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It is demonstrated that if two boson fields are related by a process of independent random photon deletion, their mo-
ment-generating functions are related by an equation identical to that derived using classical arguments. A quantum analog
of the Burgess variance theorem is recovered. The results confirm that the super- or sub-poissonian nature of a light beam
is conserved, under the influence of independent Bernoulli deletions and/or additive independent Poisson noise. The identi-
ty results from the correspondence between classical and normally ordered correlation functions, for which vacuum fluc-

tuations play no role.

The Burgess variance theorem plays an important
role in connection with stochastic treatments of vari-
ous counting processes [1—4]. Consider a random
number n of events, and let each event be multiplied
by a discrete multiplication factor x; =0, 1,2, ...
fork =1, 2, ..., n. Then the total number of multi-
plied events is m = Z}_; x; . If the multiplication fac-
tors {x; } are statistically independent, then the rand-
om variable m has a moment-generating function
{exp(—Am)) which is related to the moment-generat-
ing functions of n and x by '

(™M"Y = e MYy = (exp(n In (e ). )
If, moreover, the multiplication factors {x; } are

Bernoulli distributed (x; = {1, 0} with probabilities
{n, 1 — n}) we easily obtain [3]

(e My =(exp{nln [1 — n(l — e~ M)}

=([1 —n(1 —e™M]"™. ©)
From eq. (2), it is clear that
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—nm
(m)= 9;?_—)\)} = n(n), (32)
A=0
2/ —Am
(m?) = M‘ =n(l — )+ e, (3b)
(N2 [r=0
and
(am)y?y =n(1 — n)n) + n?(An)?), (3¢)

which is the classical Burgess variance theorem.

The purpose of this letter is to show that a quan-
tum analog of the Burgess theorem is a simple conse-
quence of the definitions of the number operator and
its moments for quantized boson fields, and their re-
lation to normally ordered moments, corresponding
to classical quantities (there is no contribution from
the vacuum fluctuations).

Consider a volume V whose linear dimensions are
much larger than the wavelength of the radiation. De-
fine vector detection boson operators fi(x, t) and
B(x, t) at a point x and time 7, and the corresponding
number operators, as defined in [5,6]

iy, = fl}T(x, f) - B(x, Hd3x, (42)
14
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iy, = [ Ate,r) - AGe,0)dx. (4b)
14

For simplicity, quasimonochromatic fields are assum-
ed [6]. Now if the space—time regions (x', ") and
(V, t) are conjoint [5,7] (they can be connected by a
light beam), then

A, t'), iy, ] = A(X, 1),

[y, AT (x', 1)) =AT(x', 1), (5)
in analogy to the one-mode case; similarly for ¥ and
7y, Assume further that the 71- and 7ii-processes are

related in terms of their normal moments by an effi-
ciency n, such that

(:m’f,t:) =t (:n’f,t:). (6)

Here, normal ordering is denoted by ::. This relation

is the quantum analog of the corresponding relation
for the classical intensity moments. Using (6), together
with (4) and (5), it simply follows that [5,7] (sec.
14.2)

(exp(—Nrity, ) = Cexp [y, (1 — e™M1
= Cexp [y, (1 —e ™))

=([1 —n(1 —eM)]"V1), (7

where we have expanded the normal generating func-
tions in a Taylor Series and made use of the relation
(e.g., [7], Sec. 14.2)

Cexp(—Niy,):) = (1 — N)V1), (8)

Eq. (7) is precisely the quantum analog of (the classic-
al) eq. (2). Using the commutation rules (5), this leads
directly to the relations between the moments, and

to the quantum analog of the Burgess variance theo-
rem (3c¢):

(mdy; = nlivy,), (92)
(%) = néiiy,) + 2%, (9b)
(A = ity + 2 [ — Gy P ]

= (1 — 1)y, + n2(Aky,)P). (%)

Consequently,
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(A )2y — 1] = (A Y iy — 11
(©d)

as is obtained classically [4]. Conversely, if eq. (7)

is obeyed, then the relation for independent photon

deletions (eq. (6)) follows.

From (7), we can also obtain the corresponding
relations between the photon-number probability
distributions p(my,) and P(ny,), and between the
moments (rh’f,,) and (7y,), since

1 ™rie My

p(my,) = R (10a)
N N
and
Gl = (e~ Vt>| : (10b)
(1" A=0

In this way we show that the m photon-number dis-
tribution is a binomially deleted version of the n
photon-number distribution:

n —
p(th) = 2 (th) nm Vt(l _ n)th thP(n Vt)
nyt=myt vt (11)

Furthermore,

k
ity =20 @ Gryy iy — 1) ... Gy =+ 1),
7= (12a)

where

s

G9! (126)

J
ag = (1Y 2 (-1)°

Of course, for n =1, we recover (ﬁzlf/t) = (ﬂlf,,).

Note that (6) is typical for bilinear interactions
of boson quantum systems in the rotating-wave ap-
proximation, which lead to Heisenberg-Langevin
equations involving only annihilation operators. Such
interactions leave the initial statistics of the system
unchanged (in particular, a coherent initial state re-
mains coherent). The results derived here are also ap-
plicable for interactions in which photons interact
with electrons and atoms whose fermion properties
play no role. Of course, if the photon deletions are
not independent (as in a multiphoton interaction,
for example), the results presented here do not apply.
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More generally, an additional noise field C(x, 1)
may also be present, in which case

A(x,1) = aB(x, t) + C(x, 1), (13)

where « is an amplification or attenuation factor. We
then obtain

(D)2 = 0(1 — )Gy, + 0 (Qap) D + @), (14)

with n = Ialz, under the assumption that the number
of degrees of freedom is large (so that Var f VC'T C
X d3x ~ (fVCA'Jr Cd3x)= (), and the interference
component proportional to [ V(]_’}T BXCT Od3x is
negligible). Eq. (14) is the quantum analog of the
generalized classical Burgess theorem, in which in-
dependent additive Poisson noise counts have been in-
cluded (see [3], eq. (25)).

The calculations carried out here demonstrate ex-
plicitly that the conclusions reached by classical ar-
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guments [3] hold for boson quantum fields. In par-
ticular, the super- or sub-poissonian nature of a light
beam is conserved under the influence of Bernoulli

deletion and/or additive independent Poisson noise.
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