dispersion-managed version thereof, that rely on a sin-
gle photon with both modal and polarization degrees-of-freedom in a joint 4D Hilbert space.
The CNOT gate is a key element in certain sets of universal quantum logic gates. Simulations
of the performance of all of these components, carried out with the help of the the commer-
cial photonic and network design software package RSoft, provide support that they operate
as intended. The design of these devices is based on selective and controllable power coupling
among waveguides, the isomorphism between waveguide coupling and the SO(2) rotation ma-
trix, and the tensor polarization properties of the Pockels coefficients in lithium niobate. The
flexibility of Ti:LiNbO3 as a material for the fabrication guided-wave structures should ac-
commodate the development of increasingly complex quantum circuits and serve to foster new
architectures.
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