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INTRODUCTION

The nature of photon-number-squeezed light (also called sub-

1-13 Tnis type of

poisson 1light) has been elucidated in recent years.
1ight is expected to find use in the study of optical interactions in
various disciplines, ranging from the behavior of the human visual
system at the threshold of seeing14 to optical precision measurement.15
In this paper we consider the potential use of photon-number-squeezed
’light in direct-detection lightwave communication systems and other
information-carrying applications.16

All lightwave communication systems that have been developed to
date make use of Poisson (or super-Poisson) light.17 For Poisson light,
the variance of the photon number is identically equal to its mean for
all values of the counting time T. Photon-number-squeezed light, on the
other hand, has a photon-number variance that is less than its mean for
all or some values of r.273 such light is intrinsically nonclassical. in
nature. The earliest sources of photon-number-squeezed light exhibited
only a slight reduction of the variance.l’2 Far stronger photon-number
squeezing has been produced in recent years,18 and continuing advances
promise further improvement. It is therefore of interest to examine the
advantages to be gained in wusing photon-number-squeezed light in a
direct-detection lightwave communication system.

There are essentially two classes of mechanisms by means of which
unconditionally photon-number-squeezed light may be generated. In the
first class, squeezed photons are produced from a beam of initially
Poisson (or super-Poisson) photons. This can be achieved in a number of
ways, e.g., by mixing coherent light with quadrature-squeezed vacuum

19

photons or by making use of correlated photon beams. An experiment of
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this kind was carried out by Tapster, Rarity, and Satchell.?° Squeezed
photons wefe generated from the pair of correlated photon beams
produced in parametric downconversion; one of the twin beams was then
fed back to control the pump.

The second class of mechanisms relies on the direct generation of
squeezed photons from a beam of initially sub-Poisson excitations

(e.g., electrons).2r21

This technique was first used by Teich and Saleh
in‘ a space- charge-limited version of the Franck-Hertz experlment

Perhaps the simplest implementation of this principle is achieved by
driving a 1light-emitting diode (LED) with a sub-Poisson electron

22

current, but it is most effectively achieved by the use of a

semiconductor injection laser.’r12,18

We discuss calculations of the channel capacity of a lightwave
communlcatlon system based on the observation of the photoevent point
Process, demonstrating that it cannot in principle be increased by the
use of photon-number—squeezed llght We also discuss calculations
that = show that the channel capacity of a photon-counting system can be
increased by the use of photon-number-squeezed light.16 The channel
capacity is the maximum rate of information that can be transmitted
through a channel without error. The capacity of the photon channel has
been the subject of a number of studies over the years.23’5 We also
discuss an example 1in which the use of photon-number-squeezed light
produced from Poisson light either degrades or enhances the error
_performance of a simple binary ON-OFF keying photon- counting systen,

~depend1ng on where the average power constraint is placed.
COMMUNICATING WITH MODIFIED POISSON PHOTONS

Consider the transformation of a Poisson beam of photons
(represented by a Poisson point process Nt of rate pt) into a sub-
Poisson beam of photons represented by a point process Mt of rate Aes
as illustrated in Fig. 1.
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rig. 1. Idealized lightwave communication system employing a Poisson
photon source and a photon-statistics modifier. [After M. C. Teich .and
B. E. A. Saleh, in Progress in Optics, vol. 26, E. Wolf, ed., North-
Holland, Amsterdam (1988)].
The events of the initial process N  are assumed to be observable
[e.g., by the use of correlated photon beams or a quantum-nondemolition
(QND) measurement] and their registrations used to operate a mechanism
which, in accordance with a specified rule, leads to the events of the
transformed photon process Mt' The rate Xt of the process Mt is thereby
rendered a function of the realizati?ns of the initial point process N
at prior times, i.e., Ae = A (N, i tist).

Several examples of transformations of this kind that have been
suggested for use in guantum optics are illustrated in Fig. 2 and
discussed below. It is assumed for simplicity (but without loss of

generality) that the various conversions can be achieved in an ideal

manner.
{a}Poisson l
{b)Dead~time deletion —e
(¢) Coincidence decimation l
{d) Decimation . N
(e) Overflow count deletion e¢.0——o0. 0.0 — e — 1)
(f) Rate compensation s 0 008—90.00—0 o-o-

.

€

%

Fig. 2. Several transformations of Poisson photons into sub-Poisson
photons that have been suggested for use in quantum optics. [After M.
¢. fTeich and B. E. A. Saleh, in Progress in Optics, vol. 26, E. Wolf,
ed., North-Holland, Amsterdam (1988)].

(1) Dead-time deletion: Delete all photons within a prescribed fixed
24

(nonparalyzable) dead time T4 following the registration of a photon.
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Rarity, Tapster, and Jakeman25 generated photon-number-squeezed light
by using one of the twin beams produced in parametric downconversion tg
selectively gate photons from the other beam via dead-time control.
Dead-time deletion could also be used with correlated photon beang
produced in other ways.

(2) Coincidence decimation: Remove all pairs of photons separated by

a time shorter than a prescribed time interval . This is achieveq,
for example, in second—harmohic generation (SHG); two photons closer
than the intermediate-state lifetime of the SHG process are exchanged
for a third photon (which is at twice the frequency and therefore

easily eliminated).26
(3) Decimation: Select every rth photon (r = 2,3,...) of an initially

Poisson photon process, deleting all intermediate photons. Saleh and
'I‘eich27 suggested using correlated photon beams to implement this
technique. In cascaded atomic emissions from 40Ca, for example,
sequences of correlated photon pairs (green and violet) are emitted.
The green photons can be detected and used to operate a gate that
passes every rth violet photon. Decimation control could also be used

in conjunction with parametric-downconversion photon twins.

(4) Overflow count deletion: The number of photons occurring in
preselected time intervals [O,To], [TO,2T0],..., is counted, retaining

the first n, photons in each time interval (without changing their

ocurrence times) and deleting the remainder. If the average number of

photons in [O,To] of the initial process is » n then the transformed

’
process will almost always contain n, photgns within this time
interval. As an example, Mandel28 suggested that if a collection of n,
atoms in the ground state are subjected to a brief, intense, incoherent
excitation pulse, all n, atoms will become excited with high
probability; the radiated optical field would then be describable, to
good approximation, by an no—photon state. Related schemes have been

proposed by Yuen29 30

and by Stoler and Yurke for use with parametric
processes.

We proceed to illustrate that none of these modifications can
increase the channel capacity of a communication system based on
photoevent point-process observations.

If a constraint is placed on the rate of the initial Poisson
process uy < ppo then it is obvious that C cannot be increased by the

modification N, —> M, . This is simply a consequence of the definition
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of channel «capacity: it is the rate of information carried by the
system without error, maximized over all coding, modulation, and
modification schemes. )

However, can the modification Nt _ Mt increase the channel

capacity if the constraint is instead placed on the rate of the
modified process Ay (i.e., Ae < Amax)? We address this question for an

arbitrary self-exciting point process in the next section.
COMMUNICATING WITH PHOTONS DESCRIBED BY A SELF-EXCITING POINT PROCESS

Consider a self-exciting point process M, of rate At(Mt,; t!st).
This is a process that contains an inherent feedback mechanism in which
present event occurrences are affected by the previous event
occurrences of the same point process. Of course, the modified Poisson
processes - N, ——> M, introduced above are special cases of self-
exciting point processes.

An example of a system that generates a self-exciting point
process 1is that of rate compensation (by linear feedback) of a source
which, without feedback, would produce a Poisson process. Let each
photon registration at time t; cause the rate of the process to be
modulated by a factor h(t—ti) (which vanishes for t < ti). In 1linear
negative feedback the rate is Ap = A T Zih(t-ti), where 2o is a
constant. If the instantaneous photon registration rate happens to be
above the average then it is reduced, and vice versa. This process is
schematically illustrated in Fig. 2(f) for two adjacent sub-intervals
Tl and T2. Yamamoto, Imoto, and Machida31 suggested the use of ‘rate
compensation in conjunction with a QND measurement (using the optical
Kerr effect) but rate compensation could be used just as well, for
example, with correlated photon pairs. Dead-time deletion can be viewed
as a special case of rate compensation in which the occurrence of an

event zeros the rate of the process for a specified time period -

19 d

after the registration.

Now consider a communication system that uses a point process
Mt(X) whose rate At(X) is modulated by a signal Xt' The process Mt(X)
can be an arbitrary self-exciting point process (e.g., it can be
photon-number-squeezed) which includes processes obtained by the
feedforward- or feedback-modification of an otherwise Poisson
process.19

Neither feedforward nor feedback transformations can increase the
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capacity of this channel, as provided by Kabanov'’s theorem32 and its

. 33
extensions™ " :

Kabanov’s Theorem — The capacity of the point-process channel cannot

be _increased by feedback. Under the constraint AO < At < Xmax’ the
channel capacity C is
1 s 1ay/s ' o s
C=xyl - (1 +—) - (1 +—) log(l + —) |, (1)
e /\vo s '\0
where s = Amax - Ao. When AO = 0 (no dark counts), this expressions
reduces to
C =2 /e. (2)

max

When the capacity is achieved, the output of the zero-dark-count point-
process channel is a Poisson process with rate At = Amax/e (the base e
has been used for simplicity). The channel capacity has also been
determined under added constraints on the mean rate. A coding theoren
has also been proved. Kabanov’s theorem is analogous to the well-known
result that the capacity of the white Gaussian channel cannot be
increased by feedback.34

In summary, no increase in the channel capacity of a point-process
lightwave communication system may be achieved by using photons that
are first generated with Poisson statistics and subsequently converted
into sub-Poisson statistics, regardless of whether the power constraint
is placed at the Poisson photon source or at the output of the
conversion process. Nor may an increase in channel capacity be achieved

by using feedback to generate a self-exciting point process.

COMMUNICATING WITH SQUEEZED PHOTON COUNTS

These conclusions are valid only when there are no restrictions on
the receiver structure. The conlusion is different if the receiver is
operated in the photon-counting regime, in which information is carried
by the random variable n representing the number of photoevents
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registered in time intervals of prescribed duration T (rather than by
the photon occurrence times).
The capacity of the photon-counting channel is given by23

c = B[hln(l + 1/h) + 1n(1 + n)], ‘ (3)

where n is the mean number of counts in T and B = 1/T is the bandwidth.
Two limiting expressions emerge:

(9]
[}

Bnln(l/n), n«1
Bln(n), n» 1. (4)

0
I

If an added constraint is applied to the photon counts, such that
they must obey the Poisson counting distribution, the capacity is
further reduced. In that case, the limiting results analogous to Eq.
(4) are

(9]
]

« 1
» 1. (5)

Bnln{l/n),

n
%Bln(n), n

(o]
[

The capacity in the region n » 1 is a factor of 2 smaller in Eg. (5)
than in Eq. (4). The capacity-to-bandwidth ratio C/B is plotted versus
n, for both the unrestricted and Poisson photon-counting channels, in
Fig. 3.

In the case of photon counting, therefore, an increase in the
channel capacity can in principle be realized by using photon-number-
squeezed 1light. However, in the small mean-count limit n « 1 (when the
counting time T is very short), the capacity of the Poisson counting
channel approaches that of the unrestricted counting channel, and the
advantage of photon-number squeezing disappears. This is not unexpected
in view of the result obtained from Kabanov’s theorem for the point-
process channel.
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c/8

Fig. 3. Comparison of the capacity of the unrestricted photon-counting
channel (solid curve) with the Poisson photon-counting channel (dashed
curve) .

PERFORMANCE OF A BINARY OOK PHOTON-COUNTING RECEIVER

The channel capacity provides a 1limit on the maximum rate of
error-free information transmission for all codes, modulation formats,
and receiver structures.23 As such, it does not specify the performance
(error probability) achievable by a communication system with
prescribed coding, modulation, and receiver structure.

It is therefore of interest to discuss the performance of a system
with specified structure. We consider a binary on-off keying (OOK)
photon-counting system.17 The information is transmitted by selecting
one of two values for the photon rate Aes in time slots of (bit)
duration T. The receiver operates by counting the number of photons
received during the time interval T and then deciding which rate was
transmitted in accordance with a 1likelihood-ratio decision rule
(threshold test). For simplicity, it is assumed that background light,
dark noise, and thermal noise are absent so that photon registrations
are not permitted when the keying is OFF (i.e., false-alarms are not
possible). Furthermore, the detector quantum efficiency is initially
taken to be unity so that system performance is limited only by the
quantum fluctuations of the light.

A measure of performance for a digital system such as this is the
error probability P,- In the simplified system described above, errors

are possible only when the keying is ON and 0 photons are received (a
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miss). For a Poisson transmitter, Pe isl7

P, (Poisson) = %exp (-n), N (6)
where n denotes the mean number of emitted photons. To minimize P n
is made equal to its maximum allowed value nooxt This result is now
compared with those obtained for photon-number-squeezed 1light derived
from an initially Poisson source. The outcome will depend on where the
mean photon-number constraint is placed. Two transformations are
explicitly considered: dead-time deletion and decimation.

It will become evident from these examples that system performance
can be enhanced by the use of photon-number-squeezed light, provided
that the constraint is applied to the squeezed light. No enhancement of
system performance emerges in converting Poisson photons into squeezed
photons when the constraint is at the Poisson source.

Dead-Time-Modified-Poisson Photon Counts -— For a honparalyzable
d at
the beginning of the counting interval T, the passage of 0 photons

dead-time modifier that is always blocked for a dead time period -

arises from the emission of 0 photons in the time T - Tqr independent
of the number of emissions during T4 The error probability for this
system is therefore

P, (dead-time) = %exp[-n(l - rg/T 1. (7)
To minimize error under the mean photon-number constraint n < ﬂmax' we
take n = n . The error is larger than that for the Poisson channel

max
[Eg. (6)], as illustrated in Fig. 4, so no performance enhancement can

be achieved by use of this modifier.
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Fig. 4. Comparison of the error probabilities for the Poisson (solid
curve) and blocked dead-time (dashed curve) channels with the
constraint at the input. No performance improvement is possible.

If, instead, the dead-time modifier is always unblocked at the
beginning of each bit then the passage of 0 photons arises from the
emission of 0 photons in the time T, and the dead-time has no effect on
the error rate in this simple system. Calculations for the unblocked
counter in the presenée of false alarms, however, demonstrate that the
presence of dead time always does, in fact, degrade system performance
with such a constraint.35 Although the detailed calculations were
carried out for electrical dead time, the results are also applicable
for optical dead-time when the photon detection efficiency 5 = 1.

on the other hand, if the constraint is placed on the mean photon
count m after dead-time modification (m < ﬁmax)’ it can be shown that
there exists a value of Mooy below which performance is degraded, and
above which performance is improved, relative to the Poisson channel.

This is illustrated in Fig. 5.
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Fig. 5. Comparison of the error probabilities for the Poisson (solid
curve) and blocked dead-time (dashed curve) channels with the
constraint at the output. Performance improvement is possible.

Decimated-Poisson Photon Counts — We assume that the decimation
parameter is r = 2 (i.e., every other photon of a Poisson sequence of
events is selected) and that the decimation process is reset at the
beginning of each bit (i.e., the first photon in each bit is not
selected). The error probability is then

Pe(decimation)= %(1 + n)exp(-n), (8)

which again represents a degradation of performance in comparison with
the Poisson channel (under a constraint n < ﬁmax)‘ In this case, the
error rate is increased because there are two ways for the passage of 0
photons to arise in the time T: from the emission of 0 photons or from
the emission of 1 photon. However, if the constraint is placed on the
modified process then, once again, there exists a value of ﬁmax below
which performance is degraded and above which it is improved, relative

to the Poisson channel.
PERFORMANCE DEGRADATION ARISING FROM PHOTON LOSS

We conclude by discussing the effects of photon loss (random
deletion).8 We do this in the context of an ideal source that generates
a deterministic photon number. This is an important consideration
because random photon deletion is inevitable; it results from
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absorption, scattering, and the finite quantum efficiency of the
detector.® 1t is well-known that such deletions will transform a
deterministic photon number into a binomial photon number, which always
remains sub-Poisson but approaches the Poisson boundary as the random
36 It has been shown that the
information rate per symbol carried by such a counting channel will be

deletion probability 5 decreases.

greater than that for the Poisson channel, but will approach the latter
as n —> 0.%8 A source that emits a binomial number at the outset>’
retains its binomial form, but exhibits reduced mean, in the presence
of random deletion.>®

The performance of such a binary OOK photon-counting receiver, in
the absence of background, is limited by the binomial fluctuations of
the detected photons. In this case, it is easily shown from the

binomial distribution thatg’38

[2<n’>/ (1-F) ] ,
P_(binomial) = %Fp (9)

where Fn =1 - 5 is the Fano factor of the photon-counting distribution
and where <n’> represents the mean number of photons/bit (note that
2<n’> = <n> since there are two bits per pulse in OOK). The Poisson
result in Eg. (6) is recovered as Fn ——> 1. The probability of error
represented by Eq. (9) is plotted as a function of the mean number of
photons per bit <n’>, with the Fano factor F as a parameter, in Figq.
6. System performance improves as Fn decreases.

Solving Egq. (9) for the mean number of photons per bit <n’>
provides

<n’> = %[(l-Fn)/ln(l/Fn)]ln(l/ZPe), (10)

which leads to a direct-detection quantum 1limit that is < 10
photons/bit (< 20 photons per pulse) for OOK, if F < 1and P, = 1072,
The mean number of photons per bit <n’> is plotted as a function of Fn
in Fig. 7. The usual quantum limit (<n’> = 10 photons/bit) emerges in
the limit F, = 1 where the binomial distribution goes over to the

Poisson.
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PROBABILITY OF ERROR (F,)

MEAN NUMBER OF PHOTONS PER BIT <n'>

Fig. 6. Error probability (P_) vs mean number of photons

per bit <n’>

for the binomial channel, with the Fano factor F as a paraneter.
system performance clearly improves as Fn decreases below unity.

MEAN NUMBER OF PHOTONS PER BIT <n’>
w
L

0 0.2 0.4 0.6 0.8 1
FANO FACTOR (F,)

Fig. 7. Mean number of photons per bit <n’> as a function of the Fano
factor F_ for the binomial channel. The well-known "gquantum limit" (10

photons/b?t) emerges as the binomial distribution goes
Poisson distribution (F —> 1).

over to the
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