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1. Introduction

Optical microscopy and microlithography play major roles in modern science and technology,
and 3D applications have become increasingly important in recent years. Since transverse and
axial resolutions limit the size of the 3D objects that may be visualized or fabricated by such
systems, the enhancement of resolution beyond the conventional limits is likely to have a great
impact on a wide variety of applications. Conventional limits of resolution are set by diffraction,
which is governed by the aperture size and shape for both gazing and scanning microscopy and
lithography, including confocal systems.

Physical approaches for achieving superresolution, within the domain of classical optics,
have been implemented via three major paradigms. In the first of these, the spatial distributions
of amplitude and phase apertures within the optical system are modified to reduce the volume
of the focal spot [1]. Also within the confines of linear optics, the second approach is based on
modifying the characteristics of the optical system, taking account of prior information about
the insensitivity of the object to a particular degree of freedom of the optical field. If it is known
that the object is stationary, for example, a time-varying optical system (e.g., one that makes use
of scanning) can be employed [2, 3, 4, 5]. The same notion can be applied to other degrees of
freedom, such as wavelength [6] and polarization [7]. Recent studies on the fractional Fourier
transform and optical Wigner distributions have led to a reformulation of superresolution and to
new approaches to the subject [8, 9, 10]. In the third approach, a physical characteristic of the
object, such as its nonlinear response, is used to supersede the Rayleigh limit. This approach has
been used, for example, in multiphoton microscopy [11] and lithography [12], where pairs of
photons in the two-photon case, e.g., are absorbed only in a sub-region of the focused illumina-
tion beam where the intensity is sufficiently large. A more recent example in which nonlinearity
is used for enhancing resolution makes use of stimulated emission to deplete the excitation in a
pre-specified region of a pumped medium [13, 14].

In almost all previous resolution enhancement efforts, a scalar wave theory has been adopted
and polarization effects have been ignored (although polarization-assisted shaping of the tem-
poral profile of femtosecond pulses has been recently reported [15]). In effect, diffraction and
polarization phenomena have been decoupled, while optimal wavefronts and aperture shapes
have been pursued. Since changes in the curvature of wavefronts are invariably accompanied by
spatially varying phase shifts, the polarization state of an incoming wave is also modified, and
this effect is particularly acute upon passage through a focal region. In this paper, we demon-
strate how this phenomenon can be harnessed to make a selected polarization component ac-
quire greater confinement in the transverse and axial directions, a technique that we will denote
polarization-assisted superresolution (PAS).

2. Polarization and spatial distribution of superposed orthogonally polarized Gaussian
beams

To understand the means by which polarization-assisted superresolution can be achieved, con-
sider first the superposition of two coaxial paraxial optical beams in orthogonal polarization
states, propagating in a linear, isotropic, and lossless medium. If the beams are of identical
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spatial distributions, then the state of polarization of the combined beam will be constant ev-
erywhere in space. However, if the beams have different spatial distributions, then the state
of polarization of the combined beam will be position dependent since the two beams will be
mixed with different weights and phases at different positions. Also, if another polarization
component is extracted from the combined beam by use of a polarization-selective device, then
it will generally have a spatial distribution different from that of either of the original beams.

To be specific, let the beams be monochromatic Gaussian beams linearly polarized in the
x and y directions, and propagating in the z direction. The beams are described by the scalar
functions fx(ρ,z) and fy(ρ,z), which have different parameters (width or divergence angle, or
location of beam center). Here, ρ =

√
x2 + y2 is the radial distance. The beams are assumed to

have the same frequency so that the complex envelope of the combined beam is the vector sum

U(ρ,z) = fx(ρ,z)x̂+ fy(ρ,z)ŷ, (1)

where x̂ and ŷ are the appropriate Jones vectors. Clearly, the state of polarization is position de-
pendent since the components of the Jones vector, fx(ρ,z) and fy(ρ,z), are position dependent.

In terms of a different orthogonal polarization basis, say right- and left-circular polarization
(RCP and LCP), the same complex envelope is written in the form

U(ρ,z) = fR(ρ,z)R̂+ fL(ρ,z)L̂, (2)

where

fR,L(ρ,z) =
1√
2
[ fx(ρ,z)∓ j fy(ρ,z)] (3)

are the spatial distributions of the RCP and LCP components, respectively, and R̂ and L̂ are the
appropriate Jones vectors. The components fR(ρ,z) and fL(ρ,z) are not necessarily Gaussian.
This may be readily seen by examining expressions for the intensities of these components,

IR,L(ρ,z) =
1
2
[Ix(ρ,z)+ Iy(ρ,z)]∓ [Ix(ρ,z)Iy(ρ,z)]1/2 sin[φx(ρ,z)−φy(ρ,z)], (4)

where Ix,y and φx,y are the intensity and phase associated with fx,y.
For simplicity, consider the special case when the x- and y-polarized Gaussian beams have

identical parameters but their centers are offset by a distance 2∆, as illustrated in Fig. 1(a). In
this case,

Ix(ρ,z) = I(ρ,z−∆), Iy(ρ,z) = I(ρ,z+∆), (5)

φx(ρ,z) = φ(ρ,z−∆), φy(ρ,z) = φ(ρ,z+∆)+ ξ , (6)

where ξ is an additional phase factor introduced into the y component, and f (ρ,z) =
I1/2(ρ,z)exp[ jφ(ρ,z)] represents a Gaussian beam [16],

I(ρ,z) = [Wo/W (z)]2 exp[−2ρ2/W 2(z)], φ(ρ,z) = −kz− kρ2/2R(z)+η (z). (7)

Here, W (z) = Wo[1 +(z/zo)2]1/2 is the beam width, R(z) = z[1 +(zo/z)2] is its radius of cur-
vature, η (z) = arctan(z/zo) is a phase factor, Wo = (λ zo/π)1/2 is the beam waist, 2zo is the
Rayleigh range, k = 2π/λ , and λ is the wavelength. We have assumed that the beam intensity
at its center (ρ,z) = (0,0) is unity. We will now examine the polarization state of this vector
beam, demonstrating that polarization conversion may occur, and determine the spatial distribu-
tions of the circularly polarized components, showing that they may exhibit transverse and axial
superresolution.
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Fig. 1. (a) Superposition of x- and y-polarized coaxial Gaussian beams with centers offset by
a distance 2∆. (b) The Gouy phase shifts associated with the two beams. (c) Difference of the
Gouy phases.

2.1 Polarization conversion

To demonstrate the polarization conversion that occurs near the beam foci, consider first points
on the beam axis, for which

I(0,z) = [1+(z/zo)2]−1, φ(0,z) = −kz+η (z). (8)

The intensity has a Lorentzian distribution of FWHM width 2zo and a peak value of unity at
z = 0. The phase η (z) = arctan(z/zo) is the axial phase anomaly known as the Gouy phase shift
[17, 18]. It increases monotonically from −π/2 at z = −∞ to π/2 at z = ∞, with zero value at
z = 0. For a combination of two such beams with an axial offset 2∆, as in Eq. (6), the phase
difference between the two beams, η (z−∆)−η (z+∆)+2k∆−ξ , varies with z, and so does the
state of polarization. As illustrated in Fig. 1, the difference of the Gouy phases is approximately
zero, except near the beam foci, where it can reach a maximum value of π at z = 0. This may
be exploited to effect a conversion of the polarization state that is confined to the focal region.
For example, if the constant phase 2k∆− ξ = π/2, then the combined beam is in the RCP state
at axial points far from the focal region, and in the LCP state at z = 0. This conversion from
RCP to LCP and back to RCP on axis as the beam travels through the focal region is attributed
to the Gouy effect. We will hereafter call the RCP and LCP components the “majority” and
“minority” polarizations, respectively. We will show that for certain values of the ratio ∆/zo,
called the offset parameter, the focal volume of the minority polarization may be smaller than
that of the constituent Gaussian beam, thus potentially achieving axial superresolution, lateral
superresolution, or both.

2.2 Spatial distributions

The spatial distributions of the circularly-polarized components may be readily determined by
using Eqs. (4)-(7) and when 2k∆− ξ = π/2 the intensities of the RCP and LCP components
become
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IR,L(ρ,z) = Io(ρ,z)± I1(ρ,z)cos[ζ (ρ,z)], (9)

where

Io(ρ,z) =
1
2
[I(ρ,z−∆)+ I(ρ,z+∆)], (10)

I1(ρ,z) = [I(ρ,z−∆)I(ρ,z+∆)]1/2, (11)

ζ (ρ,z) = η (z−∆)−η (z+∆)− kρ2/2R1(z), (12)

1/R1(z) = 1/R(z−∆)−1/R(z+∆). (13)

In any transverse plane z �= 0, the intensities of the circularly-polarized components are mod-
ulated by radial patterns in the form of chirped rings similar to the zones of Fresnel plates.
These annular patterns result from interference between Gaussian components with different
wavefront curvatures. As we shall subsequently see, such patterns can result in radial confine-
ment in the focal region (z = 0). Annular apertures are known to correspond to tighter focus
[19, 20, 21, 22].

2.3 Axial superresolution

It can be shown that the axial intensity distribution of the LCP component IL(0,z), as given by
Eqs. (9)-(13) at ρ = 0, is a bell-shaped function with a single peak at z = 0, if the offset ∆ < zo.
A greater offset corresponds to a double-peaked axial distribution, which is is not surprising
since it is known that the peak intensity of a spherical wave transmitted through an annular
aperture is displaced from the geometrical focus, a phenomenon known as the focal shift [23].
The FWHM of IL(0,z) is given by

z(L)
FWHM = 2zo{[2(1+ r4)]1/2 − (1− r2)}1/2, (14)

where r = ∆/zo is the offset parameter. For |r| < 0.67, z(L)
FWHM < 2zo, i.e., the LCP beam has

an axial width smaller than that of the conventional Gaussian beam. This axial superresolution
effect increases as ∆ is reduced, but the peak intensity

IL(0,0) = 2r2/[1+ r2]2 (15)

is also reduced, eventually vanishing as ∆ → 0. As an example, if r = ∆/zo = 0.25, the nor-

malized axial width z(L)
FWHM/2zo = 0.69 and the intensity is 0.11, i.e., the axial width is com-

pressed by a factor of approximately 1.45 and the intensity is reduced to 11% of its value for
the constituent Gaussian beam. The axial distributions of the compressed LCP beam and the
constituent Gasussian beams are compared in Fig. 2(a), and the dependence of the axial width
and peak intensity on the offset parameter is shown in Fig. 3.

2.4 Transverse superresolution

One measure of tranverse superresolution is the reduction in the radial width of the intensity
distribution in the z = 0 plane. In this plane, Io(ρ,0) = I1(ρ,0) = I(ρ,∆) so that Eq. (9) becomes

IL(ρ,0) = 2I(ρ,∆)sin2[ζ (ρ,z)/2],

=
2

1+ r2 exp

(
− 2

1+ r2

ρ2

W 2
o

)
sin2

[
arctan(r)− r

1+ r2

ρ2

W 2
o

]
(16)

This is a Gaussian function of ρ modulated by a sin2 function of ρ2. When plotted as a function
of the ratio ρ/Wo, the width is completely determined by the offset parameter r = ∆/zo. For
example, when the offset paramter r = 0.25, the FWHM radial width is 0.84, as compared to
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Fig. 3. Dependence of the axial and radial widths (FWHM) and the peak intensity of the LCP
(minority) component on the offset parameter r = ∆/zo. All values are normalized to the corre-
sponding values for the constituent Gaussian beam.

1.18 for the constituent Gaussian beam. This is an improvement by a factor of 1.4. As illustrated
in Fig. 2(b), this compression is accompanied by a small side lobe. Reduction of the offset
parameter leads to further improvement of the lateral resolution, at the expense of a reduction
in peak intensity, as illustrated in Fig. 3.

The distribution of the LCP beam at off-axis or off-focal-plane points may be determined by
use of Eqs. (4)-(7). Figure 4 has a plot of the intensity in a meridional plane (x = 0) for the LCP
beam and a constituent Gaussian beam whose center is at (x,z) = (0,0). The offset parameter
r = 0.25. Clearly, the LCP beam has a focal spot smaller than that of the Gaussian beam. The
distribution of the LCP beam in a transverse plane at a distance z = 5zo from the center is also
shown in Fig. 4, demonstrating the annular distribution of the LCP beam.

2.5 Power exchange

The change of the state of polarization and the spatial redistribution of optical intensity, which
accompanies wave propagation, raise the question of power exchange between the polarization
modes. It can be shown, however, that if the medium and the optical components are linear,
isotropic, and lossless, then the total power (intensity integrated over the transverse plane) in
each of the two orthogonally polarized beams is fixed, i.e., invariant to the axial distance z.
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Fig. 4. Intensity distribution of the LCP beam (top) and a reference linearly polarized Gaussian
beam (bottom). The distributions in the meridional plane x = 0 (right) and the transverse plane
z/zo = −5 (left) are shown. The axial position z is in units of zo and the transverse dimensions
are in units of Wo. The offset ratio r = ∆/zo = 0.25. In each figure, the intensity is normalized
such that the maximum value is unity.

Consider the expansion in Eq. (2) in terms of RCP and LCP beams. Each of these polarization
components propagates linearly and independently, and the propagation may be described by
a polarization-independent Green’s function G(z)(x,y;x′,y′), which relates the distribution in a
transverse plane at the position z to that in the z = 0 plane,

fR,L(x,y,z) =
∫ ∫

dx′dy′G(z)(x,y;x′,y′) fR,L(x′,y′,0). (17)

Since the medium is lossless, the Green’s function must obey the unitarity relation
∫ ∫

dxdyG(z)(x,y;x′,y′)G(z)∗(x,y;x′′,y′′) = δ
(
x′ − x′′;y′ − y′′

)
. (18)

Using Eqs. (17) and (18), it can be shown by direct substitution that in any plane perpendicular
to the axis of propagation, the total power in each of the polarization components is invariant to
z, e.g.,

PR(z) =
∫ ∫

dxdy | fR(x,y,z)|2 =
∫ ∫

dxdy | fR(x,y,0)|2 = PR(0). (19)

Similarly, PL(z) = PL(0). We therefore conclude that in any plane perpendicular to the axis
of propagation, the ratio of the RCP and LCP powers remains constant. A similar result is
applicable to the x and y polarizations, or any other set of orthogonal polarizations.

3. Focusing of superposed Gaussian beams by a lens

A possible implementation of polarization-assisted superresoultion is based on focusing two
orthogonally polarized Gaussian beams of different curvatures by use of an objective lens, as
illustrated in Fig. 5. At the entrance of the lens, the two beams have the same width, but one
beam is completely collimated and the other is slightly divergent. For instance, we assume here
that the beams are linearly polarized in the x and y directions, although the same argument
applies to any other pair of orthogonal polarizations. The phase difference between the two
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Fig. 5. Proposed scheme for creating polarization-assisted superresolution. Two Gaussian beams
of the same width and with a slight difference in curvature are focused by a lens. The x- and
y-polarized components have a 90◦ phase shift at the beam axis. The left-circularly polarized
component (minority) is highly confined in the focal region.

beams is selected such that the total field at the lens plane on the beam axis is in the RCP state,
the majority polarization.

Because of the difference between the divergences of the two beams, the x-polarized beam
focuses slightly closer to the lens than does the y-polarized beam, so that the centers of the
focused beams are axially offset, but in this geometry the Gaussian beams do not have the same
parameters. As mentioned earlier, as a result of the Gouy phase shifts encountered near the foci
of the beams, a phase shift is introduced between the x- and y- polarized beams in the vicinity
of the focal spot. In a small region of space between the foci of the two beams where that
phase shift is near π, the polarization at the on-axis points is approximately converted to LCP
(minority polarization).

As an example, we have examined a system operating at a 1-µm wavelength. The beams
have an initial width W = 1 mm in the lens plane and the lens has a 4-mm focal length. If the
uncollimated beam has a radius of curvature R = 1.572 mm before it enters the lens, then the
focused beams will have waists Wo = 1.2732 µm and 1.2740 µm and Rayleigh ranges zo =
5.093 µm and 5.099 µm, so that the two beams have approximately equal parameters. Their
centers are offset by a distance 2∆ = 2.505µm corresponding to an offset ratio r = ∆/zo ≈ 0.25.
We have computed the axial and radial distributions of the intensity of the majority (RCP) and
minority (LCP) polarization components at points within the focal volume for this system. The
intensity distribution of the minority polarization in a merdional plane in the focal region is
shown in Fig. 6. Contours of constant intensity (isophotes) at fixed fractions of the peak value
are also shown. For comparison, the same plots are also shown for a reference Gaussian beam
focused at a point midway between the foci of the input x- and y-polarized beams and having
their same width in the lens plane. Based on the 3-dB contours, we conclude that the distribution
of the minority polarization is tighter than that of the reference beam by factors of 1.45 and 1.4
in the axial and radial directions, respectively. The total power of the minority polarization is
approximately 11% of the total input power. The PAS technique described in this section may
also be implemented by transmitting a single circulalry polarized Gaussian beam through a
birefringent lens, which introduces different wavefront curvatures into the x- and y-polarized
components. Alternatively, these two components may be separated with a polarizing beam
splitter and recombined with another beam splitter after traveling slightly different distances, as
in a Mach-Zehnder interferometer. Interferometric methods have been used in creating desired
spatial distributions in the focal region [14] and in the generation of standing-wave excitation
for enhanced-resolution fluorescence microscopy [24]. Yet another possible implementation is
based on the use of a birefringent slab, or etalon, inside a laser cavity arranged such that x- and
y-polarized Gaussian modes are generated with offset foci.

Since the Gouy effect is not limited to Gaussian beams, other beams are expected to yield
similar PAS under similar conditions. An example is the beam generated by focusing a plane
wave with a perfect lens of finite circular aperture. This beam has a Bessel-type radial in-
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tensity distribution and a sinc2 axial intensity distribution [25]. The Gouy phase decreases
linearly from π/2 to −3π/2 as z/zo increases from −4π to 4π, and outside this range it
changes periodically following a sawtooth function with period 4πzo and amplitude π [25].
Here, zo = (λ /2π)( f 2/a2), where a is the radius of the aperture and f is the lens focal length
(for a Gaussian beam of width W at the lens, zo has the same expression with a replaced by
W/

√
2). Two such beams whose centers are offset by a distance ∆ = 4πzo, equal to the period,

result in a Gouy phase difference of π at axial points between z = 0 and z = 4πzo, and zero else-
where. This rectangular profile corresponds to the bell-shaped profile in Fig.1c for the Gaussian
beam. The minority polarization component is therefore expected to be confined between z = 0
and z = 4πzo on axis. Also, since the transverse distribution of the minority polarization in the
plane of the lens has an annular pattern, transverse superresolution in the focal plane is also
expected, but with side lobes larger than in the Gaussian beam case.

4. Conclusion

We have shown that a combination of x- and y-polarized Gaussian beams, with a 90◦ phase shift
and slightly offset foci, corresponds to right-circularly polarized (majority) and left-circularly
polarized (minority) beams with non-Gaussian spatial distributions. For an offset distance of the
order of half the Rayleigh range, the minority beam has a smaller focal volume than the con-
stituent Gaussian beam. The origin of this polarization-assisted radial and axial superconfine-
ment lies at the annular distribution of the minority beam, which results from the interference
of two wavefronts with different curvature. It may alternatively be attributed to the differential
axial phase anomalies, or Gouy phases, of the constituent linearly-polarized Gaussian beams.

Although the polarization state is converted from RCP at the input plane into LCP at the
focal region (at points on the beam axis), it is important to note that the total power carried by
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each mode is invariant to the axial position. The two modes propagate independently, and the
fixed power in each mode is redistributed in the lateral plane as it travels. Polarization-assisted
superresolution is achieved by mixing two linearly polarized Gaussian beams, which are conve-
nient to generate, thus creating a non-Gaussian circularly polarized wavefront that is naturally
focused into a tighter focal spot, independently of the other orthogonal mode. Should such non-
Gaussian wavefront be created by some other mechanism, the wavefront would naturally be
focused to the tighter spot.

This superconfinement can be taken advantage of in laser scanning fluorescence imaging and
lithography. The effect can be enhanced further through two-photon or multi-photon processes
[11], and any side lobes that may appear in the radial profile can be suppressed in threshold
dependent material systems or in confocal imaging systems.
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