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Expressions are obtained for the mean and variance of the number of events in a fixed sampling time for a nonparalyza-
ble dead-time counter. The input process is assumed to be Poisson with a rate that is a known function of time. The mean
and variance are shown to depend explicitly on the details of the rate variation during the sampling time; by contrast, in the
absence of dead time the mean and variance are uniquely determined by the statistics of the rate integrated over the sam-
pling time (total energy). Experiments performed with triangularly and sinusoidally modulated laser radiation provide re-

sults that are in accord with the theory.

1. Introduction

The probability distribution for a dead-time-modi-
fied pulse counter [1,2] has been studied by a number
of researchers in a broad variety of disciplines such as
photon counting [3—5], nuclear counting [6—8], and
neural counting [5,9,10]. Many cases have been stud-
ied in detail including paralyzable and nonparalyzable
counting under blocked, unblocked, and equilibrium
conditions. Attention has also been given to the varia-
ble dead time case. Miller has recently compiled a
comprehensive bibliography on dead time effects [11],
and has summarized the results of a number of authors
[7,8].

Though most of the work cited above is applicable
only when the input to the counter is a Poisson point
process with constant rate, a few results are also avail-
able for the case where the rate is not constant. Cantor
and Teich [4], Teich and McGill [5], and Bédard [3]
present expressions for the photon counting distribu-
tion when the intensity of the light is a random proc-
ess, with the sampling interval much smaller than the
coherence time of the light.

In this paper we find general expressions for the

* Work supported by the Joint Services Electronics Program
and the National Science Foundation.

dead-time-modified mean and variance, for a nonpara-
lyzable counter, when the rate of the input process is
an arbitrary function of time, under the constraint
that it vary slowly with respect to the duration of the
dead time. No constraints on the length of the sam-
pling interval are imposed. Of course, the results also
apply to a spatial dead-time-modified process under
the appropriate conditions.

2. Dead-time-modified mean

Consider a Poisson counting process whose instan-
taneous rate is a known function of time that we de-
note A(z) [A(¢) = 0]. The probability of »n pulses oc-
curring in the interval (¢1, t,) is, by definition [12],

iy, (1) = MM (1)

where M = [ ttf A(7)dt is both the expected value and
the variance of n.

Let this process be the input to a nonparalyzable
dead-time counter, i.e., a counter that does not record
pulses during a time interval of fixed duration 7 after
recording a given pulse (the pulses that arrive at the
input to the counter during this dead time are lost).
We consider the case for which the counter is always
connected to the input process; this is the “equilib-
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rium counter” as opposed to the “blocked” or “un-
blocked” counter¥. We are concerned with the statis-
tics of the number of pulses counted in a certain time
interval (11, t5).

" If the rate A(?) is constant [A(¢) = Ay], then the
probability distribution for the number of pulses
counted in the interval (¢, t,) is well known [6—9]
as is its expected value n [2,8,9],

ﬁ’—‘m([z—l‘l). 2

If A(¢) is not constant, on the other hand, we simply
divide the interval (¢, t5) into many shorter intervals
of duration At during which A(#) can be considered
constant. The expected number of pulses during the
entire interval will then be the sum (integral) of the
expected values in the short intervals, i.e.,

A(t)
f oY )

It is clear that eq. (3) is valid only if eq. (2) applies
to each of the short intervals. We shall see that this, in
turn, is true only if A(¢) varies slowly enough to be vir-1
tually constant for any time interval with duration of
the order of 7. The probability of recording a pulse at
a given time depends not only on the value of A(r) at
that time, but also on the probability of a dead time
being in effect, which in turn, depends on the values
of A(¢) at previous times in a range of the order of 7.
Eq. (2) has been obtained under the assumption that
A(?) is constant and equal to A for a long enough
time, previous to ¢, for the counting process to reach
equilibrium (cf. refs. [7,8]). Thus it is expected that
eq. (3) will be correct if \(¢) varies sufficiently slowly,
as indicated earlier.

3. Dead-time-modified variance

A similar result can be obtained for the dead-time-
modified variance under somewhat different conditions

* In the limits where our results are applicable, the number of
pulses recorded during a sampling interval is > 1 and there-
fore the differences among blocked, unblocked, and equi-
librium counters become negligible so that our results are
equally valid for all three types of counter.
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due to the particular characteristics of the variance:
Whereas the expected value of a sum of random varia-
bles is always equal to the sum of the expected values
of the individual random variables, the same additivity
law for the variance is not generally true, but is valid
in the special case of independent random variables.
Thus, in dividing the interval (1, ¢,) into many short
intervals of duration Ar we require At to be short
enough so that A(¢) can be considered constant during
At. But at the same time, A¢ must be long enough so
that the number of pulses counted during a given in-
terval be independent of the number counted in an-
other interval. It is not difficult to visualize how the
dead time generated by the last pulse recorded in one
interval may overflow into the following interval and
cause the two random variables to be correlated. It is
therefore clear that a necessary condition to achieve
additivity for the variance is

A>T, 4)

In this limit, and for A(¢) constant and equal to A,
we can write the variance 0? (AT of the number of
pulses counted during the interval Az as (see eq. (33)

of ref. [7]),

Ao
0?,I+At = (1 + )\07)3 At
by Qo7 ” [6+ 4(0g7) + (g7)2] . (5)
(1 + )\0T)4

In eq. (5) we recognize two terms: The first is propor-
tional to At whereas the second is independent of Az.
If At is chosen to satisfy the additivity requirements
discussed previously, viz.,

Uf,t+2At = 0?,t+At + a?+At, t+2AL° (6)
then the variance must be proportional to At¢. Thus
the second term in eq. (5) must be negligible with re-
spect to the first term, or equivalently

T

IVIE: )\ [6+4(M\g7) + (Ng)?] < 1. (7)

For A\g7 <1 or A\g7 & 1, it is clear by inspection
that eq. (7) is satisfied if eq. (4) is satisfied. For Ay7 >
1, we use the identity

1 1\07:07 ]f(% ()\—017') ®)
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and the left-hand-side of eq. (7) may be rewritten as
ar (50002 +207)

t3 1003002 - ] ©)
The first term in square brackets above dominates the

sum and thus the condition expressed in eq. (7) may
be written equivalently as

A s <1 (10)
or
Ar> g(\7)27 . (11)

From the foregoing, we postulate that if At satisfies
egs. (4) and (11), the variance will be additive and
A
2 _ 0
Ot t+nt (1 +72)3 At
In the case where A(¢) is not constant but varies
sufficiently slowly, we can divide the interval (¢, #,)
into subintervals of appropriate duration A¢ during
which A(z) is virtually constant, and such that eqs. (4)
and (11) are satisfied. Under these conditions, the vari-
ance for the interval (1, ¢,) is the sum of the variances
for the subintervals [given by eq. (12) with A replaced
by the appropriate value of A(z)]. Since A(%) is virtually
constant during each sub-interval of duration At¢, the
sum of variance can be expressed as the integral

(12)
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in eq. (1) has the value M = A, T, independent of m
and 7. Evaluating the integral in eq. (3) for the ramp
is straightforward. The expected number of counts in
the interval (0, T) is

RN,
”r‘of T+ ¥

_ T 1 2m?\0'r
o7 [1 “ g (1 T agr( - m))] - (7

For the sinusoidal case the result is

A0
s = ARREON0) dr
1

T {1 — (1 + Ag7)2 — (mAy7)2] 12 (18)

T

X tan—1 [(i_:%?):g—;—z;)lﬂ tan (ﬂt/T)]}

1=t,

t=t,
For £, =0 and ¢, = T this yields the expected number
of counts in the interval (0, 7)

7, ;T{1 C 14 g7+ (72— m2)] =12} (19)
In the limit as 7 > 0 the counting distribution should
reduce to eq. (1) indeed lim__, o 7, = lim__, 7, = Ao T.
Furthermore for Ay7 > 1, i, & ng ~ T/t which reflects
the behaviour of the counter when the rate of arrival

t

R
et rf P (2

4. Dead-time-modified mean for ramp and for
sinusoidal modulation

We explicitly evaluate eq. (3) when A(¢) is the ramp:

MO =2g(1—m) +2mAgt/T, 0<t<T (14)
and the sinusoidal time function:
AN(@) =2g(1 —mcos2nt/T), 0<t<T. (15)

In both cases the modulation depth m is [13]
m= O\max - Amin)/(xmax + >\min) > (16)

the average value is A, and the parameter M appearing

of input pulses-is very high with respect-to-7:The -
counted pulses are evenly spaced in time, the interval
between two subsequent pulses being only slightly
larger than 7. Clearly, this asymptotic behavior should
be the same for both 72, and 7 as well as for the case
where A(7) is constant. It is also easy to verify that for
m =0 the expressions for 77, and # reduce to

i.e., the dead-time-modified mean for constant rate
(D) =), given in eq. (2).

In fig. 1 we present a plot of the theoretical count-
ing efficiency (11/\yT) as a function of \y7. The solid
curve represents A(f) = A [see eq. (20)] whereas the
dashed and dotted curves represent the ramp and sinu-
oid respectively [see egs. (17) and (19)], both with
m = 1. The dash-dot curve represents the asymptotic
behavior (1/xq7).
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Fig. 1. Counting efficiency (7/AoT) versus Aot where Ag is the
average input count rate and 7 is the dead time. Theoretical
curves are for a Poisson process where the rate is constant
(solid curve), a ramp (dashed curve), and a sinusoidal func-
tion of time (dotted curve). The dash-dot curve represents the
asymptotic behavior, which is the same for all three curves. It
is clear that the efficiency is significant reduced when the rate
is not constant (up to 20% for sinusoidal modulation). Ex-
perimental values for the ramp (+) and sinusoid () are in good
accord with the theoretical curves.

5. Dead-time-modified variance for ramp and for
sinusoidal modulation

Using eq. (14) for the ramp, the integral in eq. (13)
yields

fT A0
5 [+ @1
1+2y(1 — m?)

= 21
T 1y Mot + (gr)2(1 — m2)]2 @D

dr

whereas for the sinusoidal case, we use eq. (15) to ob-
tain

I A0
2 _ s
or=J YOI

_ MTz +(4—3m2)Ny7 +2(1 — m2)(N\y7)? @)
2[1 4207 + (1 — m2)(Ag7)2]52

It is easy to verify that for7=0
012 = og =NT (23)

and form =0
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Fig. 2. Normalized dead-time-modified variance (62 /Ao T) ver-
sus Ag7. Theoretical curves are for a Poisson process where the
rate is constant (solid curve), a ramp (dashed curve), and a
sinusoidal function of time (dotted curve). Note that the
curves as well as the asymptotic behavior are significantly dif-
ferent. Experimental values for the ramp (+) and sinusoid (e)
are in good accord with the theoretical curves,

2

0f =02 =N T/(1+ Ag7)3 , (24)

as is expected from eqs. (1) and (12) respectively.

In fig. 2 we present a plot of the normalized dead-
time-modified variance (62/\T) as a function of AoT.
The solid curve represents A(£) = A [see eq. (12)]
whereas the dashed and dotted curves represent the
ramp and sinusoid respectively [see eqgs. (21) and (22)],
both with m = 1.

6. Upper limit on dead-time-counter efficiency

It appears from fig. 1 that for all values of A7 the
counting efficiency 72/\ T is greatest when \(¢) is con-
stant. Intuitively we would indeed expect this result
since the input pulses tend to bunch when () varies,
thereby enhancing the effects of dead time (i.e., re-
ducing the efficiency) in the presence of modulation.
In the following we show explicitly that the efficiency
is maximum when A(¢) is constant. Define

720} (25)

this is a concave downward function of A for all A > 0.
The curve representing f(A) will therefore lie entirely
under any straight line tangent to it at any point.

Let £*(\) represent the equation of the line tangent
to the curve at the point X = A,
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FFM=10g) + (A= Ng)dfldNly=y - (26)
Since

FFO>re, v Q@7
which implies

A Z @), ¥t (28)

we obtain (by integrating both sides of eq. (28) with
respect to 1)

T T
[ rrowd= [ roed . (29)
0 0

Evaluating the integral on the left-hand-side of eq. (29)
we obtain

T
f()\O)T+§< [Of ) dE — AOT]

T
A

>[ o (30)

0

If Ay is the average value of A(¢) in the interval (0, 7)

then Ay T = fO A7) dt and eq. (30) becomes

A AT
f1+ YOREIETwS 31

where the equality is valid if and only if A(¢) is con-
stant and equal to A. Q.E.D. Behavior of this kind is
not observed for the variance, as can be seen from
fig. 2.

7. Experiment

To verify the validity of our calculations, we per-
formed a series of photocounting experiments. The
source was a Spectra-Physics Model 162 Ar* ion laser
operated at 514.5 nm. The radiation was fed into an
acousto-optic modulfator that modulated the intensity
of the beam with a ramp or a sinusoid. The modulated
radiation was attenuated sufficiently for the photon
statistics to be observable and was polarized and de-
tected by an RCA 8575 photomultiplier tube. The
output pulses from the anode of the photomultiplier
tube were counted by a pulse counter with an elec-
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tronically-generated nonparalyzable dead time whose
value could be set arbitrarily.

Data were taken for a ramp and for sinusoidal modu-
lation with the following parameters¥ (in both cases):
T=10ms,m =1,y ~ 33 counts/ms, and the dead
time 7 was varied from a minimum of 6 us (A7 ~ 0.2)
to a maximum of 1.2 ms (A7 =~ 40). At the lowend 7
is sufficiently small so that eqs. (4) and (11) can be
satisfied and therefore eqs. (3) and (13) are expected
to be applicable. For the largest values of 7, however,
we would expect that the experimental results should
depart somewhat from the predictions of egs. (3) and
(13) since egs. (4) and (11) cannot be so well satisfied.
The experimentally measured values of the mean and
variance of the photocounting distributions are pres-
ented in figs. 1 and 2, respectively, for both ramp and
sinusoidally modulated radiation. Though it is clear
that the data are in good accord with the theoretical
curves, it is evident from figs, 1 and 2 that, as expected,
the experimental points depart somewhat from the
theoretical predictions for the largest values of 7.

8. Conclusion

It is evident from the foregoing that when A(f) is
not constant, the statistics of the number of pulses
counted by a nonparalyzable dead-time-counter in a
given time interval depend on more than just the sta-
tistics of the total energy (integrated rate) arriving at
the counter during that time. Thus these statistics can-
not, in general, be deduced from the statistics of the
total energy alone as is the case in the absence of dead
time. Our results clearly show that the details of the
variation of the rate during the sampling interval must
be accounted for in order to correctly evaluate the
dead-time-modified counting statistics. The particular
cases of the ramp and sinusoidal modulation presented

* The modulation was generated by driving the acousto-optic
modulator with a sinusoidal waveform for sinusoidal modu-
lation, and with a triangular waveform for the ramp. In both
cases the period of the wave was equal to the duration of
the sampling interval. The sampling intervals were not syn-
chronized with the phase of the wave. Because the integrals
in egs. (3) and (13) are to be evaluated over a full period, it
is easy to see that the results of the evaluation are the same
as those given in egs. (17), (19), (21) and (22) for the two
types of modulation.
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illustrate this point particularly well. This is because
the statistics of the integrated rate are the same for
both modulation formats and for the no-modulation
case, yet the values of the experimental and theoreti-
cal dead-time-modified mean and variance are signifi-
cantly different. These result underscore the fact that
existing formulas for the dead-time-modified count-
ing distribution produced by randomly fluctuating
light [3—5] are valid only in the limit where the sam-
pling interval is much smaller than the coherence (or
modulation) time of the light, and cannot be extended
in any simple way to cases outside that limit.
Whereas we have explicitly considered the mean
and variance in this paper, we can use the same tech-
nique (i.e., dividing the sampling interval into small
intervals in which the rate is virtually constant but
such that the number of pulses counted in a given in-
terval is independent of other intervals) to arrive at a
dead-time-modified expression for any statistical pa-
rameter which is additive for independent random
variables. For example, the quantity a(x) defined by

a(x) = (x3) — 3Oe20x) + 2(x)3 (32)

which involves the third-order moment of the random
variable x, is additive for independent random varia-
bles, i.e., a(x +y) = a(x) + a(p) if x and y are inde-
pendent random variables.

The technique used in this paper can therefore be
used to find a dead-time-modified expression for a,
in the case of a Poisson process with slowly varying
rate.

The expressions given in eqs. (3) and (13) represent
the dead-time-modified mean and variance when the
rate is a known function of time. Kikkawa et al. [14]
have calculated the efficiency of a dead-time photon
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counter with Gaussian-Lorentzian light (stochastic rate
variation). Their results, however, are only valid in the
limit where the correlation time is much smaller than
the mean time interval between pulses (see remarks
following eq. (10) in ref. [14]). In a forthcoming pub-
lication we shall present expressions for the dead-time-
modified mean and variance in the general case where
the rate is a stochastic process.
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