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PREFACE

LED Lighting: Devices and Colorimetry
This book is designed to provide a thorough understanding of LED lighting, including
the mathematics and fundamental physical principles that underlie this technology. The
book is entirely self-contained.

LED Lighting is meant to serve as:
◦ An introductory textbook for students of optics, photonics, electrical engineering,

illumination engineering, and applied physics, at the undergraduate or first-year
graduate level.

◦ A monograph for illumination engineers, lighting designers, and patent lawyers.
◦ A text for continuing professional development programs offered by colleges, pro-

fessional societies, and industry.
◦ A text for practicing engineers in the industrial workplace, and for self-study.

The reader is assumed to have a background in optics, engineering, or applied physics,
including elementary course work on waves, modern physics, and quantum mechanics.

LED Lighting is built on three venerable technical fields: optics, photonics, and
vision science. Optics is the discipline that describes the propagation, diffraction, in-
terference, and imaging of light, as well as its statistical and particulate properties.
Photonics, an appellation that first came into use in the early 1990s, is an umbrella
term for topics that rely on the interaction of light and matter, including semiconductor
devices such as light-emitting diodes (LEDs). Vision science comprises the scientific
study of optometry, photometry, colorimetry, color vision, visual neuroscience, and
visual perception.

LED Lighting is the new arrival on the block. The incandescent filament lamp has
been the workhorse of artificial lighting since its invention in the late 1800s. Despite
its energy inefficiency, incandescent lighting maintained its primacy for more than
100 years because of its low cost, familiarity, and superior color rendering quality.
Ultimately, however, an avalanche of advances in LED technology, along with persis-
tent reports highlighting the merits of LED lighting, made their way into the public
consciousness and incandescent lighting finally ceded its preeminent position in the
early 2000s. Lighting accounts for ≈ 20% percent of electricity use globally. In 2023,
the public sale of incandescent lamps was permanently enjoined in the U.S. and the
Conference of the Parties to the Minamata Convention agreed to phase out all general-
purpose, mercury-containing fluorescent lighting by 2027, worldwide.

Semiconductor LEDs are now universally used in automotive lighting, aerospace
and military lighting, entertainment lighting, human- and plant-centric lighting, and
especially in residential, architectural, and street lighting. Compact and versatile LED
sources with high luminous flux and efficacy can be expressly designed to provide light
of any color, including white, with excellent color rendering quality. These sources offer
numerous desirable features, including long operational life, slow failure, low cost, low
energy consumption, broad choice of colors, dynamic operation, and smart-networking
capabilities. In addition to multiquantum-well LEDs (MQWLEDs and µLEDs), we also
consider newer types of sources that offer promise for lighting applications, such as
quantum-dot devices (QLEDs & WQLEDs), organic light-emitting devices (OLEDs,
SMOLEDs, PLEDs, & WOLEDs), and perovskite devices (PeLEDs & PeWLEDs).

xi
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Contents
The book consists of four parts, as indicated in the Table below: Fundamentals, Devices,
Colorimetry, and Lighting. Part I (Chapters 1–5) is devoted to optics, the characteri-
zation of thermal and incandescent light, and the essentials of semiconductor physics.
Part II (Chapters 6–7) deals with semiconductor photonics and semiconductor devices,
particularly light-emitting diodes. Part III (Chapters 8–9) is directed toward human
vision, the perception of color, and colorimetry. Part IV (Chapters 10–11) is dedicated
to lighting.

Part I Part II Part III Part IV
Fundamentals Devices Colorimetry Lighting
Chapters 1–5 Chapters 6–7 Chapters 8–9 Chapters 10–11

More specifically, Chapters 1, 2, and 3 describe the behavior of light in terms of rays,
waves, and photons, respectively. Each of these approaches is best suited to a particular
set of applications, as is illustrated by tracing the transmission of light through common
optical components such as mirrors, lenses, and optical fibers. Chapter 4 is dedicated
to deriving and explaining the properties of blackbody radiation and detailing the char-
acteristics of thermal and incandescent light. Chapter 5 presents the fundamentals of
semiconductor physics and materials, outlines the operation of semiconductor junctions
and heterojunctions, and introduces quantum and multiquantum wells, quantum dots,
organic semiconductors, and perovskite semiconductors.

Chapter 6 considers the interaction of photons with semiconductors, and explains
how light is generated via injection electroluminescence. Chapter 7 is devoted to de-
scribing semiconductor materials and device structures, along with the operation and
properties of LEDs, QLEDs, OLEDs, and PeLEDs.

Chapter 8 discusses the essentials of visual photoreceptor operation, the transmission
of information through the pathways of the visual system, and the role of trichromacy
in color vision. It also delineates radiometric and photometric quantities as well as
efficacy and efficiency measures. Chapter 9 provides an overview of colorimetry that
encompasses color matching, color mixing, color appearance, and color spaces. This
chapter also elucidates the significance of commonly used LED lighting metrics such as
the chromaticity diagram, color temperature (CT), correlated color temperature (CCT),
and color rendering index (CRI).

Chapter 10 focuses on photoluminescence, phosphors, and the use of discrete
phosphor-conversion light-emitting diodes (PCLEDs) for generating cool- and warm-
white light. It also discusses the features of LED filaments and chip-on-board (COB)
LEDs. Chapter 11 chronicles the history of LED lighting and reviews its merits. It
details the characteristics and properties of color-mixing LEDs, hybrid devices, retrofit
LED lamps, LED luminaires, and OLED light panels. Finally, it introduces smart
lighting and connected lighting, and concludes with a comparison of the performance
metrics for traditional and LED sources of light.

How to Download LED Lighting
LED Lighting, published by Google Books, is a PDF e-book. A compressed version of
the book can be downloaded gratis at http://people.bu.edu/teich/books.html
A high-resolution version of the PDF file can be downloaded from Google Books at
https://books.google.com/books?id=sdX3EAAAQBAJ for a nominal fee.
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Presentation
Interactive Features. The following interactive features are incorporated in the book:
◦ Hyperlinked table of contents at the beginning of the text.
◦ Hyperlinked table of contents at the beginning of each chapter.
◦ Hyperlinked table of contents as an optional sidebar.
◦ Hyperlinked section titles, equations, and figures.
◦ Hyperlinked index.

Equations, Examples, Bibliographies, and Appendix. Important equations are high-
lighted by boxes and labels to facilitate retrieval. Examples and derivations are in-
cluded throughout the text to emphasize concepts and expand the material. Each chapter
contains an extensive bibliography that includes a selection of relevant books, review
articles, papers of special significance, and classic papers. The appendix summarizes
the definition and properties of the Fourier transform.

Symbols, Notation, Units, and Conventions. We use the symbols, notation, units, and
conventions commonly employed in the optics and photonics literature. To minimize
confusion, symbols that have multiple meanings are delineated by the use of different
fonts, where possible. A list of symbols, units, abbreviations, and acronyms follows the
Appendix. We adhere to the International System of Units (SI units). This modern form
of the metric system is based on the meter, kilogram, second, ampere, kelvin, candela,
and mole, and is coupled with a collection of prefixes that indicate multiplication or
division by various powers of ten. Still, the reader is cautioned that photonics in the ser-
vice of different areas of science and engineering can make use of different conventions
and symbols. In Chapter 2, for example, the complex wavefunction for a monochromatic
plane wave is written in the form commonly used in engineering, which differs from
that used in physics, as highlighted by an in situ footnote.

Color Coding of Illustrations. The color code used in illustrations is summarized
in the chart presented below. Light rays, beams, and optical-field distributions are dis-
played in red. When optical fields are represented, white indicates negative values but
when intensity is portrayed, white indicates zero. Glass, dielectric waveguides, and
glass fibers are depicted in light blue; darker shades represent higher refractive indices.
Semiconductors are cast in green, with various shades representing different levels of
doping. Metal and mirrors are indicated in copper. Semiconductor energy-band dia-
grams are portrayed in blue and gray.

Back Cover
The royal blue and yellow of the back cover represent, respectively, the colors of the
LED light and the phosphor used to generate metameric cool-white light for LED
lighting. White LED retrofit lamps containing phosphor-conversion LEDs that operate
in accordance with this principle have upended incandescent lighting.
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Photo Credits for Chapter-Opening Pages
The photos displayed on the chapter-opening pages are in the public domain (additional
information is provided where available): Fermat; Newton (1689, Portrait by Godfrey
Kneller); Huygens (1671, Portrait by Caspar Netscher); Maxwell (Photograph by Fergus
of Greenock); Planck (ca. 1878); Einstein (ca. 1904); Kelvin (Courtesy of the Kelvin
Museum of the University of Glasgow); Boltzmann; Shockley, Bardeen, & Brattain
(ca. 1964); Round (ca. 1920); Losev (ca. 1920); Keyes & Quist (1962, Courtesy of
Robert J. Keyes and MIT Lincoln Laboratory); Young; von Helmholtz; Grassmann;
Wright (Courtesy of the Colour Group of the UK); Guild (Courtesy of the Colour Group
of the UK); Akasaki, Amano, & Nakamura (2014, Courtesy of the Embassy of Japan
in Sweden); Holonyak (Courtesy of Nick Holonyak, Jr.); Craford (1996, Courtesy of
the Grainger College of Engineering of the University of Illinois Urbana-Champaign);
Teich (Courtesy of Boston University).
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Ray optics, also called geometrical optics, is the simplest theory of light. Although
an approximate theory, it is nevertheless adequate for explaining most of our daily
observations relating to the behavior of light. Light is treated as rays that travel in
optical media in accordance with a set of geometrical rules that govern their locations
and directions. Ray optics is suitable for describing the collection, guiding, and control
of light, including that emitted by light-emitting diodes (LEDs). It is also useful for
describing image formation, a process by means of which a collection of rays from a
given point of an object is redirected by optical components to a corresponding point
of an image.

The principles of ray optics are set forth in Sec. 1.1. They are then used in Secs. 1.2–
1.6, without invoking any other assumptions regarding the nature of light, to determine
the rules that govern the propagation of light rays at mirrors, planar boundaries, spher-
ical boundaries, lenses, and fibers, respectively.

However, ray optics is silent on a number of features of light required for under-
standing its behavior in more subtle experiments, such as its wavelength, spectrum,
color, diffraction, and interference. Accommodating those features requires the use of
a more advanced theory, in which light is treated as waves (Chapter 2) or as photons
(Chapter 3).

1.1 RAY OPTICS

Principles of Ray Optics

Light travels in the form of rays. The rays are emitted by light sources and
can be observed when they reach an observer or an optical detector.
An optical medium is characterized by a quantity n called the refractive
index (n ⩾ 1). This quantity is determined by n = cO/cwhere cO is the speed
of light in free space and c is the speed of light in the medium. The time it
takes light to travel a distance d is therefore d/c = nd/cO; it is proportional
to the product nd , which is called the optical pathlength.
In an inhomogeneous medium, the refractive index n(r) depends on the po-
sition r = (x, y, z). The optical pathlength along a given path between the
two points A and B is then written as

Optical pathlength =

∫ B

A

n(r) ds, (1.1-1)

where ds is the differential element of length along the path.
Fermat’s Principle states that optical rays traveling between the points A
and B follow a path such that the time of travel, which is proportional to
the optical pathlength, is an extremum relative to neighboring paths. This is
expressed mathematically as

δ

∫ B

A

n(r) ds = 0 , (1.1-2)
Fermat’s Principle

where the symbol δ (which is read “the variation of”) signifies that the optical
pathlength is either minimized or maximized, or is a point of inflection. In
most cases the optical pathlength minimized, in which case we have:

Light travels in the form of rays along the path of minimum time.

2



1.1 RAY OPTICS 3

Propagation in a Homogeneous Medium
The refractive index is the same everywhere in a homogeneous medium, and therefore
so too is the speed of light. The path of minimum time, as required by Fermat’s principle,
is then also the path of minimum distance, which is known as Hero’s principle (Fig. 1.1-
1).

In a homogeneous medium, light rays travels along paths of minimum distance,
which are straight lines.

 

 

Figure 1.1-1 Hero’s principle: light rays travel in straight lines in a homogeneous medium.
Shadows are therefore perfect projections of stops.

Reflection from a Mirror
Mirrors are fabricated using dielectric or metallic films deposited on a substrate such as
glass, or highly polished metallic surfaces. Light rays reflect from mirrors in accordance
with the law of reflection:

The reflected ray lies in the plane of incidence and the angle of reflection equals
the angle of incidence.

A

B

C

MirrorMirror

Reflected
ray

Incident
ray

Normal 
to mirror

Plane of
incidence

C '

B’

θ
θ ’

θ '

θ

Figure 1.1-2 (a) Reflection at the surface of a curved mirror. (b) Geometrical construction to prove
the law of reflection.

As depicted in Fig. 1.1-2(a), the plane of incidence is the plane formed by the incident
ray and the normal to the mirror at the point of incidence. The angle of incidence θ and
the angle of reflection θ′ are specified. As shown in Fig. 1.1-2(b), the law of reflection is
a simple consequence of Hero’s principle: A ray traveling from point A to point C, via
reflection at pointB from a planar mirror of infinitesimal thickness, travels along a path
of minimum distance, i.e., AB +BC must be minimum. Now, if C ′ is a mirror image
of C, then BC = BC ′, so AB +BC ′ must be minimum. This occurs when ABC ′ is
a straight line, namely when B coincides with B′, so that the angle of reflection equals
the angle of incidence, i.e.,

θ′ = θ . (1.1-3)
Law of Reflection
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Reflection and Refraction at the Boundary Between Two Media
At the boundary between two media of refractive indices n1 and n2, an incident ray
is split into a reflected ray and a refracted (or transmitted) ray, as shown in Fig. 1.1-3.
The reflected ray obeys the law of reflection (1.1-3). The refracted ray obeys the law of
refraction, known as Snell’s law:

The refracted ray lies in the plane of incidence and the angle of refraction θ2
is related to the angle of incidence θ1 by Snell’s law:

n1 sin θ1 = n2 sin θ2 . (1.1-4)
Snell’s Law

n2

θ1

θ1
θ2

n1

Reflected

ray

Refracted

ray

Plane of

incidence

Normal to

boundary

Incident

ray

Figure 1.1-3 Reflection and refrac-
tion at the boundary between two media.
The angle of refraction and the angle
of incidence are related by Snell’s law:
n1 sin θ1 = n2 sin θ2.

□ Proof of Snell’s Law. The proof of Snell’s law is an exercise in the application of Fermat’s
principle. Referring to the construction in Fig. 1.1-4, the object is to minimize the optical pathlength
n1AB + n2BC between points A and C.

A

d

d1

n1 n2

d2 C

Bθ1

θ2

Figure 1.1-4 The optimization problem is to
minimize the pathlength n1d1 sec θ1+n2d2 sec θ2
with respect to the angles θ1 and θ2, subject to the
condition d1 tan θ1 + d2 tan θ2 = d .

The pathlength is minimized when ∂
∂θ1

[n1d1 sec θ1 + n2d2 sec θ2] = 0, so that n1d1 sec θ1 tan θ1 +

n2d2 sec θ2 tan θ2
∂θ2
∂θ1

= 0. Also, ∂
∂θ1

[d1 tan θ1 + d2 tan θ2] = 0, which yields d1 sec
2 θ1 +

d2 sec
2 θ2

∂θ2
∂θ1

= 0, whereupon ∂θ2
∂θ1

= − d1 sec2 θ1
d2 sec2 θ2

. Hence,n1d1 sec θ1 tan θ1−n2
d1 sec2 θ1 tan θ2

sec θ2
= 0,

which provides n1 tan θ1 = n2 sec θ1 sin θ2, from which we have n1 sin θ1 = n2 sin θ2, which is
Snell’s law. ■

Optical Energy
In isotropic media, i.e., media that behave in the same way in all directions, optical rays
point in the direction of the flow of optical energy. Ray bundles can be constructed in
which the density of rays is proportional to the density of light energy. When light is
generated isotropically from a point source, for example, the energy associated with
the rays in a given cone is proportional to the solid angle Ω of that cone. Rays may be
traced through an optical system to determine the optical energy crossing a given area.
However, ray optics cannot determine the proportion of optical energy reflected and
refracted at the interface between media, nor can it assess optical loss.
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Summary

In the remainder of this chapter, we apply the three simple rules set forth in Sec-
tion 1.1 to a number of geometrical configurations consisting of mirrors and trans-
parent optical components, without any need for further recourse to Fermat’s prin-
ciple:

1. Rays travel in straight lines in a homogeneous medium.
2. The law of reflection (1.1-3) is satisfied: θ′ = θ.
3. The law of refraction (1.1-4) is satisfied: n1 sin θ1 = n2 sin θ2.

1.2 MIRRORS

Planar Mirrors
As illustrated in Fig. 1.2-1, a planar mirror reflects the rays originating from a point P1

such that the reflected rays appear to originate from a point P2 behind the mirror, called
the image.

Paraboloidal Mirrors
The surface of a paraboloidal mirror is a reflective paraboloid of revolution, as depicted
in Fig. 1.2-2. It has the useful property of focusing all rays arriving parallel to its axis
to a single point, called the focus or focal point. The distance PF ≡ f is known as the
focal length. Paraboloidal mirrors are often used as light-collecting elements in optical
systems such as telescopes. They are also used in reverse to render parallel the rays from
a point source of light, such as a light-emitting diode, placed at the focus. When used
in this manner, the paraboloidal mirror serves as a collimator.

Mirror

Figure 1.2-1 Reflection of
light by a planar mirror.

Mirror

PF

Figure 1.2-2 Focusing of
light by a paraboloidal mirror.

P1 P2

Figure 1.2-3 Reflection of
light from an elliptical mirror.

Elliptical Mirrors
An elliptical mirror reflects all the rays emitted from one of its two foci and images
them onto the other focus, e.g., from P1 to P2 as shown in Fig. 1.2-3. In accordance
with Hero’s principle, the distances traveled by the rays from P1 to P2 along any of the
paths are equal.

Spherical Mirrors
In general, the spherical mirror has neither the focusing property of the paraboloidal
mirror nor the imaging property of the elliptical mirror. As illustrated in Fig. 1.2-4,
parallel incident rays reflected from the mirror meet the z axis at different locations.
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The curve that is tangent to these rays, shown as dashed, defines an envelope called the
caustic. By convention, the radius of curvature R is taken to be negative for concave
mirrors and positive for convex mirrors.

C F

Spherical

   mirror

(−R)

z

Figure 1.2-4 Reflection of parallel rays
from a spherical mirror. The radius of curva-
ture (−R) is negative for concave mirrors.

FC P z

(−R) (−R)

Figure 1.2-5 For paraxial rays, a spher-
ical mirror of radius (−R) approximates a
paraboloidal mirror of focal length (−R)/2.

Paraxial Rays Reflected from a Spherical Mirror. Rays that make small angles
with the axis of an optical component, such that sin θ ≈ θ and tan θ ≈ θ, are called
paraxial rays. The body of rules that results from considering only paraxial rays forms
the field of paraxial optics, also called first-order optics or Gaussian optics. In
the paraxial approximation, the spherical mirror does turn out to have the focusing
property of a paraboloidal mirror and the imaging property of an elliptical mirror, as
is demonstrated below.

As is understood from Fig. 1.2-5, at points near the axis, a parabola can be approx-
imated by a circle whose radius matches the parabola’s radius of curvature; hence, a
spherical mirror of radius (−R) acts as a paraboloidal mirror of focal length f =
(−R)/2. The construction that explains the reflection of paraxial rays from a concave
spherical mirror is provided in Fig. 1.2-6. All paraxial rays originating from each point
on the axis of the mirror are reflected and focused onto a single corresponding point
on the axis. This is readily verified by examining a ray that travels at an angle θ1 (with
respect to the z axis) from point P1 at a distance z1 to the left of a concave mirror of
radius (−R), and reflects to arrive at an angle (−θ2) to meet the z axis at point P2 at
a distance z2 to the left of the mirror. Considering the two triangles that include the
vertex C, and using the fact that the three angles of a triangle sum to 180◦, we obtain
θ1 = θ0 − θ and (−θ2) = θ0 + θ, which, when added, yield (−θ2) + θ1 = 2θ0.

CP
1 P

2
Fz

y
θ
1 −θ

2

θ
0

θ

θ

Figure 1.2-6 Construction displaying
the reflection of paraxial rays from a
concave spherical mirror (R < 0). A
negative angle indicates a ray traveling
downward with respect to the z axis.

Furthermore, if θ0 is sufficiently small, such that tan θ0 ≈ θ0, we have θ0 ≈ y/(−R),
whereupon

(−θ2) + θ1 ≈
2y

(−R)
, (1.2-1)
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where y is the height of the point above the z axis at which the reflection occurs.
Similarly, if θ1 and θ2 are small, we have θ1 ≈ y/z1 and (−θ2) = y/z2, so that (1.2-1)
yields y/z1 + y/z2 ≈ 2y/(−R), or

1

z1
+

1

z2
≈ 2

(−R)
. (1.2-2)

Equation (1.2-2) remains valid whatever the value of y (i.e., for all values of θ1) provided
that the paraxial assumption holds. Hence, all paraxial rays originating from point P1

arrive at P2. It is understood from Fig. 1.2-6 that the distances z1 and z2 are measured
in a coordinate system in which the z axis points to the left, and points of negative z lie
to the right of the mirror.

Focusing by a Spherical Mirror. In accordance with (1.2-2), rays originating from a
far point on the z axis (z1 = ∞) are focused to a point F at the distance z2 = (−R)/2.
Hence, within the paraxial approximation, rays arriving parallel to the axis of the mirror
(all of which come from infinity) are focused to a point at a distance f from the mirror
known as its focal length:

f =
(−R)
2

. (1.2-3)
Focal Length

Spherical Mirror

Combining (1.2-3) and (1.2-2) allows the latter to be written in the form

1

z1
+

1

z2
=

1

f
, (1.2-4)

Imaging Equation
(Paraxial Rays)

which is known as the imaging equation. All rays, both incident and reflected, must be
paraxial for this equation to hold.

Image Formation by a Spherical Mirror. The application of the imaging equation
(1.2-4) for rays that originate at a distance from the z axis is schematized in Fig-
ure 1.2-7. Within the paraxial approximation, rays originating from point P1 = (y1, z1)
are reflected to point P2 = (y2, z2), where z1 and z2 satisfy (1.2-4) and also y2 =
−y1z2/z1. This indicates that rays from each point in the plane z = z1 meet at a single
corresponding point in the plane z = z2, confirming that the mirror acts as an image-
formation system with magnification M = −z2/z1. The derivations are furnished
below using the construction provided in Fig. 1.2-8. We conclude that spherical mirrors
are useful for both focusing and imaging, provided that all rays are paraxial.

C

P
1
=(y

1
, z
1
)

P
2
=(y

2
, z
2
)

F

z

y

0

Figure 1.2-7 Image formation by a
spherical mirror. The paths of four partic-
ular rays are illustrated. Negative magnifi-
cation signifies an inverted image.



8 CHAPTER 1 RAYS

□ Derivation of Relations for Image Formation by a Spherical Mirror. A ray originating at
P1 = (y1, z1) and traveling at angle θ1 meets the mirror at height y ≈ y1+θ1z1. Again, the three angles
of a triangle sum to 180◦ so the angle of incidence at the mirror is given by ϕ = ψ−θ1 ≈ y/(−R)−θ1.

z

(y
2
, z
2
)

y
θ1

θ2
ψ

ϕ

ϕ
(y
1
, z
1
)

Figure 1.2-8 Construction for image
formation at a spherical mirror, corre-
sponding to Fig. 1.2-7.

The reflected ray makes angle θ2 with the z axis where θ2 = 2ϕ + θ1 = 2[y/(−R) − θ1] + θ1 =
2y/(−R)−θ1 = 2(y1+θ1z1)/(−R)−θ1. Substituting f = (−R)/2 leads to θ2 = (y1+θ1z1)/f−θ1.
The height y2 is determined from [y+(−y2)]/z2 ≈ θ2. Combining these results yields y1+θ1z1−y2 =
z2[(y1 + θ1z1)/f − θ1] and y2 = y1 − z2y1/f + θ1(z1 − z1z2/f + z2). If z1 − z1z2/f + z2 = 0,
or 1/z1 + 1/z2 = 1/f , we arrive at y2 = y1(1− z2/f), which is independent of θ1. Hence, z2/f =
1− y2/y1 so that y2 = −y1z2/z1. ■

Ray Tracing
The process of following rays as they undergo reflection and refraction at each surface
of an optical system, as carried out above, is known as ray tracing. Many of the results
derived in this chapter are formulated only for paraxial rays, and are therefore approx-
imate. In practice, ray tracing is often implemented via software, which has the merit
that it is not constrained by the paraxial approximation.

1.3 PLANAR BOUNDARIES

External and Internal Refraction
The relation between the angles of refraction and incidence, θ2 and θ1 respectively, at
a planar boundary between two media of refractive indices n1 and n2 is governed by
Snell’s law (1.1-4). This relation is illustrated in Fig. 1.3-1 for two cases:

External Refraction (n1 < n2). When the ray is incident from the medium of
lower refractive index, the refracted ray bends toward the normal and θ2 < θ1.
Internal Refraction (n1 > n2). When the ray is incident from the medium of higher
refractive index, the refracted ray bends away from the normal and θ2 > θ1.

n
1

n
1

n
2 n

2

0
0

90o

3/2

2/3
1

90o

θc

θ
2

θ1

n
2
/n
1
=

θ1

θ1
θc θ2

θ2

Figure 1.3-1 Relation between the angle of refraction θ2 and the angle of incidence θ1 at a planar
boundary between two media of different refractive indices. Results are shown for both external
refraction (n1 < n2) and internal refraction (n1 > n2). The medium of higher index is more deeply
shaded. For paraxial rays, θ2 is linearly proportional to θ1.
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The refracted rays bend in such a way as to minimize the optical pathlength, i.e., to
increase pathlength in the lower-index medium at the expense of pathlength in the
higher-index medium.

Paraxial Snell’s Law
For both external and internal refraction, when the angles θ1 and θ2 are small, the rays
are paraxial and we can use the approximation sin θ ≈ θ to write Snell’s law (1.1-4) in
the form of its paraxial approximation:

n1θ1 ≈ n2θ2 . (1.3-1)
Snell’s Law

(Paraxial Rays)

The relation between θ2 and θ1 is then approximately linear, θ2 ≈ (n1/n2) θ1, as is
observed in the right-hand panel of Fig. 1.3-1.

Total Internal Reflection
For internal refraction (n1 > n2), where the angle of refraction is greater than the
angle of incidence (θ2 > θ1), as θ1 increases, θ2 ultimately reaches 90◦. At that point,
θ1 is said to reach the critical angle θc, as depicted in Fig. 1.3-1. This occurs when
n1 sin θc = n2 sin(π/2) = n2, so the critical angle is determined by

θc = sin−1 n2

n1
. (1.3-2)

Critical Angle

For θ1 > θc , Snell’s law (1.1-4) cannot be satisfied and refraction does not occur.
Rather, the incident ray is totally reflected, as if the surface were a perfect mirror, as
illustrated in Fig. 1.3-2(a). This phenomenon, called total internal reflection (TIR),
is the basis of operation of many optical devices and systems, such as reflecting prisms
and optical fibers, as schematically shown in Figs. 1.3-2(b) and (c), respectively. Other
examples of TIR will come to the fore subsequently. Electromagnetic optics reveals that
all of the energy in TIR is carried by the reflected light so the process is highly efficient.

n
1
n

2

θc

θ

θ

n
2 

= 1

n
1

45
o

45
o

Figure 1.3-2 (a) Total internal reflection (TIR) takes place at a planar boundary between two media
when θ1 > θc. (b) Internal reflection in a reflecting prism: If n1 >

√
2 and n2 = 1 (air), then θc < 45◦.

For glass, n2 ≈ 1.5 >
√
2 so the ray is totally reflected when θ1 = 45◦. (c) In an optical fiber, rays

are guided by total internal reflection from the internal surface of the fiber.
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EXAMPLE 1.3-1. Light Trapped by Total Internal Reflection in an LED. Rays orig-
inating within a medium of high refractive index, such as an LED, can remain trapped within the
medium, especially if its surfaces are parallel. This occurs because a certain proportion of the rays
undergo multiple total internal reflections and never refract into air.

1 n

Figure 1.3-3 Trapping of light in
a parallelepiped of high refractive
index.

Consider a material of refractive index n cut in the shape of a
parallelepiped (Fig. 1.3-3) surrounded by air (n = 1). Assuming
that the light is generated uniformly and isotropically within the
material, all of the rays within the cones of internal half angle
θc = sin−1(1/n), as illustrated at the right, are refracted into air.
All rays outside of the six cones corresponding to the surfaces
of the parallelepipid are internally reflected. In materials for
which θc < 45◦, the cones do not overlap, and those rays
reflect endlessly outside the cones and remain trapped within
the material. For GaAs, n = 3.6 so that the critical angle
θc = 16.1◦ < 45◦.

θc

If we assume that the optical power associated with the rays in a given cone is proportional to its solid
angle, the fraction of the optical power that can be extracted is determined by the critical angle at
the surfaces of the structure. For uniform and isotropic emission within a parallelepiped of refractive
index n surrounded by air (n = 1), and for θc < 45◦ or n >

√
2 so that the cones do not overlap,

this result is established by calculating the area of the spherical cap atop each of these cones, which
is A =

∫ θc
0

2πr sin θ r dθ = 2πr2(1− cos θc). Since the area of the entire sphere is 4πr2, the fraction
of the emitted light lying within the solid angle subtended by a single cone is Ω = A/4πr2 = 1

2
(1−

cos θc). Hence, for the six faces of the parallelepiped, the ratio of the extracted light to the total light
is 3(1− cos θc) = 3(1−

√
1− 1/n2 ). For GaAs, this fraction in LEDs is 11.8% Techniques used

to mitigate the difficulty of extracting light from materials of high refractive index are discussed in
Sec. 7.1.

Prisms
A prism of apex angle α and refractive index n, such as that portrayed in Fig. 1.3-4,
bends a ray arriving at an angle of incidence θ by the deflection angle

θd = θ − α+ sin−1
[√

n2 − sin2 θ sinα− sin θ cosα
]
. (1.3-3)

This equation, which is valid for arbitrary values of α, θ, and n, is arrived at by using
Snell’s law twice, at the two refracting surfaces of the prism. The behavior of the
deflection angle as a function of the angle of incidence is graphically illustrated in
Fig. 1.3-4. When α is small (thin prism), and θ is also small (paraxial approximation),
(1.3-3) may be approximated by

θd ≈ (n− 1)α. (1.3-4)
Deflection Angle

(Thin Prism, Paraxial Rays)
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Figure 1.3-4 (a) Ray deflection by a prism. (b) Plot of (1.3-3) for the deflection angle θd imparted
by a prism (n = 1.5), as a function of the angle of incidence θ, with the apex angle α as a parameter.
When both α and θ are small, the angle of deflection can be approximated by θd ≈ (n− 1)α, which
is approximately independent of θ, as is apparent from the α = 10◦ curve. For θ = 0◦ and α = 45◦,
total internal reflection is operative so a deflection angle does not exist [see Fig. 1.3-2(b)].

Beamsplitters
A beamsplitter, or partially reflective mirror, is an optical component that splits an
incident ray into a reflected ray and a transmitted ray, as illustrated in Fig. 1.3-5. Beam-
splitters are often constructed by depositing a thin, semitransparent dielectric or metallic
film on a glass or plastic substrate. A thin, bare glass plate, such as a microscope slide
[Fig. 1.3-5(b)], can also serve as a beamsplitter although the fraction of light reflected
is small (the relative proportion of light transmitted and reflected is established by the
Fresnel equations of electromagnetic optics). Beamsplitters are also frequently used to
combine two light rays into one, as shown schematically in Fig. 1.3-5(c), in which case
they are called beam combiners.

Figure 1.3-5 Beamsplitters and beam combiners.

Beam Directors
Simple optical components can also be used to direct rays in particular directions.
The devices illustrated in Fig. 1.3-6 redirect parallel incident rays into rays tilted at
fixed angles with respect to each other. The biprism depicted in Fig. 1.3-6(a) is the
juxtaposition of a prism and an identical inverted prism. The Fresnel biprism portrayed
in Fig. 1.3-6(b) is formed from rows of adjacently placed tiny prisms. This device is
equivalent to the biprism but is thinner and lighter, although beam quality can be limited
by diffraction at the discontinuities. The cone-shaped optic depicted in Fig. 1.3-6(c),
known as an axicon, converts incident rays into a collection of circularly symmetric
rays directed toward its central axis in the form of a cone. It has the same cross section
as the biprism, namely an isosceles triangle.
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(a) (b) (c) 

Figure 1.3-6 (a) Biprism. (b) Fresnel
biprism. (c) Plano-convex axicon.

1.4 SPHERICAL BOUNDARIES

Having examined the refraction of rays at planar boundaries in Sec. 1.3, we turn now to
the refraction of rays at spherical boundaries. In particular, we examine the refraction at
a spherical boundary of radius R between two media of refractive indices n1 and n2.
The results are obtained by applying Snell’s law, which relates the angles of refraction
and incidence relative to the normal to the surface, which is defined by the radius vector
from the centerC. These angles are to be distinguished from the angles θ1 and θ2 defined
relative to the z axis. In analogy with the spherical mirror, convention dictates that for
a ray entering from the left, the radius of curvature R is positive for a convex boundary
and negative for a concave boundary.

Paraxial Rays Incident on a Spherical Boundary. We consider only paraxial rays
that make small angles with respect to the axis of the system so that sin θ ≈ θ and
tan θ ≈ θ. Our calculations are therefore accommodated by the paraxial version of
Snell’s law provided in (1.3-1), i.e.,n1θ1 ≈ n2θ2, which leads to the following relations:

As depicted in Fig. 1.4-1(a), a ray that makes an angle θ1 with the z axis meets
the boundary at a point y above the z axis and changes direction when it refracts
at the boundary to make an angle (−θ2) with the z axis. In accordance with the
derivation provided below, the angle θ2 turns out to be

θ2 ≈
n1

n2
θ1 −

n2 − n1

n2

y

R
. (1.4-1)

R

P1
z

y

y

n1

θ1

C P2

n2

(−θ2)

P1 = (y1, z1)

CO

P2 = (y2, z2)

(a)

(b)

Figure 1.4-1 Refraction at a
spherical boundary. By convention,
P1 and P2 are measured in
coordinate systems that point to
the left and right, respectively
(if P2 were to lie to the left of
the boundary, then z2 would be
negative). Convention also dictates
that for a ray entering from the left,
the radius of curvature R is positive
for a convex boundary and negative
for a concave boundary. A negative
angle indicates a ray traveling
downward with respect to the z axis
and negative magnification signifies
an inverted image.
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As is evident in Fig. 1.4-1(b), all paraxial rays originating from a point P1 =
(y1, z1) in the z = z1 plane meet at a point P2 = (y2, z2) in the z = z2 plane,
where

n1

z1
+
n2
z2

≈ n2 − n1

R
(1.4-2)

and

y2 = −n1

n2

z2
z1
y1 . (1.4-3)

The z = z1 and z = z2 planes are said to be conjugate: Every point in the z = z1
plane has a corresponding point (image) in the z = z2 plane, with magnification
−(n1/n2)(z2/z1).

The similarities between these properties and those of the spherical mirror discussed
in Sec. 1.2 are evident. The results provided aboveare derived below by making use of
the construction provided in Fig. 1.4-2. It is important to keep in mind that rays at large
angles do not obey these paraxial laws and the deviations results in image distortion
called aberration.

□ Derivation of Relations for Image Formation by a Spherical Boundary. We first provide
a derivation of (1.4-1) and then show that paraxial rays originating from P1 pass through P2 when
(1.4-2) and (1.4-3) are satisfied.

P1

y

n
1

θ1

P2

n
2

−θ2

R

ϕ

ϕ

Figure 1.4-2 Construction for re-
fraction at a convex spherical bound-
ary (R > 0), corresponding to
Fig. 1.4-1.

Snell’s law dictates that n1 sin (θ1 + ϕ) = n2 sin [ϕ− (−θ2)]. Hence, the paraxial version of
Snell’s law provides n1(θ1 + ϕ) ≈ n2(ϕ + θ2), which gives rise to θ2 ≈ (n1/n2)θ1 + [(n1 −
n2)/n2]ϕ. Because ϕ ≈ y/R, we obtain θ2 ≈ (n1/n2)θ1 − [(n2 − n1)/n2](y/R), thereby
reproducing (1.4-1).
Substituting θ1 ≈ y/z1 and (−θ2) ≈ y/z2 into (1.4-1) gives rise to −y/z2 ≈ (n1/n2)y/z1 −
[(n2 − n1)/n2](y/R), from which (1.4-2) follows.
Referring to Fig. 1.4-1(b) and considering the ray passing through the origin O, the angles of
incidence and refraction are given by y1/z1 and−y2/z2, respectively, so that the paraxial version
of Snell’s law leads to (1.4-3). Rays at other angles are also directed from P1 to P2, as is readily
demonstrated using arguments similar to those employed in connection with Fig. 1.2-8.

■

EXAMPLE 1.4-1. Collimator for Light Emitted by an Light-Emitting Diode. The light
emitted by a light-emitting diode (LED) is often collimated by making use of an optic whose surface
takes the form of a paraboloid of revolution, as depicted in Fig. 1.4-3. The LED is placed at the focus of
the paraboloid by inserting its hemispherical dome (darker blue) into a recess formed in the narrow end
of the optic. Rays emanating from the sides of the LED dome impinge on the paraboloidal boundary
at angles of incidence greater than the critical angle θc and are thus reflected out of the device via total
internal reflection. Rays emanating from the central portion of the LED dome are refracted out of the
device at the spherical boundary. Optical systems that combine reflection and refraction are known as
catadioptric systems.
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Figure 1.4-3 Cross section of a collimator for
LED light. LED collimators come in many config-
urations but most make use of both total internal
reflection and refraction to provide rays of light
that are approximately parallel at the exit. Such
devices are often fabricated from molded acrylic or
polycarbonate plastic, which have refractive indices
similar to that of glass (n ≈ 1.5). The diameter of
the narrow end of the optic shown is ≈ 1 cm.

Aspheric Optics
An equation for a convex aspherical (nonspherical) surface between media of refractive
indices n1 and n2 can be determined such that all rays (not only those that are paraxial)
originating at an axial point P1 at a distance z1 to the left of the surface are imaged onto
an axial point P2 at a distance z2 to its right, as illustrated in Fig. 1.4-4. The imaging is
then aberration-free.
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y
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Figure 1.4-4 Construction for an
aberration-free imaging surface that
corresponds to Fig. 1.4-1(a).

In accordance with Fermat’s principle, the optical path length associated with the rays
in Fig. 1.4-4 then satisfies n1d1+n2d2 = constant = n1z1+n2z2. This constitutes an
equation that defines the aspherical surface, which is written in Cartesian coordinates
as n1

√
(z + z1)2 + y2+n2

√
(z2 − z)2 + y2 = n1z1 + n2z2. Given z1 and z2, as well

as n1 and n2, this equation relates y to z and therefore defines the surface. The use
of aspheric optics often circumvents the necessity of using complex multicomponent
spherical optics and therefore serves to simplify an optical system.

1.5 LENSES

Spherical Lenses
A spherical lens is a transparent material bounded by two spherical surfaces. It is
defined by the radii of curvature of its two surfaces,R1 andR2, its thickness ∆, and the
refractive index n of the material from which it is fabricated, as exhibited in Fig. 1.5-1.
Alternative appellations are biconvex lens and double-convex lens.

(−R2)

R1

Æ

Figure 1.5-1 A glass spherical lens, also known as
a biconvex or double-convex lens, can be viewed as a
combination of two spherical boundaries, air-to-glass (at
left) and glass-to-air (at right). As seen by a ray entering
from the left, the air-to-glass boundary is convex (with
radius of curvature R1) while the glass-to-air boundary
is concave (with radius of curvature −R2).



1.5 LENSES 15

As sketched in Fig. 1.5-2(a), a ray crossing the left surface at height y and angle θ1
with respect to the z axis is traced by applying (1.4-1) for a spherical boundary at that
surface to obtain the inclination angle θ of the refracted ray. That ray is then extended
until it meets the right surface, whereupon (1.4-1) is used once again, with θ replacing
θ1, to obtain the inclination angle θ2 of the ray after refraction from the right surface.
For a lens of arbitrary thickness ∆, the results are generally quite complex.

Thin Spherical Lens. For a thin lens, however, the ray emerges from the lens at
roughly the same height y at which it entered, and the results simplify considerably.
Under that assumption, the following relations apply (derivations follow):

P1=(y1,z1)

P2=(y2,z2)

F

fz1 z20

P1

y

θ1

P2

(−θ2)

z1 z20

Figure 1.5-2 (a) Ray bending by a thin spherical lens. (b) Image formation by a thin spherical lens.

The angles of the refracted and incident rays in Fig. 1.5-2(a) are related by

θ2 = θ1 −
y

f
, (1.5-1)

where the focal length f is given by

1

f
= (n− 1)

(
1

R1
− 1

R2

)
. (1.5-2)

Focal Length
Thin Spherical Lens

All rays originating from a point P1 = (y1, z1) meet at a point P2 = (y2, z2), as
portrayed in Fig. 1.5-2(b), where

1

z1
+

1

z2
=

1

f
(1.5-3)

Imaging Equation
(Paraxial Rays)

and

y2 = −z2
z1
y1. (1.5-4)

Magnification

These results are identical to those obtained for the spherical mirror, as provided
in (1.2-4) and in the derivation surrounding Fig. 1.2-8.
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The equations provided above indicate that each point in the z = z1 plane is imaged
onto a corresponding point in the z = z2 plane. The magnification −z2/z1 is unity
when z1 = z2 = 2f , and the focal length f completely determines the effect of the lens
on paraxial rays. As indicated earlier, P1 and P2 are measured in coordinate systems
pointing to the left and to the right, respectively. For the biconvex lens shown in Fig. 1.5-
1, R1 is positive and R2 is negative, for reasons described in the caption to that figure,
so that the two terms of (1.5-2) add to provide a positive focal length.

□ Derivation of Relations for Image Formation by a Thin Spherical Lens. Equations (1.5-1)
and (1.5-3) for the thin spherical lens may be obtained from (1.4-1) and the definition of the focal
length provided in (1.5-2). A ray at angle θ1 and at height y refracts at the left surface in accordance
with (1.4-1) and its angle is altered to θ = θ1/n− [(n− 1)/nR1]y, where R1 is the radius of the left
surface. At the right surface, the angle is altered to θ2 = nθ− [(1−n)/R2]y, whereR2 is the radius of
the right surface. The ray height does not change since the lens is thin. Combining these two equations
leads to θ2 = n{θ1/n− [(n− 1)/nR1]y}− [(1−n)/R2]y = θ1 − (n− 1)y(1/R1 − 1/R2). We now
invoke the relation θ2 = θ1 − (y/f), in accordance with (1.5-1). If θ1 = 0, then θ2 = (−y/f) and
z2 ≈ (y/−θ2) = f , where f is the focal length of the lens. In general, θ1 ≈ y/z1 and −θ2 ≈ y/z2.
Finally, using (1.5-1), we obtain −y/z2 = y/z1 − y/f , from which (1.5-3) follows. Equation (1.5-4)
can be derived by using an approach similar to that employed in connection with Fig. 1.2-8. ■

Aberrations. Again, it is emphasized that the foregoing results are applicable only
for paraxial rays; the presence of nonparaxial rays results in aberrations, as illustrated
in Fig. 1.5-3.

f

Figure 1.5-3 Nonparaxial rays do not meet at the
paraxial focus. The dashed envelope of the refracted
rays is the caustic.

Convex and Concave Lenses. Lenses are transparent optical components that
bend rays in a manner prescribed by the shapes of their surfaces. Lenses ground or
molded from a single piece of material (glass and plastic are favored in the visible
region) are called simple lenses, whereas those that comprise multiple simple lenses,
usually juxtaposed along a common axis, are known as compound lenses.

The surface of a lens can be convex or concave, depending on whether it projects
out of, or recedes into, the body of the lens, respectively, or it can be planar, indicating
that it has a flat surface. A cylindrical lens is curved in only one direction; if the axis
of the cylinder is aligned with the x axis of the coordinate system, it has a focal length
f for rays in the y–z plane, but has no focusing power for rays in the x–z plane. A
lens in which one surface is convex and the other concave is called a meniscus lens,
which is often used in spectacles. A lens in which one or both surfaces have a shape
that is neither spherical nor cylindrical is known as an aspheric lens. Most commonly
encountered lenses are spherical although aspheric lenses are widely used.

Several different types of lenses are illustrated in Fig. 1.5-4. Biconvex and plano-
convex lenses result in ray convergence and are useful for image formation, as depicted
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in Fig. 1.5-2(b). Biconcave and plano-concave lenses lead to ray divergence and are
used in projection and focal-length expansion.

(a) (b) (c) (d) (e)

Figure 1.5-4 Lenses: (a) Bicon-
vex. (b) Plano-convex. (c) Biconcave.
(d) Plano-concave. (e) Fresnel. The
Fresnel lens displayed in (e) is the
counterpart of the plano-convex lens
shown in (b).

Fresnel Lenses
Imaging Fresnel Lenses. A Fresnel lens is constructed by removing various
constant-thickness portions of material from a conventional lens, which are nonrefract-
ing and therefore superfluous. For example, the Fresnel-lens illustrated in Fig. 1.5-4(e),
which is the equivalent of the plano-convex conventional lens depicted in Fig. 1.5-4(b),
consists of a set of concentric surfaces, each with a curvature identical to that of the
plano-convex lens at the same radius. While such a lens can produce a sharp image,
its imaging capability generally falls short of that of a conventional lens, principally
because of diffraction at the discontinuities. However, the Fresnel design allows for the
construction of thin, light, and inexpensive plastic lenses that have short focal lengths
and a broad variety of sizes ranging from micrometers to meters. Fresnel lenses can be
converging, diverging, or cylindrical.

Nonimaging Fresnel Lenses. Nonimaging Fresnel lenses, which are more econom-
ical to fabricate, are widely used in lighting applications, as depicted in Example 1.5-1.
They can be made of glass or plastic in a broad range of sizes. Large glass nonimaging
Fresnel lenses were originally developed by Fresnel for use in lighthouses in the early
nineteenth century (oil lamps served as the source of light). Today, they are widely used
as lenses for directing the light emitted by LEDs, and in automobile headlights and
taillights. Nonimaging Fresnel lenses are often economically fabricated by replacing
the curved spherical ring segments by flat surfaces tilted at the average angle of the
ring’s surface, so the tilt is absent at the center of the lens and steepest at its edges.
Such a device can thus be pictured as a flat substrate crowned with a collection of raised
concentric rings, each with the cross section of a right triangle whose hypotenuse has
a length that decreases with increasing radius. Nonimaging Fresnel lenses can also be
fabricated in the form of large plastic sheets that are as thin as 1 mm; these are widely
used in light-gathering applications such as solar-power collection.

EXAMPLE 1.5-1. LED Optics Using Nonimaging Fresnel Lenses. LED optics that
make use of molded-plastic, nonimaging Fresnel lenses of different types offer light beams with
various characteristics. Several examples are illustrated.

Figure 1.5-5 (a) A narrow spot of light is provided by a
collimating optic such as that shown in Fig. 1.4-3, covered
with a flat transparent plate. (b) A medium or wide spot is
produced by incorporating a diverging Fresnel lens in the optic.
(c) An elliptical spot of light is created by using a Fresnel
prism or Fresnel biprism [Fig. 1.3-6(b)]. (d) An optic with
a flat, roughened surface scatters the light and offers softer
illumination.
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Graded-Index Lenses
A graded-index (grin) material has a refractive index that varies with position in
accordance with a continuous function n(r). Such materials are usually fabricated by
adding impurities (dopants) with controlled concentrations to the underlying material.
Since a grin medium is inhomogeneous, the optical rays follow curved trajectories
instead of straight lines, and Hero’s principle does not apply. However, Fermat’s
principle remains applicable and n(r) can be chosen in such a way that the grin
plate has the same effect on light rays as a conventional optical component, such as a
lens or prism. Graded-index lenses will be discussed in Sec. 2.5.

1.6 OPTICAL FIBERS

Light Guiding
Light may be guided from one location to another by making use of a set of lenses
or mirrors, as schematically illustrated in Figs. 1.6-1(a) and (b), respectively. How-
ever, because refractive elements such as lenses are usually partially reflective, and
reflective elements such as mirrors are usually partially absorptive, the cumulative loss
of optical power mounts rapidly as the number of guiding elements is increased. Al-
though it is possible to fabricate components in which these effects are minimized
(e.g., antireflection-coated lenses), the assembly of such components into an integrated
system is both cumbersome and costly.

Fortunately, there is an attractive alternative. Light may be guided from one location
to another via total internal reflection at the dielectric interface between two media
of different refractive indices, as portrayed in Fig. 1.6-1(c). Rays are then repeatedly
reflected via total internal reflection, a process that is devoid of refraction and absorp-
tion. Optical fibers are ideal for guiding light over long distances in this manner, with
minimal loss of optical power.

(b)

(c)

(a)

Figure 1.6-1 Guiding light via: (a) lenses, (b) mirrors, (c) total internal reflection.

Total Internal Reflection
An optical fiber is a light conduit constructed from two concentric transparent cylinders,
usually glass or plastic. As portrayed in Fig. 1.6-2, it consists of a central coreFibers,
optical!core in which the light is guided, embedded in an outer cladding. The core is
a material of refractive index n1 while the cladding is a material of slightly smaller
refractive index, n2 < n1.
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n1Core

n2 < n1Cladding
b

a

Figure 1.6-2 An optical fiber is a cylindrical dielectric waveguide with a core of refractive index
n1 and a cladding of slightly lower refractive index, n2 < n1. In conventional optical fibers, known as
step-index fibers, the refractive indices in the core and in the cladding are independent of position.
Examples of standard core-to-cladding diameter ratios (in units of µm/µm) are 2a/2b = 8/125,
50/125, 62.5/125, 85/125, and 100/140.

As illustrated in Fig. 1.6-3, light rays traveling in the fiber core undergo total internal
reflection at the core–cladding boundary if their angle of incidence θ is greater than the
critical angle specified in (1.3-2), i.e., if θ > θc = sin−1(n2/n1). Hence, rays that make
an angle θ = 90◦ − θ with respect to the optical axis of the fiber will be confined to the
fiber core if θ < θc, where θc = 90◦ − θc = cos−1(n2/n1), and will be guided without
refraction into the cladding and without loss. Rays at greater inclinations to the fiber
axis will lose a portion of their power into the cladding at each reflection and are not
guided.

n1

n2

Core

Cladding

θ

θ

Figure 1.6-3 End view and cross section of an optical fiber that includes the fiber axis. Light rays
can be guided by multiple total internal reflections. The angle θ is measured with respect to the axis
of the optical fiber so its complement θ = 90◦ − θ represents the angle of incidence at the dielectric
interface at the core–cladding boundary.

Ray Paths
Rays whose paths are confined to planes that pass through the fiber axis, such as that
displayed in Fig. 1.6-3, are known as meridional rays. All other rays are called skewed
rays.

Meridional Rays. As illustrated in Fig. 1.6-4, rays confined to meridional planes
that pass through the fiber axis have a particularly simple guiding condition. These
rays intersect the fiber axis and repeatedly reflect in a given plane without any change
in the angle of incidence. Meridional rays are guided if θ < θc=cos−1(n2/n1). Since
n1 ≈ n2, θc is usually small and the guided rays are approximately paraxial.

Meridional

plane
θ

θ

Figure 1.6-4 The trajectory of a meridional ray lies in a plane that passes through the fiber axis.
The ray is guided if θ < θc = cos−1(n2/n1).
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Skewed Rays. An arbitrary ray in the fiber is identified by its plane of incidence,
which is the plane parallel to the fiber axis through which the ray passes, and by the angle
θ it makes with that axis, as illustrated in Fig. 1.6-5. The plane of incidence intersects
the core–cladding cylindrical boundary at an angle ϕ with respect to the normal to
the boundary and the plane of incidence lies at a distance R from the fiber axis. The
ray is identified by its angle θ with respect to the fiber axis and by the angle ϕ of its
plane. When ϕ ̸= 0 (R ̸= 0) the ray is said to be skewed (for meridional rays, ϕ = 0
and R = 0). A skewed ray reflects repeatedly into planes that make the same angle
ϕ with the core–cladding boundary and follows a helical trajectory confined within a
cylindrical shell of inner and outer radiiR and a, respectively, as illustrated in Fig. 1.6-
5. The projection of the trajectory onto the transverse (x–y) plane is a regular polygon
that is not necessarily closed. In common with a meridional ray, the condition for a
skewed ray to always undergo total internal reflection is that its angle with respect to
the z axis be smaller than the complementary critical angle, i.e., θ < θc.

ϕ ϕ R

a
z

y

x

θ

Figure 1.6-5 A skewed ray lies in a plane offset from the fiber axis by a distance R. The ray is
identified by the angles θ and ϕ. It follows a helical trajectory confined within a cylindrical shell
whose inner and outer radii are R and a, respectively. The projection of the ray on the transverse
plane is a regular polygon that is not necessarily closed.

Acceptance Angle and Numerical Aperture
A ray incident from air into an optical fiber becomes a guided ray if, upon refraction
into the core, it makes an angle θ with respect to the fiber axis that is smaller than the
complementary critical angle θc. As is understood from Fig. 1.6-6(a), applying Snell’s
law (1.1-4) at the air–core boundary for an acceptance angle θa in air corresponding to
θc in the core yields 1 · sin θa = n1 sin θc , since the refractive index of air is 1. This
in turn leads to sin θa = n1

√
1− cos2 θc = n1

√
1− (n2/n1)2 =

√
n21 − n2

2 , since
θc = cos−1(n2/n1). The acceptance angle of a fiber in air,

θa = sin−1

(√
n2
1 − n2

2

)
= sin−1(NA), (1.6-1)

Acceptance Angle
Optical Fiber

therefore specifies the cone of external rays that are guided by the fiber. Rays incident at
angles greater than θa are refracted into the fiber but are guided only for short distances
since they fail to undergo total internal reflection.

The numerical aperture (NA) of the fiber is defined as

NA ≡ sin θa =
√
n2
1 − n2

2 ≈ n1

√
2∆ , (1.6-2)

Numerical Aperture
Optical Fiber
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θc

θ
c

Acceptance 
cone

Small NA

Large NA

Guided rayUnguided ray

(a)

(b)

θ
a

Figure 1.6-6 (a) Acceptance angle θa of a fiber. Rays within the acceptance cone are guided by
total internal reflection once inside the core. The numerical aperture (NA) of the fiber, defined by
NA = sin θa, assumes a value between 0 and 1. The angles θa and θc are typically quite small but are
exaggerated in the diagram for clarity. (b) The light-gathering capacity of a small NA fiber lies below
that of a large NA fiber.

where the fractional refractive-index change is given by ∆ ≡ (n21 − n2
2)/2n

2
1 ≈ (n1 −

n2)/n1 ≪ 1 sincen1+n2 ≈ 2n1. As illustrated in Fig. 1.6-6(b), the numerical aperture,
which assumes a value between zero and unity, characterizes the light-gathering capac-
ity of the fiber. When guided rays arrive at the terminus of a fiber, they are refracted into
a cone of angle θa that forms a mirror image of their entrance cone. Hence, the numerical
aperture is a crucial design parameter for coupling light into and out of optical fibers.
Tiny spherical glass balls are sometimes used as lenses to effect this coupling.

EXAMPLE 1.6-1. Acceptance Angle and Numerical Aperture for a Silica-Glass Fiber.
In accordance with (1.6-2), a silica-glass fiber with n1 = 1.475 and n2 = 1.460 has a numerical

aperture NA = 0.21 and an acceptance angle θa = 12.1◦. The refractive index n1 for silica glass ranges
from 1.44 to 1.46, depending on the wavelength, so that∆ typically lies between 0.001 and 0.02. Silica
glass, also known as fused silica, is amorphous silicon dioxide (SiO2). It is widely used in fiber optics
because of its excellent optical and mechanical properties, and the fact that its refractive index can
be readily modified by doping (e.g., with GeO2). The loss per unit length of a silica-glass fiber at the
wavelength of its maximum transparency is ≈ 0.15 dB/km (≈ 3.4%), an exceptionally low value.
Today, optical fibers are fabricated from many materials and take many forms, including photonic-
crystal, specialty, multimaterial, and multifunctional versions. They play central roles in many areas
of optics and photonics, particularly in sensing, security, transportation, defense, and biomedicine.

EXAMPLE 1.6-2. Acceptance Angle and Numerical Aperture for an Uncladded Fiber.
For a silica-glass fiber with n1 = 1.46 and ∆ = (n1 − n2)/n1 = 0.01, according to (1.6-2)

the complementary critical angle θc = cos−1(n2/n1) = 8.1◦ and the acceptance angle θa = 11.9◦,
corresponding to a numerical aperture NA = 0.206. By comparison, a fiber with silica-glass core
(n1 = 1.46) and a cladding with a substantially smaller refractive index, n2 = 1.064, has θc = 43.2◦,
θa = 90◦, and NA = 1. Rays incident from all directions are then guided since they fall within
a cone of angle θc = 43.2◦ inside the core. Likewise, for a totally uncladded fiber (n2 = 1), we
have θc = 46.8◦, and rays incident from air at any angle are again refracted into guided rays, which
provides maximum light-gathering capacity. However, uncladded fibers are generally not used as
optical waveguides for fiber-optic communications applications because they support a large number
of modes.

EXAMPLE 1.6-3. Coupling Efficiency for an Optical Fiber. It is shown that the power
collected by an optical fiber from a source of optical power PO, whose power per unit solid angle
distributed as I(θ) = (PO cos θ)/π where θ is the angle with respect to the axis of a fiber, is given by
Pcol = (NA)2PO, where NA is the numerical aperture of the fiber. The power collected by the fiber is
determined by integrating the optical power distribution over the solid angle of the fiber’s acceptance
cone (angle θa). The collected power is thus given by Pcol = 1

π
PO

∫ 2π

0

∫ θa
0

cos θ′ sin θ′ dθ′ dϕ =
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2PO

∫ θa
0

cos θ′ sin θ′ dθ′ = (PO/2) sin
2 θ|θa0 = (PO/2)[1 − cos 2θa]. Since (1.6-1) dictates that θa =

sin−1(NA), the collected power can be written as Pcol = (PO/2)[1− cos(2 sin−1(NA))] = PO (NA)2.
The coupling efficiency is therefore given by Pcol/PO = (NA)2, where NA is the numerical aperture
of the fiber. The effects of loss and Fresnel reflection are not accommodated by ray optics.

EXAMPLE 1.6-4. Numerical Aperture for a Butt-Coupled Optical Fiber. If a planar
light-emitting diode of refractive index ns is bonded to an optical fiber whose cross-sectional area
is larger than the LED emission area, we show that the numerical aperture is determined from the
relation nsNA =

√
n2
1 − n2

2. Our point of departure is the formula for the numerical aperture of an
optical fiber in air, provided in (1.6-2). If the fiber is butt-coupled to a medium of refractive index ns

instead of to air, Snell’s law in the derivation must be applied at the medium–core boundary rather
than at an air–core boundary. Hence, the acceptance angle θs corresponding to the complementary
critical angle θc in the core follows from the use of ns sin θs = n1 sin θc, which provides sin θs =
(n1/ns)

√
1− cos2 θc = (n1/ns)

√
1− (n2/n1)2 = (1/ns)

√
n2
1 − n2

2 . The numerical aperture of
the butt-coupled fiber is therefore determined from the expression nsNA =

√
n2
1 − n2

2 .
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Ray optics, despite its simplicity, is eminently successful for describing the collection,
guiding, and control of light, as well as for image formation (Chapter 1). However,
it does not have the capability of addressing phenomena that rely on the wavelength,
spectrum, phase, or color of light. Accommodating those phenomena requires a more
advanced, and more complex, theory of light.

Within the confines of classical optics, light is more accurately described as an
electromagnetic wave phenomenon that obeys the same laws as other forms of elec-
tromagnetic radiation, such as radiowaves, microwaves, and X-rays. In this conception
of light, called electromagnetic optics, light propagates in the form of waves whose
electric- and magnetic-field vectors are mutually coupled. This chapter is devoted to
exploring the increased reach offered by electromagnetic optics. We also discuss a sim-
plified version of this theory, known as scalar wave optics, that relies on the propagation
of a single scalar wave rather than on two coupled vector waves.

This approximate theory is far simpler than electromagnetic optics, yet it is capable
of explaining a substantial subset of wave phenomena. Scalar wave optics properly
describes diffraction and interference, for example, although these phenomena are not
considered in any detail in this text since they are not central to the functioning of light-
emitting diodes. It is also useful for representing light waves that vary randomly in time,
such as those emitted by astronomical bodies such as the sun and stars, as well as by
hot objects and light-emitting diodes.

As portrayed in Fig. 2.0-1, electromagnetic optics encompasses scalar wave optics,
which in turn encompasses ray optics.

Ray Optics

Wave Optics

Electromagnetic

Optics

Figure 2.0-1 Electromagnetic optics is a vector theory
of light comprising coupled electric and magnetic fields
that vary in time and space. Wave optics is an approxima-
tion to electromagnetic optics and relies on a wavefunction
that is a scalar function of time and space. Ray optics is the
limit of wave optics when the wavelength is very short.

There are, however, optical sources and phenomena that are characteristically quan-
tum mechanical in nature and require nonclassical optics for their representation. Ac-
commodating such features requires a quantum version of electromagnetic theory called
quantum optics, in which the electric- and magnetic-field vectors of electromagnetic
theory are promoted to operators in a Hilbert space that satisfy established operator
equations and commutation relations. A simplification of quantum optics, known as
photon optics, in which light propagates in the form of photon streams, provides a
suitable approximation for describing many of these quantum effects. Photon optics
can be effectively used to augment electromagnetic optics with a number of simple
relationships that pertain to the corpuscularity, localization, and fluctuations of quantum
fields and energy. The theory of photon optics is useful for elucidating various features
of both nonclassical and classical light, as will be discussed in Chapter 3.

Still, when light waves propagate around and through objects whose dimensions are
much greater than the wavelength of the light, such as prisms and lenses, neither the
corpuscular nor wave nature of light is discernible without careful observation. The
particle, wave, and ray approaches then lead to similar outcomes and the propagation
of light can be adequately described by rays that obey the set of geometrical rules
prescribed by ray optics, as presented in Chapter 1.

25
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2.1 SCALAR WAVES

Principles of Scalar Wave Optics

Light propagates in the form of waves. An optical wave is mathematically de-
scribed by a real function of position r = (x, y, z) and time t, denoted u(r, t)
and known as the wavefunction. It satisfies a partial differential equation called
the wave equation,

∇2u− 1

c2
∂2u

∂t2
= 0 , (2.1-1)

Wave Equation
in a Medium

where ∇2 represents the Laplacian operator, which, in Cartesian coordinates is
expressed as ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Any function that satisfies
(2.1-1) represents a possible optical wave.
In free space, light waves travel at the constant speed cO. A homogeneous trans-
parent medium such as glass is characterized by a single constant, its refractive
index n (⩾ 1). In a medium of refractive index n, light waves travel at a reduced
speed,

c =
cO
n
. (2.1-2)

Speed of Light
in a Medium

The speed of light in free space is cO ≈ 3.0×108 m/s = 30 cm/ns = 0.3 mm/ps
= 0.3 µm/fs = 0.3 nm/as.

Light propagates in the form of scalar waves that obey the wave equation
and travel at the speed of light c .

Superposition
Because the wave equation is linear, the principle of superposition applies: if u1(r, t)
and u2(r, t) represent possible optical waves, then u(r, t) = u1(r, t) + u2(r, t) also
represents a possible optical wave.

Intensity, Power, and Energy
The optical intensity I(r, t), defined as the optical power per unit area (units ofW/m2),
is proportional to the average of the squared wavefunction:

I(r, t) = 2⟨u2(r, t)⟩ . (2.1-3)
Optical Intensity

The operation ⟨·⟩ denotes averaging over a time interval much longer than the time of
an optical cycle, but much shorter than any other time of interest (such as the duration
of a pulse of light). The duration of an optical cycle is short: 2×10−15 s = 2 fs for light
of wavelength 600 nm, for example. The quantity I(r, t) is also called the irradiance, a
designation widely used in radiometry. There is some arbitrariness in the definition of
the wavefunction and its relation to the intensity. For example, (2.1-3) could have been
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written without the factor of 2, and concomitantly scaling the wavefunction by a factor
of

√
2, in which case the intensity would remain the same. Incorporating the factor of

2 in (2.1-3) proves convenient, however, as will become apparent in the sequel.
Equation (2.1-3) connects the wavefunction u(r, t) with a physically measurable

quantity — the optical intensity. However, the physical significance of the wavefunction
itself must await a discussion of electromagnetic waves in Sec. 2.6 since it is associated
with the vector field components of electromagnetic optics. The underlying physical
origin of the refractive index, as well as the laws that govern its change at the boundary
between two different media, are also specified by the principles of electromagnetic
optics.

The optical power P(t) (units of W) flowing into an area A normal to the direction
of propagation of light is the intensity integrated over that area,

P(t) =

∫
A

I(r, t) dA . (2.1-4)
Optical Power

The optical energy E (units of J) collected over a given time interval T is the integral
of the optical power over that time interval,

E =

∫ T

0

P(t) dt =

∫ T

0

∫
A

I(r, t) dA dt . (2.1-5)
Optical Energy

Graded-Index Media
The wave equation is also approximately applicable for media with refractive indices
that are position dependent, but vary slowly over distances of the order of a wavelength.
The medium is then said to be locally homogeneous. For such media, the refractive
index n in (2.1-2) and the speed of light c in (2.1-1) are replaced by the appropriate
position-dependent functions n(r) and c(r), respectively.

2.2 MONOCHROMATIC SCALAR WAVES

We now consider the mathematical representation for a monochromatic scalar wave and
chronicle the emergence of the Helmholtz equation from the wave equation. The optical
intensity and wavefronts for monochromatic scalar waves are defined.

Wavefunction
A monochromatic wave is represented by a wavefunction u(r, t) whose time depen-
dence is harmonic, i.e., varies sinusoidally or cosinusoidally at a fixed frequency ν,

u(r, t) = a(r) cos[2πνt+ φ(r)] . (2.2-1)

This wave is illustrated in Fig. 2.2-1(a), where

a(r) = amplitude
φ(r) = phase

ν = frequency (Hz or cycles/s)
ω = 2πν = angular frequency (radians/s or s−1)
T = 1/ν = 2π/ω = period (s) .
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Both the amplitude and phase of the wave are generally dependent on position, but the
wavefunction is a harmonic function of time with frequency ν at all positions.

u(t)

a
a

Im{U} Im{U}

Re{U} Re{U}
0 t

T = 1/ν
φ/ω ω 

φ φ 

Figure 2.2-1 Representations of a monochromatic wave at a fixed position r: (a) The wavefunction
u(t) is a harmonic function of time. (b) The complex amplitude U = a exp(jφ) is a fixed phasor.
(c) The complex wavefunction U(t) = U exp(j2πνt) is a phasor that rotates with angular velocity
ω = 2πν radians/s. Optical waves, which traditionally include the infrared, visible, and ultraviolet
regions of the electromagnetic spectrum, have frequencies that stretch from 1× 1012 to 3× 1016 Hz,
as illustrated in Figs. 2.4-1 and 2.6-1.

Monochromatic waves described by (2.2-1), in which the dependence of the wavefunc-
tion on time and position is perfectly periodic and predictable, are said to be coherent
or deterministic.

Complex Wavefunction
The real wavefunction u(r, t) set forth in (2.2-1) is conveniently represented in terms
of a complex function,

U(r, t) = a(r) exp[jφ(r)] exp(j2πνt) , (2.2-2)

so that

u(r, t) = Re{U(r, t)} = 1
2 [U(r, t) + U∗(r, t)] , (2.2-3)

where the symbol ∗ signifies complex conjugation. The function U(r, t), known as
the complex wavefunction, provides a complete description of the wave, as does the
wavefunction u(r, t), which is simply its real part. Like the wavefunction, the complex
wavefunction also satisfies the wave equation,

∇2U − 1

c2
∂2U

∂t2
= 0 , (2.2-4)

Wave Equation
(Complex Wavefunction)

and the two functions satisfy the same boundary conditions.

Complex Amplitude
Equation (2.2-2) may be rewritten in the form

U(r, t) = U(r) exp(j2πνt) , (2.2-5)

in which the time-independent factorU(r) = a(r) exp[jφ(r)] is known as the complex
amplitude of the wave. The wavefunction u(r, t) is therefore related to the complex
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amplitude by

u(r, t) = Re{U(r) exp(j2πνt)} = 1
2 [U(r) exp(j2πνt) + U∗(r) exp(−j2πνt)] .

(2.2-6)
At a given position r, the complex amplitude U(r) is a deterministic complex variable
[as depicted in Fig. 2.2-1(b)] whose magnitude |U(r)| = a(r) is the amplitude of the
wave and whose argument arg{U(r)} = φ(r) is its phase. Hence, the complex wave-
function U(r, t), schematized in Fig. 2.2-1(c), depicts a phasor rotating with angular
velocity ω = 2πν radians/s. Its initial value at t = 0 is the complex amplitude U(r).

Helmholtz Equation
Substituting U(r, t) = U(r) exp(j2πνt) from (2.2-5) into the wave equation (2.2-4)
leads to a differential equation for the complex amplitude U(r):

∇2U + k2U = 0 , (2.2-7)
Helmholtz Equation

as formulated by Helmholtz (p. 234), and which has come to be known as the Helmholtz
equation, where

k =
2πν

c
=
ω

c
(2.2-8)

Wavenumber

is referred to as the wavenumber. Different solutions obtain from different boundary
conditions.

Optical Intensity
The optical intensity is determined by inserting (2.2-1) into (2.1-3):

2u2(r, t) = 2a2(r) cos2 [2πνt+ φ(r)]

= |U(r)|2 {1 + cos (2 [2πνt+ φ(r)])} . (2.2-9)

Averaging (2.2-9) over a time longer than an optical period, 1/ν, causes the cosinusoidal
term in (2.2-9) to vanish, which results in

I(r) = |U(r)|2 , (2.2-10)
Optical Intensity

a quantity that does not vary in time.

The optical intensity of a monochromatic wave is the absolute square of its
complex amplitude.

Wavefronts
Wavefronts are defined as surfaces of equal phase: φ(r) = constant. Because of the
periodic nature of phase, the constants are often taken to be multiples of 2π so that
φ(r) = 2πq, where q is an integer. The wavefront normal at position r is parallel to the
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gradient vector ∇φ(r). The components of this vector in a Cartesian coordinate system
are ∂φ/∂x, ∂φ/∂y, and ∂φ/∂z; the direction of this vector reveals where the rate of
change of the phase is maximum.

Summary: Monochromatic Scalar Waves

A monochromatic scalar wave of frequency ν is described by a complex wave-
function U(r, t) = U(r) exp(j2πνt) that satisfies the wave equation.
The complex amplitude U(r) satisfies the Helmholtz equation; its magnitude
|U(r)| and argument arg{U(r)} are the amplitude and phase of the wave, re-
spectively. The optical intensity is I(r) = |U(r)|2. The wavefronts are the
surfaces of constant phase, φ(r) = arg{U(r)} = 2πq, where q is integer.
The wavefunction u(r, t) is the real part of the complex wavefunction, i.e.,
u(r, t) = Re{U(r, t)}. The wavefunction also satisfies the wave equation.

2.3 ELEMENTARY SCALAR WAVES

We now proceed to examine two simple solutions of the Helmholtz equation in a homo-
geneous medium: the plane wave and the spherical wave. The paraboloidal wave, a
useful approximation to the spherical wave, is also introduced. This is followed by a
discussion of general paraxial waves, whose wavefront normals make small angles with
the axis of the optical system. The complex envelopes of paraxial waves, such as the
paraboloidal wave, obey an equation known as the paraxial Helmholtz equation.

Plane Wave
We begin by studying the behavior of a plane wave, which has a complex amplitude

U(r) = A exp(−jk · r) = A exp [−j(kxx+ kyy + kzz)] , (2.3-1)

whereA is a complex constant called the complex envelope and represents the strength
of the wave, and k = (kx, ky, kz) is known as the wavevector.† Substituting (2.3-1)
into the Helmholtz equation (2.2-7) yields the relation k2x + k2y + k2z = k2, so that the
magnitude of the wavevector k is the wavenumber k.

Since the phase of the wave is arg{U(r)} = arg{A}−k ·r, the surfaces of constant
phase (wavefronts) obey k ·r = kxx+kyy+kzz = 2πq+arg{A} with q integer. This
is an equation that describes parallel planes perpendicular to the wavevector k, which
is the basis of the appellation “plane wave.” Consecutive planes are separated by the
distance λ = 2π/k, so that

λ =
c

ν
, (2.3-2)

Wavelength

† The complex wavefunction for a monochromatic plane wave is written in the form commonly used in electrical
engineering: U(r, t) = A exp[j(ωt − k · r)]. In the physics literature, however, this wave is usually written as
U(r, t) = A exp[−i(ωt−k·r)]; correspondence is attained by simply replacing iwith−j, where i = j =

√
−1 .

This choice has no bearing on the final result, as is evidenced by observing that the wavefunction u(r, t) in (2.3-3)
takes the form of a cosine function, for which cos(x) = cos(−x).
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where λ is called the wavelength. The plane wave has a constant intensity I(r) = |A|2
everywhere in space so that it carries infinite power. This wave is clearly an idealization
since it exists everywhere and at all times.

If the direction of the wavevector k is taken to lie along the z axis, then U(r) =
A exp(−jkz) and the corresponding wavefunction associated with (2.2-6) is

u(r, t) = |A| cos [2πνt− kz + arg{A}] = |A| cos [2πν(t− z/c) + arg{A}] .
(2.3-3)

This wavefunction is periodic in time with period 1/ν, and periodic in space with period
2π/k, which is equal to the wavelength λ, as illustrated in Fig. 2.3-1. Since the phase of
the complex wavefunction, arg{U(r, t)} = 2πν(t− z/c) + arg{A}, varies with time
and position as a function of the variable t− z/c (Fig. 2.3-1), the quantity c is called
the phase velocity of the wave.

z

u(x, z, t1)

u(x, z, t)

u(x, z, t2)

z

x

x t

λ

1/ν

Figure 2.3-1 The wavefunction of a plane wave traveling in the z direction, schematically drawn
as a graded red pattern, is a periodic function of z with spatial period λ; and a periodic function of
t with temporal period 1/ν. The wavefronts (surfaces of constant phase) comprise a set of parallel
planes normal to the z axis.

In a medium of refractive index n, the wave has phase velocity c = cO/n and a
wavelength λ = c/ν = cO/nν, so that λ = λO/n, where λO = cO/ν is the wavelength
in free space. Hence, for a given frequency ν, the wavelength in the medium is reduced
relative to that in free space by the factor n. Consequently, the wavenumber k = 2π/λ
is increased relative to that in free space (kO = 2π/λO) by the factor n.

As a monochromatic wave propagates through media of different refractive
indices, its frequency remains the same, but its velocity, wavelength, and
wavenumber are modified as follows:

c =
cO
n
, λ =

λO
n
, k = nkO . (2.3-4)

Velocity, Wavelength, and Wavenumber
(Monochromatic Wave)

Spherical Wave
Another simple solution of the Helmholtz equation, this time in spherical coordinates,
is the spherical wave complex amplitude

U(r) =
A0

r
exp(−jkr) , (2.3-5)
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where r is the distance from the origin, k = 2πν/c = ω/c is the wavenumber, and
A0 is a constant. The intensity I(r) = |A0|2/r2 is seen to be inversely proportional
to the square of the distance. Taking arg{A0} = 0 for simplicity, the wavefronts are
the surfaces kr = 2πq or r = qλ , where q is an integer. Hence, the wavefronts are
concentric spheres, separated by the radial distance λ = 2π/k, and advance radially at
the phase velocity c, as portrayed in Fig. 2.3-2. A wave with complex amplitudeU(r) =

z

x

Figure 2.3-2 Cross section of the wavefunction
of a spherical wave. The associated wavefronts are
a set of concentric spheres.

(A0/r) exp(+jkr) is a spherical wave traveling in an inward direction (toward the
origin) instead of in an outward direction (away from the origin). A spherical wave orig-
inating at the position r0 has a complex amplitude U(r) = (A0/|r−r0|) exp(−jk |r−
r0|), and has wavefronts that are spheres centered about r0.

Paraboloidal Wave
We now consider an approximation for a spherical wave originating at r = 0, at points
r = (x, y, z) that are sufficiently close to the z axis but sufficiently far from the origin,
that

√
x2 + y2 ≪ z. Were these positions the endpoints of rays beginning at the origin,

this would be the paraxial approximation of ray optics. Denoting θ2 = (x2+y2)/z2 ≪
1, we make use of the following approximation based on a Taylor-series expansion:

r =
√
x2 + y2 + z2 = z

√
1 + θ2 = z

(
1 + θ2/2− θ4/8 + · · ·

)
≈ z

(
1 + θ2/2

)
= z + (x2 + y2)/2z . (2.3-6)

Substituting this approximation, r ≈ z+ (x2 + y2)/2z, into the phase of U(r) in (2.3-
5), along with the less accurate but satisfactory approximation r ≈ z for the magnitude
(which is less sensitive to error than the phase), we arrive at the Fresnel approximation
of a spherical wave:

U(r) ≈ A0

z
exp(−jkz) exp

[
−jkx

2 + y2

2z

]
. (2.3-7)

Fresnel Approximation
of a Spherical Wave

This approximation plays an important role in simplifying the theory of wave transmis-
sion through optical components.

The complex amplitude in (2.3-7) may be viewed as representing a plane wave
A0 exp(−jkz) modulated by the factor (1/z) exp[−jk(x2 + y2)/2z], with associated
phase k(x2 + y2)/2z. This phase factor serves to bend the planar wavefronts of the
underlying plane wave into paraboloidal surfaces since the equation for a paraboloid
of revolution is (x2 + y2)/z = constant, as sketched in Fig. 2.3-3. In this region the
spherical wave is well approximated by a paraboloidal wave. When z becomes very
large, the paraboloidal phase factor in (2.3-7) approaches zero so the overall phase of
the wave becomes kz. Since the magnitude A0/z varies slowly with z, the spherical
wave eventually approaches the plane wave exp(−jkz), as illustrated in Fig. 2.3-3.
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Spherical

z

x

  Planar

  Paraboloidal

Figure 2.3-3 At points sufficiently far
from the origin, but near the z axis,
a spherical wave may be approximated
by a paraboloidal wave. For points very
far from the origin, the spherical wave
approaches a plane wave.

Paraxial Waves
A wave is said to be paraxial if its wavefront normals are paraxial rays. One way of
constructing a paraxial wave is to start with a plane wave A exp(−jkz), regard it as a
“carrier” wave, and modify or “modulate” its complex envelope A to render it a slowly
varying function of position, A(r), whereby the complex amplitude of the modulated
wave becomes

U(r) = A(r) exp(−jkz) . (2.3-8)

The variation of the envelope A(r), and its derivative with respect to position z, must
be slow within the distance of a wavelength λ = 2π/k so that the wave approximately
maintains its underlying plane-wave nature.

The wavefunction of a paraxial wave, u(r, t) = |A(r)| cos[2πνt−kz+arg{A(r)}],
is sketched in Fig. 2.3-4(a) as a function of z at t = 0 and x = y = 0. It is a sinusoidal
function of z with amplitude |A(0, 0, z)| and phase arg{A(0, 0, z)}, both of which vary
slowly with z. Since the phase arg{A(x, y, z)} changes little within the distance of
a wavelength, the planar wavefronts kz = 2πq of the carrier plane wave bend only
slightly, so that their normals form paraxial rays, as displayed in Fig. 2.3-4(b).

(a)

|A|

z

u(0,0,z) λ

(b)

x

z

Wavefronts

Rays

Figure 2.3-4 (a) Wavefunction of a paraxial wave as a function of the axial distance z at t = 0 and
x = y = 0. (b) Sketch of the wavefronts and wavefront normals (“rays”) of a paraxial wave in the x–z
plane.

The complex envelope A(r) of a paraxial wave, such as the paraboloidal wave, obeys
the paraxial Helmholtz equation,

∇2
TA− j 2k

∂A

∂z
= 0 , (2.3-9)

Paraxial Helmholtz Equation

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian operator.
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□ Verification that the Paraboloidal Wave Satisfies the Paraxial Helmholtz Equation (2.3-
9). The paraboloidal wave described by A = (A0/z) exp[−jk(x2 + y2)/2z] has partial derivatives
with respect to x given by ∂A/∂x = −jxAk/z and ∂2A/∂x2 = −j(k/z)(x ∂A/∂x + A) =
−jk(−jx2Ak/z+A)/z = −jAk/z−(k/z)2x2A. Similarly, the partial derivatives with respect to y
are ∂2A/∂y2 = −jAk/z − (k/z)2y2A. Taken together, these results lead to ∇ 2

TA = −j2Ak/z −
(k/z)2(x2 + y2)A. Finally, the partial derivative with respect to z can be written as ∂A/∂z =
−(A0/z

2) exp[−jk(x2 + y2)/2z] + (A0/z)[jk(x
2 + y2)/2z2] exp[−jk(x2 + y2)/2z] = −A/z +

(jk/2z2)(x2 + y2)A. Substituting this collection of partial derivatives into (2.3-9) confirms that the
paraxial Helmholtz equation is satisfied. ■

2.4 FREQUENCY AND WAVELENGTH

As illustrated in Fig. 2.4-1, the range of optical wavelengths in free space encompasses
three principal sub-regions: infrared (0.760 to 300 µm), visible (390 to 760 nm), and
ultraviolet (10 to 390 nm). The corresponding range of optical frequencies stretches
from 1 THz in the far infrared to 30 PHz in the extreme ultraviolet. The infrared, visible,
and ultraviolet regions all fall under the rubric “optical” since they make use of similar
types of components (e.g., mirrors and lenses). The terahertz (THz) region occupies
frequencies that stretch from 0.3 to 3 THz, corresponding to wavelengths extending
from 1 mm to 100 µm, so that the THz region partially overlaps the far-infrared band.
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Figure 2.4-1 Free-space optical wavelengths and frequencies. The infrared (IR) region of the
spectrum comprises the near-infrared (NIR), mid-infrared (MIR), and far-infrared (FIR) bands. The
medium-wave infrared (MWIR) and long-wave infrared (LWIR) subbands both lie within the MIR
band; radiation in these regions can penetrate the atmosphere. The ultraviolet (UV) region comprises
the near-ultraviolet (NUV), mid-ultraviolet (MUV) or deep-ultraviolet (DUV), far-ultraviolet (FUV),
and extreme-ultraviolet (EUV or XUV) bands. The vacuum ultraviolet (VUV) consists of the FUV and
EUV bands. The ultraviolet region is also divided into the UVA, UVB, and UVC bands, designations
that have chemical and biological significance. Figure 2.6-1 displays the optical region in the context
of the broad spectrum of electromagnetic waves that stretches from VLF (very low frequency) waves
to γ-rays.
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2.5 OPTICAL COMPONENTS

We now turn to an investigation of the effects of various optical components on optical
waves (which we often take to be paraxial). In particular, we consider planar mirrors,
planar boundaries, transparent plates of arbitrary thickness and refractive index, prisms,
and lenses. The results all turn out to be in substantial agreement with those obtained
using paraxial ray optics in Chapter 1. We also consider the effects of diffraction gratings
on optical waves, a topic that lies beyond the reach of ray optics.

Planar Mirrors
Consider a plane wave of wavevector k1 incident on a planar mirror located in the z = 0
plane in free space. As illustrated in Fig. 2.5-1, a reflected plane wave of wavevector k2

is created. The angles of incidence and reflection are denoted θ1 and θ2, respectively.

z

k1

k2

x

θ1

θ2

Figure 2.5-1 Reflection of a plane wave from a
planar mirror. Phase matching at the surface of the
mirror demands that the angles of incidence and
reflection be equal. The law of reflection of optical
rays thus applies to the wavevectors of plane waves.

The sum of the two waves satisfies the Helmholtz equation if the wavenumber is the
same, i.e., if k1 = k2 = kO. Certain boundary conditions must be satisfied at the surface
of the mirror; since these conditions are the same at all points (x, y), the phases of the
two waves must match, i.e.,

k1 · r = k2 · r for all r = (x, y, 0) . (2.5-1)

This phase-matching condition may also be regarded as matching of the tangential
components of the two wavevectors in the plane of the mirror. Substituting r = (x, y, 0),
k1 = (kO sin θ1, 0, kO cos θ1), and k2 = (kO sin θ2, 0,−kO cos θ2) into (2.5-1), leads to
kOx sin θ1 = kOx sin θ2, from which we obtain θ1 = θ2, thereby confirming that the
angles of incidence and reflection must be equal. Hence, the law of reflection for optical
rays is applicable to the wavevectors of plane waves.

Planar Boundaries
We now consider a plane wave of wavevector k1 incident on a planar boundary between
two homogeneous media of refractive indices n1 and n2. The boundary lies in the z = 0
plane. As illustrated in Fig. 2.5-2, a refracted plane wave of wavevector k2 emerges, as
does a reflected plane wave of wavevector k3.

The combination of the three waves satisfies the Helmholtz equation everywhere if
each of the waves has the appropriate wavenumber in the medium in which it propa-
gates, i.e., k1 = k3 = n1kO and k2 = n2kO. Since the boundary conditions are invariant
to x and y, the phases of the three waves must match, i.e.,

k1 · r = k2 · r = k3 · r for all r = (x, y, 0) . (2.5-2)
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z

k1

n1 n2
k2

x

θ1

θ2

Figure 2.5-2 Refraction of a plane wave at a
dielectric boundary. The wavefronts are matched
at the boundary so that the distance between
wavefronts for the incident wave, λ1/ sin θ1 =
λO/n1 sin θ1, equals that for the refracted wave,
λ2/ sin θ2 = λO/n2 sin θ2, from which Snell’s law
follows.

This phase-matching condition is tantamount to matching the tangential compo-
nents of the three wavevectors at the boundary plane, as indicated in Sec. 2.6. Since
k1 = (n1kO sin θ1, 0, n1kO cos θ1), k3 = (n1kO sin θ3, 0,−n1kO cos θ3), and k2 =
(n2kO sin θ2, 0, n2kO cos θ2), where θ1, θ2, and θ3 are the angles of incidence, refrac-
tion, and reflection, respectively, it follows from (2.5-2) that θ1 = θ3 and n1 sin θ1 =
n2 sin θ2, which is Snell’s law. Determining the amplitudes and powers of the reflected
and refracted waves requires electromagnetic optics, however, since the boundary con-
ditions are not completely specified in wave optics (see Sec. 2.6).

The laws of reflection and refraction of optical rays apply to the wavevectors of
plane waves.

Transparent Plates
We turn now to the transmission of optical waves through transparent plates that have
arbitrary thickness or refractive-index distributions. Our treatment focuses on the phase
shifts and the associated wavefront bending imparted by these components. The expres-
sions developed serve as templates in upcoming sections for establishing the effects im-
posed on waves by common optical components such as prisms, lenses, and diffraction
gratings; these particular components impart phase shifts that bend the wavefronts lin-
early, quadratically, and periodically, respectively. We do not consider surface reflection
and material absorption at this juncture, since these features cannot be accommodated
by scalar wave theory.

Transparent Plate of Fixed Thickness and Fixed Refractive Index. Consider
first the transmission of a plane wave through a transparent plate of refractive index
n and thickness d surrounded by free space. The surfaces of the plate are taken to
be at the z = 0 and z = d planes. The wave is assumed to be traveling in the z
direction and normally incident on the plate, as illustrated in Fig. 2.5-3. External and
internal reflections are ignored so the complex amplitude of the wave U(x, y, z) is
assumed to be continuous at the boundaries. The ratio t(x, y) = U(x, y, d)/U(x, y, 0)
therefore represents the complex amplitude transmittance of the plate, which permits
U(x, y, d) to be determined for arbitrary U(x, y, 0) at the input.

Once inside the plate, the wave continues to propagate as a plane wave, but with
wavenumber nkO, so that U(x, y, z) ∝ exp(−jnkOz). Hence, the complex amplitude
transmittance of the plate is given by U(x, y, d)/U(x, y, 0), which yields

t(x, y) = exp(−jnkOd) , (2.5-3)
Transmittance

Transparent Plate

where nd is the optical pathlength. The plate is seen to introduce a phase shift nkOd =
2π(d/λ). In this special case, with the plane wave normally incident on the plate, the
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λo λ

Figure 2.5-3 Transmission of a plane
wave at normal incidence through a trans-
parent plate of fixed thickness d and fixed
refractive index n. The wavelength inside the
material is λ and the plate introduces a phase
shift nkOd = 2π(d/λ).

n

k
θ k1

θ1

k

θ

Figure 2.5-4 Transmission of a plane
wave arriving at an oblique angle through
a transparent plate of fixed thickness and
fixed refractive index. The direction of the
emerging wave is parallel to that of the
incident wave.

power reflectance predicted by electromagnetic optics takes a particularly simple form
[see (2.6-23) and Example 2.6-1].

If the wavevector k of the incident plane wave instead makes an angle θ with respect
to the z axis, as portrayed in Fig. 2.5-4, the refracted and transmitted waves are also
plane waves, with wavevectors k1 and k, and angles θ1 and θ, respectively, where θ1
and θ are related by Snell’s law: 1 · sin θ = n sin θ1. The complex amplitude U(x, y, z)
inside the plate is proportional to exp(−jk1 · r) = exp[−jnkO(z cos θ1 + x sin θ1)],
so that the complex amplitude transmittance of the plate U(x, y, d)/U(x, y, 0) is given
by

t(x, y) = exp (−jnkOd cos θ1) . (2.5-4)

If the angle of incidence θ is small (i.e., if the incident wave is paraxial), then the paraxial
Snell’s law yields θ1 ≈ θ/n, which is also small, whereupon use of the approximation
cos θ1 ≈ 1− 1

2θ
2
1 gives rise to t(x, y) ≈ exp(−jnkOd) exp(jkOθ2d/2n). If the plate

is sufficiently thin, and the angle θ is sufficiently small such that kOθ2d/2n ≪ 2π [or
(d/λO)θ

2/2n ≪ 1], then the transmittance of the plate may be roughly approximated
by (2.5-3), an expression that is independent of the angle of incidence θ.

Transparent Plate of Fixed Thickness and Varying Refractive Index. Since the
thickness and refractive index of the transparent plate appear as the product nd in (2.5-
3), a prescribed phase shift may be imparted in two different, but equivalent, ways: 1) by
controlling the variation in the thickness of the material with transverse distance from
the optical axis (the technique used in fabricating conventional optical components); or
2) by controlling the refractive index of the material with transverse distance from the
optical axis (the technique used in fabricating graded-index optical components).

In the latter case, (2.5-3) dictates that the complex amplitude transmittance of a thin
transparent planar plate of fixed thickness d0 and graded refractive index n(x, y) be
written as

t(x, y) = exp [−jn(x, y)kOd0] . (2.5-5)
Transmittance

Graded-Index Plate

This equation reveals that the action of any constant-index thin conventional optical
component can be mimicked by selecting an appropriate corresponding variation of
n(x, y) with x and y, as will be illustrated subsequently for a graded-index lens.
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Transparent Plate of Varying Thickness and Fixed Refractive Index. Finally,
we consider the situation germane to conventional optical components, in which the
thickness of a material of fixed refractive index is sculpted to a specific shape. We re-
strict our attention to the amplitude transmittance for an arbitrary paraxial wave incident
on a thin transparent plate whose thickness d(x, y) varies smoothly as a function of x
and y. The plate lies between the planes z = 0 and z = d0, which are regarded as planar
boundaries that encase an arbitrary optical component, as displayed in Fig. 2.5-5.

z

y

x d0

d(x,y)

Figure 2.5-5 A transparent plate of arbitrarily
varying thickness d(x, y).

In the vicinity of the position (x, y, 0), the incident paraxial wave may be regarded
locally as a plane wave traveling along a direction that makes a small angle with the
z axis. It crosses a thin plate of material of thickness d(x, y), which is surrounded by
thin layers of air whose overall thickness is d0 − d(x, y), as illustrated in Fig. 2.5-5. In
accordance with the approximate relation provided in (2.5-3), the local transmittance
is then the product of the transmittances of the thin layer of air of thickness d0 −
d(x, y) and the thin layer of material of thickness d(x, y), which leads to t(x, y) ≈
exp[−jnkOd(x, y)] exp[−jkO(d0 − d(x, y))], and thence to

t(x, y) ≈ h0 exp[−j(n− 1)kOd(x, y)] , (2.5-6)
Transmittance

Variable-Thickness Plate

whereh0 = exp(−jkOd0) is a constant phase factor. This relation is valid in the paraxial
approximation, where all angles θ are small, and when the thickness d0 is sufficiently
small such that (d0/λO)θ

2/2n ≪ 1. This latter condition, which was derived earlier
in connection with the transmission of an oblique plane wave through a transparent
plate of fixed thickness and fixed refractive index, ensured that the transmittance was
approximately independent of the angle of incidence. In the present case, it ensures that
(2.5-6) is applicable for paraxial waves.

Prisms
The general expression (2.5-6) for the complex amplitude transmittance of a thin trans-
parent plate of variable thickness is applied to a thin inverted prism of thickness d0

and small apex angle α ≪ 1, as portrayed in Fig. 2.5-6. The dependence of d on x
is determined by the apex angle α via tanα = d/x. Since α ≪ 1, tanα ≈ α and
d(x) ≈ αx. The prism is assumed to extend in the y direction, so d(x, y) is independent
of y. Hence, t(x, y) ≈ h0 exp[−j(n− 1)αkOx], where h0 = exp(−jkOd0). The linear
change of phase with increasing x causes the wavevector to acquire a tilt toward the x
axis, in accordance with the deflection angle θd ≈ (n− 1)α. The ray-based calculation
for the deflection angle reported in (1.3-4) is seen to be in accord with this result.
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Figure 2.5-6 Transmission of a plane wave
through a thin prism. The wave, which is
incident in the z direction, tilts toward the x
axis after passing through the prism.

EXAMPLE 2.5-1. Transmission Through a Biprism and an Axicon.

The biprism depicted in Fig. 1.3-6(a) comprises an inverted prism, such as that illustrated in Fig. 2.5-
6, juxtaposed with an identical uninverted prism. Taking its thickness to be d0 and its edge angle
α ≪ 1, the results for the simple prism provided above generalize to t(x, y) = h0{exp[−j (n −
1)αkOx]+exp[+j (n−1)αkOx]} = 2h0 cos [(n− 1)αkOx], with h0 = exp(−jkOd0). The biprism
thus converts an incident plane wave into a pair of waves that are tilted with respect to each other.
The Fresnel biprism portrayed in Fig. 1.3-6(b) behaves in the same way.
The cone-shaped axicon displayed in Fig. 1.3-6(c) is constructed by rotating the prism cross section
depicted in Fig. 2.5-6 about a horizontal axis located at its top edge, from ϕ = −π to π. The
cross section of this device is an isosceles triangle of height d0 and edge angle α≪ 1. Using polar
coordinates and integrating over ϕ provides t(x, y) = h0

∫ π

−π
exp[−j (n−1)α(kO cosϕ)x−j (n−

1)α(kO sinϕ) y] dϕ = h0
∫ π

−π
exp[−j (n− 1)αkO

√
x2 + y2 sin(ϕ+ θ)] dϕ. Since the integration

is over 2π, the integral is independent of θ. Given that
∫ π

−π
exp(−ju sinϕ) dϕ = 2πJ0(u), where

J0(u) is the Bessel function of the first kind and zeroth order, the amplitude transmittance may be
rewritten as t(x, y) = 2πh0J0[(n− 1)αkO

√
x2 + y2 ]. The axicon thus converts an incident plane

wave into an infinite number of plane waves, all directed toward its central axis in the form of a
cone of half angle (n− 1)α.

Lenses
We now examine the transmission of optical waves through lenses. Again, our principal
emphasis is on the phase shift introduced by these components and on the associated
wavefront bending, which we examine via a number of examples. Reflection at the
surfaces of these components and absorption in the material are ignored.

Thin Plano-Convex Lens. We once again invoke the general expression (2.5-6) for
the complex amplitude transmittance of a thin transparent plate of variable thickness,
this time for the plano-convex thin lens displayed in Fig. 2.5-7.

z

x

d(x,y)

R

P Q C

Figure 2.5-7 A thin plano-convex lens im-
parts a phase proportional to x2 + y2 to an
incident plane wave, thereby transforming it
into a paraboloidal wave centered at a distance
f from the lens (see Fig. 2.5-9).

Since this lens is the cap of a sphere of radius R, the thickness at the point (x, y) is
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d(x, y) = d0 − PQ = d0 − (R−QC), or

d(x, y) = d0 −
[
R−

√
R2 − (x2 + y2)

]
. (2.5-7)

This expression may be simplified by considering only points for which x and y are
sufficiently small in comparison with R so that x2 + y2 ≪ R2. In that case√

R2 − (x2 + y2) = R
√

1− (x2 + y2)/R2 ≈ R
(
1− (x2 + y2)/2R2

)
, (2.5-8)

where we have used the same Taylor-series expansion that led to the Fresnel approxi-
mation of a spherical wave in (2.3-7). Using this approximation in (2.5-7) then provides

d(x, y) ≈ d0 − (x2 + y2)/2R . (2.5-9)

Finally, substitution into (2.5-6) yields

t(x, y) ≈ h0 exp
[
jkO(x

2 + y2)/2f
]
, (2.5-10)

Transmittance
Thin Lens

where
f = R/(n− 1) (2.5-11)

is the focal length of the lens (see Sec. 1.4) and h0 = exp(−jnkOd0) is another constant
phase factor that is generally of no significance.

EXAMPLE 2.5-2. Complex Amplitude Transmittance for a Thin Spherical Lens.
The complex amplitude transmittance of a thin spherical lens (also called a biconvex lens or a double-
convex lens), such as that displayed in Fig. 2.5-8, is readily determined by calculating the amplitude
transmittance for a cascade of two plano-convex lenses with focal lengths f1 = R1/(n − 1) and
f2 = −R2/(n− 1).

R2

R1

Figure 2.5-8 A thin spherical (biconvex)
lens. By convention, the radius of a convex
(concave) surface is positive (negative), so
R1 is positive and R2 is negative.

Forming a product from (2.5-10) leads to

t(x, y)=t1(x, y) t2(x, y) ≈ h01 exp
[
jkO
(
x2 + y2

)
/2f1

]
·h02 exp

[
jkO
(
x2 + y2

)
/2f2

]
, (2.5-12)

where h01 and h02 are constants and therefore so too is h0 = h01h02. Combining exponentials we
arrive at

t(x, y) ≈ h0 exp
[
jkO
(
x2 + y2

)
/2f

]
, (2.5-13)

with

1

f
=

1

f1
+

1

f2
= (n− 1)

(
1

R1

− 1

R2

)
. (2.5-14)

Focal Length
Thin Spherical Lens
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Equation (2.5-13) mimics (2.5-10) except that the focal length specified in (2.5-14) involves both R1

and R2 for the thin spherical lens. The expression for the focal length derived in the context of ray
optics for this component, provided in (1.5-2), is identical to (2.5-14).

EXAMPLE 2.5-3. Focusing of a Plane Wave by a Thin Lens.

Consider a plane wave U1(x, y) = exp(−jkOz) traveling in a direction parallel to the axis of a
thin lens of focal length f and transmittance t(x, y) = h0 exp [jkO (x

2 + y2) /2f ]. The transmit-
ted wave is described by U2(x, y) = U1(x, y) · t(x, y) = h0 exp {−jkO [z − (x2 + y2) /2f ]}.
The wavefronts of this wave are paraboloids of revolution defined by z − (x2 + y2) /2f =
constant, with radius of curvature −f . The plane wave entering the lens is therefore converted
into a paraboloidal wave, which is the Fresnel approximation of a spherical wave, centered at a
point at a distance f from the lens, as illustrated in Fig. 2.5-9.

z

Figure 2.5-9 A thin lens transforms a
plane wave into a paraboloidal wave.

If the incident wave is instead traveling at a small angle θ with respect to the z axis, we have
U1(x, y) ≈ exp [−jkO(z + θx)], whereupon

U2(x, y) = U1(x, y) · t(x, y) ≈ h0 exp
{
−jkO

[
z + θx−

(
x2 + y2

)
/2f

]}
= h0 exp

{
−jkO

[
z −

(
x2 − 2θfx+ y2

)
/2f

]}
≈ h0 exp

{
−jkO

[
z −

(
[x− θf ]2 + y2

)
/2f

]}
. (2.5-15)

Equation (2.5-15) represents a paraboloidal wave centered about the point (θf, 0, f), as illus-
trated in Fig. 2.5-10.

f

θ
θf

Figure 2.5-10 An incident plane wave
traveling through a thin lens at a small an-
gle θ with respect to the z axis becomes a
paraboloidal wave centered about the point
(θf, 0, f) after passage through the lens.

EXAMPLE 2.5-4. Imaging Property of a Thin Lens. We now consider a paraboloidal wave
centered at P1 (z = −z1) entering a thin lens of focal length f (z = 0), as portrayed in Fig. 2.5-
11. Since the incident wave is described by U1(x, y) ≈ exp [−jkO (x2 + y2) /2z1] and the lens is

z

P
2

P
1

Figure 2.5-11 A thin lens transforms a
paraboloidal wave into another paraboloidal
wave. The two waves are centered at distances
that satisfy the imaging equation.

characterized by the amplitude transmittance t(x, y) ≈ h0 exp [jkO(x
2 + y2)/2f ], the wave leaving

the lens satisfies

U2(x, y) ≈ exp
[
−jkO

(
x2 + y2

)
/2z1

]
· exp

[
jkO
(
x2 + y2

)
/2f

]
= exp

[
jkO
(
x2 + y2

)
/2z2

]
, (2.5-16)
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where 1/z2 = 1/f − 1/z1 or 1/z1 + 1/z2 = 1/f . We conclude that the transmitted wave is a paraboloidal
wave centered at z = z2 and that the distances indicated in Fig. 2.5-11 obey the imaging equation,

1

z1
+

1

z2
=

1

f
. (2.5-17)

Imaging Equation

The imaging equation derived for a thin spherical lens in the context of ray optics, (1.5-3), is identical
to (2.5-17).

Graded-Index Lens. The refractive index of a thin plate of uniform thickness can
be graded in such a way that it acts as a lens, as schematized in Fig. 2.5-12.

Figure 2.5-12 A graded-index plate can
act as a lens.

In accordance with (2.5-5), the transmittance of a graded-index plate of uniform thick-
ness d0 and arbitrary grading profilen(x, y) is given by t(x, y) = exp [−jn(x, y)kOd0].
If the refractive index is quadratically graded as n(x, y) = n0[1 − α2(x2 + y2)/2],
subject to αd0 ≪ 1, we have t(x, y) = h0 exp [jn0α

2kOd0(x
2 + y2)/2], where

h0 = exp (−jn0kOd0) is a constant phase factor. We therefore arrive at t(x, y) =
h0 exp [jkO

(
x2 + y2

)
/2f ], with 1/2f = n0α

2d0/2, which is the expression for the
amplitude transmittance of a lens of focal length f = 1/n0α

2d0. Similar results can
be arrived at using ray optics, as mentioned in Sec. 1.5.

Diffraction Gratings
A diffraction grating is an optical component that imposes a periodic modulation on
the phase or amplitude of an incident wave. It can be fabricated from a transparent plate
whose thickness or refractive index is made to vary periodically.

Figure 2.5-13 A thin transparent plate
with periodically varying thickness serves as
a diffraction grating. It splits an incident plane
wave into multiple plane waves traveling in
different directions.

We demonstrate the effect of a diffraction grating on an incident plane wave in Fig. 2.5-
13. The grating, placed at the z = 0 plane, comprises a thin transparent plate whose
thickness varies periodically, with period Λ, in the x direction. The plane wave, of
wavelength λ, travels at an angle θi with respect to the z axis. The diffraction grating
converts the incident plane wave into a collection of plane waves, at angles θq with
respect to the z axis, in accordance with
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sin θq = sin θi + q
λ

Λ
. (2.5-18)

Grating Equation

This result is also applicable for a reflection diffraction grating, which can be made
from a periodically ruled thin film of aluminum evaporated onto a glass substrate.

□ Proof of the Grating Equation Provided in (2.5-18).

Consider a thin transparent plate whose thickness varies as a harmonic function in the x
direction, as schematically illustrated in Fig. 2.5-13. In accordance with (2.5-6), the transmit-
tance of a plate of uniform refractive index and varying thickness can be written as t(x, y) ≈
h0 exp[−j(n− 1)kOd(x, y)], where h0 = exp(−jkOd0) is a constant phase factor. If the thick-
ness varies as d(x, y) = 1

2
d0[1 + cos(2πx/Λ)], where Λ is the spatial period of the thickness

variations, the amplitude transmittance becomes t(x) ≈ exp (−jkOd0) exp [−j (n− 1) kOd(x)] =
h1 exp [−j (n− 1) (kOd0/2) cos (2πx/Λ)], where h1 = exp [−j (n+ 1) (kOd0/2)].
Now consider a plane wave U1(x) ∝ exp(−jkOx sin θi), traveling at an angle θi with respect
to the z axis, that is incident on the grating. The transmitted wave, U2(x) = t(x) · U1(x), is
determined by recognizing that t(x) is a periodic function of x with period Λ and can therefore
be expanded in a Fourier series as t(x) =

∑
q Cq exp (−jq2πx/Λ), where the Cq are the

Fourier coefficients, and q = 0,±1,±2, . . . specifies the diffraction order. The amplitude of
the component of the transmitted wave that travels at the angle θq may therefore be written as
exp(−jkOx sin θq) = exp(−jkOx sin θi) exp(−jq2πx/Λ) = exp[−jkOx(sin θi + q2π/kOΛ)],
which leads directly to sin θq = sin θi+qλ/Λ, since 2π/kO = λ. The transmitted wave therefore
comprises a collection of plane waves that travel at the angles θq specified by (2.5-18) and
sketched in Fig. 2.5-13 for θi ≈ 0.

■

When all angles are small, and when the period of the thickness variation Λ is much
greater than the wavelength λ, use of the approximation sin θ ≈ θ in (2.5-18) leads to
the paraxial approximation for the grating equation,

θq ≈ θi + q
λ

Λ
. (2.5-19)

Grating Equation
(Paraxial Approximation)

Diffraction Grating as a Spectrum Analyzer. Diffraction gratings are extensively
used as filters and spectrum analyzers, particularly in spectroscopy. Since the angles
θq depend on the wavelength λ (and therefore on the frequency ν), an incident poly-
chromatic wave is separated by the grating into its spectral components, as sketched in
Fig. 2.5-14.

R

G

B

R

R + G + B

R + G + B

G

B

Figure 2.5-14 A diffraction grating di-
rects two waves of different wavelengths, λ1

and λ2, into two different directions, θ1 and
θ2. It therefore serves as a spectrum analyzer
or a spectrometer. The letters R, G, and B
signify red, green, and blue, respectively.
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2.6 ELECTROMAGNETIC WAVES

Principles of Electromagnetic Optics

Light propagates in the form of electromagnetic waves, which are described by
two coupled vector fields that are functions of position and time: the electric-
field vector E(r, t) and the magnetic-field vector H(r, t). The description of
light in a dielectric medium therefore entails six scalar functions of position
r = (x, y, z) and time t. Each of these components, denoted u(r, t), satisfies
the wave equation,

∇2u− 1

c2
∂2u

∂t2
= 0 , (2.6-1)

Wave Equation
in a Medium

where ∇2 represents the Laplacian operator, which, in Cartesian coordinates,
is expressed as ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Any function that satisfies
(2.6-1) represents a possible electromagnetic wave.
In free space, electromagnetic waves travel at a constant speed cO. In a homo-
geneous transparent medium of refractive index n (⩾ 1), light waves travel at a
reduced speed of light,

c =
cO
n

=
1

√
ϵµ

, (2.6-2)
Speed of Light

in a Medium

where ϵ and µ are the electric permittivity and magnetic permeability of the
medium, respectively.

Light propagates in the form of electromagnetic waves that obey the wave
equation and travel at the speed of light c .

Maxwell’s Equations in a Dielectric Medium

The wave equation (2.6-1) follows from Maxwell’s equations. In a linear, nondis-
persive, homogeneous, isotropic, and source-free dielectric medium, the electric
field E(r, t) and the magnetic field H(r, t) obey a set of coupled partial differ-
ential equations known as Maxwell’s equations:

∇×H = ϵ
∂E

∂t
(2.6-3)

∇× E = −µ∂H
∂t

(2.6-4)

∇ · E = 0 (2.6-5)
∇ ·H = 0 . (2.6-6)

Maxwell’s Equations
in a Medium



2.6 ELECTROMAGNETIC WAVES 45

The vector operators ∇· and ∇× are the divergence and curl, respectively. In Cartesian
coordinates, ∇ ·E = ∂Ex/∂x+ ∂Ey/∂y+ ∂Ez/∂z is a scalar while ∇×E is a vector
with components (∂Ez/∂y−∂Ey/∂z), (∂Ex/∂z−∂Ez/∂x), and (∂Ey/∂x−∂Ex/∂y).
Maxwell’s original formulation in 1865 comprised 20 simultaneous equations with 20
variables, which were condensed into their present form by Oliver Heaviside in 1885.

The wave equation (2.6-1) is readily derived from Maxwell’s equations by applying
the curl operation ∇× to (2.6-4), employing the vector identity ∇× (∇×E) = ∇(∇ ·
E) − ∇2E, and then using (2.6-3) and (2.6-5) to demonstrate that each component
of E satisfies the wave equation. A similar procedure is followed for H. A necessary
condition required for E and H to satisfy Maxwell’s equations is that each of the six
interrelated components, (Ex,Ey,Ez) and (Hx,Hy,Hz), satisfy the wave equation.

Speed of Light
In free space, the electric permittivity is ϵ = ϵO ≈ 8.8542× 10−12 F/m and the mag-
netic permeability is µ = µO = 1.2566× 10−6 H/m. In accordance with (2.6-2), the
speed of light in free space (or air) is thus cO = 1/

√
ϵOµO ≈ 3.0× 108 m/s = 30 cm/ns

= 0.3 mm/ps = 0.3 µm/fs = 0.3 nm/as. The refractive index n, defined as the ratio of
the speed of light in free space to that in a medium in (2.6-2), is therefore described by

n =
cO
c

=

√
ϵ

ϵO

µ

µO
. (2.6-7)

Refractive Index

For nonmagnetic media, µ = µO, whereupon

n =
√
ϵ/ϵO , (2.6-8)

in which case the refractive index is simply the square root of the relative permittivity.

Superposition
Because Maxwell’s equations and the wave equation are linear, the principle of super-
position applies: if two separate sets of electric and magnetic fields are solutions to
these equations, their sum is also a solution.

Boundary Conditions
At the boundary between two dielectric media, the tangential components of the electric
field E and of the magnetic field H must be continuous, as suggested in Sec. 2.5.

Intensity, Power, and Energy
The flow of electromagnetic power is governed by the vector

S = E×H, (2.6-9)

which is known as the Poynting vector. The direction of power flow is along the direc-
tion of the Poynting vector, i.e., orthogonal to both E and H. The electromagnetic in-
tensity I(r, t) (power flow across a unit area normal to the vector S) is the magnitude of
the Poynting vector ⟨S⟩ averaged over a time inverval long in comparison with an optical
cycle, but short in comparison with other times of interest. The wave-optics equivalent
is provided in (2.1-3). The Poynting theorem, which is based on Maxwell’s equations
(2.6-3) and (2.6-4), takes the form of a continuity equation, ∇ · S = −∂W/∂t, and the
energy density W stored in the medium can be expressed as

W = 1
2ϵE

2 + 1
2µH

2 . (2.6-10)
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Domain of Electromagnetic Phenomena
The reach of electromagnetic theory, displayed in Fig. 2.6-1, stretches from VLF (very
low frequency) waves to γ-rays. Optical frequencies occupy a band of the electromag-
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Figure 2.6-1 The reach of electromagnetic theory extends from VLF (very low frequencies and
very long wavelengths) to gamma rays (very high frequencies and very short wavelengths). The optical
region (shaded) is displayed in detail in Fig. 2.4-1.

netic spectrum that extends from the infrared (IR) through the visible to the ultraviolet
(UV). The range of wavelengths generally considered to lie in the optical region thus
extends from 300 µm to 10 nm, as is shown in greater detail in Fig. 2.4-1. Because
these wavelengths are substantially shorter than those of microwaves or radiowaves,
the techniques involved in their generation, transmission, and detection have tradition-
ally had their own unique character. However, the march toward miniaturization in
recent decades has blurred such differences, and it is now commonplace to encounter
wavelength- and subwavelength-size cavities, antennas, waveguides, and other struc-
tures that resemble their longer wavelength counterparts.

Monochromatic Electromagnetic Waves
For the special case of monochromatic electromagnetic waves in an optical medium,
the amplitude and phase generally depend on position, but all electric- and magnetic-
field components are harmonic functions of time with a common frequency ν and a
corresponding angular frequency ω = 2πν, at all positions. Adopting the complex
representation used in Sec. 2.2, the six real field components may be expressed as

E(r, t) = Re{E(r) exp(jωt)} and H(r, t) = Re{H(r) exp(jωt)}, (2.6-11)

where E(r) and H(r) represent electric- and magnetic-field complex-amplitude vec-
tors, respectively.

Inserting (2.6-11) into Maxwell’s equations (2.6-3)–(2.6-6) for a linear, nondisper-
sive, homogeneous, and isotropic medium, and noting that (∂/∂t) ejωt = jω ejωt for
monochromatic waves of angular frequency ω, we arrive at a set of equations obeyed
by the field complex-amplitude vectors:

∇×H = jωϵE (2.6-12)
∇×E = −jωµH (2.6-13)
∇ · E = 0 (2.6-14)
∇ · H = 0 . (2.6-15)

Maxwell’s Equations in a Medium
(Monochromatic Light)
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Also, substituting the electric and magnetic fields E and H given in (2.6-11) into the
wave equation (2.6-1) yields the Helmholtz equation

∇2U + k2U = 0, k = nkO = ω
√
ϵµ , (2.6-16)

Helmholtz Equation

where the scalar function U = U(r) represents the complex amplitude of any of the
three components (Ex, Ey, Ez) of E or the three components (Hx, Hy, Hz) of H; and
where n =

√
(ϵ/ϵO)(µ/µO), kO = ω/cO, and c = cO/n. The Helmholtz equation

for scalar waves, which was cast in terms of the complex amplitude U(r) of the real
wavefunction u(r, t) as provided in (2.2-7), is identical in form to (2.6-16).

Intensity and Power. As indicated in the discussion surrounding (2.6-9), the flow
of electromagnetic power is governed by the time average of the Poynting vector S =
E × H. Casting this expression in terms of complex amplitudes for monochromatic
waves yields

S = Re
{
Eejωt

}
× Re

{
Hejωt

}
= 1

2

(
Eejωt +E∗e−jωt

)
× 1

2

(
Hejωt +H∗e−jωt

)
= 1

4

(
E×H∗ +E∗ ×H+ ej2ωt E×H+ e−j2ωt E∗ ×H∗) . (2.6-17)

The terms containing the factors ej2ωt and e−j2ωt oscillate at optical frequencies and
are therefore washed out by the averaging process, which is slow in comparison with
an optical cycle. We therefore arrive at

⟨S⟩ = 1
4(E×H∗ +E∗ ×H) = 1

2(S+ S∗) = Re{S}, (2.6-18)

where the vector
S = 1

2E×H∗ (2.6-19)

may be regarded as a complex Poynting vector. The optical intensity is the magnitude
of the vector Re{S} per unit area normal to the vector S.

Inhomogeneous Media. In an inhomogeneous, nonmagnetic medium, Maxwell’s
equations (2.6-12)–(2.6-15) remain applicable, but the electric permittivity of the
medium becomes position dependent, i.e., ϵ = ϵ(r). For locally homogeneous media
in which ϵ(r) varies slowly with respect to the wavelength, the Helmholtz equation
provided in (2.6-16) remains approximately valid, subject to the substitutions k =
n(r)kO and n(r) =

√
ϵ(r)/ϵO.

Elementary Electromagnetic Waves
We now examine the spatial features of plane and dipole electromagnetic waves, which
are analogous to the plane and spherical scalar waves considered in Sec. 2.3. Again, we
restrict our consideration to linear, nondispersive, homogeneous, isotropic, and source-
free media.

Electromagnetic Plane Wave. The transverse electromagnetic (TEM) wave is char-
acterized by the plane-wave magnetic- and electric-field complex-amplitude vectors

H(r) = H0 exp(−jk · r) and E(r) = E0 exp(−jk · r) , (2.6-20)

respectively, where the complex envelopes H0 and E0 are constant vectors, and k is
the wavevector. All six components of H(r) and E(r) satisfy the Helmholtz equation
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(2.6-16) provided that the magnitude of k is k = nkO, where n is the refractive index
of the medium. To satisfy Maxwell’s equations (2.6-12)–(2.6-15), it can be shown that
E, H, and k must form a mutually orthogonal trio, as portrayed in Fig. 2.6-2. Since
E and H lie in a plane normal to the direction of propagation k, the wave is called a
transverse electromagnetic (TEM) wave.

k

E

H

Wavefront

z

Figure 2.6-2 The transverse electromagnetic (TEM) plane wave. The vectors E, H, and k are
mutually orthogonal. The wavefronts (surfaces of constant phase) are normal to the wavevector k.

The complex Poynting vector S = 1
2E ×H∗ specified in (2.6-19) is parallel to the

wavevectork, so that the optical power flows along a direction normal to the wavefronts.
The optical intensity I of the wave is given by

I = |E0|2/2η , (2.6-21)
Optical Intensity

where the impedance η of the medium is

η = E0/H0 =
√
µ/ϵ . (2.6-22)

The impedance of free space is ηO =
√
µO/ϵO ≈ 377 Ω. The intensity of a monochro-

matic TEM wave is proportional to the absolute square of the complex envelope of
the electric field, as provided in (2.6-21). Still, the intensity of a monochromatic scalar
wave behaves as I = |U |2, as specified in (2.2-10), so it exhibits analogous behavior.
A paraxial electromagnetic wave can be approximated by a TEM plane wave.

Electromagnetic Dipole Wave. The wave generated by an oscillating electric dipole
has features that resemble the scalar spherical wave discussed in Sec. 2.3. The dipole
wave is constructed using a spherical coordinate system; the details can be found in
a textbook on electromagnetic optics. The complex-amplitude vectors and spherical
wavefront associated with this wave are illustrated in Fig. 2.6-3.

Figure 2.6-3 The electromagnetic wave radiated by
an oscillating dipole. At distances from the origin large
in comparison with a wavelength (r ≫ λ/2π), the
wavefronts are spherical. The electric- and magnetic-
field vectors are orthogonal to each another and to the
radial direction r̂. The electric field points in the polar
direction and the magnetic field points in the azimuthal
direction.

In analogy with the scalar spherical wave illustrated in Fig. 2.3-2, at distances far from
the origin (r ≫ λ/2π or kr = 2πr/λ ≫ 1), the wavefronts are spherical and the
wave can be approximated by a paraboloidal wave (and ultimately by a TEM plane), as
sketched in Fig. 2.3-3.
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Electromagnetic Waves in Optical Fibers
An electromagnetic-wave treatment of the propagation of light in optical fibers aug-
ments that offered by ray optics, which is based solely on total internal reflection
(Sec. 1.6). The use of Maxwell’s equations, together with the boundary conditions
imposed by the cylindrical dielectric core and cladding, enable the electric and magnetic
fields of guided waves to be determined.

Optical fibers are classified as step-index or graded-index (grin), and as multimode
(MMF) or single-mode (SMF), as illustrated in Fig. 2.6-4. Step-index fibers, which
are the most common, have a constant refractive index in the core and a slightly lower
constant refractive index in the cladding. grin fibers, where the refractive index of the
fiber core is graded from a maximum value at its center to a minimum value at the
core–cladding boundary, are used in some specialized applications. An optical fiber
with a large core diameter is labeled multimode because it can support multiple optical
modes, whereas an optical fiber with a sufficiently small core diameter supports only a
single mode. Multimode and single-mode fibers exhibit distinct propagation constants,
characteristic transverse field distributions, and pairs of independent polarization states.

n2

n2

n2

n1

n1

n1

Step-Index  MMF

GRIN  MMF

SMF

Figure 2.6-4 Geometry, refractive-
index profiles, and typical ray traces
for a step-index multimode fiber
(MMF), a single-mode fiber (SMF),
and a graded-index (grin) multimode
fiber.

Power Reflectance at the Boundary Between Dielectric Media
The amplitude reflectance and transmittance of a monochromatic plane wave at the
boundary between two lossless dielectric media of different refractive indices, deter-
mined by the Fresnel equations, depends strongly on the angle of incidence and the
polarization of the incident wave. Although the Fresnel equations are complex, the
power (or intensity) reflectance R assumes a simple form, applicable for both external
and internal reflection, for a normally incident TEM wave:

R =

(
n1 − n2

n1 + n2

)2
. (2.6-23)

At oblique angles of incidence,R can be far greater or far smaller than the value dictated
by (2.6-23).

Under certain circumstances, the power reflectance also exhibits special behavior
when the wave is not normally incident on the boundary. One example is total internal
reflection, which occurs when the angle of incidence exceeds the critical angle θc, as
discussed in Sec. 1.3 in the context of ray optics. A diametrically opposite example
is the total transmission of optical power, without reflection, of a transverse-magnetic
(TM) polarized wave when the angle of incidence equals the Brewster angle θB.

EXAMPLE 2.6-1. Power Reflectance at the Boundary Between Air and Glass.

At the boundary between air (n = 1) and glass (n = 1.5) at normal incidence, (2.6-23) yields
R = 0.04, so 4% of the incident optical power is reflected. Since the power (or intensity)
transmittance T = 1− R for lossless media, 96% of the power is transmitted.



50 CHAPTER 2 WAVES

The power reflectance at normal incidence from a transparent, lossless plate with two flat sur-
faces is given by R(1 + T2) since the power reflected from the far surface involves a double
passage of the light through the plate. For glass, R(1 + T2) = 0.04[1 + (0.96)2] ≈ 0.077,
indicating that ≈ 7.7% of the incident light power is reflected.
At the boundary between air (n = 1) and GaAs (n = 3.6) at normal incidence, R ≈ 0.32 so
that 32% of the light is reflected from a single surface.

Nonlinear, Dispersive, Inhomogeneous, Anisotropic, Conductive Media
Analogous, but more complex, versions of Maxwell’s equations (2.6-3)–(2.6-6) and
the wave equation (2.6-1) are available when one or more of the properties of linearity,
nondispersiveness, homogeneity, and isotropy are not satisfied, or when the medium is
not source-free. For dielectric media, this is achieved by incorporating two auxiliary
vector fields into Maxwell’s equations, the electric flux density D(r, t) (which in turn
depends on E and the polarization density of the medium P) and the magnetic flux
density B(r, t) (which in turn depends on H and the magnetization density of the
medium M). For conductive media, such as metals or semiconductors, the current-
density vector J must be added to the mix.

Relation of Scalar and Electromagnetic Waves

Scalar wave optics has the following connections with electromagnetic optics:
Scalar wave optics forms a suitable approximation to electromagnetic optics
when the vector nature of electromagnetic waves is not of importance in the
problem under consideration.
The wave equation (2.1-1) at the heart of wave optics is a scalar version
of the wave equation of electromagnetic optics (2.6-1), which follows from
Maxwell’s equations.
The speed of light postulated in wave optics is established by the medium’s
electric permittivity ϵ and magnetic permeability µ in electromagnetic optics,
as is evident in (2.6-2).
The scalar wavefunction u(r, t) set forth in Sec. 2.1 represents the six com-
ponents of the electric- and magnetic-field vectors of electromagnetic optics.
The Helmholtz equation (2.2-7) of wave optics is a single-component version
of the Helmholtz equation (2.6-16) of electromagnetic optics.
The intensity of a paraxial scalar wave is proportional to the absolute square
of the complex wavefunction; the intensity of a paraxial electromagnetic
wave, approximated by a TEM plane wave, is proportional to the absolute
square of the complex electric-field envelope.
Scalar wave optics and electromagnetic optics both accommodate phenom-
ena that involve the phase of the wavefunction, such as diffraction and inter-
ference.

The following topics are accommodated by electromagnetic optics but are largely
inaccessible to scalar wave optics:

The behavior of light in media where polarization is a central feature, such
as anisotropic, optically active, magneto-optic, and liquid-crystal media, as
well as photonic crystals and metamaterials.
The behavior of light in devices whose operation relies on a quantitative
reckoning of the proportion of light reflected and refracted at boundaries,
such as optical waveguides, optical fibers, and optical resonators.
The behavior of light in nonlinear, dispersive, scattering, and/or conductive
media.
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2.7 RANDOM WAVES

In the earlier sections of this Chapter, the light was considered to be deterministic. The
monochromatic wavefunction u(r, t) = Re{U(r) exp(j2πνt)} set forth in (2.2-1), for
example, assumed a time dependence that was perfectly periodic and predictable, as
portrayed in Fig. 2.7-1(a). The amplitude U(r) was also taken to be a deterministic
complex function of position. This was also the case for all electric- and magnetic-field
components associated with monochromatic electromagnetic waves, as expressed in
(2.6-11).

Figure 2.7-1 Sketch of the time dependence of the
wavefunction u(r, t) for: (a) a deterministic, coherent,
monochromatic wave; (b) a random wave.

For random light, in contrast, the dependence of the wavefunction u(r, t) on time
(and position) is not totally predictable, as illustrated in Fig. 2.7-1(b). Random optical
waves are a result of the statistical fluctuations inherent in many sources of light. Such
fluctuations can arise when the emissions comprise superpositions of large collections
of independent radiators with different frequencies and phases. Natural light, such as
that radiated by the sun and stars for example, varies randomly in time, as does the
thermal light radiated by a hot object. So too does the light generated in the junction
region of a light-emitting diode, as a consequence of the recombination of large num-
bers of electron–hole pairs at random times. Although the discussion in this section is
directed toward temporal randomness, it should be mentioned that random variations in
the optical wavefront arise when deterministic light is passed through a spatially random
medium, such as a ground-glass diffuser or a turbulent fluid, or when it is scattered by
a rough surface.

Random waves are characterized by making use of statistical averaging to define var-
ious (nonrandom) measures associated with the waves. Because a random wavefunction
u(r, satisfies certain laws, such as the wave equation and associated boundary condi-
tions, so too do its statistical averages. In this section, we examine various properties
of random light, including its optical intensity, temporal coherence function, degree of
temporal coherence, coherence time, power spectral density, and spectral width. Scalar
wave theory suffices for describing these properties, although electromagnetic theory
is required to address the polarization properties of random light. Even so, random
light is effectively coherent when its coherence time is much larger than any time-delay
differences encountered in the optical system, as will be discussed in the sequel.

The area of optics concerned with the study of random light, including the salient
statistical averages and the laws that govern them, along with the measures that deter-
mine whether the light is classified as coherent, incoherent, or partially coherent, is
called optical coherence theory or statistical optics.

Optical Intensity
An arbitrary optical wave is described by a wavefunction u(r, t) = Re{U(r, t)},
where U(r, t) is the complex wavefunction. For example, U(r, t) may take the form
U(r) exp(j2πνt) for monochromatic light, or it may comprise a sum of such functions
with many different values of ν for polychromatic light. As discussed in Sec. 2.2, the
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intensity I(r, t) of a coherent (deterministic) wave is related to the absolute square of
the complex wavefunction U(r, t) via

I(r, t) = |U(r, t)|2 . (2.7-1)

For monochromatic deterministic light, the intensity is independent of time, whereas
for pulsed deterministic light, it is time varying.

For random light, on the other hand, the functions u(r, t) and U(r, t), as well as the
intensity |U(r, t)|2, are random functions of time and position, which causes us to rely
on statistical averaging. The average intensity is defined as

I(r, t) = ⟨|U(r, t)|2⟩, (2.7-2)
Average Intensity

(Ensemble Average)

where the symbol ⟨·⟩ denotes an ensemble average over many realizations of the random
function within the brackets. Despite the fact that a random wave repeatedly generated
under identical conditions yields a different wavefunction on each trial, the average
intensity at each time and position, established by (2.7-2), is deterministic. We call
I(r, t) the intensity of the light (with the modifier “average” implied), when there is
no ambiguity in meaning. The unaveraged quantity |U(r, t)|2, in contrast, is called the
random intensity or instantaneous intensity. For deterministic light, the averaging
operation is superfluous since all trials produce exactly the same wavefunction, in which
case (2.7-2) is equivalent to (2.7-1).

The average intensity may be time independent or it may be a function of time, as
illustrated in Figs. 2.7-2(a) and (b), respectively. The former situation is operative when
the optical wave is statistically stationary, i.e., when its statistical averages are invariant
to time. Clearly, stationarity does not necessarily imply constancy; rather, it implies
constancy only of the average properties. An example of stationary random light is that
emitted by an incandescent lamp whose filament is heated by a constant electric current.
The average intensity I(r) is then a function of distance from the lamp, but it does not
vary with time. On the other hand, the random intensity |U(r, t)|2 fluctuates with both
position and time, as illustrated in the figure.

t

(a) Stationary (b) Nonstationary

t t

t

|U(r, t)|2 |U(r, t)|2

I(r, t) I(r, t)

Figure 2.7-2 (a) A statistically stationary wave has an average intensity I(r) that does not vary
with time. (b) A statistically nonstationary wave has an average intensity I(r, t) that varies with time.
These plots represent, for example, the intensity of light produced by an incandescent lamp driven by
(a) a constant electric current, and (b) a pulse of electric current.

When the light is stationary, the ensemble average over many realizations of the instan-
taneous intensity, as prescribed by (2.7-2), is usually equivalent to the time average over
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a long duration, which is expressed as

I(r) = lim
T→∞

1

2T

∫ T

−T

|U(r, t)|2 dt. (2.7-3)
Average Intensity

(Time Average)

Random processes for which the time average tends to the ensemble average are said to
be ergodic processes.

Temporal Coherence Function
We now proceed to further explore the fluctuations of stationary light at a fixed posi-
tion r, as a function of time. Since r is fixed, for brevity we refer to the stationary random
wavefunction as U(t) ≡ U(r, t) and to the constant intensity as I(r) ≡ ⟨|U(r, t)|2⟩.
The random fluctuations of U(t) are characterized by a time scale that represents the
“memory” of the random function. For times separated by an interval longer than this
memory time, the process “forgets” itself and the fluctuations are independent. Within
the memory time, the wavefunction appears to be relatively smooth but when viewed
over longer time scales, it appears “erratic.”

This temporal behavior is captured by a statistical average known as the autocorrela-
tion function. This quantitative measure describes the extent to which the wavefunction
fluctuates in unison at two instants of time separated by a given time delay, and thus
serves to establish the time scale of the process that characterizes the wavefunction. The
autocorrelation function of a stationary complex random function U(t) is defined as
the ensemble average of the product of U∗(t) and U(t + τ), as a function of the time
delay τ ,

G(τ) = ⟨U∗(t)U(t+ τ)⟩. (2.7-4)
Temporal Coherence Function

When expressed as a time average, the autocorrelation function is written as

G(τ) = lim
T→∞

1

2T

∫ T

−T

U∗(t)U(t+ τ) dt. (2.7-5)

In the language of optical coherence theory, the autocorrelation functionG(τ) is known
as the temporal coherence function.

To understand the significance of the definition presented in (2.7-4), consider the
case in which the average value of the complex wavefunction ⟨U(t)⟩ = 0. This arises
when the phase of the phasor U(t) is equally likely to have any value between 0 and
2π, as illustrated in Fig. 2.7-3.

Im{U(t)}

Re{U(t)}

Figure 2.7-3 Variation of the phasor U(t) with
time when its argument is uniformly distributed
between 0 and 2π. The average values of its real
and imaginary parts are zero, so that ⟨U(t)⟩ = 0.
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The phase of the productU∗(t)U(t+τ) is the angle between the phasorsU(t) andU(t+
τ) so when these two quantities are uncorrelated, the angle between their phasors varies
randomly between 0 and 2π. The phasor U∗(t)U(t+ τ) then has an angle that is totally
uncertain and equally likely to take any direction, so that its average, the autocorrelation
function G(τ), vanishes. On the other hand, if U(t) and U(t + τ) are correlated for a
given value of τ , their phasors maintain some relationship and their fluctuations are
linked together, so that the product phasor U∗(t)U(t + τ) has a preferred direction
and its average G(τ) does not vanish. It is readily shown that G(τ) is a function with
Hermitian symmetry, G(−τ) = G∗(τ), and that the intensity I , defined by (2.7-2), is
given by

I = G(0). (2.7-6)

Complex Degree of Temporal Coherence
The temporal coherence function G(τ) carries information about both the intensity
I = G(0) and the degree of correlation (coherence) of stationary light. A measure of
coherence that is independent of the intensity is provided by the normalized autocorre-
lation function,

g(τ) =
G(τ)

G(0)
=

⟨U∗(t)U(t+ τ)⟩
⟨U∗(t)U(t)⟩

, (2.7-7)
Complex Degree of

Temporal Coherence

which is called the complex degree of temporal coherence. Its absolute value cannot
exceed unity,

0 ⩽ |g(τ)| ⩽ 1. (2.7-8)

The value of |g(τ)| is a measure of the degree of correlation between U(t) and
U(t + τ). When the light is monochromatic and deterministic, i.e., when U(t) =
a0 exp(j2πν0t) where a0 is a constant, (2.7-7) yields

g(τ) = exp(j2πν0τ), (2.7-9)

so that |g(τ)| = 1 for all τ . The variables U(t) and U(t+ τ) are then totally correlated
for all time delays τ . For most sources of light, |g(τ)| decreases from its maximum
value |g(0)| = 1 as τ increases, and the fluctuations become uncorrelated when τ
substantially exceeds the memory time of the process.

Coherence Time
If |g(τ)| decreases monotonically with time delay, the value τc at which it decreases to a
prescribed value (1/2 or 1/e , for example) serves as a measure of the memory time of the
fluctuations. The quantity τc, called the coherence time, is illustrated in Fig. 2.7-4. For
τ < τc the fluctuations are “strongly” correlated whereas for τ > τc they are “weakly”
correlated. The quantity τc is the width of the function |g(τ)|; although the width of
a function can be defined in many ways, as discussed in Sec. A.2 of Appendix A, the
power-equivalent width is most commonly used in conjunction with the definition of
coherence time:

τc =

∫ ∞

−∞
|g(τ)|2 dτ (2.7-10)

Coherence Time
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Figure 2.7-4 Illustrating the wavefunction u(t), the magnitude of the complex degree of temporal
coherence |g(τ)|, and the coherence time τc for a random optical wave with: (a) short coherence
time, and (b) long coherence time. The amplitudes and phases of the wavefunctions vary randomly,
with time constants roughly established by τc (which is assumed to be greater than the duration of an
optical cycle). For intervals shorter than the coherence time, the wave is reasonably predictable and
can be approximated by a sinusoid. On the other hand, given the amplitude and phase of the wave at
a particular time, these quantities cannot be predicted at time delays that stretch beyond a coherence
time.

□ Consistency of Coherence-Time and Temporal-Coherence Definitions Provided in (2.7-10).

(a) For a degree of temporal coherence that decreases exponentially, g(τ) ≡ exp(−|τ |/τc):
τc ≡

∫∞
−∞ |g(τ)|2 dτ =

∫∞
−∞ exp(−2|τ |/τc) dτ = 2

∫∞
0

exp(−2τ/τc) dτ = τc. √

Note that |g(τ)| decreases by a factor of 1/e = 0.368 at τ = τc.
(b) For a degree of temporal coherence that decreases as a Gaussian, g(τ) ≡ exp(−πτ2/2τ2c ):

τc ≡
∫∞
−∞ |g(τ)|2 dτ =

∫∞
−∞ exp(−πτ2/τ2c ) dτ = τc. √

Note that |g(τ)| decreases by a factor of exp(−π/2) = 0.208 at τ = τc. ■

The coherence time of monochromatic light source is infinite since |g(τ)| = 1
everywhere. Practially speaking, however, light for which the coherence time τc is much
greater than the differences of any time delays encountered in an optical system is
effectively coherent. Equivalently, light is effectively coherent if its coherence length
lc is much greater than all optical pathlength differences encountered in the system:

lc = cτc . (2.7-11)
Coherence Length

Spectral Density
A determination of the average spectrum of random light is attained by carrying out
a Fourier decomposition of the random function U(t). As discussed in Sec. A.1 of
Appendix A, the amplitude of the component of frequency ν is its Fourier transform,

V (ν) =

∫ ∞

−∞
U(t) exp(−j2πνt) dt. (2.7-12)

The average energy per unit area of those components whose frequencies lie in the
interval between ν and ν+dν is ⟨|V (ν)|2⟩ dν, so that ⟨|V (ν)|2⟩ represents the average
energy spectral density of the light (energy per unit area per unit frequency).

Since an exemplary stationary function U(t) is eternal and carries infinite energy,
we direct our attention instead the power spectral density. We begin by determining
the truncated Fourier transform of the function U(t) observed over a window of time
duration T ,
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VT (ν) =

∫ T/2

−T/2

U(t) exp(−j2πνt) dt, (2.7-13)

which leads to the (truncated) energy spectral density ⟨|VT (ν)|2⟩. Since the power
spectral density is the energy spectral density per unit time, in the limit T → ∞ we
have

S(ν) = lim
T→∞

1

T
⟨|VT (ν)|2⟩. (2.7-14)

However, because U(t) is expressly defined in (2.7-2) such that |U(t)|2 represents
power per unit area (intensity), S(ν) dν represents the average power per unit area in
a band of frequencies lying between ν and ν + dν. Strictly speaking, therefore, S(ν)
represents the intensity spectral density (W/m2-Hz). This quantity is readily converted
to the power spectral density (W/Hz) via multiplication by an effective area Aeff , and
is often referred to simply as the spectral density or spectrum. Because the complex
wavefunction U(t) is defined such that V (ν) = 0 for negative ν, S(ν) is nonzero only
for positive frequencies so that the total average intensity is given by

I =

∫ ∞

0

S(ν) dν. (2.7-15)

The autocorrelation function G(τ) defined by (2.7-4), and the spectral density S(ν)
defined by (2.7-13) and (2.7-14), are readily shown to form a Fourier transform pair,

S(ν) =

∫ ∞

−∞
G(τ) exp(−j2πντ) dτ, (2.7-16)

Spectral Density
(Wiener–Khinchin Theorem)

a relationship known as the Wiener–Khinchin theorem.
The light entering the eye is usually characterized by a wavelength-based power

spectral density (or spectral radiant flux) Sλ(λO), rather than by its frequency-based
counterpart Sν(ν). Wavelength-based power spectral densities are sketched in Fig. 2.7-
5 for the light reflected from three locations on an Herbin abstract oil-on-canvas. Each
of these spectral densities evokes a perceived color, as detailed in Sec. 9.6.

Figure 2.7-5 Wavelength-based power spectral densities Sλ(λO) for the light reflected from three
locations on an Herbin abstract painting, plotted as a function of the free-space wavelength λO.
(Auguste Herbin (1882–1960), Composition, Oil-on-Canvas, 1939, Museu Coleção Berardo, Centro
Cultural de Belém, Lisboa, Portugal, Pedro Ribeiro Simões via Wikimedia Commons.)
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Spectral Width
The spectrum of light is often confined to a narrow band centered about a central
frequency ν0. The spectral width, or linewidth, of light is the width ∆ν of the spectral
density S(ν). Because of the Fourier-transform relation between S(ν) and G(τ), the
widths of these two functions,∆ν and τc, respectively, are inversely related (Sec. A.2 of
Appendix A). Hence, as illustrated in Fig. 2.7-6, a light source of broad spectral width
has a short coherence time, whereas a light source of narrow spectral width has a long
coherence time. In the limiting case of monochromatic light, G(τ) = I exp(j2πν0τ),
so that the corresponding spectral density S(ν) = Iδ(ν − ν0) contains only a single
frequency component ν0, in which case τc = ∞ and ∆ν = 0. Although the coherence
time of a source of light can be increased by passing the light through a narrowband
optical filter to reduce its spectral width, the resultant gain in coherence comes at the
expense of a reduction in optical intensity.

ν0 ν

Æν

S(ν)

0

ν0 ν

Æν

S(ν)

0

τc

τc

τ

|g(τ)|

0

1

τc

τc

τ

|g(τ)|

u(t)

u(t)

0

t

(a)

(b)
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Figure 2.7-6 Examples of two random waves, along with the magnitudes of their complex degrees
of temporal coherence |g(τ)| and spectral densities S(ν): (a) Narrow complex degree of temporal
coherence (short coherence time τc) and broad spectral width ∆ν; (b) Broad complex degree of
temporal coherence (long coherence time τc) and narrow spectral width ∆ν. The widths of |g(τ)|
and S(ν), designated τc and ∆ν, respectively, are inversely related.

A commonly used definition for the spectral width of the function S(ν) is its full-
width at half-maximum (FWHM), denoted ∆νFWHM ≡ ∆ν. The relation between
∆νFWHM and the coherence time τc depends on the spectral profile of the source, as
displayed in Table 2.7-1.
Table 2.7-1 Relation between spectral width ∆νFWHM and coherence time τc for light with
rectangular, Lorentzian, and Gaussian spectral profiles.

spectral profile : Rectangular Lorentzian Gaussian

Spectral Width ∆νFWHM :
1

τc

1

πτc
≈ 0.32

τc

√
2 ln 2/π

τc
≈ 0.66

τc

It turns out, however, that there is distinct merit in making use of an alternative definition
of the spectral width, namely

∆νc =

(∫ ∞

0

S(ν) dν

)2

∫ ∞

0

S2(ν) dν

, (2.7-17)
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since the spectral width is then the exact inverse of the coherence time, whatever the
spectral profile of the light (the derivation is provided below):

∆νc =
1

τc
. (2.7-18)

Spectral Width

□ Derivation of Relation Between Spectral Width and Coherence Time Provided in (2.7-18).

Using (2.7-6) and (2.7-15) provides
∫∞
0

S(ν)dν = G(0). Squaring both sides yields[∫∞
0

S(ν)dν)
]2

= [G(0)]
2
. (2.7-19)

Since S(ν) and G(τ) form a Fourier-transform pair in accordance with (2.7-16), Parseval’s theorem
may be written as ∫∞

0
S2(ν)dν =

∫∞
−∞ |G(τ)|2dτ. (2.7-20)

Dividing (2.7-19) by (2.7-20), and making use of the definitions for the magnitude of the complex
degree of temporal coherence |g(τ)| provided in (2.7-7), the coherence time τc presented in (2.7-10),
and the spectral width ∆νc provided in (2.7-17), leads to

∆νc = |G(0)|2/
∫∞
−∞ |G(τ)|2dτ = 1/

∫∞
−∞ |g(τ)|2dτ = 1/τc.

√ (2.7-21)

■

As a particular example, if S(ν) is a rectangular function extending over the fre-
quency interval from ν0 −B/2 to ν0 +B/2, then (2.7-17) yields ∆νc = B. For this
particular profile, the coherence time τc = 1/B, so that (2.7-18) is obeyed. For the
spectral profiles displayed in Table 2.7-1, the two definitions of bandwidth, ∆νc and
∆νFWHM, differ by a factor that ranges from 0.32 (Lorentzian) to 1 (rectangular).

Representative values of the spectral width ∆νc for several sources of light, along
with their associated coherence times τc and coherence lengths lc = cOτc , are provided
in Table 2.7:

source ∆νc (Hz) τc = 1/∆νc lc = cOτc

Filtered sunlight (λO = 0.4–0.8 µm) 3.7× 1014 2.7 fs 800 nm
Light-emitting diode (λO = 1 µm, ∆λO = 50 nm) 1.5× 1013 67 fs 20 µm
Multimode He–Ne laser (λO = 633 nm) 1.5× 109 0.7 ns 20 cm
Single-mode He–Ne laser (λO = 633 nm) 1× 106 1 µs 300 m

EXAMPLE 2.7-1. Coherence Length of Light with Narrow and Broad Spectra.

1. Light of narrow spectral width: Equations (2.7-11) and (2.7-18) provide that the coherence
length lc and spectral width ∆νc are related by lc = cτc = c/∆νc, where τc is the coherence
time. Since ν = c/λ, we have |∆νc| ≈ (c/λ2)|∆λ| for light of narrow spectral width, so that
lc ≈ λ2/∆λ.

2. Light with a broad uniform spectrum: As above, lc = cτc = c/∆νc. For light with a uniform
spectrum that extends between the wavelengths λMIN and λMAX = 2λMIN, we have lc = c/(νMAX −
νMIN) = c/(c/λMIN − c/λMAX) = 1/(2/λMAX − 1/λMAX) = λMAX.
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From a historical perspective, the theories of optics developed roughly in the following
sequence: 1) ray optics → 2) wave optics → 3) electromagnetic optics → 4) quantum
optics. These models are progressively more complex and sophisticated, and evolved to
provide explanations for the outcomes of increasingly subtle and precise optical experi-
ments. Ray optics, wave optics, and electromagnetic optics are all approximate theories
that derive their validity from their successes in generating results that approximate
those based on the more rigorous quantum optics, which properly describes almost all
known optical phenomena.

In the mathematical framework of quantum optics, the vectors E and H that repre-
sent the electric and magnetic fields of classical electromagnetic optics, respectively,
are promoted to operator status in a Hilbert space. These operators are assumed to
satisfy certain operator equations and commutation relations that govern their time
dynamics and interdependence. Although the equations of quantum optics describe the
interactions of electromagnetic fields with matter in much the same way as Maxwell’s
equations, the results incorporate intrinsic quantum uncertainties. Nevertheless, in spite
of its vast successes, quantum optics is not the final arbiter of all optical effects. That
distinction currently belongs to the electroweak theory, which combines quantum elec-
trodynamics with the theory of weak interactions. Ongoing efforts seek to combine
electroweak theory with the theories of strong and gravitational interactions in an at-
tempt to forge a general unified field theory that accommodates all four fundamental
forces of nature, as they are currently understood.

Although a formal treatment of quantum optics lies beyond the scope of this text,
many of the quantum properties of light and its interaction with matter can be described
by supplementing electromagnetic optics with several simple relationships that embody
the corpuscularity, localization, and fluctuations of quantum fields and energy. This set
of rules, called photon optics, offers a convenient way of dealing with some quantum-
optical phenomena that lie beyond the reach of classical optics, while retaining classical
theory as a limiting case. Photon optics also proves useful for elucidating various fea-
tures of classical light, and is used extensively in the remainder of this text.

From a mathematical perspective, ray optics is the limit of wave optics when the
wavelength is infinitesimally small, wave optics is the limit of electromagnetic optics
when the polarization properties anchored in its vector character play no role in the
problem under consideration, and electromagnetic optics is the limit of quantum optics
when the particle-like behavior of light associated with its operator properties can
be overlooked. The hierarchy that emerges is depicted in Fig. 3.0-1: quantum optics
encompasses electromagnetic optics, which encompasses wave optics, which in turn
encompasses ray optics.

Ray Optics

Wave Optics

Electromagnetic

Optics

Quantum Optics Figure 3.0-1 The theory of quantum optics provides
an explanation for virtually all optical phenomena. The
electromagnetic theory of light (electromagnetic optics)
provides the most complete treatment of light within
the confines of classical optics. Wave optics is a scalar
approximation of electromagnetic optics. Ray optics is the
limit of wave optics when the wavelength is very short.

The point of departure for each model of light is a set of principles, or postulates,
from which a large body of results are generated. The postulates of each model are
special cases of those of the next higher-level model. In addressing a particular problem
in optics, the optimal choice of a model is the simplest that satisfactorily describes a
62
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particular phenomenon to a specified degree of accuracy. Although it can be difficult to
make the choice a priori, experience often serves as a guide.

We begin by introducing the concept of the photon and examining its properties.
Using electromagnetic optics as a point of departure, we then impose a number of rules
that govern the behavior of photon energy, position, and time. This is followed by a
discussion of the properties of photon streams, including their randomness, photon-
number statistics, and partitioning. The interactions of photons with atoms and semi-
conductors are described in Chapters 4 and 6, respectively.

3.1 THE PHOTON

From a quantum perspective, light consists of particles called photons or quanta. A
photon carries energy and momentum, as well as spin angular momentum associated
with its polarization and orbital angular momentum related to the twist of its wavefront.
The photon has zero rest mass and travels at cO, the speed of light in vacuum, and at c =
cO/n < cO in dielectric media. A photon also has a wavelike character that determines
its localization properties in space and time, and the rules by which it interferes and
diffracts.

The notion of the photon initially grew out of an attempt by Max Planck (p. 61) in
1900 to resolve a long-standing riddle concerning the spectrum of blackbody radia-
tion emanating from a cavity held at a fixed temperature T (this topic is discussed in
Sec. 4.7). Planck ultimately achieved this goal by assuming that the atoms in the walls
of the cavity absorbed and emitted energy only as integral multiples of a small unit
of energy, i.e., as quanta. In 1905, Albert Einstein (p. 61) extended Planck’s notion of
energy quantization by considering the light itself to be a collection of light quanta. This
enabled Einstein to successfully explain the photoelectric effect, a feat that garnered
him the 1921 Nobel Prize in physics. The term photon, introduced by Gilbert Lewis in
1926, came to be used to describe what Einstein had originally termed Lichtquant.

The concept of the photon and the rules of photon optics are introduced by consid-
ering light in an optical cavity. This is a convenient choice because it restricts the space
under consideration to a simple geometry. More importantly, the presence of the cavity
turns out not to be an important feature of the argument; the results are independent of
the form of the cavity, and even of its presence.

Light in a 3D Cavity: Electromagnetic-Optics Perspective
Electromagnetic optics dictates that light in a lossless three-dimensional (3D) cavity of
volume V is completely characterized by an electromagnetic field that takes the form
of a superposition of discrete orthogonal modes with different spatial distributions,
frequencies, and polarizations. The overall electric-field vector, E(r, t) = Re{E(r, t)},
may be expressed in terms of the complex electric field vector E(r, t) as

E(r, t) =
∑
q

Aq Uq(r) exp(j2πνqt) êq , (3.1-1)

where the qth mode is characterized by its complex envelope Aq, its frequency νq,
its polarization along the direction of the unit vector êq, and its spatial distribu-
tion characterized by the complex function Uq(r), which is normalized such that∫
V |Uq(r)|2 dr = 1.

For convenience, we consider a cubic cavity of dimension d and standing-wave
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spatial expansion functions given by

Uq(r) = (2/d)3/2 sin(qxπx/d) sin(qyπy/d) sin(qzπz/d) , (3.1-2)

where the integers qx, qy, and qz are specified by the shorthand notation (qx, qy, qz)
[Fig. 3.1-1(a)]. In accordance with (2.6-10), the energy density associated with mode
q is 1

2ϵ|Aq|2 |Uq(r)|2, so that the energy contained in mode q is

Eq = 1
2ϵ

∫
V

|Aq|2 |Uq(r)|2 dr = 1
2ϵ|Aq|2, (3.1-3)

where V is the modal volume. In classical electromagnetic theory, the energy Eq can
assume an arbitrary nonnegative value, no matter how small, and the total energy is the
sum of the energies in all modes.
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Figure 3.1-1 (a) Schematic of three electromagnetic modes of different frequencies and directions
in a cubic cavity. (b) Allowed energy levels of three modes in the context of photon optics. Modes 1, 2,
and 3 have frequencies ν1, ν2, and ν3, respectively. In the sketch displayed, modes 1, 2, and 3 contain
n = 2, 1, and 3 photons, respectively, as represented by the filled circles. The number of photons in a
mode can be zero, fixed, or random.

It is important to note that the expansion functions Uq(r), along with exp(j2πνqt),
and êq as specified above, are not unique. Other choices are available, including those
comprising polychromatic modes.

Light in a 3D Cavity: Photon-Optics Perspective
The electromagnetic-optics approach described above is preserved in photon optics, but
a restriction is placed on the energy that each mode may carry. Rather than comprising
a continuous range, with no minimum energy, the modal energy is instead restricted to
a ladder of discrete values separated by the fixed energy hν, where ν is the frequency
of the mode, as displayed in Fig. 3.1-1(b). The energy associated with a mode is thus
quantized, with only integral units of the fixed energy hν permitted. Each unit of energy
is carried by a single photon and the mode may carry an arbitrary number of photons.

Light in a cavity comprises a set of modes, each containing an integral number
of identical photons. Characteristics of the mode, such as its frequency, spa-
tial distribution, direction of propagation, and polarization, are assigned to the
photons.
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3.2 PHOTON ENERGY, FREQUENCY, AND WAVELENGTH

Photon Energy and Frequency
Photon optics provides that the energy associated with an electromagnetic mode is
quantized to discrete levels separated by the photon energy, as sketched in Fig. 3.1-
1(b). The energy of a photon in a mode of frequency ν = ω/2π is

E = hν = ℏω, (3.2-1)
Photon Energy

where h = 6.6261 × 10−34 J·s is Planck’s constant, and ℏ ≡ h/2π. Energy may be
added to, or subtracted from, a given mode only as individual photons, namely in units
of hν. Frequency and photon energy (specified in units of eV, J, and cm−1) are displayed
in Fig. 3.2-1 for the optical and microwave regions of the spectrum.

OPTICS & PHOTONICS ELECTRONICS

kT 10 1106 105 104 103 102 10–1

100 meV 10 meV10 eV100 eV 1 eV 1 meV 100 µeV 10 µeV

1 aJ10 aJ 1 zJ 1 yJ10 yJ100 yJ10 zJ100 zJ

100 nm10 nm 10 µm 100 µm 1 mm 1 cm 10 cm1 µm

100 GHz1 THz10 THz100 THz1 PHz 10 GHz 1 GHz10 PHz

1 fs 10 fs 100 fs100 as 1 ps 10 ps 100 ps   1 ns

Frequency
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T

ν

E = hν 
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λ
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Figure 3.2-1 Relationships among wavelength λO, frequency ν, period T , and photon energy E
(specified in units of eV, J, and cm−1) for the optical and microwave regions. A photon of free-space
wavelength λO = 1 µm has frequency ν = 300 THz, period T = 3.33 fs, and energy E = 1.24 eV =
199 zJ = 104 cm−1. At room temperature (T = 300 K), the thermal energy kT = 26 meV = 4.17 zJ
= 210 cm−1. Two spectral domains are indicated: 1) optics & photonics, and 2) electronics.

Because photon energy is directly proportional to frequency, the particle nature of light
becomes increasingly prevalent as the radiation frequency increases and the wavelength
concomitantly decreases. In most interactions, X-rays and gamma-rays, with their high
frequencies, behave more like particles than waves, although wavelike effects (such as
X-ray diffraction) can be observed. The frequencies of radio waves, in contrast, are
so low that they rarely exhibit any particle-like behavior. The optical region lies in an
intermediate frequency range such that both particle-like and wavelike behavior are
readily observed.

Zero-Point Energy. According to quantum optics, all modes, including those carry-
ing zero photons, also carry zero-point energy E 0 =

1
2hν, which is associated with the

fluctuations of the vacuum field. An electromagnetic mode carrying n photons therefore
has total energy

En = (n + 1/2)hν, n = 0, 1, 2, . . . . (3.2-2)

This expression matches that for a quantum-mechanical harmonic oscillator; indeed the
two systems are isomorphic. The zero-point energy is seldom directly observed because
optical measurements usually involve energy differences (e.g., E 2 − E 1). However
it is responsible for the spontaneous emission of a photon by an atom, as discussed
in Sec. 4.3, and is a source of noise that limits the sensitivity of certain precision
measurements. Vacuum fluctuations are also the origin of the Casimir effect, a small
attractive force that acts between two parallel uncharged conducting plates located in
close proximity.
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Photon Wavelength and Period
The order of magnitude of the photon energy is easily estimated. An infrared photon
of wavelength λO = 1 µm in free space has a frequency ν ≈ 3× 1014 Hz by virtue of
the relation λOν = cO, and has a period T = 1/ν. Its energy is thus E = hν ≈ 1.99×
10−19 J = 199 zJ. Since the electron charge is e ≈ 1.6 × 10−19 C, the photon energy
expressed in electron volts is given by hν/e ≈ 1.99× 10−19/1.6× 10−19 ≈ 1.24 eV;
this is equivalent to the kinetic energy imparted to an electron when it is accelerated
through a potential difference of 1.24 V. For a microwave photon of wavelength of
1 cm, the photon energy is a factor of 104 smaller, so that hν = 1.24 × 10−4 eV. A
convenient approximate conversion formula between free-space wavelength (µm) and
photon energy (eV) is therefore

λO ≈
1.24

E
. (3.2-3)

Photon Wavelength
λO (µm); E (eV)

Reciprocal Wavelength. The reciprocal wavelength is also used as a unit of energy,
particularly in chemistry. It is usually specified in cm−1 and is determined by express-
ing the wavelength in cm and simply taking the inverse. Hence, 1 eV corresponds to
104/1.24 ≈ 8065 cm−1. Conversions among photon energy, wavelength, frequency,
and period in the optical and microwave regions of the electromagnetic spectrum are
provided in Fig. 3.2-1.

3.3 PHOTON POSITION AND TIME

Photon Position
Associated with a photon of energy hν is a monochromatic wave described by the com-
plex wavefunction U(r) exp(j2πνt) of the mode. When such a photon impinges on a
detector of small area dA that is normal to the direction of propagation, its indivisibility
causes it to either be wholly detected or not detected at all. If detected, the location r
at which the photon is registered is not precisely determined. Rather, it is governed by
the optical intensity I(r) ∝ |U(r)|2 at the detector, in accordance with the following
probabilistic law:

The probability p(r) dA of observing a photon at the position r within an incre-
mental area dA, at any time, is proportional to the local optical intensity of the
mode I(r) ∝ |U(r)|2, so that

p(r) dA ∝ I(r) dA. (3.3-1)
Photon Position

Wave–Particle Duality. The photon is therefore more likely to be found at those
locations of higher intensity. As an example, a photon in a mode described by a standing
wave with the intensity distribution I(x, y, z) ∝ sin2(πz/d), with 0 ⩽ z ≤ d , is most
likely to be detected at z = d/2, but will never be detected at z = 0 or z = d . The
localized nature of a photon is manifested when it is detected. Unlike a wave, which
is extended in space, and a particle, which is localized in space, an optical photon
behaves as both an extended and a localized entity, behavior referred to as wave–
particle duality.
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EXAMPLE 3.3-1. Transmittance of a Single Photon at a Beamsplitter. An ideal beam-
splitter is an optical device that losslessly splits a beam of light into two beams that emerge at right
angles to each other. It is characterized by an intensity transmittance T and an intensity reflectance
R = 1 − T. The intensity of the transmitted wave It and the intensity of the reflected wave Ir can
be calculated from the intensity of the incident wave I using the electromagnetic relations It = TI
and Ir = (1−T)I . Because a photon is indivisible, however, it must choose between the two possible
exit directions permitted by the beamsplitter. A single photon incident on the device will follow these
directions in accordance with the probabilistic photon-position rule (3.3-1). The probability that the
photon is transmitted is proportional to It and is therefore given by the transmittance T = It/I . The
probability that it is reflected is 1−T = Ir/I . From the perspective of probability theory, the problem
is identical to that of flipping a biased coin. Figure 3.3-1 illustrates the process.

Beamsplitter

One photon

One photon 

(probability T )

One photon 

(probability R = 1 − T )

Figure 3.3-1 Probabilistic reflection or
transmission of a photon at a lossless beam-
splitter.

EXAMPLE 3.3-2. Single-Photon Imaging. A coherent imaging system is characterized by
an impulse response function h(x, y;x′, y′) that links its output and input fields,Uo(x, y) andUi(x, y),
respectively, via the two-dimensional convolution

Uo(x, y) =

∞∫ ∫
−∞

Ui(x
′, y′)h(x, y;x′, y′) dx′ dy′. (3.3-2)

The same relationship characterizes the single-photon wavefunctions at the output and input of a
single-photon imaging system, where |Uo(x)|2 represents the probability density function of the pho-
ton position in the image plane.

Photon Time
The modal expansion provided in (3.1-1) comprises monochromatic modes that are
“eternal” harmonic functions of time; a photon in a monochromatic mode is equally
likely to be detected at any time. As indicated earlier, however, a modal expansion
of the radiation inside (or outside) a cavity is not unique. A more general expansion
comprises polychromatic modes such as time-localized wavepackets. The probability
of detecting a photon characterized by the complex wavefunction U(r, t), at any po-
sition and in the incremental time interval between t and t + dt, is proportional to
I(r, t) dt ∝ |U(r, t)|2 dt. The photon-position rule of photon optics displayed in (3.3-
1) may therefore be generalized to include photon time localization, as follows:

The probability p(r, t) dA dt of observing a photon at the position r within an
incremental area dA, and during an incremental time interval dt following time t,
is proportional to the local optical intensity of the mode I(r, t) ∝ |U(r, t)|2, so
that

p(r, t) dA dt ∝ I(r, t) dA dt. (3.3-3)
Photon Position

and Time
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Time–Energy Uncertainty
The time during which a photon in a monochromatic mode of frequency ν may be
detected is completely uncertain, whereas the value of its frequency ν (and its energy
E = hν) is completely certain.

In contrast, a photon in a wavepacket mode with an intensity function I(t) of du-
ration σt must be localized within that time. Bounding the photon time in this way is
accompanied by an uncertainty in its frequency (and energy) by virtue of the properties
of the Fourier transform, and corresponds to a polychromatic photon. Suppressing the
position dependence for simplicity, this frequency uncertainty is readily determined by
expanding U(t) as a superposition of its harmonic components,

U(t) =

∫ ∞

−∞
V (ν) exp(j2πνt) dν, (3.3-4)

where U(t) is the inverse Fourier transform of V (ν), as defined in (A.1-1).
Denoting the power-RMS temporal width of the function U(t) as σt, and the power-

RMS spectral width of the function V (ν) as σν , the product of σt and σν for this
Fourier-transform pair obeys the duration–bandwidth reciprocity relation set forth (A.2-
4), which reads

σtσν ⩾ 1/4π . (3.3-5)

Since angular frequency and frequency are related by ω = 2πν, (3.3-5) can be written
in the alternate form specified in (A.2-7):

σtσω ⩾ 1/2 . (3.3-6)

The definitions of σt and σν that accompany these uncertainty relations are provided
in (A.2-3) and (A.2-5), respectively. The results presented in (3.3-5) and (3.3-6) follow
solely from the properties of the Fourier transform.

Time–Energy Uncertainty Relation. Moreover, since the energy of a photon is
given by E = ℏω, in accordance with (3.2-1), it is not possible to specify the photon
energy to an accuracy better than

σE = ℏσω . (3.3-7)

It follows from (3.3-6) and (3.3-7) that the time during which a photon may be detected
σt, and its energy uncertainty σE , satisfy the Heisenberg time–energy uncertainty
relation:

σtσE ⩾ ℏ/2 . (3.3-8)
Heinsenberg Time–Energy

Uncertainty Relation

The inequality set forth in (3.3-8) is analogous to the Heisenberg position–momentum
uncertainty relation provided in (A.2-9), which sets a limit on the precision with which
the position x and momentum p of a photon can be simultaneously specified. The
average energy E of the polychromatic photon is E = hν = ℏω.

Reiterating, a monochromatic photon (σν → 0) has an eternal duration within which
it can be observed (σt → ∞). A photon associated with an optical wavepacket, on the
other hand, is localized in time and must therefore be polychromatic, which implies a
corresponding energy uncertainty. We conclude by noting that a wavepacket photon can
be viewed as a confined traveling packet of energy.
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Summary: Photon Energy, Momentum, Spin, Position, and Time

Electromagnetic radiation may be described in terms of a sum of modes, one
example being monochromatic uniform plane waves of the form:

E(r, t) =
∑
q

Aq exp(−jkq · r) exp(j2πνqt) êq. (3.3-9)

Each plane wave has two orthogonal polarization states represented by the vec-
tors êq (e.g., vertical/horizontal linearly polarized, right/left circularly polarized).
When the energy of a mode is measured, the result is an integer (in general, ran-
dom) number of photons (energy quanta). Each of the photons associated with the
mode q has the following properties:

Energy E = hνq. (3.3-10)
Momentum p = ℏkq, with magnitude p = ℏk = h/λ. (3.3-11)
Spin angular momentum (helicity) S = ±ℏ, if circularly polarized. (3.3-12)
The photon is equally likely to be found anywhere in space, and at any time,
since the wavefunction of the mode is a monochromatic plane wave.

The choice of modes is not unique, however. A modal expansion in terms of
nonmonochromatic (quasi-monochromatic), non-plane waves, is also possible:

E(r, t) =
∑
q

Aq Uq(r, t) êq. (3.3-13)

Each of the photons associated with the mode q then has the following properties:
The photon position and time are governed by the complex wavefunction
Uq(r, t). The probability of observing the photon at position r within an
incremental area dA, and during an incremental time interval dt following
time t, is proportional to |Uq(r, t)|2 dA dt.
If Uq(r, t) has a finite time duration σt, i.e., if the photon is localized in time,
then the photon energy hνq has an uncertainty hσν ⩾ h/4πσt.
If Uq(r, t) has a finite spatial extent in the transverse (z = 0) plane, i.e., if
the photon is localized in the x direction, for example, then the direction of
the photon momentum is uncertain. The spread in photon momentum can be
determined by analyzing Uq(r, t) as a sum of plane waves; the wave with
wavevector k corresponds to photon momentum ℏk. Spatial localization of
the photon in the transverse plane results in an increase in the uncertainty of
the photon-momentum direction.

3.4 PHOTON STREAMS

In Sec. 3.1 we concentrated on the properties and behavior of single photons. We
now consider the properties of collections of photons. Photon streams often contain
numerous propagating modes. As a result of the processes by means of which photons
are created (e.g., atomic emissions, as discussed in Chapter 4), the number of photons
occupying any mode is generally random. If an experiment is carried out in which
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a weak stream of photons falls on a photosensitive surface, the individual photons
are registered (detected) at random localized instants of time and at random points in
space, in accordance with (3.3-3). The temporal and spatial behavior of the photon
registrations can be highlighted by examining the two features separately.

The temporal pattern is revealed by making use of a photodetector such as a single-
photon avalanche diode (SPAD), which has good temporal resolution but integrates
light over a finite area A, as illustrated in Fig. 3.4-1. Equation (3.3-3), together with
the relation P(t) =

∫
A I(r, t) dA, show that the probability of detecting a photon in the

incremental time interval between t and t+dt is proportional to P(t), the optical power
at time t. Different forms of partially coherent light exhibit different kinds of intrinsic
optical-power fluctuations. Moreover, the optical power can be deliberately manipulated
to carry out designer experiments.

Light
Detector

t

Figure 3.4-1 Individual photon regis-
trations at random localized instants of
time for a detector with good temporal
resolution that integrates light over an
area A.

The spatial pattern of photon registrations, on the other hand, is readily manifested
by making use of a detector with good spatial resolution that integrates over a fixed
exposure time T, such as photographic film. In accordance with (3.3-3), the probability
of observing a photon in an incremental area dA surrounding the point r is proportional
to the local time-integrated intensity,

∫ T
0 I(r, t) dt. The random locations of the photon

registrations are illustrated in the grainy image of Max Planck provided in Fig. 3.4-
2. This image was obtained by rephotographing a high-contrast photograph of Max
Planck under very low light conditions. Each white dot in the photograph represents
a random photon registration and the density of these registrations follows the local
spatial intensity. In 1932, Barnes & Czerny observed that quantum fluctuations could
be discerned by the dark-adapted eye at low light levels, which they properly attributed
to the shot effect of photons.†

Figure 3.4-2 Image of Max Planck under illumination
with a sparse stream of photons. The spatial density of the
collection of individual photon registrations follows the
local integrated intensity. (Adapted from B. E. A. Saleh
and M. C. Teich, Fundamentals of Photonics, Wiley, 3rd
ed. 2019, Fig. 13.2-2.)

We begin this section by introducing a number of definitions that relate the quantum
measures for the mean flow of photons to the classical electromagnetic measures set
forth in Secs. 2.1 and 2.6, namely intensity, power, and energy. These definitions are
inspired by (3.3-3), which governs the position and time at which individual photons
are registered.

† R. B. Barnes and M. Czerny, Lässt sich ein Schroteffeckt der Photonen mit dem Auge beobachten?, Zeitschrift
für Physik, vol. 79, pp. 436–449, 1932.
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Mean Photon-Flux Density
Monochromatic light of frequency ν and constant classical intensity I(r) (W/cm2)
carries a mean photon-flux density

ϕ(r) =
I(r)

hν
. (3.4-1)

Mean Photon-Flux Density

Since each photon carries energy hν, this equation provides a straightforward conver-
sion from a classical measure (energy/s-cm2) to a quantum measure (photons/s-cm2).
For quasi-monochromatic light of central frequency ν, all photons have approximately
the same energy hν, so that the mean photon-flux density is approximately

ϕ(r) ≈ I(r)

hν
. (3.4-2)

EXAMPLE 3.4-1. Mean Photon-Flux Density and Optical Intensity. Typical values of I
and ϕ for several common sources of light are provided in Table 3.4-1. It is clear from these values
that trillions of photons rain down on each square centimeter of each exposed object each second.

Table 3.4-1 Classical intensity and mean photon-flux density for
various sources of light.

Intensity I Mean Photon-Flux Density ϕ
source (J/s-cm2) (photons/s-cm2)

Starlight 4× 10−13 106

Moonlight 4× 10−11 108

Twilight 4× 10−9 1010

Indoor light 4× 10−7 1012

Sunlight 4× 10−5 1014

Laser lighta 4× 10+3 1022

aA 12-mW green laser beam at a free-space wavelength λO = 500 nm, focused
to a 20-µm-diameter spot.

Mean Photon Flux
The meanphoton flux Φ (photons/s) is obtained by integrating the mean photon-flux
density over a specified area A ,

Φ =

∫
A

ϕ(r) dA =
P

hν
, (3.4-3)

Mean Photon Flux

where the optical power is

P =

∫
A

I(r) dA , (3.4-4)

and hν is again the average energy of a photon.
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EXAMPLE 3.4-2. Mean Photon Flux and Optical Power. An optical power of 1 nW at
a free-space wavelength λO = 0.2 µm corresponds to an average photon flux Φ ≈ 109 photons/s.
Roughly speaking, one photon then strikes the object every nanosecond:

1 nW at λO = 0.2 µm ⇒ 1 photon/ns. (3.4-5)

As a comparison, a photon of wavelength λO = 1 µm carries one-fifth as much energy, in which case
1 nW corresponds to an average of 5 photons/ns.

Mean Photon Number
The mean photon number n detected over the area A, during the time interval T , is
obtained by multiplying the mean photon flux Φ in (3.4-3) by the time duration, which
leads to

n = ΦT =
E

hν
, (3.4-6)

Mean Photon Number

where E = PT is the optical energy. The photon number is also called the photon
count. The relationships between the classical and quantum measures of mean photon
flow are summarized in the table below:

Summary: Classical and Quantum Measures of Mean Photon Flow

Classical Quantum

Optical intensity I(r) Mean photon-flux density ϕ(r) = I(r)/hν

Optical power P Mean photon flux Φ = P/hν

Optical energy E Mean photon number n = E/hν

Spectral Measures
For polychromatic light of nonnegligible bandwidth, it is useful to define frequency-
based spectral versions of the classical intensity, power, and energy, together with their
respective quantum counterparts (these are designated by the subscript ν): spectral
photon-flux density, spectral photon flux, and spectral photon number, as indicated in
the following table:

Summary: Classical and Quantum Spectral Measures

Classical Quantum

Iν (W/cm2-Hz) ϕν = Iν/hν (photons/s-cm2-Hz)

Pν (W/Hz) Φν = Pν/hν (photons/s-Hz)

Eν (J/Hz) nν = Eν/hν (photons/Hz)
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As an example, Iν dν represents the spectral intensity in the frequency range between
ν and ν+dν while nν dν represents the spectral photon number in the frequency range
between ν and ν + dν. Hence, a polychromatic flash of light with an intensity that is
uniform in space and time, and that comprises a uniform band of optical frequencies
of width Γ, carries energy E = IνΓAT and mean photon number n = E/hν̄ =
IνΓAT/hν̄.

Wavelength-based spectral measures, designated by the subscript λ, are widely used
for characterizing broadband sources in statistical optics and in radiometry; examples
are provided in Fig. 2.7-5 and in Secs. 8.8 and 9.7, respectively.

Time-Varying Light
If the light intensity varies with time, it follows that the mean photon-flux density
specified (3.4-1) is also a function of time,

ϕ(r, t) =
I(r, t)

hν
. (3.4-7)

Mean Photon-Flux
Density

The mean photon flux and optical power are then functions of time as well,

Φ(t) =

∫
A

ϕ(r, t) dA =
P(t)

hν
, (3.4-8)

Mean Photon Flux

where

P(t) =

∫
A

I(r, t) dA . (3.4-9)

As a consequence, the mean photon number registered in a time interval between t = 0
and t = T , obtained by integrating the photon flux, also varies with time

n =

∫ T

0

Φ(t) dt =
E

hν
, (3.4-10)

Mean Photon Number

where the mean optical energy (intensity integrated over time and area) is given by

E =

∫ T

0

P(t) dt =

∫ T

0

∫
A

I(r, t) dA dt . (3.4-11)

3.5 RANDOMNESS OF PHOTON FLOW

When the classical intensity I(r, t) is constant, the time and position at which a single
photon is detected are governed by (3.3-3), which dictates that the probability density
of detecting that photon at the space–time point (r, t) is proportional to I(r, t). The
classical electromagnetic intensity I(r, t) also governs the behavior of photon streams,
but the interpretation ascribed to I(r, t) differs:

For photon streams, the classical intensity I(r, t) determines the mean photon-
flux density ϕ(r, t). The fluctuations of ϕ(r, t) are established by the statistical
characteristics of the light source emitting the photons.
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Photon Arrival Times
Consider a detector that integrates over space, such as that illustrated in Fig. 3.4-1. If
the intensity I is constant in time, then so too is the power P . The mean photon-flux
density is then ϕ = I/hν and the mean photon flux is Φ = P/hν. However, the times
at which the photons arrive are random, as illustrated schematically in Fig. 3.5-1(a); the
statistical properties of the photon arrivals are determined by the nature of the source
emitting the photons.

EXAMPLE 3.5-1. Random Photon Arrivals. The random arrival of photons can be under-
stood as follows. Consider a source with optical power P = 1 nW that emits light at a wavelength
λO = 1 µm, so it delivers an average photon flux of Φ = 5 photons/ns or 0.005 photons/ps. Since only
integral numbers of photons may be detected, this signifies that if 105 time intervals are examined,
each of duration T = 1 ps, then most of the intervals will register zero photons; about 500 of the
intervals will register one photon; and very few of the intervals will register two or more photons. The
result is a random sequence of discrete events.
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Figure 3.5-1 (a) Constant optical power and a sample function of the randomly arriving photons,
the statistics of which are determined by the nature of the source. (b) Time-varying optical power and
a sample function of the randomly arriving photons, the statistics of which are established both by the
nature of the source and by the fluctuations of the optical power.

If the optical power P(t) also varies with time, the mean density of photon detec-
tions tracks the time variation of P(t), as schematically illustrated in Fig. 3.5-1(b). The
variations of the mean photon flux Φ(t) = P(t)/hν with time reflect the fact that the
photons arrive at a greater rate when the optical power is large than when it is small.
Such variations in power can arise from intrinsic intensity fluctuations associated with
an optical source of a particular kind (e.g., an incandescent source) or from external
manipulation of its mean optical power. These fluctuations are over-and-above those
exhibited in Fig. 3.5-1(a) for a source of constant optical power, which continue to
contribute to the randomness in the photon arrivals for time-varying light.

Photon Arrival Locations
The image of Max Planck portrayed in Fig. 3.4-2 illustrates analogous behavior in the
spatial domain. The locations of the detected photons generally follow the classical
intensity distribution of the image, exhibiting high photon densities where the intensity
is large and low photon densities where it is small. However, there is considerable
randomness (also referred to as graininess or spatial noise) in the image that arises from
the fluctuations in photon-occurrence locations associated with the source emitting the
photons. These fluctuations are most easily discerned when the mean photon-flux den-
sity is small, as is the case in Fig. 3.4-2. When the mean photon-flux density becomes
large everywhere, as it is in the image of Max Planck on p. 61, the graininess disappears
and the classical spatial intensity distribution of the image is recovered.
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3.6 PHOTON-NUMBER STATISTICS

An understanding of the photon-number statistics of a source of light is useful for
many applications, including low-light imaging. For a coherent source of light, such
as an ideal laser, the emitted optical power is constant and the arriving photons can
be represented as a sequence of independent random occurrences at a rate specified by
the photon flux, which is proportional to the optical power. Independent photon arrivals
lead to Poisson photon-number statistics. For a partially coherent source of light, on the
other hand, the optical power fluctuations result in photon arrivals that no longer form
a sequence of independent events, and the photon-number statistics can differ substan-
tially from Poisson form. We begin by considering Poisson photon-number statistics and
follow this with an examination of doubly stochastic Poisson photon-number statistics.
The theory presented in this section is suitable only for classical light.

Poisson Photon-Number Statistics
Coherent light has constant optical power P. The corresponding mean photon flux
Φ = P/hν (photons/s) is also constant, but the actual photon registration times are
random, as portrayed schematically in Fig. 3.6-1. Given a fixed time interval of duration
T, called the counting time (or counting window), the random variable n, called the
photon number (or count number), denotes the number of photons detected within
that window.

Equation (3.4-6) specifies that the mean photon number (or count mean) is n =
ΦT = PT/hν. We now seek to establish the photon-number distribution (or count-
ing distribution), p(n) vs. n, i.e., the probability p(0) of detecting zero photons, the
probability p(1) of detecting one photon, and so on, in a sequence of counting windows
of duration T .

n = 9 n = 8 n = 7 n = 11

TTTT
t

Figure 3.6-1 Random arrival of photons for a coherent light source of power P . Consecutive
counting windows of duration T are indicated. Though the optical power is constant, the photon
number n observed in each counting window is random.

An expression for the photon-number distribution p(n) vs. n for coherent light can
be obtained by assuming that the photon registrations are statistically independent. The
result, which is derived below and is known as the Poisson distribution, takes the form

p(n) =
n n exp(−n )

n !
, n = 0, 1, 2, . . . . (3.6-1)

Poisson Distribution

Equation (3.6-1) is plotted in Fig. 3.6-2, on both linear and semilogarithmic coordinates,
for several values of the mean photon number n. In addition to coherent light, the
Poisson distribution also characterizes the photon statistics associated with a number
of other sources of light, including multimode thermal light, as will be discussed in
Chapter 4.
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Figure 3.6-2 Poisson photon-number distribution p(n) vs. number of photons n for four values of
the mean photon number: n = 0.1, 1.0, 5.0, and 10. The distribution is plotted on linear coordinates
(left) and on semilogarithmic coordinates (right) The curves become progressively broader as n
increases.

□ Derivation of the Poisson Distribution. Divide the counting time T displayed in Fig. 3.6-1 into
a large number N of subintervals, each of sufficiently short duration T/N such that each subinterval
carries one photon with probability p = n/N and zero photons with probability 1−p. The probability
of finding n independent photons in the N subintervals, like the flips of a biased coin, follows the
binomial distribution:

p(n) =
N!

n ! (N − n)!
p n (1− p)N−n

=
N!

n ! (N − n)!

(
n

N

)n (
1− n

N

)N−n

.
T

tN

T/N

0

As the number of subintervals N → ∞, we have N!/(N − n)!N n → 1 along with (1− n/N)−n → 1
and (1− n/N)N → exp(−n ), which lead to (3.6-1). ■

Photon-Number Mean and Variance

The count mean (number mean) and count variance (number variance) are statistics
that characterize a discrete counting distribution. The count mean is defined as

n =
∞∑
n=0

n p(n), (3.6-2)

while the count variance, which is the average of the squared deviation from the mean,
is given by

σ2
n =

∞∑
n=0

(n − n )2 p(n). (3.6-3)

The count standard deviation σn, defined as the square root of the count variance, is
a measure of the width of the distribution. The quantities p(n), n, and σn are collec-
tively called the counting statistics. Though the distribution p(n) contains information
beyond its mean and variance, these two parameters provide a rough outline of its form.
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As derived below, inserting (3.6-1) into (3.6-2) and (3.6-3) confirms that the mean
of the Poisson distribution is indeed n and that its variance is equal to its mean,

σ2
n = n . (3.6-4)

Mean and Variance
Poisson Distribution

Taking n = 100 as an example, the standard deviation is σn = 10, which signifies
that, on average, the observation of 100 photons is accompanied by an uncertainty of
±10 photons.

□ Normalization, Count Mean, and Count Variance of the Poisson Distribution.

Normalization:
∞∑
n=0

p(n) =
∞∑
n=0

n ne−n

n!
= e−n

∞∑
n=0

n n

n!
= e−n · en = 1. √ (3.6-5)

Mean:
∞∑
n=0

np(n) =
∞∑
n=0

n
n ne−n

n!
= e−n · n

∞∑
n=1

n n−1

(n − 1)!
= e−n · n · en = n. √ (3.6-6)

Variance: σ2
n =

∞∑
n=0

(n − n)2 p(n) =
∞∑
n=0

(n − n)2
n ne−n

n!

=

∞∑
n=0

n 2 n ne−n

n!
− 2n

∞∑
n=0

n
n ne−n

n!
+ n 2

∞∑
n=0

n ne−n

n!

=

∞∑
n=0

n 2 n ne−n

n!
− n 2

∞∑
n=0

n ne−n

n!

=

∞∑
n=1

n
n ne−n

(n − 1)!
− n 2 =

∞∑
n=1

(n − 1)
n ne−n

(n − 1)!
+

∞∑
n=1

n ne−n

(n − 1)!
− n 2

= n 2e−n
∞∑
n=2

n n−2

(n − 2)!
+ ne−n

∞∑
n=1

n n−1

(n − 1)!
− n 2 = n 2 + n − n 2 = n. √ (3.6-7)

■

Signal-to-Noise Ratio
Another counting statistic that useful for determining the performance of a photon-
detection system is the count signal-to-noise ratio (SNR). Representing the signal by
the mean n , and the noise by the standard deviation σn, the count SNR is defined as

SNR =
(mean)2

variance
=

n 2

σ2
n

. (3.6-8)

If the light obeys Poisson photon-number statistics, then (3.6-4) provides that σ2
n = n,

whereupon

SNR = n . (3.6-9)
Signal-to-Noise Ratio

Poisson Distribution

The Poisson signal-to-noise ratio increases linearly with the mean photon number. Al-
hough the SNR is often useful for measuring the randomness of a signal, applications
that require a determination of the probability of error of a system generally require
knowledge of the full probability distribution.
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Doubly Stochastic Poisson Photon-Number Statistics
As discussed above, coherent light has constant intensity I(r, t), constant optical power
P , and constant mean photon flux Φ = P/hν. The arriving photons behave as inde-
pendent events with a Poisson photon-number distribution p(n) = nne−n/n! , where the
mean photon number n = ΦT = PT/hν is constant.

However, if the light is partially coherent because the intensity varies in time, then
so too does the optical power [as portrayed in Fig. 3.5-1(b)], the mean photon flux, and
the mean photon number n. In that case, in accordance with (3.4-10) and (3.4-11), the
mean photon number, which we denote as w rather than n for reasons that will become
clear below, can be expressed as

w ≡ n =
1

hν

∫ T

0

P(t) dt =
1

hν

∫ T

0

∫
A

I(r, t) dA dt. (3.6-10)

The integrated intensityw, which has units of photon number and is thus dimensionless,
therefore varies in time for partially coherent light.

Variations in the mean photon number arising from intensity fluctuations cause the
photon-number distribution to depart from Poisson behavior, as we now demonstrate.
If the fluctuations of w are described by a probability density function p(w), the ap-
plicable photon-number distribution is obtained by averaging the Poisson distribution
conditioned on w being constant, p(n|w) = wne−w/n!, over the range of allowed
values of w dictated by p(w). It is now clear that we introduced the symbol w above
so that we could co-opt the symbol n for the new photon number.

The resultant photon-number distribution therefore takes the form

p(n) =

∫ ∞

0

wne−w

n!
p(w) dw, (3.6-11)

Poisson Transform
(Mandel’s Formula)

which is known as the Poisson transform of p(w) and also as Mandel’s formula.
Equation (3.6-11) is also sometimes referred to as a doubly stochastic photon-number
distribution by virtue of the fact that its randomness arises from two sources: 1) the
random arrivals of the photons, which behave locally in Poisson fashion and are present
even for sources of constant intensity; and 2) the integrated-intensity fluctuations asso-
ciated with the time varying nature of the intensity. The sequence of random photon
arrivals that underlies doubly stochastic Poisson photon-number statistics is known as
a doubly stochastic Poisson process (DSPP).

Photon-Number Mean and Variance. The photon-number mean and variance for
the doubly stochastic photon-number distribution are obtained by using (3.6-2) and (3.6-
3) in conjunction with (3.6-11); the results turn out to be

n = w (3.6-12)

and
σ2
n = n + σ2

w , (3.6-13)

respectively, where σ2
w represents the variance of w. The photon-number variance is

seen to contain two contributions: 1) the basic Poisson contribution n ; and 2) a (posi-
tive) contribution arising from the intensity fluctuations. When the intensity is constant,
p(w) becomes a delta function, σ2

w → 0, and p(n) reduces to the Poisson distribution.
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EXAMPLE 3.6-1. Photon-Number Distribution for an Exponentially Distributed Inte-
grated Intensity. As an example of the use of the Poisson transform (3.6-11), we consider an
exponentially distributed integrated-intensity probability density function:

p(w) =


1

w
exp
(
−w

w

)
, w ⩾ 0

0, w < 0 .
(3.6-14)

Equation (3.6-14) is appropriate for describing quasi-monochromatic light whose real and imaginary
complex-field amplitude components are Gaussian, as well as independent and identically distributed.
It is applicable for partially coherent light whose spectral width is sufficiently narrow that its coher-
ence time τc is much larger than the counting time T. The associated photon-number distribution is
determined by substituting (3.6-14) into (3.6-11) and evaluating the integral. The result turns out to be
the geometric (Bose–Einstein) photon-counting distribution (4.2-8), which is considered in Sec. 4.8
in connection with thermal light.

3.7 RANDOM PARTITIONING OF PHOTON STREAMS

A photon stream is said to be partitioned when it is subjected to the removal of some of
its photons. The process is called random partitioning when the removed photons are
randomly diverted and random deletion when they are annihilated. There are numer-
ous ways in which this can occur. Perhaps the simplest example of random partitioning
is provided by an ideal lossless beamsplitter. Each photon incident on an input port of
the device is randomly chosen to exit one or the other of the two output ports (Fig. 3.7-
1). An example of random deletion is provided by the action of a photodetector. Each
photon incident on the photosensitive material is chosen either to be absorbed and to
create a photoelectron in the process, or to pass through the material and be lost.

Lossless
beamsplitter

Figure 3.7-1 Random partitioning
of a stream of photons by a beamsplit-
ter.

Bernoulli Trials. The treatment presented here is restricted to situations in which the
partitioning behaves in accordance with a sequence of independent Bernoulli trials
(coin tosses), each associated with an incident photon. This is applicable when the
photon stream impinges on only one of the input ports, as portrayed in Fig. 3.7-1.
When photon streams enter both ports, they can interfere and violate the independent-
trial assumption. The behavior of a single photon impinging on a lossless beamsplitter
with intensity transmittance T and intensity reflectance R = 1 − T was considered in
Example 3.3-1. As illustrated in Fig. 3.3-1, it was ascertained that the probability of the
photon being transmitted was equal to the transmittance of the beamsplitter T, while
the probability of it being reflected was equal to 1− T.
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Deterministic Input Photon-Number Distribution. We now consider a photon
stream of mean photon flux Φ incident on the beamsplitter, so that the mean number
of impinging photons in the time interval T is n = ΦT . The mean number of photons
transmitted and reflected is thenTn and (1−T)n , respectively. We proceed to determine
the photon-number statistics after partitioning. We begin by assuming that the incident
stream consists of precisely n photons, so that the probability p(m) that m photons
are transmitted is the same as that of flipping a biased coin n times and obtaining m
heads, where the probability of obtaining a head is T. The probability p(m) is then
characterized by the binomial distribution

p(m) =
(
n
m

)
Tm (1− T)n−m, m = 0, 1, . . . , n , (3.7-1)

where
(
n
m

)
= n!/m! (n −m)! . By symmetry, the result for the reflected photons is the

same, with 1− T replacing T.

Binomial Mean and Variance. The statistics of the binomial distribution dictate
that the mean number of transmitted photons is

m = Tn (3.7-2)

and the photon-number variance is

σ 2
m = T(1− T)n = (1− T)m . (3.7-3)

The count signal-to-noise ratio specified in (3.6-8) is then SNR= m 2/σ 2
m = m/(1−T),

which increases linearly with the mean number of transmitted photons m. In the limit
where the incident photon flux is large, the photons will therefore be partitioned between
the transmitted and reflected beams in good agreement with T and (1−T), respectively,
as predicted by classical optics.

Arbitrary Input Photon-Number Distribution. The calculation for an arbitrary
photon-number distribution p 0(n) at the input to the beamsplitter proceeds by recogniz-
ing that the number of photons n at the input is random rather than fixed. The photon-
number probability distribution for the transmitted stream is therefore a weighted
sum of binomial distributions, with the weighting established by the probability of
n photons being present at the input. The photon-number distribution p(m) at the
output of the beamsplitter, for an input photon-number distribution p 0(n), is therefore
p(m) =

∑
n p(m|n) p 0(n), where the observation of m photons conditioned on n

having a particular value is the binomial distribution p(m|n) =
(
n
m

)
Tm (1 − T)n−m.

Finally, then, we arrive at the formula that specifies p(m) in terms of p 0(n) and T :

p(m) =
∞∑

n=m

(
n

m

)
Tm (1− T)n−m p 0(n). (3.7-4)

Photon-Number Distribution
Under Random Partitioning

The same formula applies for the random deletion of photons.
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Poisson Input Photon-Number Distribution. When the photon-number distribu-
tion p 0(n) at the input to the beamsplitter is Poisson, it is demonstrated below that
the partitioned photon-number distribution p(m) remains Poisson; however, its photon-
number mean is reduced by the factor T. Hence, the signal-to-noise ratio for a randomly
partitioned Poisson stream is SNR = n T. Since T ⩽ 1, random partitioning decreases
the signal-to-noise ratio or, stated differently, introduces noise.

□ Random Partitioning of a Poisson Photon Stream.

(a) The photon-number distribution p(m ) for photons whose initial counting distribution p 0(n ) is
Poisson retains its Poisson form under random partitioning, but with a reduced mean m = n T:

p(m ) =

∞∑
n=m

(
n

m

)
T m (1− T)n−m p 0(n ) =

∞∑
n=m

(
n

m

)
T m (1− T)n−m n ne−n

n !

=

∞∑
n=m

n ne−n

m !(n −m)!
T m (1− T)n−m =

(n T)m

m !
e−n

∞∑
n=m

n n−m

(n −m)!
(1− T)n−m

=
(n T)m

m !
e−n

∞∑
k=0

[n (1− T)]k

k!
=

(n T)m

m !
e−n en(1−T) =

(n T)m

m !
e−(nT). (3.7-5)

(b) The signal-to-noise ratio of a randomly partitioned Poisson photon stream is established by
making use of the definition provided in (3.6-8):

SNR =
(mean)2

variance
=

m 2

σ2
m

=
(n T)2

n T
= n T. (3.7-6)
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J. Peřina, ed., Coherence and Statistics of Photons and Atoms, Wiley, 2001.
A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Role of Entanglement in Two-

Photon Imaging, Physical Review Letters, vol. 87, 123602, 2001.
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.
M. C. Teich and B. E. A. Saleh, Squeezed and Antibunched Light, Physics Today, vol. 43, no. 6,

pp. 26–34, 1990 (Erratum: vol. 43, no. 11, pp. 123–124, 1990).
M. C. Teich and B. E. A. Saleh, Squeezed States of Light, Quantum Optics: Journal of the European

Physical Society B, vol. 1, pp. 153–191, 1989.
R. A. Campos, B. E. A. Saleh, and M. C. Teich, Quantum-Mechanical Lossless Beam Splitter: SU(2)

Symmetry and Photon Statistics, Physical Review A, vol. 40, pp. 1371–1384, 1989.
M. C. Teich and B. E. A. Saleh, Photon Bunching and Antibunching, in E. Wolf, ed., Progress in

Optics, North-Holland, vol. 26, pp. 1–104, 1988.
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J. Peřina, ed., Selected Papers on Photon Statistics and Coherence in Nonlinear Optics, SPIE Optical

Engineering Press (Milestone Series Volume 39), 1991.
L. Mandel and E. Wolf, eds., Selected Papers on Coherence and Fluctuations of Light (1850–1966),

SPIE Optical Engineering Press (Milestone Series Volume 19), 1990.
L. Mandel and E. Wolf, eds., Selected Papers on Coherence and Fluctuations of Light, Volumes 1 and

2, Dover, 1970.

Seminal Publications
R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Observation of Squeezed States

Generated by Four-Wave Mixing in an Optical Cavity, Physical Review Letters, vol. 55, pp. 2409–
2412, 1985.

M. C. Teich and B. E. A. Saleh, Observation of Sub-Poisson Franck–Hertz Light at 253.7 nm, Journal
of the Optical Society of America B, vol. 2, pp. 275–282, 1985.

R. Short and L. Mandel, Observation of Sub-Poissonian Photon Statistics, Physical Review Letters,
vol. 51, pp. 384–387, 1983.

A. Aspect, P. Grangier, and G. Roger, Experimental Tests of Realistic Local Theories via Bell’s
Theorem, Physical Review Letters, vol. 47, pp. 460-463, 1981.

H. J. Kimble, M. Dagenais, and L. Mandel, Photon Antibunching in Resonance Fluorescence, Physical
Review Letters, vol. 39, pp. 691–695, 1977.

S. Weinberg, Light as a Fundamental Particle, Physics Today, vol. 28, no. 6, pp. 32–37, 1975.
D. C. Burnham and D. L. Weinberg, Observation of Simultaneity in Parametric Production of Optical

Photon Pairs, Physical Review Letters, vol. 25, pp. 84–87, 1970.
D. Magde and H. Mahr, Study in Ammonium Dihydrogen Phosphate of Spontaneous Parametric
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Before LED lighting came into widespread use in the early 2000s, the principal source
of artificial illumination was thermal light. In particular, the electric incandescent fila-
ment lamp became the workhorse of artificial lighting in 1879, shortly after its inven-
tion by Thomas Edison and his British rival, Joseph Swan. An unfortunate limitation
associated with the incandescent lamp, however, is that only about 5% of the power
it radiates is in the visible region; roughly 95% is radiated in the infrared and is lost
as heat. Nevertheless, by virtue of its simple construction, convenience, and low cost,
incandescent lighting maintained its primacy until the arrival of LED lighting, and it
still serves as a benchmark because of its excellent color rendering quality.

The fundamental principles underlying the generation of thermal light are presented
in this chapter. We begin with a basic introduction to the concepts of temperature,
thermal equilibrium, and the equipartion of energy (Sec. 4.1), and consider how thermal
excitations cause the atoms of matter to constantly undergo upward and downward tran-
sitions among their allowed energy levels via the absorption and emission of photons
(Sec. 4.2). A photon interacts with an atom if its energy matches the energy difference
between two atomic levels (Sec. 4.3), in accordance with the rules of quantum mechan-
ics.

If the atom is initially in the lower energy level, the photon may impart its energy to
the atom and raise it to the higher level via a process called absorption. Or, if the atom
is initially in the higher energy level, the photon may stimulate the atom to undergo a
transition to the lower level and emit a second photon of the same energy via a process
known as stimulated emission. An atom in the higher energy level can also transition to
the lower level in the absence of an initiating photon via a process called spontaneous
emission (Sec. 4.4). The relationship among these three processes was first established
by Einstein (p. 61) in 1917 (Sec. 4.5). Spontaneous emission, endowed with a particular
lineshape function (Sec. 4.6), is responsible for the operation of light-emitting diodes
(Chapter 6).

The interaction of many photons with many atoms, under conditions of thermal
equilibrium and steady state, can take place in an object known as a blackbody, a concept
introduced by Kirchhoff in 1860. All blackbodies with temperatures greater than abso-
lute zero emit a universal form of radiation called blackbody radiation, whose spectrum
obeys the iconic radiation law introduced by Planck in 1900 (Sec. 4.7). The peak fre-
quency of the Planck spectrum shifts toward higher frequencies (shorter wavelengths)
as the temperature of the blackbody increases, by virtue of the increased population of
higher atomic energy levels. The designation thermal radiation (thermal light) is an
umbrella term that encompasses blackbody radiation, along with its closely related
cousin graybody radiation, which includes incandescent light (Sec. 4.8).

Processes other than thermal ones can also result in the emission of light. These
include laser action, Čerenkov radiation (emitted by charged particles traveling faster
than the speed of light in a medium), Bremsstrahlung (emitted by the deceleration of
charged particles as they penetrate matter), and luminescence radiation. Of the many
forms of luminescence radiation, photoluminescence is of principal importance in the
context of LED lighting. As will become clear in Sec. 10.2, photoluminescence is a
process whereby a molecular system excited to a higher energy level by the absorption
of a photon decays to a lower level via the emission of a lower-frequency photon in
conjunction with a nonradiative transition.

4.1 TEMPERATURE AND EQUIPARTITION OF ENERGY
Our points of departure are temperature (and the scales commonly used to measure it)
and thermal equilibrium. We then proceed to provide a brief introduction to the ideal gas
law and the kinetic theory of gases, which allow temperature to be related to the internal
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energy of a system from a microscopic perspective. We conclude with a discussion of
the equipartition theorem of statistical mechanics, which can also be used to define
temperature and derive the ideal gas law.

Temperature Scales and Thermal Equilibrium
Temperature is measured with the help of a thermometer, an instrument that registers
a change in some physical property of a material in response to a change in its tem-
perature. Thermometers are often implemented by making use of the observation that
the volumes of many materials increase with increasing temperature, the old-fashioned
household mercury thermometer being a familiar example.

Celsius and Fahrenheit Scales. Temperature units are defined by: 1) selecting two
convenient temperatures, such as the freezing and boiling points of water; 2) ascribing
arbitrary temperature values to those two points; and 3) constructing a scale between
them with equal divisions. For the Celsius (Fahrenheit) scale, the freezing and boiling
points of water are set at 0 ◦C (32 ◦F) and 100 ◦C (212 ◦F), respectively, and the scale
is endowed with 100 (180) divisions.

Kelvin Scale. As will become clear in the sequel, the temperature of a substance is
related to the microscopic motion of its constituent molecules. In 1848, Lord Kelvin
(p. 84) constructed a temperature scale endowed with divisions that correspond to the
Celsius scale but in which T = 0, called absolute zero, represents the point at which
all of the internal motion in a material is at a minimum and the object can get no colder.
Conducting a set of experiments with a thermometer calibrated on the Celsius scale,
he established that this temperature was −273.15 ◦C. The scale he proposed is called
the Kelvin temperature scale and the temperature is measured in kelvins. One kelvin
represents the same temperature difference as one Celsius degree, but kelvin temper-
atures are measured from absolute zero rather than from the freezing point of water.
Figure 4.1-1 displays the numerical values for a collection of well-known temperature
markers using the three temperature scales: Fahrenheit (◦F), Celsius (◦C), and Kelvin
(K).

Figure 4.1-1 Numerical values for well-
known temperature markers using three tem-
perature scales: Fahrenheit, Celsius, and
Kelvin. Absolute zero (0 K) corresponds to
−273.15 ◦C and −459.67 ◦F. Matter cannot
be cooled below absolute zero. The upper
three entries are representative temperatures
for thermal sources that generate visible light
for illumination (via a tungsten-filament in-
candescent lamp, for example), annotated
with the standard terminology used to des-
ignate those temperatures in the context
of LED lighting, as will be explained in
Secs. 9.7 and 9.8.

Example 4.1-1 reports the temperatures of selected objects on earth and in the cosmos
in kelvins.
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EXAMPLE 4.1-1. Temperatures (K) of Selected Objects on Earth and in the Cosmos.
On earth:

Experimental 23Na Bose–Einstein condensate: T ≈ 4.5× 10−10 K.
Helium liquefies: T ≈ 4 K.
Nitrogen liquefies: T ≈ 77 K.
Earth: T ≈ 300 K.
Human body temperature: T ≈ 310 K.
Lead melts: T ≈ 620 K.
Hot lava: T ≈ 1300 K.
Laser-induced burning plasma in hohlraum: T ≈ 6× 107 K.
Experimental quark–gluon plasma: T ≈ 6× 1012 K.

In the cosmos:
Boomerang nebula: T ≈ 1 K.
Cosmic microwave background radiation: T ≈ 2.725 K.
Gaseous matter between stars and galaxies: T ≈ 3 K.
Surface of Uranus: T ≈ 60 K.
Brown dwarf in Lyra constellation: T ≈ 300 K.
Surface of the sun: T ≈ 5800 K.
Eta Carinae stellar system: T ≈ 3.8× 104 K.
White dwarf in Red Spider nebula: T ≈ 3× 105 K.
Newly formed neutron star: T ≈ 1011 K.

Thermal Equilibrium. Two systems are said to be in thermal equilibrium if there
is no net flow of heat between them when they are brought into thermal contact. The
motions of the constituent molecules in both objects are then in steady state and their
fluctuations are, on average, independent of time. In accordance with the zeroth law
of thermodynamics, two systems individually in thermal equilibrium with a third sys-
tem are also in thermal equilibrium with each other. Since the third system can be a
thermometer, two systems at the same temperature are in thermal equilibrium with
each other. The time required to reach thermal equilibrium is known as the thermal
relaxation time. A system is in thermal quasi-equilibrium when it is considered over
a period of time that is short in comparison with the thermal relaxation time.

Temperature and Internal Energy
Our initial discussion of temperature was focused on the mechanics of how it is mea-
sured. We now proceed to link temperature to the average internal energy of the system
in which it is measured. This connection is forged by making use of the ideal gas law,
the kinetic theory of gases, and Newton’s laws of motion.
Ideal Gas Law. The ideal gas law, written as

PV = NkT, (4.1-1)

is an empirical relationship that relates several macroscopic thermodynamic variables
in a gas: the pressure P, volume V, number of particlesN, and temperature T measured
in kelvins. The quantity k ≈ 1.38 × 10−23 J/K is Boltzmann’s constant (a photo of
Boltzmann stands on p. 84). At T = 300 K (room temperature), kT = 0.026 eV =
4.14 zJ = 209 cm−1 (Fig. 3.2-1). Equation (4.1-1) offers a fine description for many real
gases (particularly monatomic ones), as long as their densities are sufficiently low that
the constituent molecules interact little, and it is widely used in practice. It is apparent
from this equation that at fixed volume, a perfect gas exhibitsP = 0 at T = 0. However,
although this law relates macroscopic variables such as pressure and temperature, it
provides no insight into the molecular underpinnings of the relation. To establish those
connections, we appeal to the kinetic theory of gases.
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Kinetic Theory of Gases. Kinetic theory provides a bridge that links pressure, a
macroscopic thermodynamic property characterizing a large collection of particles in
a container, to the internal kinetic energy the constituent particles, a microscopic prop-
erty. We make use of a simple version of kinetic theory in which the individual particles
constantly undergo random elastic collisions with the walls of the container, as depicted
in Fig. 4.1-2. We then make use of Newton’s laws of motion and the ideal gas law
to relate temperature to internal energy. Interactions among the constituent particles
are ignored and steady-state conditions are assumed to prevail. Kinetic theory is an
elementary form of statistical mechanics, which is based in atomic physics, and provides
the physical underpinnings of thermodynamics.

Newton’s laws provide the explanation of how
an individual gas particle, in colliding with a
wall of the container, exerts a force on the
wall as it rebounds. The large number of gas
particles striking the walls in this manner exert
a collective force, and the force per unit area
represents the pressure of the gas. The ideal gas
law in turn provides that the pressure of the gas
is proportional to its temperature. In short, ki-
netic theory reveals that the macroscopic Kelvin
temperature is proportional to the microscopic
internal average translational kinetic energy of
a particle in an ideal monatomic gas, whatever
the pressure and volume of the container.

Figure 4.1-2 Individual gas particles
bouncing off the walls of a container
exert forces that are the origin of gas
pressure.

The expression that relates these quantities is

1
2mv

2
RMS =

3
2kT, (4.1-2)

where m is the mass of the particle and vRMS is its root-mean-square velocity, as de-
fined in (A.2-1) of Appendix A. The Boltzmann constant k serves as the constant of
proportionality between the temperature of the system and the internal kinetic energy.

□ Relation Between System Temperature and Internal Kinetic Energy in an Ideal Gas. Con-
sider a collection of N identical particles in a cubical container of side length L and volume L3, and
focus on the motion of a single particle of mass m and velocity vx traveling along the x axis in a
direction normal to a wall of the container. Since a collision with the wall is elastic, the speed of the
particle is the same both before and after the collision, and the change of momentum of the particle
resulting from an encounter is ∆p = +mvx − (−mvx) = 2mvx. Because the particle rebounds
from the wall once during its round-trip travel time along the x axis, which is ∆t = 2L/vx, the
force exerted on the wall by the collision is F = ∆p/∆t = mv2x/L. However, theN particles actually
move about randomly in three dimensions, so only N/3 of them on average strike the particular wall.
Hence, the total force exerted by the N particles on the wall is F = (N/3)(mv2RMS/L), where vRMS

represents the root-mean-square speed [see (A.2-1) of Appendix A] associated with the Maxwell
velocity distribution (also called the Maxwell–Boltzmann distribution). We conclude that the force
per unit area, or pressure, is given by P = (N/3)(mv2RMS/L

3) = 2
3
N( 1

2
mv2RMS/V ). Rewriting this

as PV = 2
3
N( 1

2
mv2RMS), and observing that the ideal gas law PV = NkT expresses PV in terms

of temperature, we arrive at 1
2
mv2RMS = 3

2
kT , as set forth in (4.1-2). Temperature is a property of a

collection of particles in thermal equilibrium; it is not to be associated with an individual particle. ■
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Equipartition of Energy
The equipartition theorem of classical statistical mechanics specifies that in thermal
equilibrium an equal share of energy is to be associated with each and every form of
energy in the system that can be expressed as a quadratic function of a coordinate or
velocity component. Each such form of energy is called a degree-of-freedom (DOF).
A particle moving through free space, for example, has three DOFs since its kinetic
energy is expressed as a sum of three quadratic functions of velocity of the formmv2x/2.
According to the equipartition theorem, each component of rotational kinetic energy,
vibrational kinetic energy, and elastic potential energy is eligible for its share since the
associated energies assume the quadratic forms Iω2

x/2, mv2x/2, and κx2/2, respec-
tively, where I is the moment of inertia, ωx is a component of the angular velocity, and
κ is the molecular spring constant.

The equipartition theorem specifies that at temperature T , the average thermal en-
ergy ascribable to each such quadratic degree-of-freedom is 1

2kT . Hence, an ideal
monatomic gas, with three translational DOFs, has total thermal energy 3

2kT , as ex-
pressed in (4.1-2). Similarly, a harmonic mode has two DOFs, one for its vibrational
kinetic energy and the other for its potential energy, for a total of kT . The same is true for
a classical harmonic electromagnetic mode. In a crystalline solid, each constituent atom
can vibrate in three orthogonal dimensions with respect to its neighbors in the lattice,
which gives rise to six DOFs per atom, three from kinetic and three from potential
energy.

In general, tabulating the DOFs that contribute to the thermal energy in a classical
system can be tricky, although equipartition-theorem violations at lower temperatures
are reasonably well-understood. At sufficiently high temperatures, strong interparticle
interactions serve to excite all available DOFs, but this is frequently not the case at
moderate temperatures, where the unexcited DOFs do not contribute to the overall
thermal energy and are said to be frozen out. The equipartition theorem is not applicable
for static contributions, such as the energies stored in chemical bonds, nor should it be
used for broken bonds or phase transitions. The equipartition principle fails for quantum
systems where the energy levels do not form a smooth continuum. The quintessential
example of this breakdown is the failure of the Rayleigh–Jeans law to describe the
spectrum of blackbody radiation, as discussed in Sec. 4.7.

4.2 OCCUPATION OF ENERGY LEVELS

As mandated by the laws of statistical physics, an object such as an individual atom
drawn from a collection of identical objects in thermal equilibrium, continuously under-
goes random transitions among its various energy levels. The principal determinant of
the magnitude of the energy-level occupancy fluctuations, and of the average behavior,
is the internal energy of the system as characterized by its temperature.

Energy Levels
The atoms of matter may exist in relative isolation, as in the case of a dilute atomic
gas, or they may interact strongly with neighboring atoms to form molecules, liquids,
and solids. The energy levels of simple forms of matter are determined by solving the
Schrödinger equation of quantum mechanics, subject to a potential energy V (r, t)
that characterizes the environment. Atomic and ionic energy levels, for example, are
established by determining the potential energies of the electrons in the presence of
the atomic nucleus and all other electrons, along with the potential energies associated
with the orbital and spin angular momenta, which are usually small in comparison with
those involving charges. Molecules, liquids, and solids obey more complex versions of
the Schrödinger equation, in which the potential energy contains terms that accommo-
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date interactions among the constituent atoms, as well as contributions from externally
applied fields.

The energy levels can be discrete (as for an atom), or continuous (as for a free
particle such as an electron), or they can comprise sets of densely packed discrete levels
called bands (as discussed in Sec. 5.1 for a semiconductor). The presence of thermal
excitations, or of an external field such as light illuminating the material, can induce the
system to move from one of its energy levels to another. These interactions provide the
means via which the system can exchange energy with the outside world.

Boltzmann Distribution
Consider a system comprising a collection of distinguishable objects (such as atoms)
that form a dilute gas, where each object is in one of its allowed discrete energy states,
E 1,E 2, . . . ,Em, . . .. If the system is in thermal equilibrium at temperature T , the prob-
ability P (Em) that an object is in energy level Em is characterized by the Boltzmann
distribution

P (Em) ∝ exp

(
−Em

kT

)
, m = 1, 2, 3, . . . , (4.2-1)

Boltzmann
Distribution

which is parameterized by the energy kT , where again k is Boltzmann’s constant. The
coefficient of proportionality in (4.2-1) is determined by imposing the normalization
condition

∑
m P (Em) = 1.

The occupation probability P (Em) vs. Em specified in (4.2-1) is an exponentially
decreasing function of Em, as displayed in Fig. 4.2-1.
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Figure 4.2-1 The Boltzmann distri-
bution P (Em) (plotted along the ab-
scissa) specifies the probability that the
energy level Em of an entity with an
arbitrary collection of discrete energy
levels (plotted along the ordinate), is
occupied. P (Em) is an exponentially
decreasing function of Em.

□ Form of the Boltzmann Distribution. An understanding of the form assumed by the Boltzmann
distribution can be attained by considering a system of many identical entities that share a fixed
total energy E . The entities are isolated from their surroundings but are in thermal equilibrium,
exchanging energy among themselves via a bath at temperature T . The divisions of energy are taken to
be distinguishable if they involve different energy states, and all possible divisions of the total energy
are assumed to occur with equal probability. If one of the entities takes a large share of the total energy,
less is available for the remaining entities so there are fewer possible divisions. Consequently, large
energies are less probable than small ones. A quantitative description is provided by considering two
entities: The probability of finding one with energy E 1 and the other with energy E 2 is the product
P (E 1)P (E 2) since they are independent. However, if the sum of the energies of the two entities is
fixed at the value E 1 + E 2, then P (E 1)P (E 2) must be a function of (E 1 + E 2), which uniquely
specifies that the probability takes the form of an exponential function. The result for multiple energy
levels follows by induction. The energies are measured in units of the equipartition energy kT . ■
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Now consider the Boltzmann distribution in the context of a large number of atoms
N . If Nm is the number of atoms occupying energy level Em, the fraction Nm/N ≈
P (Em). Hence, if N1 atoms occupy level 1 and N2 atoms occupy a higher level 2, in
thermal equilibrium the population ratio is, on average,

N2

N1
= exp

(
−E 2 − E 1

kT

)
. (4.2-2)

This ratio depends on the temperature T . At T = 0 K, we have N2/N1 = 0 and all
atoms are in the lowest energy level (ground state). As the temperature increases, the
populations of the higher energy levels grow, but the average population of a given
energy level always remains greater than that of a higher-lying level. This condition
need not hold under non-equilibrium conditions, however, where a higher energy level
can have a greater average population than a lower energy level. This latter condition is
known as a population inversion and is the basis of laser action.

It has been assumed in the foregoing that there is a unique way in which an atom can
find itself in one of its energy levels. It is sometimes the case, however, that two or more
states (e.g., different states of angular momentum) correspond to the same energy. To
account for such degenerate states, (4.2-2) can be written in the more general form

N2

N1
=

g2

g1
exp

(
−E 2 − E 1

kT

)
, (4.2-3)

where the so-called degeneracy factors g2 and g1 represent the numbers of states
corresponding to the energy levels E 2 and E 1, respectively.

Fermions and Bosons. Fundamental particles in physics are divided into two broad
classes of indistinguishable particles: Fermions, such as electrons, protons, neutrons,
and other material particles, are endowed with spin that is a half-integer multiple of
ℏ. Fermions obey Fermi–Dirac statistics. Fermions with overlapping wavefunctions,
such as electrons in a multielectron atom or in a semiconductor material, are subject to
the Pauli exclusion principle, which asserts that no two identical particles can simul-
taneously be in the same state. In contrast, bosons, such as photons and other force-
carrier particles have a spin that is an integer multiple of ℏ, as do quasiparticles such as
plasmons, polaritons, and phonons. Bosons obey Bose–Einstein statistics and are not
subject to the Pauli exclusion principle

Fermi–Dirac Statistics. The probability of occupancy of a state of energy E for
a collection of fermions in thermal equilibrium is represented by the Fermi–Dirac
distribution (or Fermi function),

fFD(E ) =
1

exp [(E − Ef )/kT ] + 1
, (4.2-4)

Fermi–Dirac
Distribution

which is illustrated in Fig. 4.2-2. The occupancy probability decreases monotonically
with increasing E , falling to a value of 1/2 at the Fermi energy E = Ef . As a result
of the Pauli exclusion principle, the Fermi–Dirac distribution represents a sequence of
probabilities, each with a value that lies between 0 and 1 for every value of E . The
condition fFD(E ) = 1 indicates that a state is definitely occupied whereas the condition
fFD(E ) = 0 indicates that it is definitely unoccupied.
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Figure 4.2-2 The Fermi–Dirac distribution fFD(E )
(plotted on the abscissa) represents the probability of
occupancy of a state of energy E (displayed on the ordi-
nate). This distribution is applicable for systems containing
particles with overlapping wavefunctions in which the Pauli
exclusion principle is operative. The Bose–Einstein distri-
bution fBE(E ), which behaves very differently, is plotted
in the same way. Both distributions may be approximated
by the Boltzmann probability distribution P (Em) in the
domain E ≫ Ef and E ≫ kT , where the probability of
occupancy is low.

For E ≫ Ef and E ≫ kT , the occupancy probability is sufficiently small that the
issue of indistinguishability is not relevant and the Fermi–Dirac distribution (4.2-4)
reduces to the Boltzmann probability distribution,

P (E ) ∝ exp(−E/kT ). (4.2-5)

The Boltzmann approximation is generally applicable for valence electrons in the outer
subshells of atoms and ions so that the populations of optically active electrons are
essentially governed by it. The Fermi function is considered further in Chapter 5 in
connection with semiconductors.

Bose–Einstein Statistics. The probability of occupancy of a state of energy E for
bosons in thermal equilibrium is represented by the Bose–Einstein distribution,

fBE(E ) =
1

exp [(E − Eµ)/kT ]− 1
, (4.2-6)

Bose–Einstein
Distribution

where the chemical potential Eµ = 0 for photons since their number is not conserved.
This distribution is plotted in Fig. 4.2-2 along with the Fermi–Dirac distribution. For
E ≫ kT , the occupancy probability is sufficiently small that the issue of indistin-
guishability is again irrelevant and the Bose–Einstein distribution, like the Fermi–Dirac
distribution in (4.2-4), reduces to the Boltzmann probability distribution (4.2-5), as
displayed in Fig. 4.2-2.

Photon-Number Statistics for Thermal Light in a Cavity
Single-Mode Thermal Light. Thermal light is generated in an optical cavity whose
walls are maintained at a fixed temperature T and whose atoms emit photons into the
modes of the cavity. As discussed in connection with (4.2-6), when E ≫ kT the
probability of occupancy for a collection of photons in thermal equilibrium, which
is known as a photon gas, with energy levels En follows the Boltzmann probability
distribution. Replacing the atomic energy-level designatorm in (4.2-1) with the photon-
number subscript n provides P (En) ∝ exp (−En/kT ), n = 1, 2, 3, . . ..

This exponentially decreasing distribution is sketched in Fig. 4.2-3 with P (En) plot-
ted along the abscissa and En plotted along the ordinate. The occupancy of each energy
level is random with higher energies relatively less probable than lower energies.
We proceed by assuming that a collection of photons in a mode of frequency ν has
allowed energy levels specified by En = (n+ 1

2)hν, as provided in (3.2-2) and illustrated
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Figure 4.2-3 Left: Allowed energy
levels of a collection of photons in a
mode of frequency ν. Right: Boltzmann
probability distribution P (En) (plotted
along the abscissa) vs. energyEn (plotted
along the ordinate) for two values of the
temperature T . The higher the tempera-
ture, the more likely that higher energy
levels are occupied.

in Fig. 4.2-3. It follows that the probability of finding n photons in the mode is

p(n) ∝ exp

(
−nhν

kT

)
=

[
exp

(
− hν

kT

)]n
, n = 0, 1, 2, . . . . (4.2-7)

The zero-point energy E 0 =
1
2hν disappears into the normalization and does not affect

the results. Equation (4.2-7) is normalized by imposing the condition
∑∞

n=0 p(n) = 1,
which yields the normalization constant [1− exp(−hν/kT )].

The probability distribution for the number of photons n in a cavity mode of fre-
quency ν given in (4.2-7) is more simply written in terms of the mean photon number
n as

p(n) =
1

n + 1

(
n

n + 1

)n
, n = 0, 1, 2, . . . , (4.2-8)

Bose–Einstein (Geometric)
Photon-Number Distribution

where

n =
1

exp(hν/kT )− 1
, (4.2-9)

as is readily demonstrated with the help of (3.6-2). It will become apparent in Sec. 4.7
that (4.2-9) accords with the mean photon number (4.7-7) calculated for a collection of
photons interacting with atoms in thermal equilibrium, which is reassuring.

In the parlance of probability theory, the distribution presented in (4.2-8) is known
as the geometric distribution since p(n) is a geometrically decreasing function of n.
In the physics literature, it is generally referred to as the Bose–Einstein distribution
since it was first set forth by Bose based on a statistical argument for counting the states
of indistinguishable particles such as photons. Einstein recognized that (4.2-8) was also
applicable for describing bosons whose numbers are conserved, and he predicted the
possibility of a condensation to the lowest energy state in a bosonic atomic gas cooled
below a critical temperature.

The Bose–Einstein distribution is displayed on a semilogarithmic plot in Fig. 4.2-4
for several values of the mean photon number n [or, equivalently, for several values of
the temperature T via (4.2-9)]. Its exponential character is apparent from the straight-
line behavior on this semilogarithmic plot. Comparing Fig. 4.2-4 with Fig. 3.6-2 for
the Poisson distribution demonstrates that the photon-number distributions for thermal
light decrease monotonically from n = 0 and are far broader than those for coherent
light.
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Figure 4.2-4 Semilogarithmic plot of
the Bose–Einstein photon-number distri-
bution, p(n) vs. number of photons n, for
four values of the mean photon number:
n =0.1, 1.0, 5.0, and 10. The curves
broaden substantially as n increases and
the maxima always fall at n = 0.

The photon-number variance of the Bose–Einstein distribution, which is calculated
using (3.6-3), is determined to be

σ2
n = n + n 2, (4.2-10)

Photon-Number Variance
Bose–Einstein Distribution

where n is the photon-number mean.

□ Normalization, Count Mean, and Count Variance of the Bose–Einstein Distribution. The
calculations are facilitated by using the substitutions q = n/(n+1) and 1− q = 1/(n+1) in (4.2-8),
which convert it to the form p(n) = (1 − q)qn. The sum of an infinite geometric series is expressed
as
∑∞

n=0 q
n = 1/(1− q), and it follows that

∑∞
n=1 q

n = q/(1− q) and
∑∞

n=2 q
n = q2/(1− q). The

orders of summation and differentiation are interchangeable since q < 1 and the series converge.

Normalization:
∞∑
n=0

p(n) = (1− q)

∞∑
n=0

qn =
1− q

1− q
= 1. √ (4.2-11)

Mean:
∞∑
n=0

np(n) = (1− q)

∞∑
n=0

nqn = (1− q)q

∞∑
n=1

nqn−1 = (1− q)q
∂

∂q

(
∞∑
n=1

qn

)

= (1− q)q
∂

∂q

(
q

1− q

)
=

q

1− q
= n. √ (4.2-12)

Variance: σ2
n =

∞∑
n=0

(n − n)2 p(n) =
∞∑
n=0

(n 2 − n + n − n 2) p(n) =
∞∑
n=0

n(n − 1) p(n) + n − n 2

= (1− q)

∞∑
n=0

n(n − 1)qn + n − n 2 = (1− q)q2
∞∑
n=2

n(n − 1)qn−2 + n − n 2

= (1− q)q2
∂2

∂q2

(
∞∑
n=2

qn

)
+ n − n 2 = (1− q)q2

∂2

∂q2

(
q2

1− q

)
+ n − n 2

= 2

(
q

1− q

)2
+ n − n 2 = 2n 2 + n − n 2 = n + n 2. √ (4.2-13)

■

Comparing the Bose–Einstein and Poisson variances given in (4.2-10) and (3.6-4),
respectively, reveals that, for n > 1, the former grows quadratically with n while the
latter grows linearly. The photon-number fluctuations of the Bose–Einstein distribution
are clearly far greater than those of the Poisson distribution, as is apparent by comparing
Figs. 4.2-4 and 3.6-2. This large variability is consistent with the random nature of
thermal light, as described in Sec. 2.7. The noisiness of the Bose–Einstein distribution
is crisply highlighted by its signal-to-noise ratio, which, in accordance with (3.6-8), is
given by



4.2 OCCUPATION OF ENERGY LEVELS 95

SNR = n/(n + 1) . (4.2-14)

Hence, the Bose–Einstein SNR always remains smaller than unity no matter how large
the mean n.

□ Average Energy of a Cavity Mode in Thermal Equilibrium. The average number of photons
n of frequency ν, for a single mode of thermal light under conditions of thermal equilibrium at
temperature T , is given by (4.2-9). Since the average energy per photon of frequency ν is hν, the
average energy associated with the mode is E = hνn, and

E = kT
hν/kT

exp(hν/kT )− 1
. (4.2-15)

The dependences of E on hν for T = 300 K (kT = 0.026 eV) and for T = 600 K (kT = 0.052 eV)
are displayed in Fig. 4.2-5. In the limit hν/kT ≪ 1, i.e., when the photon energy is much smaller
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Figure 4.2-5 Average energy E of a cav-
ity mode in thermal equilibrium vs. photon
energy hν for T = 300 K (kT = 0.026 eV)
and for T = 600 K (kT = 0.052 eV).

than the unit of thermal energy, a Taylor-series expansion provides exp (hν/kT ) ≈ 1 + (hν/kT ),
whereupon (4.2-15) reduces to E ≈ kT . The average energy of the mode then matches that expected
from the classical equipartition theorem, as would obtained were the light not quantized. ■

Multimode Thermal Light. Multimode thermal light in a cavity is taken to be a
collection ofM independent thermal modes sufficiently close to each other in frequency
that each obeys a Bose–Einstein distribution with the same mean photon number n =
1/[exp(hν/kT )−1], as provided in (4.2-9). Since this light comprises a sum of random
numbers of photons contributed by independent individual modes, the overall photon-
number distribution is the M-fold self-convolution of the Bose–Einstein single-mode
distribution set forth in (4.2-8). The result is the negative-binomial distribution

p(m) =

(
m +M− 1

m

)
(m/M)m

(1 +m/M)m+M
, (4.2-16)

Negative-Binomial
Photon-Number Distribution

with overall mean count

m = Mn. (4.2-17)

It is straightforward to show that the negative-binomial distribution reduces to the Bose–
Einstein distribution (4.2-8) for M = 1 and to the Poisson distribution (3.6-1) as M →
∞.
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The variance of the overall photon number σ2
m is the sum of the variances of the

individual modes, as provided in (4.2-10), which may be written in terms of the overall
multimode count mean m as

σ2
m = M(n + n 2) = m +

m 2

M
. (4.2-18)

Photon-Number Variance
Negative-Binomial Distribution

Since M ⩾ 1, the photon-number variance for multimode thermal light is reduced
below that for single-mode thermal light of the same mean, a result that arises from
averaging.

4.3 INTERACTIONS OF PHOTONS WITH ATOMS

An atom may emit (create) or absorb (annihilate) a photon by undergoing a downward
or upward transition between pairs of its energy levels, while conserving energy in the
process. The elementary laws that govern such emissions and absorptions are described.
The interaction of photons with electrons and holes in semiconductor materials is con-
sidered in detail in Chapter 6.

Elementary Interactions
Consider an atom with two energy levels, E 1 and E 2, placed in an optical cavity of
volume V that can sustain a number of electromagnetic modes. We are particularly
interested in the interaction between the atom and the photons of a prescribed radiation
mode of frequency ν ≈ ν0, where hν0 = E 2 − E 1, since photons of this energy
match the atomic energy-level difference. A formal study of such interactions relies on
quantum electrodynamics; we present the key results that emerge from such an analysis
below, without proof.

Three forms of interaction are possible — spontaneous emission, absorption, and
stimulated emission, as schematized in Figs. 4.3-1, 4.3-2, and 4.3-3, respectively, which
we consider in turn.

2

hν

Figure 4.3-1 Spontaneous
emission of a photon into a
mode of frequency ν via a
transition from atomic energy
level 2 to energy level 1.

2

hν

Figure 4.3-2 Absorption is
a process whereby a photon of
energy hν induces the atom to
undergo an upward transition
from level 1 to level 2.

2

hν
hν

hν

Figure 4.3-3 In stimulated
emission, a photon of energy
hν induces the emission of a
clone photon as the atom tran-
sitions from level 2 to level 1.

Spontaneous Emission. If the atom is initially in the upper energy level, it may
decay spontaneously to the lower energy level and release its energy in the form of
a photon (Fig. 4.3-1). The photon energy hν ≈ E 2 − E 1 is added to the energy of
the electromagnetic mode. The process is called spontaneous emission because the
transition is independent of the number of photons that may already be in the mode.
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In a cavity of volume V , the probability density (per second), or rate, for a sponta-
neous transition depends on ν in a way that characterizes that atomic transition,

psp =
c

V
σ(ν). (4.3-1)

Spontaneous Emission
(into a Prescribed Mode)

The quantity σ(ν), known as the transition cross section, is a function of ν centered
about the atomic resonance frequency ν0. The significance of this quantity will become
apparent subsequently, but it is clear that σ has dimensions of cm2 (since the dimensions
of psp, c, and V are s−1, cm/s, and cm3, respectively). In principle, σ(ν) can be deter-
mined using fundamental quantum mechanics but the calculations are generally onerous
and suffer from inaccuracies, so it is usually determined empirically. Equation (4.3-1)
applies separately to every mode, with a transition cross section σ that depends on the
angle θ between the dipole moment of the atom and the field direction of the mode, in
accordance with

σ = σmax cos
2 θ. (4.3-2)

The maximum cross section σmax is attained when the dipole moment and field align.
The term “probability density” signifies that the probability of an emission taking

place in an incremental time interval between t and t + ∆t is simply psp ∆t. Because
it is a probability density, psp can have a numerical value greater than 1 s−1, although
of course psp∆t ⩽ 1. Thus, if there are a large number N of such atoms, a fraction
of approximately ∆N = (psp ∆t)N atoms will undergo this transition within the time
interval ∆t. Consequently, we can write dN/dt = −pspN , which indicates that the
number of atoms N(t) = N(0) exp(−pspt) decays exponentially with time constant
1/psp, as illustrated in Fig. 4.3-4.

Figure 4.3-4 Spontaneous emission into a
single mode results in an exponential decrease
of the number of excited atoms, with time
constant 1/psp.

Absorption. If the atom is initially in the lower energy level and the radiation mode
contains a photon, the photon may be annihilated and the atom concomitantly raised
to the upper energy level (Fig. 4.3-2). This process, which is induced by the photon,
is called absorption. It is also referred to as or induced absorption or stimulated
absorption. It can occur only when the mode contains a photon.

The probability density for the absorption of a photon from a given mode of fre-
quency ν, in a cavity of volume V , is governed by the same law that governs sponta-
neous emission into that mode, namely

pab =
c

V
σ(ν). (4.3-3)



98 CHAPTER 4 THERMAL LIGHT

However, if there are n photons in the mode, the probability density that the atom
absorbs one photon is n times greater since the events are mutually exclusive, i.e.,

Pab = n
c

V
σ(ν). (4.3-4)

Absorption of One Photon
(from a Mode with n Photons)

Stimulated Emission. Finally, if the atom is in the upper energy level and the mode
contains a photon, the atom may be induced to emit another photon into the same mode.
This process, known as stimulated emission or induced emission, is the inverse of
absorption. The presence of a photon in a mode of specified frequency, propagation
direction, and polarization stimulates the emission of a duplicate (“clone”) photon with
precisely the same characteristics as the original (Fig. 4.3-3). This photon amplification
process underlies the operation of laser amplifiers and lasers.

The probability density pst that this process occurs in a cavity of volume V is gov-
erned by the same law that governs spontaneous emission and absorption:

pst =
c

V
σ(ν). (4.3-5)

If the mode originally carries n photons, the probability density that the atom is stimu-
lated to emit an additional photon is, just as in the case of absorption,

Pst = n
c

V
σ(ν). (4.3-6)

Stimulated Emission of One Photon
(into a Mode with n Photons)

For notational convenience, we use the common designator Wi for both the absorption
of one photon and the stimulated emission of one photon:

Wi ≡ Pab = Pst. (4.3-7)
Probability Density for One Photon

(Absorption and Stimulated Emission)

Inasmuch as spontaneous emission is present along with stimulated emission, com-
bining (4.3-1) and (4.3-6) leads to an overall probability density for the atom emit-
ting a photon into the mode, i.e., psp + Pst = (n + 1)(c/V )σ(ν). From a quantum-
electrodynamic point of view, spontaneous emission may be regarded as stimulated
emission induced by the zero-point fluctuations associated with the mode (Sec. 3.2).
Because the zero-point energy plays no role in absorption, however, Pab is proportional
to n rather than to (n + 1).
Lineshape Function and Transition Strength
It is clear from the foregoing that the transition cross section σ(ν) characterizes the
interaction of the atom with the photon. Its shape governs the relative magnitude of the
interaction of the atom with photons over a range of frequencies, while its area,

S =

∫ ∞

0

σ(ν) dν, (4.3-8)
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known as the transition strength, represents the strength of the interaction. The area
S, which has units of cm2-Hz, can be readily separated from the shape (profile) of σ(ν)
by defining a normalized lineshape function g(ν) = σ(ν)/S, which has unity area,∫∞
0 g(ν) dν = 1, and units of Hz−1. The transition cross section can then be written in

terms of its strength and profile as
σ(ν) = Sg(ν). (4.3-9)

The lineshape function g(ν) is centered about the resonance frequency ν0, where
σ(ν) is largest, and decreases sharply as ν deviates from ν0. Transitions are therefore
most likely to occur for photons of frequency ν ≈ ν0. The width of the function g(ν)
is known as the transition linewidth ∆ν, which is usually defined as the full-width at
half-maximum (FWHM) value of g(ν) (see Sec. A.2 of Appendix A). Since g(ν) has
unity area, its width is inversely proportional to its central value,

∆ν ∝ 1/g(ν0). (4.3-10)

It is also useful to define a peak cross section at the resonance frequency, σ0 ≡ σ(ν0).
As illustrated in Fig. 4.3-5, the transition cross section σ(ν) is then characterized by
four features: 1) its height σ0; 2) its width ∆ν; 3) its area S; and 4) its profile g(ν).

σ(ν)

Δν

Area = S

σ0

g(ν)

Area = 1

Δν Figure 4.3-5 Features of the
transition cross section σ(ν) and
the lineshape function g(ν).

The process of spontaneous emission is reexamined in Sec. 4.4 in the context of pho-
ton emission into any available mode, rather than into a prescribed mode. In the same
vein, the processes of absorption and stimulated emission are revisited in Sec. 4.5 from
the perspective of transitions induced by broadband, rather than monochromatic, light.
A number of line-broadening mechanisms and their lineshape functions are discussed
in Sec. 4.6.

4.4 SPONTANEOUS EMISSION

Spontaneous Emission into Any Available Mode
Equation (4.3-1) provides the probability density psp for spontaneous emission into a
prescribed mode of frequency ν, without regard to whether the mode contains photons.
Of paramount interest, however, is the probability density for the spontaneous emission
of one photon of frequency ν into any available optical mode, as illustrated schemati-
cally in Fig. 4.4-1.

Atom

Figure 4.4-1 An atom
may spontaneously emit a
photon into any one (but
only one) of the many
available optical modes
with frequencies ν ≈ ν0.
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To determine the probability density for the total spontaneous emission into all
modes, it is required to have knowledge not only of the probability density for spon-
taneous emission into a specific mode, but also the density of modes. We proceed
to demonstrate that the density of modes for a three-dimensional cavity increases
quadratically with frequency.

Density of Modes in a Three-Dimensional Cavity
Planar-Mirror Cavity. A 3D planar-mirror cavity is constructed from three pairs of
parallel mirrors that form the walls of a closed rectangular box of dimensions dx ,
dy , and dz . The structure is a three-dimensional cavity, as depicted in Fig. 4.4-2(a).
By virtue of the boundary conditions, standing-wave electric-field solutions within the
cavity require that the components of the wavevector k = (kx, ky, kz) are discretized
and obey

kx = qx
π

dx
, ky = qy

π

dy
, kz = qz

π

dz
, qx, qy, qz = 1, 2, . . . , (4.4-1)

where qx, qy, and qz are positive integers representing the respective mode numbers. The
k-space construct for a cubic cavity with dx = dy = dz = d is illustrated in Fig. 4.4-
2(b). Each mode q, characterized by the three integers (qx, qy, qz), is represented by a
dot in (kx, ky, kz)-space. The spacing between the dots in a given direction is inversely
proportional to the width of the cavity along that direction.

d

d

d

k = 
c 
2πν 

d 
π 

d 
π 

d 
π 

kx 

ky 

kz 

Mode 3

Mode 1

Mode 2

Figure 4.4-2 (a) Waves in a three-dimensional cubic cavity (dx = dy = dz = d). (b) The
endpoints of the wavevectors (kx, ky, kz) of the modes in a three-dimensional cavity are indicated
by dots. The wavenumber k of a mode is the distance from the origin to the dot. Each point in k-space
occupies a volume (π/d)3. All modes of frequency smaller than ν lie inside the positive octant of a
sphere of radius k = 2πν/c.

The values of the wavenumbers k, and the corresponding resonance frequencies ν,
satisfy

k2 = k2x + k2y + k2z =

(
2πν

c

)2
. (4.4-2)

The surface of constant frequency ν is a sphere of radius k = 2πν/c. The resonance
frequencies are determined from (4.4-1) and (4.4-2), so that

νq =
√
q2x ν

2
Fx + q2y ν

2
Fy + q2z ν

2
Fz , qx, qy, qz = 1, 2, . . . , (4.4-3)

Resonance
Frequencies
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where

νFx =
c

2dx
, νFy =

c

2dy
, νFz =

c

2dz
(4.4-4)

are frequency spacings that are inversely proportional to the cavity widths in the x, y,
and z directions, respectively. For cavities whose dimensions are much larger than a
wavelength, the frequency spacings are much smaller than the optical frequency. For
example, if d = 1 cm and n = 1, we have νF = 15 GHz.

Density of Modes. When all the dimensions of the cavity are much greater than
a wavelength, the mode spacing (free spectral range) νF = c/2d is small, and it is
difficult to analytically enumerate the modes. In this case, however, we can resort to
a continuous approximation and introduce the concept of the density of modes, the
validity of which depends on the relative values of the frequency bandwidth of interest
and the frequency interval between successive modes.

The number of modes that lie in the frequency interval between 0 and ν corresponds
to the number of points that lie in the volume of the positive octant of a sphere of
radius k in the k-space diagram portrayed in Fig. 4.4-2(b). The number of modes in
the positive octant of a sphere of radius k is 2( 18)(

4
3πk

3)/(π/d)3 = (k3/3π2)d3. The
initial factor of 2 accommodates the two possible polarizations of each mode, while
the denominator (π/d)3 represents the volume in k-space per point. It follows that
the number of modes with wavenumbers between k and k + ∆k, per unit volume,
is ϱ(k)∆k = [(d/dk)(k3/3π2)]∆k = (k2/π2)∆k, so that the density of modes in
k-space is ϱ(k) = k2/π2. This derivation is identical to that used for determining the
density of allowed quantum states for electron waves confined within perfectly reflecting
walls in a bulk semiconductor, as provided in (5.4-1).

Since k = 2πν/c, the number of modes lying between 0 and ν is [(2πν/c)3/3π2]d3

= (8πν3/3c3)d3. The number of modes in the incremental frequency interval lying
between ν and ν+∆ν is therefore (d/dν)[(8πν3/3c3)d3]∆ν = (8πν2/c3)d3∆ν. The
density of modes M(ν), i.e., the number of modes per unit bandwidth surrounding the
frequency ν, per unit cavity volume, is thus

M(ν) ≈ 8πν2

c3
. (4.4-5)

Density of Modes
(3D Cavity)

Equation (4.4-5) provides a suitable approximation for the number of modes of fre-
quency ν, per unit volume of the cavity, per unit frequency bandwidth, that may be
used when the mode spacing is sufficiently small that a continuous approximation can
be used for counting. Although the density of modes was derived on the basis of cubic
geometry, the results are applicable for arbitrary geometries, provided that the cavity
dimensions are large in comparison with the wavelength. Equation (4.4-5) is useful
in various areas of physics and is an integral part of the calculation to determine the
spectrum of blackbody radiation (Sec. 4.7).

Since M(ν) increases quadratically with frequency, the number of modes within a
fixed frequency bandwidth∆ν increases with the frequency ν in the manner sketched in
Fig. 4.4-3. As an example, at ν = 3× 1014 (λO = 1 µm),M(ν) = 0.08 modes/cm3-Hz.
Within a frequency band of width 1 GHz, there are then ≈ 8× 107 modes/cm3. The
number of modes per unit volume within an arbitrary frequency interval ν1 < ν < ν2
is given by the integral

∫ ν2
ν1

M(ν) dν.
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ν

  ν
M(ν) Figure 4.4-3 The density of modes M(ν)

vs. ν for a three-dimensional optical cavity
increases as a quadratic function of frequency.
As sketched in the inset, the frequency spacing
between adjacent modes decreases as the fre-
quency increases.

Total Spontaneous Emission into All Modes
Equation (4.4-5) for the density of modes makes it possible to calculate the probability
density for spontaneous emission into all modes, which is the probability density for
spontaneous emission into a specific mode (4.3-1), weighted by the modal density (4.4-
5). Since the modes at each frequency have an isotropic distribution of directions, each
with two polarizations, we make use of the average transition cross section σ(ν). If
θ is the angle between the dipole moment of the atom and the field direction, (4.3-2)
provides

σ(ν) = 1
3σmax (4.4-6)

since ⟨cos2 θ⟩ = 1/3 , where the symbol ⟨·⟩ represents averaging in 3D space.
The total spontaneous-emission probability density may therefore be written as

Psp =

∫ ∞

0

[ c
V
σ(ν)

]
[VM(ν)] dν = c

∫ ∞

0

σ(ν)M(ν) dν. (4.4-7)

Because the function σ(ν) is sharply peaked, it is narrow in comparison with the
quadratic function M(ν) = 8πν2/c3. Since σ(ν) is centered about ν0, M(ν) is
approximately constant with value M(ν0), and can thus be removed from the integral.
The probability density for the spontaneous emission of one photon into any mode is
therefore

Psp = M(ν0) cS =
8πν20S

c2
=

8πS

λ2
, (4.4-8)

where λ = c/ν0 is the wavelength of the light in the medium and S =
∫∞
0 σ(ν) dν. We

define a time constant tsp, known as the spontaneous lifetime for the 2 → 1 transition,
such that 1/tsp ≡ Psp, so

Psp =
1

tsp
, (4.4-9)

Spontaneous Emission
(Broadband)

which is independent of the cavity volume V .
Combining (4.4-8) and (4.4-9) leads to

S =
λ2

8πtsp
, (4.4-10)

which enables the transition strength to be determined from an empirical measurement
of the spontaneous lifetime tsp. For a well-known transition, such as that between the
first excited and ground states of atomic hydrogen, we have tsp ≈ 10−8 s; however, tsp
can vary over a range that extends from femtoseconds to seconds. Equation (4.4-10) is
useful because a first-principles calculation of S would require intimate knowledge of
the quantum-mechanical behavior of the system, which is not always available, or easy
to compute if it is available.
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Relation Between Transition Cross Section and Spontaneous Lifetime
Using (4.4-10), together with the formula σ(ν) = Sg(ν), which derives from (4.3-9),
leads to a relation that connects the average transition cross section with the spontaneous
lifetime and the lineshape function:

σ(ν) =
λ2

8πtsp
g(ν). (4.4-11)

Average Transition
Cross Section

This formula is known as the Füchtbauer–Ladenburg equation. The average transition
cross section at the central frequency ν0 is therefore

σ0 ≡ σ(ν0) =
λ2

8πtsp
g(ν0). (4.4-12)

Because g(ν0) is inversely proportional to∆ν, for a given value of tsp the peak transition
cross section σ0 is inversely proportional to the linewidth ∆ν, in accordance with (4.3-
10).

Frequencies of Spontaneously Emitted Photons. The probability density (s−1)
of an excited atom spontaneously emitting a photon into any of the modes in the fre-
quency band ν to ν + dν is specified by the integrand of (4.4-7), namely Psp(ν) dν =
(c/V )σ(ν)VM(ν) dν. The average transition cross section in turn is given by σ(ν) =
(λ2/8πtsp) g(ν) in accordance with (4.4-11), and the density of modes per unit volume
is expressed as M(ν) = 8πν2/c3 as specified in (4.4-5). Combining these three equa-
tions yields the probability density that a spontaneously emitted photon has a frequency
lying between ν and ν + dν,

Psp(ν) dν = (1/tsp) g(ν) dν, (4.4-13)

which is proportional to g(ν)dν. Hence, when many photons are spontaneously emitted,
the distribution of their frequencies follows the lineshape function g(ν).

4.5 ABSORPTION AND STIMULATED EMISSION

We now turn from spontaneous emission to absorption and stimulated emission. We
begin by considering the interaction of single-mode light with an atom when a stream
of photons impinges on it, rather than when the atom resides in a cavity of volume V , as
considered earlier. We then investigate atomic photon absorption and emission induced
by broadband light and relate the ensuing transition rates to those for spontaneous
emission.

Transitions Induced by Monochromatic Light
Let monochromatic light of frequency ν, intensity I , and mean photon-flux density
(photons/cm2-s)

ϕ = I/hν (4.5-1)

interact with an atom whose resonance frequency is ν0. We seek to determine the
probability densities for absorption and stimulated emission, Wi ≡ Pab = Pst, in
this configuration.
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The number of photons n involved in the interaction is determined by constructing a
volume in the form of a cylinder of base area A, height c×1 s, and volume V = cA. The
axis of the cylinder is parallel to k, the direction of propagation of the light. The photon
flux that crosses the cylinder base is Φ = ϕA (photons/s). Because photons travel at
the speed of light c, all of the photons within the volume of the cylinder cross its base
within one second. It follows that, at any time, the cylinder contains n = ϕA = ϕV/c
photons so that

ϕ = n
c

V
. (4.5-2)

To determine Wi, we substitute (4.5-2) into (4.3-4) or (4.3-6), and make use of (4.3-7),
to obtain

Wi = ϕσ(ν). (4.5-3)
Probability Density

(Monochromatic Light)

It is apparent that σ(ν) is the coefficient of proportionality between the probability
density of an induced transition and the photon-flux density. This relationship informs
us that the appellation “transition cross section” is apt: ϕ is the photon-flux density
(cm−2·s−1) while σ(ν) is the effective cross-sectional area of the atom (cm2), so that
ϕσ(ν) represents the probability density (s−1) that a photon in the stream is “captured”
by the “cross section” of the atom for the purpose of absorption or stimulated emission.

It is clear from (4.3-4), (4.3-6), and (4.4-7) that the probability densities for ab-
sorption, stimulated emission, and spontaneous emission are all proportional to σ(ν).
As discussed above, stimulated emission involves decay only into those modes that
contain photons. Although the expression for σ(ν) set forth in (4.4-11) was obtained
for spontaneous emission into multiple modes, it is convenient to use it in conjunction
with (4.5-3) to determine the probability density for induced transitions as well, since
tsp is readily determined experimentally.

The use of the quantity σ(ν) instead of σ(ν) in (4.4-11) is a result of averaging over
the angle between the dipole moment of the atom and the field direction [see (4.3-2)
and (4.4-6)]; it is appropriate for spontaneous emission into all modes. However, when
such averaging is not called for, as in the case of stimulated emission into a particular
mode and a fixed angle θ, σ(ν) and σ0 are used in place of σ(ν) and σ0. Any change
in σ(ν) required for averaging with a particular induced-transition configuration can
be readily accommodated by modifying tsp, which is then referred to as the effective
spontaneous lifetime. For simplicity, we shall henceforth not distinguish between tsp
for spontaneous emission and its effective value for stimulated emission.

Transitions Induced by Broadband Light
Consider now an atom in a cavity of volume V containing multimode polychromatic
light of spectral energy density ϱ(ν) (energy per unit frequency per unit volume) that is
broadband in comparison with the atomic linewidth. The average number of photons in
the frequency band from ν to ν + dν is [ϱ(ν)V/hν] dν; each of these has a probability
density (c/V )σ(ν) of initiating an atomic transition. As with spontaneous emission, the
modes at each frequency are taken to be isotropically distributed with two polarizations,
so that the overall probability of absorption or stimulated emission is

Wi =

∫ ∞

0

ϱ(ν)V

hν

[ c
V
σ(ν)

]
dν. (4.5-4)
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Since the radiation is broadband, the function ϱ(ν) varies slowly in comparison with
the sharply peaked transition cross section σ(ν). We can therefore replace ϱ(ν)/hν
under the integral with ϱ(ν0)/hν0, which leads to

Wi =
ϱ(ν0)

hν0
c

∫ ∞

0

σ(ν) dν =
ϱ(ν0)

hν0
cS. (4.5-5)

Using (4.4-10), we therefore have

Wi =
λ3

8πhtsp
ϱ(ν0), (4.5-6)

where λ = c/ν0 is the wavelength in the medium at the central frequency ν0. Defining

n =
λ3

8πh
ϱ(ν0), (4.5-7)

which represents the mean number of photons per mode, allows us to write (4.5-6) in
the convenient form

Wi = n/tsp . (4.5-8)
Probability Density
(Broadband Light)

The interpretation of n as the mean number of photons per mode follows from the
form of the ratio [see (4.4-8), (4.5-5), and (4.5-6)]

Wi

Psp
=
λ3ϱ(ν0)

8πhtsp

1

M(ν0)cS
=

ϱ(ν0)

hν0M(ν0)
; (4.5-9)

the quantity ϱ(ν0)/hν0 represents the mean number of photons per unit volume in the
vicinity of the frequency ν0 while M(ν0) is the number of modes per unit volume in
the vicinity of ν0. The probability density Wi is thus a factor of n greater than that
for spontaneous emission, as provided in (4.4-9), since each mode contains an average
of n photons. Broadband absorption and stimulation emission evidently share a close
relationship with broadband spontaneous emission.

Einstein A and B Coefficients. Although Einstein did not have knowledge of (4.5-
6), in 1917 he carried out an analysis of the energy exchange between atoms and radia-
tion that led him to general expressions for the probability densities of spontaneous and
stimulated transitions. He assumed that the atoms interacted with broadband radiation
of spectral energy density ϱ(ν), under conditions of thermal equilibrium, and obtained
the following expressions:

Psp = A (4.5-10)
Wi = B ϱ(ν0). (4.5-11)

Einstein’s Postulates

The constants A and B are known as the Einstein A and B coefficients.
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Comparison of (4.5-10) and (4.5-11) with (4.4-9) and (4.5-6), respectively, reveals
that the A and B coefficients correspond to

A =
1

tsp
(4.5-12)

B =
λ3

8πhtsp
, (4.5-13)

Einstein’s A and B
Coefficients

which are associated with spontaneous and stimulated transitions, respectively. Their
ratio is given by

B

A
=

λ3

8πh
. (4.5-14)

The relation between the A and B coefficients is a result of the microscopic probability
laws of interaction between an atom and the photons of each mode. An analysis similar
to that provided by Einstein will be presented in Sec. 4.7 in connection with blackbody
radiation.

EXAMPLE 4.5-1. Comparison Between Spontaneous and Stimulated Emission Rates.
Whereas the rate of spontaneous emission for an atom in the upper state is constant at A = 1/tsp,
the rate of stimulated emission in the presence of broadband light, B ϱ(ν0), is proportional to the
spectral energy density of the light, ϱ(ν0). The two rates are equal when ϱ(ν0) = A/B = 8πh/λ3; for
larger values of the spectral energy density, the rate of stimulated emission exceeds that of spontaneous
emission. If λ = 1 µm, for example, A/B = 1.66× 10−14 J/m

3-Hz. This corresponds to an intensity
spectral density cϱ(ν0) ≈ 5× 10−6 W/m

2-Hz in free space. Thus, for a linewidth ∆ν = 107 Hz,
the optical intensity at which the stimulated emission rate equals the spontaneous emission rate is
50 W/m

2 or 5 mW/cm
2.

Summary: Transition Cross Section

An atomic transition may be characterized by its resonance frequency ν0 =
(E 2 − E 1)/h, spontaneous lifetime tsp, and lineshape function g(ν), which
has linewidth ∆ν. The average transition cross section is

σ(ν) = Sg(ν) =
λ2

8πtsp
g(ν). (4.4-11)
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Summary: Spontaneous Emission

If the atom is in the upper level and in a cavity of volume V , the probability
density (per second) of emitting spontaneously into one prescribed mode of
frequency ν is

psp =
c

V
σ(ν). (4.3-1)

The probability density of spontaneous emission into any of the available
modes is

Psp =
8πS

λ2
=

1

tsp
= A . (4.4-9)

The probability density of emitting into modes lying only in the frequency
band between ν and ν + dν is Psp dν = (1/tsp)g(ν) dν.

Summary: Stimulated Emission and Absorption

If the atom in the cavity is in the upper level and a radiation mode contains n
photons of frequency ν, the probability density of emitting a photon into that
mode is

Wi = n
c

V
σ(ν). (4.3-6)

If the atom is instead in the lower level, and a mode contains n photons, the
probability density of absorption of a photon from that mode is also given by
(4.3-6).
If instead of being in a cavity, the atom is illuminated by a monochromatic
beam of light of frequency ν, with mean photon-flux density ϕ (photons per
second per unit area), the probability density of stimulated emission (if the
atom is in the upper level) or absorption (if the atom is in the lower level) is

Wi = ϕσ(ν). (4.5-3)

If the light illuminating the atom is polychromatic, but narrowband in com-
parison with the atomic linewidth, and has a mean spectral photon-flux den-
sity ϕν (photons per second per unit area per unit frequency), the probability
density of stimulated emission/absorption is

Wi =
∫
ϕν σ(ν) dν. (4.5-15)

If the light illuminating the atom has a spectral energy density ϱ(ν) that is
broadband in comparison with the atomic linewidth, the probability density
of stimulated emission/absorption is

Wi = B ϱ(ν0), (4.5-11)

where B = λ3/8πhtsp is the Einstein B coefficient.
In all of these formulas, c = cO/n is the velocity of light and λ = λO/n is the
wavelength of light, in the atomic medium, and n is the refractive index.
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The processes of spontaneous emission, absorption, and stimulated emis-
sion discussed in the foregoing sections, together with the principles of
photon optics set forth in Chapter 3, serve as the basis for understanding
the origin and properties of blackbody and thermal radiation, as discussed
in Secs. 4.7 and 4.8, respectively. In semiconductor photonics, these same
processes underlie the operation of LEDs, as described in Chapter 6.

4.6 LINE BROADENING

Because the lineshape function g(ν) plays a central role in atom–photon interactions,
we conduct a brief foray into some of the mechanisms that lead to line broadening. The
same lineshape function applies for spontaneous emission, absorption, and stimulated
emission.

Lifetime Broadening
Atoms can undergo transitions between energy levels by both radiative and nonradia-
tive means. Radiative transitions are associated with photon absorption and emission,
whereas nonradiative transitions permit energy transfer to take place via mechanisms
such as lattice vibrations, inelastic collisions among constituent atoms, and inelastic
collisions with the walls of the vessel. Each atomic energy level has a lifetime τ , which
is the inverse of the rate at which its population decays, radiatively or nonradiatively, to
all lower levels.

The lifetime τ2 of energy level 2 displayed in Fig. 4.3-1, for example, represents
the inverse of the rate at which the population of that level decays to level 1 and to all
other lower energy levels (none of which are shown in the figure), by either radiative
or nonradiative means. Since 1/tsp is the radiative decay rate from level 2 to level 1,
the overall decay rate 1/τ2 must be larger, i.e., 1/τ2 ⩾ 1/tsp, thereby corresponding to
a shorter decay time, τ2 ⩽ tsp. The lifetime τ1 of level 1 is defined similarly. Clearly,
if level 1 is the lowest allowed energy level (the ground state), then it will never decay
and τ1 = ∞.

Lifetime broadening is, in essence, a Fourier transform effect. The lifetime τ of
an energy level is related to the time uncertainty of the occupation of that level. As
discussed in Appendix A, the Fourier transform of an exponentially decaying harmonic
field e−t/2τej2πν0t, whose energy decays as e−t/τ with time constant τ , is proportional to
1/[1+j4π(ν−ν0)τ ]. The full-width at half-maximum (FWHM) of the absolute square
of this Lorentzian function of frequency is ∆ν = 1/2πτ . This spectral uncertainty
corresponds to an energy uncertainty ∆E = h∆ν = h/2πτ . We conclude that a
lifetime-broadened energy level with lifetime τ has an energy spread ∆E = h/2πτ ,
provided that the decay process can be modeled as a simple exponential. In this picture,
spontaneous emission can be viewed in terms of a damped harmonic oscillator that
generates an exponentially decaying harmonic function.

Hence, if the energy spreads of levels 1 and 2 are ∆E 1 = h/2πτ1 and ∆E 2 =
h/2πτ2, respectively, the spread in the energy difference corresponding to the transition
between the two levels is

∆E = ∆E 1 +∆E 2 =
h

2π

(
1

τ1
+

1

τ2

)
=

h

2π

1

τ
, (4.6-1)

where τ is the transition lifetime and τ−1 = (τ−1
1 + τ−1

2 ). The corresponding spread of
the transition frequency, which is called the lifetime-broadening linewidth, is therefore
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∆ν =
1

2π

(
1

τ1
+

1

τ2

)
. (4.6-2)

Lifetime-Broadening
Linewidth

This spread is centered about the frequency ν0 = (E 2 − E 1)/h, and the lineshape
function has a Lorentzian profile:

g(ν) =
∆ν/2π

(ν − ν0)2 + (∆ν/2)2
. (4.6-3)

Lorentzian
Lineshape Function

EXAMPLE 4.6-1. Peak Transition Cross Section for Lorentzian Lineshape Function.
The value of the Lorentzian lineshape function g(ν) specified in (4.6-3) at its central frequency ν0 is

g(ν0) = 2/π∆ν, (4.6-4)

so that the peak transition cross section, in accordance with (4.4-12), is given by

σ0 =
λ2

2π

1

2πtsp∆ν
. (4.6-5)

Peak Cross Section

The largest transition cross section occurs under ideal conditions when the decay is entirely radiative
so that τ2 = tsp and 1/τ1 = 0 (which is the case when level 1 is the ground state from which no decay
is possible). From (4.6-2), we then have ∆ν = 1/2πtsp, whereupon

σ0 = λ2/2π , (4.6-6)

indicating that the peak cross section is of the order of one square wavelength. When level 1 is not the
ground state, or when nonradiative transitions are significant, we have ∆ν ≫ 1/2πtsp in which case
σ0 can be significantly smaller than λ2/2π. For optical transitions in the range λ = 0.1 to 10 µm,
calculated values of λ2/2π typically lie between 10−11 and 10−7 cm2, whereas observed values of σ0
generally fall in the range between 10−20 and 10−12 cm2.

EXAMPLE 4.6-2. Sequence of Wavepackets Emitted by Atoms at Poisson Times. A
sequence of wavepackets emitted by a collection of atoms at random times is a source of partially
coherent light (Fig. 4.6-1). The frequencies of all wavepackets are assumed to be identical and their
decays are assumed to arise from the finite atomic lifetimes. Each wavepacket is taken to have a random
phase since it is emitted by a different atom.

Figure 4.6-1 Light comprising wavepackets emitted at Poisson times from a collection of atoms
has a coherence time τc that is equal to the duration of a wavepacket. The magnitude of the complex
degree of coherence |g(τ)| is a double-sided exponential, corresponding to a power spectral density
S(ν) with Lorentzian form.
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The individual wavepackets may, for example, be considered to be harmonic functions with an expo-
nentially decaying envelope representing the atomic lifetime, so that at a given position a wavepacket
emitted at t = 0 has the complex wavefunction

Up(t) =

{
Ap exp(−t/τc) exp(j2πν0t), t ⩾ 0

0, t < 0.
(4.6-7)

The independent random phases of the different emissions are included in Ap . The statistical proper-
ties of the overall wavefunction are determined by carrying out the appropriate averaging operations
in accordance with the rules of mathematical statistics. This process yields a complex degree of coher-
ence g(τ) = exp(−|τ |/τc) exp(j2πν0τ), whose magnitude is a double-sided exponential function.
In accordance with the Wiener–Khinchin theorem (2.7-16), the corresponding power spectral density
is S(ν) ∝ (∆ν/2π)/[(ν − ν0)

2 + (∆ν/2)2], which is Lorentzian with ∆ν = 1/πτc. The coherence
time τc turns out to be the width of a wavepacket, signifying that the light is correlated over that time.

Homogeneous and Inhomogeneous Broadening
Lifetime broadening is an example of homogeneous broadening, in which the interact-
ing atoms of a medium are all taken to be identical, with the same lineshape functions
and center frequencies.

Some media exhibit inhomogeneous broadening as well, in which different subsets
of interacting atoms exhibit different behavior, either because of differences in their
local environment, different dynamical behavior, or different origins. A commonly en-
countered example of inhomogeneous broadening is Doppler broadening. As a result
of the Doppler effect, an atom moving with velocity v along a given direction exhibits
a lineshape function that is shifted by the frequency ±(v/c)ν0 when viewed along that
direction, where ν0 is its central frequency.

For inhomogeneously broadened media, we can define an average lineshape function

g(ν) = ⟨gβ(ν)⟩, (4.6-8)

where ⟨·⟩ represents an average with respect to the variable β, which labels the subset
of atoms with the homogeneously broadened lineshape function gβ(ν). The average
lineshape function is obtained by weighting the gβ(ν), which are known as spectral
packets, by the fraction of the atomic population endowed with the property β, as
pictured in Fig. 4.6-2.

gβ 

(ν)
g

 
(ν)

νν0

Figure 4.6-2 The average lineshape function
g(ν) for an inhomogeneously broadened collection
of atoms. The underlying homogeneously broad-
ened spectral packets are denoted gβ(ν).

Some atom–photon interactions exhibit broadening intermediate between pure homo-
geneous and pure inhomogeneous. Such mixed broadening can be modeled by making
use of an intermediate lineshape function, such as the Voigt profile.

It will become apparent in Sec. 4.7 that the spectrum of blackbody radiation is
inhomogeneously broadened as a result of the different center frequencies of the cavity
modes. It will be seen in Chapter 6 that the spectrum of the spontaneous emission from
an LED is also inhomogeneously broadened, in this case by virtue of the different center
frequencies of the recombination photons as required by the Pauli exclusion principle.
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4.7 BLACKBODY RADIATION

The term blackbody was initially introduced by Gustav Kirchhoff in 1860. Its def-
inition, as updated in 1914 by Max Planck (p. 61), is an opaque object of arbitrary
composition, in thermal equilibrium, that absorbs all incident radiation, at whatever
wavelength and angle of incidence, and re-emits it. The quintessential example of a
blackbody radiator is an opaque cavity at temperature T , with a small hole through
which the radiation interior to the cavity can escape and be sampled. Blackbodies emit
a universal form of isotropic radiation known as blackbody radiation. We proceed
to investigate the spectrum and total power radiated by a blackbody by examining the
interactions among a collection of photons and atoms in a cavity, in steady state and
thermal equilibrium. In the course of our study, we obtain expressions for the Planck
spectrum, Wien’s law, and the Stefan–Boltzmann law.

Thermal Equilibrium Between Photons and Atoms
A macroscopic rate-equation approach that balances spontaneous emission, absorption,
and stimulated emission, under conditions of thermal equilibrium, leads to the spectral
energy density of blackbody radiation. We begin our analysis by considering (4.4-9)
and (4.5-8), which govern spontaneous emission and induced transitions, respectively,
in the presence of broadband light.

Consider a 3D closed cavity of unit volume whose walls consist of large numbers
of atoms, each with two energy levels denoted 1 and 2, that are separated by an energy
difference hν. The cavity, which is maintained at temperature T , supports broadband
radiation that can be observed through a small hole. Let N1(t) and N2(t) represent
the numbers of atoms per unit volume occupying energy levels 1 and 2, at time t,
respectively. Since some of the atoms are initially in level 2, as ensured by the finite
temperature, spontaneous emission creates radiation in the cavity. This radiation in
turn can induce absorption and stimulated emission. The three processes coexist and
it is assumed that steady-state (equilibrium) conditions are attained. We further assume
that an average of n photons occupies each of the radiation modes whose frequencies
lie within the atomic linewidth, as established in (4.5-8).

We first treat spontaneous emission alone. The probability that a single atom in the
upper energy level undergoes spontaneous emission into any of the modes, within the
time increment from t to t + ∆t, is Psp∆t = ∆t/tsp. There are N2(t) such atoms
so that the average number of emitted photons within ∆t is N2(t)∆t/tsp. This is also
the number of atoms that depart from level 2 during the time interval ∆t. Hence, the
(negative) rate of increase of N2(t) arising from spontaneous emission is described by
the differential equation

dN2

dt
= −N2

tsp
. (4.7-1)

The solution, N2(t) = N2(0) exp(−t/tsp), is an exponentially decaying function of
time, as displayed in Fig. 4.7-1. Given sufficient time, the number of atoms in the
upper level N2 will decay to zero with time constant tsp, the energy carried off by the
spontaneously emitted photons.

N
2 
(t)

N
2 
(0)

Figure 4.7-1 Decay of the upper-level population
caused by spontaneous emission alone.
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We now incorporate absorption and stimulated emission, which contribute to
changes in the populations. Since there are N1 atoms capable of absorption, the rate of
increase of the population of atoms in the upper energy level arising from absorption
is, based on (4.5-8),

dN2

dt
= N1Wi =

n N1

tsp
. (4.7-2)

Similarly, stimulated emission gives rise to a (negative) rate of increase of atoms in the
upper state, expressed as

dN2

dt
= −N2Wi = −n N2

tsp
. (4.7-3)

The rates of atomic absorption and stimulated emission are both proportional to n , the
average number of photons in each mode.

Combining (4.7-1), (4.7-2), and (4.7-3) to accommodate spontaneous emission, ab-
sorption, and stimulated emission together, yields the rate equation

dN2

dt
= −N2

tsp
+

n N1

tsp
− n N2

tsp
. (4.7-4)

Rate Equation
(Broadband Light)

This result ignores transitions into or out of level 2 that arise from extraneous effects,
such as interactions with energy levels other than level 1, nonradiative transitions, and
external sources of excitation. Steady-state operation demands that dN2/dt = 0, which
leads to

N2

N1
=

n

1 + n
, (4.7-5)

which is clearly ⩽ 1. In addition to the requirement for steady-state operation, we now
impose the requirement that the two energy states are in thermal equilibrium, and posit
that their populations approximately obey the Boltzmann distribution (4.2-2):

N2

N1
= exp

(
−E 2 − E 1

kT

)
= exp

(
− hν

kT

)
. (4.7-6)

Substituting (4.7-6) into (4.7-5) then leads to the following expression for the mean
number of photons per mode near frequency ν:

n =
1

exp(hν/kT )− 1
. (4.7-7)

The foregoing derivation is predicated on the interaction of two energy levels coupled
by absorption, stimulated emission, and spontaneous emission, at a frequency near ν. Its
applicability is, however, far broader. This may be understood by considering a cavity
whose walls are made of solid materials that possess a continuum of energy levels at
all energy separations, and therefore all values of ν. Atoms in the walls spontaneously
emit into the cavity. The emitted light subsequently interacts with the atoms in the walls,
giving rise to absorption and stimulated emission. If the walls are maintained at tem-
perature T , the combined system of atoms and radiation reaches thermal equilibrium,
whatever the nature of the walls and whatever the cavity shape.
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Equation (4.7-7) is identical to (4.2-9), the expression for the mean photon number in
a mode of thermal light for which the occupation of the modal energy levels follows the
distribution p(n) ∝ exp(−nhν/kT ). This indicates that our analysis is self-consistent.
Photons interacting with atoms in thermal equilibrium at temperature T are themselves
in thermal equilibrium as a photon gas at the same temperature T .

Blackbody Radiation Spectrum
Based on the foregoing discussion, the average energy E of a blackbody radiation mode
is nhν, where n is given by (4.7-7), so that

E =
hν

exp(hν/kT )− 1
. (4.7-8)

Average Energy
(Mode in Thermal Equilibrium)

The dependence of E on ν, which is the same as that set forth in (4.2-15), is portrayed
in Fig. 4.7-2.

0

E

νkT

h

kT

h
10

kT

 10 h

kT Figure 4.7-2 Semilogarithmic plot of the
average energy E of an electromagnetic
mode in thermal equilibrium at temperature
T , as a function of the modal frequency ν.
Plots of E vs. photon energy hν for T =
300 K (kT = 0.026 eV) and for T = 600 K
(kT = 0.052 eV) are presented in Fig. 4.2-5.

MultiplyingE in (4.7-8) (average energy per mode) by the 3D modal densityM(ν) =
8πν2/c3 provided in (4.4-5) (number of modes per unit frequency per unit cavity vol-
ume) gives rise to the spectral energy density ϱν(ν) = M(ν)E (energy per unit fre-
quency bandwidth per unit cavity volume):

ϱν(ν, T ) =
8πhν3

c3
1

exp(hν/kT )− 1
. (4.7-9)

Blackbody Spectral Energy Density
(Frequency Parameterization)

This formula, known as the blackbody radiation spectrum, and also as Planck’s
radiation law, is sketched as a function of frequency on linear coordinates in Fig. 4.7-
3. The formal plot presented in Fig. 4.7-4 is the iconic representation of (4.7-9) on
logarthmic coordinates, with temperature as a parameter. As the blackbody temperature
increases, the mean number of photons per mode increases in accordance with (4.7-7).
Photons can emerge from, or disappear into, the walls of the cavity. The radiation is
unpolarized since the medium is assumed to be isotropic. Though bosons, the photons
in a blackbody cavity are not conserved and therefore do not form a Bose–Einstein
condensate.
Entropy. The Planck radiation law is the unique maximum entropy energy distribu-
tion for a photon gas, much as the Maxwell–Boltzmann distribution is the unique max-
imum entropy energy distribution for a gas of material particles. While the properties
of a photon gas depend only on temperature, however, those of a material gas depend
on the masses and numbers of particles, as well as on temperature.
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Figure 4.7-3 Frequency depen-
dence of the energy per mode E ,
the density of modes M(ν), and the
spectral energy density ϱν(ν) =

M(ν)E for blackbody radiation, on
linear coordinates.
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Figure 4.7-4 Dependence of the blackbody spectral en-
ergy density ϱν(ν) on the frequency ν for several different
temperatures, on logarithmic coordinates. The scale on the
upper abscissa is the wavelength λO = cO/ν.

Failure of the Equipartition Theorem. The formula for the spectrum of blackbody
radiation played a central role in the discovery of the photon nature of light. Based
on classical electromagnetic theory, the modal density for a three-dimensional cavity
was known to be M(ν) = 8πν2/c3, as provided in (4.4-5). Moreover, in the context
of classical statistical mechanics, the equipartition theorem discussed in Sec. 4.1 had
long dictated that the average energy per mode was fixed at E = kT , independent of
the modal frequency. This led to a theoretical expression for the blackbody spectrum,
ϱν(ν) = M(ν)E = 8πν2kT/c3, a result known as the Rayleigh–Jeans formula. How-
ever, this formula disagreed with experiment in the ultraviolet region and at frequencies
beyond, and its integral with respect to frequency diverged. The failure was considered
to be so profound that it was named the ultraviolet catastrophe by the physicist Paul
Ehrenfest.

Max Planck resolved the conundrum in 1900 by allowing the energy levels of the
atoms in the walls of the cavity to be quantized. That led to an expression for the average
energy per mode given by (4.7-8) [or (4.2-15)] and thence to the correct blackbody
spectral energy density (4.7-9). The energy quantization effectively gave rise to a pro-
gressive chilling out of the modes as their frequency increased, as is apparent in the top
panel of Fig. 4.7-3, thereby averting the ultraviolet catastrophe.

The Rayleigh–Jeans formula is recovered from (4.7-9) in the high-temperature (clas-
sical) limit hν ≪ kT by using the Taylor-series approximation exp(hν/kT ) ≈ 1 +
hν/kT in (4.7-8), which yields E = kT , in accord with the classical equipartition
theorem. Einstein subsequently extended Planck’s explanation by proposing that the
quantization imposed on the atomic energy levels be imposed directly on the electro-
magnetic modal energies, a leap that helped solidify the concept of the photon.

Wavelength Parameterization for the Blackbody Radiation Spectrum. The
spectral energy density ϱν(ν) set forth in (4.7-9) is readily transformed into the spectral
energy density ϱλ(λ), parameterized in terms of wavelength, where ϱλ(λ) dλ represents
the energy per unit volume in the wavelength region between λ and λ+ dλ. Since ν =
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c/λ, the two densities are related by ϱλ(λ) dλ = ϱν(ν) dν, so that ϱλ = ϱν |dν/dλ| =
ϱν(λ) · c/λ2. This yields ϱλ(λ) = [8πh(c/λ)3/c3] · [1/(exp(hc/λkT ) − 1)] · [c/λ2],
which provides

ϱλ(λ, T ) =
8πhc

λ5
1

exp(hc/λkT )− 1
, (4.7-10)

Blackbody Spectral Energy Density
(Wavelength Parameterization)

with units of J·nm−1 ·m−3.
All things being equal, the frequency parameterization set forth in (4.7-9) is preferred

to the wavelength parameterization of (4.7-10) since the frequency is invariant as the
radiation passes through media of different refractive indices. However, it turns out that
the wavelength-based spectral radiance Lλ(λ, T ) = (c/4π)ϱλ(λ, T ), set forth in (9.7-
1) and plotted in Fig. 9.7-1(a), enjoys widespread use in radiometry and LED lighting.

EXAMPLE 4.7-1. Frequency and Wavelength of Maximum Spectral Energy Density.

(a) Peak frequency νp: Substituting x = hν/kT into the blackbody radiation law specified in
(4.7-9) provides ϱν(x) = [8π(kT )3/c3h2][x3/(ex − 1)]. The frequency νp at which ϱν(ν)
is maximized is obtained by setting the derivative dϱν(x)/dx equal to zero, which yields
x = 3(1− e−x), where x = hνp/kT . Numerical solution of this nonlinear equation provides
x ≈ 2.821. The peak frequency is therefore νp = xkT/h, which, at T = 6000 K, corresponds
to νp ≈ 352 THz, comporting with the lower abscissa of Fig. 4.7-4. The corresponding
wavelength is given by cO/νp ≈ 850 nm, which comports with the upper abscissa in this
figure.

(b) Peak wavelength λp: Substituting y = hc/λkT into the form of the blackbody radiation law
specified in (4.7-10) leads to ϱλ(y) = [8π(kT )5/c4h4][y5/(ey − 1)]. The wavelength λp at
which ϱλ(λ) is maximized is determined by setting the derivative dϱλ(y)/dy = 0. This then
leads to y = 5(1 − e−y), where y = hc/λpkT . Numerically solving this nonlinear equation
provides y ≈ 4.965. The peak wavelength is therefore λp = hc/ykT , which, at T = 6000 K,
corresponds to λp ≈ 483 nm.

(c) Some features of the spectral energy density depend on the parameterization employed: The
frequency-based spectral density (4.7-9) and the wavelength-based spectral density (4.7-10)
have distinct functional forms; their ratio is given by ϱλ(λ)/ϱν(ν) = c/λ2. Forming a product
of the expressions for the frequency and wavelength maxima, νp = xkT/h and λp = hc/ykT ,
respectively, yields

λpνp = (x/y) c ̸= c , (4.7-11)

where x/y ≈ 2.821/4.965 ≈ 0.568. The numerical calculations carried out in parts (a) and
(b) above are in accord with λp = (x/y) (c/νp), as provided in (4.7-11): At T = 6000 K, the
wavelength corresponding to the peak frequency was calculated in (a) to be c/νp ≈ 850 nm,
while the actual peak wavelength was determined in (b) to be λp ≈ 483 nm, and indeed
483 nm ≈ 0.568 × 850 nm. The shapes, peak locations, and some other features of the two
density functions clearly depend on the parameterization selected, although other features do
not. In particular, at any given temperature, the integral of the wavelength density over the
interval [λ1, λ2] returns a value that is the same as the integral of the frequency density over
the corresponding interval [c/λ2, c/λ1].

EXAMPLE 4.7-2. Total Blackbody Energy Density Per Unit Volume. The total en-
ergy density (per unit cavity volume) of a blackbody is determined by integrating the frequency-
parameterized spectral energy density (4.7-9) over all frequencies, or, equivalently, by integrating the
wavelength-parameterized spectral energy density (4.7-10) over all wavelengths. For the frequency-
parameterized case, use of the substitution x = hν/kT in (4.7-9) leads to∫ ∞

0

ϱν(ν, T ) dν =
8πh

c3

∫ ∞

0

ν3 dν

exp(hν/kT )− 1
=

8πk4T 4

c3h3

∫ ∞

0

x3

ex − 1
dx =

8π5k4T 4

15c3h3
, (4.7-12)
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since the definite integral
∫∞
0
dxx3/(ex−1) = π4/15. For the wavelength-parameterized case, using

the substitution y = hc/λkT in (4.7-10) yields the identical result,∫ ∞

0

ϱλ(λ, T ) dλ = 8πhc

∫ ∞

0

λ−5 dλ

exp(hc/λkT )− 1
=

8πk4T 4

c3h3

∫ ∞

0

y3

ey − 1
dy =

8π5k4T 4

15c3h3
. (4.7-13)

Wien’s Law
The expression for the peak wavelength of the blackbody energy density provided in
Example 4.7-1(b), λp = hc/ykT , with y ≈ 4.965, establishes that the product of the
peak wavelength and temperature of a blackbody radiator is given by

λpT = b, (4.7-14)
Wien’s Law

where the constant b ≡ hc/yk ≈ 2.90 × 106 nm·K is known as Wien’s constant.
Equation (4.7-14), which was established a number of years before Planck developed his
general formula, is known as Wien’s law. Versions of this law can also be fashioned us-
ing wavelength markers other than the peak wavelength (e.g., the median wavelength).

Stefan–Boltzmann Law
The Stefan–Boltzmann law characterizes the temperature dependence of the power
radiated by a blackbody per unit area of its surface, P/A, which increases with temper-
ature as T 4. This expression is derived by multiplying the total energy density per unit
volume provided in (4.7-12) [or in (4.7-13)] by the factor c/4, which serves to convert
energy density to power per unit area, resulting in P/A = (c/4)(8π5k4T 4/15c3h3) =
2π5k4T 4/15c2h3. The Stefan–Boltzmann law is usually cast in the form

P/A = σSBT
4, (4.7-15)

Stefan–Boltzmann Law
(Blackbody Radiation)

where σSB ≡ 2π5k4/15c2h3 ≈ 5.67 × 10−8 W·m−2·K−4 is known as the Stefan–
Boltzmann constant.

4.8 THERMAL RADIATION

The presentation provided in Sec. 4.7 demonstrated that a collection of atoms and
radiation in a cavity behaves as a blackbody when steady state and thermal equilibrium
prevail. As illustrated in Fig. 4.8-1(a), a blackbody radiator is an opaque object that
absorbs all of the radiation incident upon it and re-emits it isotropically as blackbody
radiation, with a spectrum that depends only on the temperature of the object. Based
on conservation of energy, Kirchhoff established in 1906 that the ability of a blackbody
radiator to absorb radiant energy is equal to its ability to radiate energy.

Because the blackbody spectrum depends only on the temperature of the object, as
specified in (4.7-9), the terms thermal radiation (Wärmestrahlung in German) and
thermal light (thermal radiation whose spectrum lies principally in the visible region)
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are often used as synonyms for blackbody radiation. While all objects emit thermal
radiation as a result of their finite temperatures, not all objects emit blackbody radiation,
as will become clear in the sequel.

We begin by considering graybody radiation, which has properties that are closely
related (but not identical) to blackbody radiation. We then discuss the properties of
incandescent light, which can be approximated by graybody radiation in the visible re-
gion. We follow this by introducing a technique called thermography, which highlights
the features of various sources of thermal radiation. Thermography uses the thermal
radiation emitted by an object to generate a self-temperature image. The reader is asked
to take notice that in practice all three terms, blackbody radiation, graybody radiation,
and thermal radiation, are often used interchangeably. Finally, we present the photon-
number statistics for a beam of thermal light.

Graybody Radiation
Real-world objects are seldom blackbody radiators; far more often they behave as gray-
body radiators. As portrayed in Fig. 4.8-1(b), a graybody radiator partially reflects, and
partially transmits, portions of the radiation incident upon it, but it mimics a blackbody
radiator in that it emits all of the energy that it absorbs. A generalization of Kirchhoff’s
1860 radiation law accommodates such partially transparent and partially reflecting
bodies.

Figure 4.8-1 Radiation flow for a blackbody radiator and a graybody radiator. (a) Blackbody
radiation is characterized by a spectral energy density and power per unit surface area that depend
only on the thermodynamic temperature of the radiator. Refraction without reflection can be achieved
by making use of metamaterials. (b) Graybody radiation has a spectral energy density and power per
unit surface area that matches that of blackbody radiation, but with magnitudes that are reduced by
the emissivity of the graybody radiator (ε < 1). The light emitted by a heated tungsten-filament
incandescent lamp is well approximated by graybody radiation.

Stefan–Boltzmann Law. The radiative properties of a graybody radiator can be
characterized by incorporating into the Stefan–Boltzmann law (4.7-15) a dimensionless
multiplicative constant called the graybody emissivity ε ,

P/A = εσSBT
4, (4.8-1)

Stefan–Boltzmann Law
(Graybody Radiation)

where ε is defined as the ratio of the power emitted by the graybody radiator to the power
that would be emitted by a blackbody radiator of the same temperature. The absorptivity
α (0 < α < 1) of a graybody radiator is equal to its emissivity ε (0 < ε < 1), and
both are defined to be constant over the wavelength region of interest. Good absorbers
are therefore good emitters and poor absorbers are poor emitters. The spectral energy
density of a graybody radiator is proportional to its blackbody counterpart, as specified
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in (4.7-9) and (4.7-10); the emissivity ε serves as the constant of proportionality. Wien’s
law (4.7-14) remains intact. By definition, α = ε = 1 for blackbody radiators.

Graybody Emissivity. Different materials and objects exhibit different emissivities,
as reported in Table 4.8-1.

The emissivity ε is, in general, a function of
wavelength, temperature, and angle-of-view, but
it is taken to be independent of these parameters
in modeling graybody radiation. Highly reflec-
tive objects are poor absorbers, and thus poor
emitters, so they have low emissivities (ε ≈
1 − R). Most natural surfaces on earth have
emissivities in the range 0.6 ≲ ε ≲ 1.0;
deserts have values that lie toward the lower
limit. The emissivities of astronomical bodies
are quite close to unity, and the spectral density
of the radiation they emit roughly follows (4.7-
10). It is straightforward to estimate the effective
temperatures of astronomical bodies by making
use of the Stefan–Boltzmann law (4.8-1). It has
been established, for example, that the effective
temperatures of Mars, Earth, and the Sun are
roughly 200 K, 300 K, and 5800 K, respectively.

Table 4.8-1 Representative emis-
sivities of materials and objects.

material/object ε

Silver (Polished) 0.02
Aluminum (Foil) 0.03
Tungsten Filament (Heated) 0.44
Paper (White) 0.84
Aluminum (Anodized) 0.85
Earth (Surface) 0.85
Snow 0.85
Soil 0.92
Glass (Uncoated) 0.95
Vegetation 0.95
Water 0.96
Ice 0.97
Graphite (Powdered) 0.97
Sun 0.99

Universality of Planck’s Radiation Law. The Planck spectral energy density pro-
vided in (4.7-9) obeys a universal form that characterizes blackbodies, graybodies, and
the radiation emitted by physical objects in local thermal equilibrium. As discussed
in the foregoing, such objects are ubiquitous, ranging from the iconic oven-and-hole
construction; to the earth and the entities that inhabit it, which emit in the middle-
infrared region; to the planets, stars, and galaxies; to black holes; and ultimately to
the universe itself. The faint cosmic microwave background radiation that fills all of
space in this, the stelliferous era, is a remnant of the primordial era of the universe. Its
spectrum is that of a near-perfect blackbody with a peak wavelength λp ≈ 1.063 mm,
corresponding to a temperature ≈ 2.725 K in accordance with Wien’s law (4.7-14).

Incandescent Light
Incandescent light is generated by the transitions of free and valence electrons in hot
solid materials. The term derives from the Latin verb incandescere, which means to
“glow.” First observed by Sir Humphry Davy in 1802 using a strip of platinum, incan-
descence provided the first practical means for generating light from an electric current.

The quintessential example of an incandescent source is a glass light bulb containing
a thin filament that is ohmically heated by an electric current. Although carbon was
initially used by Edison, tungsten is generally the material of choice because it has the
lowest vapor pressure (1 Pa at 3477 K) and highest melting point (3695 K) of any metal.
The optical reflectance of a heated tungsten filament is R ≈ 0.55 and its emissivity
is constant at ε ≈ 1 − R ≈ 0.44 across the visible region (Table 4.8-1). Hence, a
tungsten incandescent lamp radiates as a graybody in the visible with a spectrum that is
well-described by the Planck blackbody radiation law (4.7-10). The tungsten-filament
lamp is not a perfect graybody when examined over the visible and infrared regions,
however. While its emissivity ε ≈ 0.44 in the visible, it is slightly lower (ε ≈ 0.33)
in the infrared. Hence, its spectrum does not follow a unique Planckian radiation curve
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over this extended spectral region. The incandescence generated by the metallic-oxide
gas mantles used in street lighting in the late nineteenth century behaved similarly.

Halogen lamps are incandescent sources whose transparent envelopes contain a
small quantity of halogen gas such as bromine. The halogen and tungsten atoms
chemically react and, in a process known as the halogen cycle, the evaporated tungsten
is redeposited on the filament when the halogen cools. This increases the lifespan and
efficiency of the lamp, and diminishes the darkening of its envelope.

Incandescent lighting was ubiquitous throughout the twentieth century. It has been
highly prized for illumination because its Planckian spectrum is reminiscent of that of
sunlight. Aside from ideal color rendering, it has other advantages: simple construction,
the ability to operate on AC or DC current, and insensitivity to ambient temperature.
However, incandescent lamps are highly inefficient as visible radiators: about 5% of the
energy consumed typically emerges as visible light and the remainder is dissipated in
the form of infrared radiation. As displayed in Fig. 9.7-1(a), the limited emission in the
visible, which lends a reddish tinge to the light, results from the fact that the tungsten
filament cannot be heated to a temperature ≳ 3300 K lest it melt.

Scattered efforts have been made over the years to increase the efficiency of incan-
descent lamps by making use of techniques that selectively modify the wavelength
dependence of the emissivity, or by modifying the filament temperature, fill gas, or
bulb reflectance. Nevertheless, as will be discussed in Chapter 10, LED lighting began
to make serious inroads in replacing incandescent lighting in about 2010 because of
its substantially higher efficiency, along with its environmental friendliness and other
manifold merits. Indeed, the worldwide transition from incandescent to LED lighting
has continued apace and is approaching its finale.

Thermal Radiation
Many real surfaces have emissivities that are wavelength-dependent. Thermal radiation
is sometimes defined as the radiation emitted by bodies in local thermal equilibrium
whose emissivity is a function of wavelength (0 < ε(λ) ⩽ 1). In accordance with
this definition, thermal radiation subsumes blackbody radiation (ε = 1) and graybody
radiation (0 < ε < 1) as special cases; both have emissivities that are independent of
wavelength. The emissivity of some materials also depends on temperature and angle-
of-view, but these dependencies are frequently small and are often ignored.

Thermography. Some of the characteristics of thermal radiation are illustrated by
considering a technique called thermography, whereby a thermal object is imaged by
means of its infrared self-radiation. An image, or thermograph, of the temperature
distribution across the thermal object or scene is generated by making use of a camera
that is sensitive in the wavelength region of the object’s peak thermal emissions. Wien’s
law (4.7-14) dictates that the peak wavelength of a radiating blackbody is inversely
proportional to its temperature. Bodies of moderate temperature, including earthly ob-
jects such as humans, typically radiate at wavelengths in the mid infrared, whereas cold
objects radiate at longer wavelengths that stretch into the far infrared.

The technique makes use of a thermal camera, also called an infrared camera or
thermographic camera, that contains an array detector whose elements are sensitive
in a particular spectral region of the infrared. Array detectors serving different wave-
length regions are fabricated from materials whose detection efficiencies are high in the
particular region of interest. Overall, thermography is useful over a broad wavelength
range that spans 0.7 µm ⩽ λO ⩽ 300 µm, roughly corresponding to temperatures that
stretch over the range 10 K ⩽ T ⩽ 4000 K.

The photosensitive elements that comprise the array detector in a thermal camera
do not resolve the wavelengths of the incident radiation, but rather detect the infrared
power radiated by the corresponding pixels of the object. In accordance with the Stefan–
Boltzmann law (4.8-1), this power varies as
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P/A = ε(r)σSBT
4(r). (4.8-2)

The locations of the pixels are designated by the position vector r since thermography
is designed to garner information about objects and scenes that exhibit spatial tem-
perature variations. Each pixel is assumed to be in local thermal equilibrium (thermal
quasi-equilibrium) and is characterized by a unique temperature over the duration of the
measurement. Clearly, the higher-temperature pixels in the object radiate more strongly
than their lower-temperature counterparts, thereby generating larger responses in the
corresponding array-detector elements. Moreover, the different pixels of the object gen-
erally consist of different materials, so the emissivity also depends on position. How-
ever, (4.8-2) discloses that the dependence of P/A on the emissivity is linear, whereas
the dependence of P/A on temperature is far stronger, varying as T 4(r).

Thermography finds use in industrial applications, such as monitoring the overheat-
ing of circuit boards and the evolution of oil spills. It is of assistance in search-and-
rescue missions for humans and animals. It is also useful in clinical medicine since skin-
surface temperature is a diagnostic for blood-flow blockages and tumors. Environmental
applications include fire-fighting and forestry. The technique is invaluable in astronomy
and cosmology since it allows astronomical objects, such as cooler red stars and red
giants, to be imaged in the near infrared; planets, comets, and asteroids to be imaged in
the mid-infrared; and central galactic regions, cold dust emissions, and early stars and
galaxies to be imaged in the far infrared.

Representative thermographs are presented in Fig. 4.8-2 to illustrate the broad range
of temperatures that can be accessed using this technique. The temperature of the ob-
ject is represented in terms of a false-color palette that spans the visual spectrum.
Conventionally, the coldest portions of the image are portrayed as black or violet and
the warmest portions as red or white. This is the mapping used in Fig. 4.8-2(a) and
(b). However, this convention is not always followed, since the palette is arbitrary, and
indeed the opposite color convention is used in Fig. 4.8-2(c).

Figure 4.8-2 Representative thermographs in different temperature regions. The scales above the
images relate temperature to false color. (a) Thermography in industrial-systems analysis. The red
and white false colors reveal overheating of the right-most fuse, indicating a poor connection with its
holder. (b) Thermography in search-and-rescue. The puppy emits radiation in the mid-infrared and can
be located at night, even when concealed in foliage. It radiates most strongly where the fur is thinnest
and body heat can escape. The eyes, covered by neither fur nor skin, are particularly visible. The nose,
ears, and paws, in contrast, are peripheral to the animal’s warm central body and therefore exhibit
the lowest temperatures. (c) Thermography in astronomy and cosmology. A full-sky view collected
by NASA’s Cosmic Background Explorer (COBE) satellite, represented as a composite of images
collected at three far-infrared wavelengths: λO = 240 µm (T = 15 K, red); 100 µm (T = 36 K,
green); and 60 µm (T = 60 K, blue). The prominent white horizontal band is interstellar dust in the
plane of the Milky Way galaxy, the center of which is located at the center of the image.

While thermographs display temperature across an array of pixels, as illustrated in
Fig. 4.8-2, a technique known as hyperspectral thermography simultaneously cap-
tures the spectrum of each pixel across a range of wavelengths.
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Photon-Number Statistics for a Beam of Thermal Light
In Sec. 4.2, we investigated the statistical behavior of a collection of photons in thermal
equilibrium in a cavity. The single-mode and multimode cases were characterized by
Bose–Einstein and negative-binomial photon-number distributions, respectively.

Thermal light in the form of a beam is more conveniently analyzed as a doubly
stochastic photon-number distribution, which is discussed in Sec. 3.6. It is well-
established that thermal light may be modeled as a random wave with real and imaginary
complex-field amplitude components that are Gaussian, independent, and identically
distributed. The integrated-intensity probability density function for the single-mode
case, considered in Example 3.6-1, is applicable for partially coherent light whose
spectral width is sufficiently narrow such that T/τc ≪ 1, where T is the counting time
and τc is the coherence time. Its Poisson transform is the Bose–Einstein photon-number
distribution (4.2-8).

The integrated-intensity probability density function for the multimode case, with
M identical thermal modes, is established by carrying out an M-fold self-convolution
of the exponential density provided in (3.6-14). This yields the chi-square (gamma)
density function

p(w) =
1

(M− 1)!

(
⟨w⟩
M

)−M

wM−1 exp

(
− w

⟨w⟩/M

)
, w ⩾ 0 , (4.8-3)

with overall mean ⟨w⟩ and overall variance ⟨w⟩2/M. Equation (4.8-3) turns out to
provide an excellent approximation for the integrated intensity for arbitrary values of
T/τc , provided that M is appropriately chosen. For the single-mode case, T/τc ≪ 1
andM = 1, as indicated above. When the number of modes is large, we haveT/τc ≫ 1
and M ≈ T/τc . The specific functional form of M for intermediate values of T/τc
depends on the spectrum of the light.

The photon-number distribution is established by carrying out the Poisson transform
of (4.8-3) via (3.6-11) or, alternatively, by performing anM-fold self-convolution of the
Poisson transform of the single-mode density function set forth in (3.6-14), which is the
Bose–Einstein photon-number distribution provided in (4.2-8). Either way, the result is
the negative-binomial distribution specified in (4.2-16). The mean and variance of this
distribution, provided in (4.2-17) and (4.2-18), respectively, can also be obtained by
making use of the chi-square mean and variance provided above, and using the general
formulas (3.6-12) and (3.6-13) for the statistics of doubly stochastic photon-number
distributions.
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Photonics, the technology of controlling the flow of photons, and electronics, the tech-
nology of controlling the flow of charge carriers (electrons and holes), come together in
a natural way in the domain of semiconductors. Photons generate mobile charge carriers
and charge carriers generate photons. Following the invention of the point-contact tran-
sistor in 1947 (p. 125), which initiated the era of solid-state electronics, semiconductor
devices began to enjoy widespread use. The invention of the p–n junction LED in 1962
(p. 198) opened the door to the era of photonics in a similar way, and semiconductor
photonic devices became ubiquitous.

Semiconductors have a number of unique features and characteristics:
Because the atoms that comprise the semiconductor crystal lattice are in close
proximity with each other, these materials are best viewed not in terms of the
individual energy levels of the constituent atoms, but rather in terms of energy
levels that describe the system as a whole.
Collections of closely spaced energy levels meld to form energy bands. At absolute
zero, in the absence of external excitation, these bands are either fully occupied
by electrons or totally unoccupied. The highest-lying fully occupied energy band
is known as the valence band while the lowest-lying unoccupied energy band is
known as the conduction band. The two bands are separated by what is called the
forbidden band, which is characterized by the bandgap energy Eg and is devoid of
both electrons and holes.
An external energy source (whether thermal, optical, or electronic) can impart
energy to an electron in the valence band, thereby causing it to jump across the
forbidden band to enter the conduction band, where it is mobile. This transition
leaves behind a vacancy (hole) in the valence band. The inverse process, called
electron–hole recombination, entails an electron decaying from the conduction
band to fill a vacancy in the valence band (provided that one is accessible), which
generates a photon and/or phonons in the process. Photons therefore couple with
electrons and holes.

This chapter provides an introduction to the physical principles that underlie the
properties and operation of semiconductors and semiconductor devices. We begin by
considering the formation of energy bands and bandgaps in bulk semiconductors
(Sec. 5.1) and the motion of charge carriers in direct- and indirect-bandgap ma-
terials (Sec. 5.2). We then survey the vast landscape of elemental and compound
semiconductors, including doped and 2D semiconductor materials (Sec. 5.3). Modern
semiconductor photonic devices usually rely on III–V ternary or quaternary compounds
(such as InGaAsP, AlInGaP, InGaN, or AlInGaN), as well as on compounds forged
wholly from elements residing in group-IV of the periodic table (particularly C, Si, Ge,
and Sn), although they increasingly make use of organic and perovskite semiconductors.
(Electronic semiconductor devices are principally fabricated from Si and Ge.)

The rules that dictate how carriers fill the available energy levels in semiconduc-
tors, both near and away from thermal equilibrium, are examined in Sec. 5.4. Inas-
much as electrons and holes are indistinguishable quantum particles that obey Fermi–
Dirac statistics, their energy levels and occupancy conditions differ markedly from
those prescribed by Boltzmann statistics, as discussed in Sec. 4.2. The generation,
recombination, and injection of carriers is considered in Sec. 5.5, while junctions and
heterojunctions are the topics of Sec. 5.6. A discussion of the energy levels, bands, and
bandgaps of quantum-confined materials, such as quantum wells and multiquantum
wells, as well as quantum wires, is provided in Secs. 5.7. The fabrication and energy
levels of quantum dots are detailed in 5.8. Finally, Sec. 5.9 provides a brief introduction
to organic and perovskite semiconductors.
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5.1 ENERGY BANDS

The atoms (or molecules) of solids lie in close proximity to each other and typically
coalesce into a periodic arrangement comprising a crystal lattice. The strength of the
forces that hold the atoms together is roughly of the same magnitude as the forces that
bind atoms into molecules. Consequently, the energy levels of solids are determined not
only by the potentials associated with the individual atoms, but also by the potentials
associated with neighboring lattice atoms. Noncrystalline solids such as glasses and
plastics have orderly structures similar to those of crystals, but they extend only over a
limited range.

Four principal types of bonding occur in ordinary solids: ionic, covalent, metallic,
and molecular. Ionic solids (such as CaF2) comprise a crystalline array of positive and
negative ions held together by electrostatic attraction. Since there are no free electrons
to carry current, these materials are insulators. They are generally transparent in the vis-
ible since their bandgaps usually lie in the ultraviolet. Covalent solids, like covalently
bound molecules, consist of atoms bound by shared valence electrons. They are often
insulators and can be transparent (such as diamond) or opaque (such as graphite) in the
visible region. Covalent solids can also behave as semiconductors (e.g., GaAs) that are
opaque in the visible and transparent in the infrared. Metallic solids have delocalized
valence electrons that are collectively shared by all of the positive ions and move in their
combined potential. The ability of the electrons to wander through metallic crystals is
responsible for their high electrical conductivities. Metals strongly reflect light and are
thus opaque in the visible. Molecular solids (also called van der Waals solids) contain
small, non-polar covalent molecules held together by van der Waals forces, which are
far weaker than those involved in other forms of binding.

Formation of Energy Bands
It is instructive to examine how the energy levels of an isolated atom are modified as
it comes into close contact with neighboring atoms in the course of forming a crystal
lattice. Isolated atoms and molecules (e.g., those in gases) exhibit discrete energy levels.
Each individual atom in a collection of such identical isolated atoms has an identical set
of such energy levels. As the atoms are brought into proximity to form a solid, exchange
interactions (arising from the quantum requirement of indistinguishability for identical
particles), along with the presence of fields of varying strengths from neighboring
atoms, play an increasingly important role. The initially sharp energy levels associated
with the valence electrons of the isolated atoms gradually broaden into collections of
multiple densely spaced energy levels that form energy bands. This process is illustrated
in Fig. 5.1-1, where electron energy levels are illustrated schematically for: (a) two
isolated atoms; (b) a molecule containing two such atoms; and (c) a rudimentary one-
dimensional (1D) lattice comprising five such atoms.

(a)

(b)

(c)

Figure 5.1-1 Schematic energy levels for:
(a) two isolated atoms; (b) the same two atoms after
having been brought into close contact and forming
a diatomic molecule; and (c) five identical atoms in
close proximity having formed a rudimentary one-
dimensional (1D) crystal.

The lowest-lying energy levels remain sharp because the electrons in the inner subshells
are shielded from the influence of nearby atoms, but the initially sharp energy levels
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associated with the outer atomic electrons become bands as the atoms enter into close
proximity and degeneracies are removed by Stark splitting.

This picture is elaborated in Fig. 5.1-2, where we schematically compare the energy
levels of an isolated atom and three different kinds of solids that comprise lattices
of such atoms: a metal, a semiconductor, and an insulator. The lowest-lying energy
levels of these solids, denoted in this sketch by the electron configurations 1s, 2s,
and 2p, resemble those of the isolated atom because the inner electrons are shielded
from interatomic forces. In contrast, the discrete higher energy levels of the atomic
valence electrons, denoted 3s and 3p, are split into densely packed energy bands in
the solids. The lowest-lying unoccupied, or partially occupied, energy band is called
the conduction band while the highest-lying fully occupied energy band is known
as the valence band. These two bands are separated by the forbidden band, whose
energy extent Eg is the bandgap energy. As with electrons in individual atoms, the
Pauli exclusion principle applies to the electrons in solids so that the lowest-lying en-
ergy bands are occupied first. Typical values for the room-temperature conductivity σ
for metals, semiconductors, and insulators are 108 (Ω-m)−1, 10−4–105 (Ω-m)−1, and
10−10 (Ω-m)−1, respectively.

Metal

Vacuum level

Semiconductor Insulator
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3p
Eg

Figure 5.1-2 Broadening of the
discrete energy levels of an iso-
lated atom into energy bands when
atoms in close proximity form a
solid. Fully occupied bands are
darkly shaded, unoccupied bands
are lightly shaded, and partially
occupied bands are both lightly
and darkly shaded.

Energy Bands in Metals, Semiconductors, and Insulators
Metals comprise the greatest preponderance of elements in the periodic table. They have
a partially occupied conduction band at all temperatures (lightly and darkly shaded re-
gion in Fig. 5.1-2). The availability of many unoccupied states in this band is responsible
for the high electrical conductivity of metals. Semimetals, in contrast, have overlapping
valence and conduction bands.

At T = 0 K, intrinsic semiconductors have an occupied valence band (dark shading
in Fig. 5.1-2) and an unoccupied conduction band (light shading). Since there are no
available free states in the valence band, and there are no electrons in the conduction
band, the conductivity of an ideal intrinsic semiconductor at T = 0 K is zero. As the
temperature of the semiconductor rises above absolute zero, however, an increasing
number of electrons from the valence band gain sufficient thermal energy to access the
conduction band and thereby contribute to the conductivity of the material.

Insulators also have a fully occupied valence band (dark shading in Fig. 5.1-2) and
an unoccupied conduction band (light shading). They are typically distinguished from
semiconductors by virtue of a bandgap energy ≳ 3 eV. As an example, the bandgap
energy for silicon (a semiconductor) is Eg ≈ 1.1 eV whereas that for diamond (an
insulator) is Eg ≈ 5.5 eV. Above absolute zero, fewer electrons in insulators acquire
the requisite thermal energy to surmount the bandgap energy and contribute to the
conductivity of the material. It should be pointed out, however, that the degree of band
overlap is also instrumental in determining whether a material is classified as a metal,
a semiconductor, or an insulator.
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Energy Bands in Bulk Semiconductors
A semiconductor is a crystalline or amorphous solid whose electrical conductivity is
typically intermediate between that of a metal and that of an insulator. Its conductivity
can be significantly altered by modifying the temperature or doping concentration of
the material, or by illuminating it with light. The band structure of semiconductors, and
the ability to form junctions and heterostructures, offer unique opportunities.

The binary semiconductor GaAs was discovered early on to be useful in photonics.
This material takes the form of a zincblende structure comprising two face-centered-
cubic lattices, one of Ga atoms and the other of As atoms, displaced from each other
by 1/4 the length of a body diagonal (Fig. 5.1-3). The conventional unit cell is a cube.
Each atom is surrounded by four atoms of the opposite type, which are equally spaced
and located at the corners of a regular tetrahedron.
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Figure 5.1-3 The semiconductor GaAs takes the form
of a zincblende crystal structure comprising two face-
centered-cubic lattices, one of Ga and the other of As. The
higher energy levels are closely spaced and form bands.
The zero of energy is (arbitrarily) defined at the top edge
of the valence band. The GaAs light-emitting diode (and
laser diode) operate on the electron transition between the
bottom of the conduction band and the top of the valence
band, in the near-infrared region of the spectrum.

Semiconductors have many closely spaced allowed electron energy levels that take
the form of bands, as displayed in Fig. 5.1-3 for GaAs. The bandgap energy Eg, which is
the energy separating the valence and conduction bands, is 1.42 eV at room temperature.
The Ga and As (3d) core levels are quite sharp, as displayed in Fig. 5.1-3. The valence
band of GaAs is formed from the 4s and 4p levels (in analogy with the schematic in
Fig. 5.1-2).

Origin of the Energy Bandgap
The atoms comprising solid-state materials have sufficiently strong interatomic inter-
actions that they cannot be treated as individual entities, as discussed at the beginning
of this section. Their conduction electrons are not bound to individual atoms; rather,
they belong to the collection of atoms as a whole. As illustrated in Fig. 5.1-2, each
band contains a large number of densely packed discrete energy levels that is well
approximated as a continuum. The solution of the Schrödinger equation for the electron
energy, in the periodic potential created by the collection of atoms in the crystal lattice
[Fig. 5.1-4(a)], results in a splitting of the atomic energy levels and the formation of
energy bands.

a

V
0

(a)

(b)

Figure 5.1-4 (a) Crystal-lattice
potential for an ideal, 1D, infinite col-
lection of atoms of lattice constant a.
(b) Idealized rectangular-barrier po-
tential (height V 0) that describes the
Kronig–Penney model.
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Kronig–Penney Model. From a mathematical perspective, the origin of the bandgap
may be illustrated in essence via the Kronig–Penney model. In this simple theory, the
crystal-lattice potential, a one-dimensional version of which is displayed in Fig. 5.1-
4(a), is approximated by a 1D periodic rectangular-barrier potential, as depicted in
Fig. 5.1-4(b). The solution of the associated Schrödinger equation for this potential
yields allowed energy bands with traveling-wave solutions that are separated by forbid-
den bands with exponentially decaying solutions. It can be shown that the results are
general and carry over to three dimensions. The traveling-wave eigenfunctions, known
as Bloch modes, assume the periodicity of the crystal lattice.

Bandgap Energy and Bandgap Wavelength
As discussed above, the valence and conduction bands of a semiconductor material are
separated by a forbidden band with an energy extent known as the bandgap energy Eg.
These bands and bandgap are illustrated in Fig. 5.1-5 for the iconic semiconductors Si
and GaAs.

Figure 5.1-5 Energy bands in Si
and GaAs. The bandgap energy Eg ,
which separates the valence and con-
duction bands, is 1.12 eV for Si and
1.42 eV for GaAs at T = 300 K.

The bandgap wavelength λg is related to the bandgap energy Eg via

λg =
hcO
Eg

. (5.1-1)
Bandgap Energy
and Wavelength

When the bandgap wavelength is expressed in µm and the bandgap energy is expressed
in eV, the following approximate formula, which is patterned after (3.2-3), may be used:

λg ≈
1.24

Eg
. (5.1-2)

Bandgap Wavelength
λg (µm); Eg (eV)

The bandgap wavelength and bandgap energy are fully equivalent quantities but are
inversely related: a decrease in λg corresponds to an increase in Eg, and vice versa.
The bandgap energy/wavelength is a key parameter for characterizing the electrical and
optical properties of semiconductor materials, as well as for the operation of LEDs fab-
ricated from these materials, as will be explained in Sec. 6.4 and discussed in Sec. 7.3.

It will become apparent in the sequel that the bandgap wavelength of a semi-
conductor material λg is a key determinant of the wavelength λO of the light
emitted by an LED fabricated from that material.
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5.2 CHARGE CARRIERS

Electrons and Holes
As is understood from the description provided in Sec. 5.1, the wavefunctions of the
electrons in a semiconductor overlap. Since the Pauli exclusion principle applies, no
two electrons may occupy the same quantum state and the lowest available energy levels
fill first. Elemental semiconductors such as Si and Ge have four valence electrons per
atom that form covalent bonds. At T = 0 K, the number of quantum states that can
be accommodated in the valence band is such that it is completely filled while the
conduction band is completely empty. The material cannot conduct electricity under
these conditions.

As the temperature increases, however, some electrons can be thermally excited
from the valence band into the empty conduction band, where unoccupied states are
abundant (Fig. 5.2-1). These electrons then behave as mobile carriers that drift through
the crystal lattice and generate an electric current in the presence of an applied electric
field. Moreover, the electrons that depart the valence band leave behind unoccupied
quantum states, which in turn allow the remaining electrons in the valence band to
move by exchanging places with each other under the influence of an applied field. The
motion of these electrons can just as well be regarded as the motion, in the opposite
direction, of the holes left behind by the electrons that ascended to the valence band. A
hole thus behaves as a particle with positive charge +e.
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Figure 5.2-1 Electrons in the conduction band
and holes in the valence band of a semiconductor
material at T > 0 K.

The net result is that each electron excitation creates a free electron in the conduction
band and a free hole in the valence band. The two charge carriers are free to drift under
the effect of an applied electric field, thereby generating an electric current and a hole
current. The material behaves as a semiconductor whose conductivity increases sharply
with increasing temperature as a consequence of the increasing number of thermally
generated mobile carriers.

Energy–Momentum Relations
In accordance with Schrödinger wave mechanics, the energy E and momentum p of
an electron in a region of constant potential, such as free space, are related by E =
p2/2m0 = ℏ2k2/2m0, where p is the magnitude of the momentum, k is the magnitude
of the wavevector k = p/ℏ, and m0 is the free-electron mass (≈ 9.1× 10−31 kg). The
E–k relation for a free electron is thus a simple parabola.

□ Energy–Momentum Relations for a Free Electron and a Free Photon.

(a) The energy–momentum relation for a free electron of mass m0 is established by solving the
one-dimensional, time-independent, nonrelativistic Schrödinger equation,

− ℏ2

2m0

d 2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) , (5.2-1)

Time-Independent
Schrödinger Equation
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where ψ(x) is the position wavefunction, V (x) = 0 is the potential energy for a free particle,
and E is the electron energy. Substituting a plane-wave trial solution of the form ψ(x) =
A exp(−jkx), where A is a constant, results in (−ℏ2/2m0) (−jk)2 e−jkx = Ee−jkx, which
leads to the quadratic energy–momentum relation (the energy is not quantized):

E = ℏ2k2/2m0 . (5.2-2)

An alternative route to this result makes use of the relativistic energy–momentum relation for
the total energy Ê of a free particle of mass m0:

Ê
2
= p2c2 +m2

0c
4. (5.2-3)

In the nonrelativistic limit, we carry out a Taylor-series expansion for the total energy, and
retain the first term. Recalling that

√
1 + x ≈ 1 + x/2 for x≪ 1, we obtain

Ê =
√
p2c2 +m2

0c
4 =

√
m2

0c
4 (1 + p2c2/m2

0c
4)

≈ m0c
2
(
1 + p2c2/2m2

0c
4
)
= m0c

2 + p2/2m0 . (5.2-4)

The termm0c
2 represents the rest energy of the electron (≈ 0.511 MeV), so its nonrelativistic

kinetic energy is E = Ê −m0c
2 = p2/2m0. Using p = ℏk for the electron momentum, we

arrive at E = ℏ2k2/2m0, in accord with (5.2-2).
(b) The energy–momentum relation for a free photon, which travels at the speed of light c in

a medium, is obtained by making use of (5.2-3) and recognizing that the rest mass of the
photon is zero. Employing the relation p = ℏk from (3.3-11), we arrive at the linear energy–
momentum relation

E = pc = cℏk. (5.2-5)
■

Energy–Momentum Relations in Semiconductors. The motion of an electron
in a semiconductor material is similarly governed by the Schrödinger equation, but
with a potential generated by the charges in the periodic crystal lattice of the material.
As discussed earlier, this gives rise to allowed energy bands separated by forbidden
bands, as exemplified by the Kronig–Penney model (Fig. 5.1-4). The ensuing E–k
relations for electrons and holes, in the conduction and valence bands respectively, are
illustrated in Fig. 5.2-2 for Si and GaAs. The energy E is a periodic function of the
components (k1, k2, k3) of the wavevector k, with periodicities (π/a1, π/a2, π/a3),
where a1, a2, a3 are the crystal lattice constants. Figure 5.2-2 displays cross sections of
this relation along two particular directions of the wavevector k. The range of k values
in the interval [−π/a, π/a] defines the first Brillouin zone. The energy of an electron
in the conduction band thus depends not only on the magnitude of its momentum, but
also on the direction in which it is traveling in the crystal.

E

k

Eg = 1.12 eV

Ec

Eυ

[111] [100]

E

k

Eg = 1.42 eV

Ec

Eυ

[111] [100]

Figure 5.2-2 Cross sections of the E–k relations for Si and GaAs along two crystal directions:
[111] toward the left and [100] toward the right.
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Effective Mass
It is apparent from Fig. 5.2-2 that near the bottom of the conduction band, for both Si
and GaAs, the E–k relation may be approximated by a parabola,

E = Ec +
ℏ2k2

2mc
, (5.2-6)

where Ec is the energy at the bottom of the conduction band and k is measured from
the value of the wavenumber where the minimum occurs. This parabolic behavior is
highlighted in Fig. 5.2-3.

E

k

Eg = 1.42 eV

E

k

Eg = 1.12 eV

Figure 5.2-3 The E–k relation is well-approximated by parabolas at the bottom of the conduction
band and at the top of the valence band, for both Si and GaAs.

The parabolic relation represented in (5.2-6) suggests that a conduction-band electron
behaves in a manner analogous to that of a free electron, but with a massmc, called the
conduction-band effective mass or the electron effective mass, that differs from that of
the free-electron mass m0. This is because the electron effective mass accommodates
the influence of the lattice ions on the motion of the conduction-band electron.

Similarly, near the top of the valence band, we may write

E = Ev −
ℏ2k2

2mv
, (5.2-7)

where Ev = Ec −Eg is the energy at the top of the valence band andmv is the valence-
band effective mass or hole effective mass, as illustrated in Fig. 5.2-3. The influence of
the lattice ions on the motion of a valence-band hole is captured by its effective mass.

The effective mass depends on the crystal structure of the material and on the direc-
tion of travel of the carrier with respect to the lattice since the interatomic spacing varies
with crystallographic direction. It also depends on the particular band under consider-
ation; indeed, several parabolas of different curvature sometimes coexist near the top
of the valence band, corresponding to so-called heavy holes, light holes, and split-off-
band holes. Selected averaged values of the effective masses for several semiconductor
materials, normalized to the free-electron mass m0, are presented in Table 5.2-1.

Table 5.2-1 Typical averaged values of the normalized electron
and hole effective masses for selected semiconductor materials.

semiconductor mc/m0 mv/m0

Si 0.98 0.49
Ge 0.34 0.29
GaAs 0.07 0.50
GaN 0.20 0.80
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Direct- and Indirect-Bandgap Semiconductors
Semiconductors for which the conduction-band minimum energy and the valence-band
maximum energy correspond to the same value of the wavenumber k (same momen-
tum) are called direct-bandgap materials. Semiconductors for which this is not the
case are known as indirect-bandgap materials. As is evident in Fig. 5.2-2, GaAs is a
direct-bandgap semiconductor while Si is an indirect-bandgap semiconductor.

The distinction is important because a transition from the bottom of the conduction
band to the top of the valence band in an indirect-bandgap semiconductor must ac-
commodate a substantial change in the momentum of the electron. Since a third body,
such as one or more phonons, must participate in the interaction to absorb the excess
momentum, the efficiency of photon emission is depressed. A phonon is a quantum of
the lattice vibrations associated with molecular or acoustic vibrations of the atoms of a
material. Therefore, as will be elucidated in Sec. 6.4, under ordinary circumstances:

Direct-bandgap semiconductors such as GaAs can emit light efficiently whereas
indirect-bandgap semiconductors such as Si cannot.

5.3 SEMICONDUCTOR MATERIALS

Figure 5.3-1 displays the portion of the periodic table of the elements that relates to
semiconductors. The elements in column IV, along with compound semiconductors
formed from various combinations of elements in selected other columns, are the ma-
terials that underlie semiconductor physics and photonics. Each column of the table,
which is designated by both a circled arabic numeral and a roman numeral, is referred
to as a group. All elements in a group exhibit similar physical and chemical properties
since they have the same number of valence electrons. The arabic numeral that labels
each row at the left of the table represents the principal quantum number for the ele-
ments in that row.

Figure 5.3-1 Element abbreviations and atomic numbers for
the section of the periodic table that relates to semiconductors.
Each column of the table, referred to as a group, is labeled by
both a circled arabic numeral and a roman numeral. The latter,
which is the older designation, remains prevalent in semiconductor
technology. The arabic numerals at the left represent the principal
quantum numbers for elements in that row. Elements depicted as
blue, yellow, and silver take the form of gases, liquids, and solids at
room temperature, respectively.

We proceed to consider the properties of several classes of elemental and compound
semiconductors in the context of their constituent elements and the organization of the
periodic table. The bandgap energies and wavelengths of these semiconductors are of
particular importance since they determine the colors of the light that are generated by
LEDs fabricated from these materials, as discussed in Sec. 7.3.

Elemental and Compound Semiconductors

Elemental Semiconductors:
The elemental semiconductors carbon (C), silicon (Si), and germanium (Ge) are located
in group IV of the periodic table, and some of their basic properties are tabulated in
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Table 5.3-1. Although these elements can be coaxed into emitting light under special
conditions, they are typically not suitable for use as light emitters because of their
indirect bandgaps, as discussed in the previous section. Group-IV elements can also
be mixed to form compound semiconductors. An example of historical significance in
the annals of LED technology is the indirect-bandgap, binary semiconductor silicon
carbide (SiC). Also known as carborundum, this material serendipitously served as the
first light-emitting Schottky-barrier diode in 1907 (p. 169 and Sec. 6.4). Silicon carbide
plays a limited role in photonics today, as a substrate for III–nitride photon emitters.
Using combinations of group-IV elements for photonic applications is an emerging
area of technology known as group-IV photonics.

diamond and
zincblende:

Ga

As

wurtzite:
Ga

N

Table 5.3-1 Crystal structure, bandgap type, bandgap energy, and
bandgap wavelength of selected elemental and binary III–V semicon-
ductor materials.

Semi- Crystal Bandgap Bandgap Bandgap
conductor Structurea Type Energyb,c Wavelengthb,c

Material (D/W/Z) (Indirect/Direct) Eg (eV) λg (µm)

Si Diamond Indirect 1.12 1.11
Ge Diamond Indirect 0.66 1.88

AlN Wurtzite Direct 6.02 0.206
AlP Zincblende Indirect 2.45 0.506
AlAs Zincblende Indirect 2.16 0.574
AlSb Zincblende Indirect 1.58 0.785
GaN Wurtzite Direct 3.39 0.366
GaP Zincblende Indirect 2.26 0.549
GaAs Zincblende Direct 1.42 0.873
GaSb Zincblende Direct 0.73 1.70
InN Wurtzite Direct 0.65 1.91
InP Zincblende Direct 1.35 0.919
InAs Zincblende Direct 0.36 3.44
InSb Zincblende Direct 0.17 7.29

aThe crystal structure indicated represents the most commonly used form of the material. The zincblende structure
comprises two interpenetrating face-centered-cubic (fcc) lattices, one for each element, displaced from each other
by 1/4 of the body diagonal. The diamond lattice is the same as zincblende except that all atoms are identical. The
wurtzite structure consists of two hexagonal close-packed lattices, one for each element, displaced from each other
along the three-fold c axis by 3/8 of its length. All atoms are tetrahedrally bonded with their neighbors.
bAt T = 300 K.
cThe free-space bandgap wavelength λg and bandgap energy Eg are related by (5.1-1). When the bandgap energy
is expressed in eV and the bandgap wavelength is expressed in µm, (5.1-2) proves convenient for calculation.

Binary III–V Semiconductors:

Al

Ga

In

P

As

Sb

N Compound semiconductors can be formed from an element in
column III of the periodic table, such as aluminum (Al), gal-
lium (Ga), or indium (In), with an element in column V, such
as nitrogen (N), phosphorus (P), arsenic (As), or antimony (Sb)
(the elements in these two columns are known as icosagens and
pnictogens, respectively). Photonics was revolutionized in the

1950s by the growth of single-crystal III–V semiconductors such as these, which do not
occur in nature and often have direct bandgaps. Selected properties of these twelve III–
V compounds, including their crystal structure (zincblende or wurtzite), bandgap type
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(direct or indirect), bandgap energy Eg, and bandgap wavelength λg are provided in
Table 5.3-1 and Fig. 5.3-2. Most of them can be used to fabricate light-emitting diodes
(and laser diodes). Indeed, the first practical III–V semiconductor LED was fabricated
from GaAs in 1962 (see p. 198 and footnotes on p. 199). Thirty years later, in the
early 1990s, the binary compound GaN moved to center stage when it was discovered
that it could be used as a springboard for the development of InGaN, which enabled
the fabrication of efficient blue LEDs and thence white light sources (see p. 306 and
footnote on p. 307).

Ternary III–V Semiconductors:
Ternary III–V semiconductors are compounds formed from
two elements in column III and one in column V (or one el-
ement in column III and two in column V). Although they
are more complex to fabricate, ternary compounds offer more
flexibility than binary ones because of their additional degree
of freedom. An eminently important ternary semiconductor for
photonics applications is InxGa1−xN, a direct-bandgap mate-
rial whose bandgap wavelength can be compositionally tuned
to span the green, blue, violet, and near-ultraviolet regions of
the spectrum, as shown in Fig. 5.3-2(b). This material has prop-
erties that interpolate between those of GaN an InN, as deter-

mined by the compositional mixing ratio x (the fraction of Ga atoms in GaN that are
replaced by In atoms). The bandgap energy Eg for this material varies between 3.39 eV
for GaN and 0.65 eV for InN (Table 5.3-1), as x varies between 0 and 1 along the
curve that connects these compounds in Fig. 5.3-2(b). Viable substrates for the III–
nitrides include sapphire, SiC, and Si. Another widely used ternary semiconductor
is AlxGa1−xAs, whose properties interpolate between those of GaAs and AlAs, as
specified by the compositional mixing ratio x (the fraction of Ga atoms in GaAs that are
replaced by Al atoms). The bandgap energy Eg for this material varies between 1.42 eV
(GaAs) and 2.16 eV (AlAs), as x varies between 0 and 1 along the line connecting these
materials [Fig. 5.3-2(a)]. Bandgap energies for the ternary semiconductor GaAs1−xPx

(see p. 338 and footnote on p. 339) are also displayed in Fig. 5.3-2(a).

Quaternary III–V Semiconductors:
Quaternary semiconductors are formed by mixing three el-
ements from column III with one from column V (or two
from column III with two from column V). In general, these
semiconductors offer greater design flexibility than ternary
compounds by virtue of the additional degree of freedom.
AlxInyGa1−x−yP is a particularly important quaternary semi-
conductor compound that usually makes use of GaAs as
a substrate (x and y represent the fraction of Ga atoms in
the GaP that are replaced by Al and In atoms, respectively).
This material is widely used for fabricating bright LEDs that
operate in the red, orange, and yellow regions of the spectrum
[shaded region in Fig. 5.3-2(a)]. Another quaternary material,

the III–nitride compound AlxInyGa1−x−yN [Fig. 5.3-2(b)], is used in the ultraviolet.
Finally, we mention In1−xGaxAs1−yPy, an important material in the near infrared that
encompasses the 1550-nm optical fiber telecommunications band. The bandgap energy
of this material extends from 0.36 eV (InAs) to 2.26 eV (GaP) for compositional mixing
ratios x and y that vary between 0 and 1. The stippled area in Fig. 5.3-2(a) highlights
the range of bandgap energies and lattice constants spanned by this compound.
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Figure 5.3-2 Dots represent bandgap energies, bandgap wavelengths, and lattice constants for Si,
Ge, 6H-SiC, and 12 binary III–V compounds. Solid and dashed curves represent direct-bandgap and
indirect-bandgap compositions, respectively. A material may have a direct bandgap for one mixing
ratio and an indirect bandgap for a different mixing ratio. Ternary materials are represented along the
curve that joins the constituent binary compounds. Quaternary materials are represented within the
interior of the geometrical object defined by the binary components at its vertices. (a) The ternary
compound AlxGa1−xAs is represented by points along the line connecting GaAs and AlAs. As
x varies from 0 to 1, the point moves along this line from GaAs toward AlAs. Since the line is
nearly vertical, AlxGa1−xAs is lattice matched to GaAs. The quaternary compound AlxInyGa1−x−yP
is represented by the shaded area with vertices at AlP, InP, and GaP, while In1−xGaxAs1−yPy is
represented by the stippled area with vertices at InP, InAs, GaAs, and GaP. Both are important
quaternary compounds, the former in the visible and the latter in the near infrared. (b) Although the
ternary III–nitride compound InxGa1−xN can, in principle, be compositionally tuned to accommodate
the entire visible spectrum, the material becomes more difficult to grow as the In composition
increases. InxGa1−xN is therefore principally used in the green, blue, and violet spectral regions.
AlxGa1−xN and AlxInyGa1−x−yN primarily serve the ultraviolet region. All compositions of these
III–nitride compounds are direct-bandgap materials.

Binary and Ternary II–VI Semiconductors:
Binary II–VI materials, i.e., compound semiconductors formed from an element in
column II, such as zinc (Zn), cadmium (Cd), or mercury (Hg), with an element in
column VI, such as sulfur (S), selenium (Se), or tellurium (Te), are also important pho-
tonic materials (the elements in these two columns are known as divalent metals and
chalcogenides, respectively). All of these materials have a zincblende structure and are
direct-bandgap semiconductors, except for HgSe and HgTe, which are semimetals with
small negative bandgap energies. Figure 5.3-3 displays the bandgap energies, bandgap
wavelengths, and lattice constants of several II–VI compounds: ZnS, ZnSe, ZnTe, CdS,
CdSe, CdTe, HgSe, and HgTe. The binary materials CdTe and HgTe are nearly lattice-
matched, as is evidenced by the vertical line that connects them in Fig. 5.3-3, so that
HgxCd1−xTe can be grown without strain on a CdTe substrate; indeed, this ternary
semiconductor is widely used in mid-infrared photonics. Although the range of bandgap
wavelengths available with II–VI materials encompasses the entire visible region, these
bulk semiconductors are rarely used for fabricating photon sources because they suffer
from limited lifespans as a result of material defects. On the other hand, quantum
dots fabricated from binary and ternary II–VI materials, such as CdSe and ZnCdS, are
essentially unaffected by material defects (Sec. 7.5). Indeed, such quantum dots serve
as efficient generators of photoluminescence and electroluminescence that can be tuned
over a wide range of visible wavelengths by simply modifying the dot size [Fig. 5.8-
1(a)]. In fact, II–VI compounds are ubiquitous in nature and can be readily fashioned
into colloidal quantum dots, whereas III–V compounds are not found in nature and it is
especially challenging to forge Ga-based III–V materials into colloidal quantum dots.
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Figure 5.3-3 Bandgap energies, bandgap
wavelengths, and lattice constants for sev-
eral II–VI semiconductor compounds (HgSe
and HgTe are semimetals with small negative
bandgap energies). Although most of these
bulk materials have direct bandgaps, they are
rarely used for fabricating photon sources
because of their limited lifespans. However,
binary and ternary II–VI semiconductors such
as CdSe and ZnCdS can be readily fashioned
into colloidal quantum dots that efficiently emit
luminescence with wavelengths that can be
tuned by modifying the dot size [Fig. 5.8-1(a)].

Doped Semiconductors
Having described elemental and compound semiconductors, we now consider the prop-
erties of doped semiconductors. The electrical and optical properties of semiconductors
can be substantially modified by introducing into the material small quantities of spe-
cially chosen impurities called dopants; the presence of such impurities can alter the
concentration of mobile charge carriers by many orders of magnitude. Dopants with
excess valence electrons, called donors, that replace a small proportion of the normal
atoms in the crystal lattice (and are of similar size) create a predominance of mobile
electrons and the material is then said to be an n-type semiconductor. Examples are
atoms from column V of the periodic table, such as P or As, replacing a fraction of
the column-IV atoms in an elemental semiconductor such as Si or Ge; and atoms from
column VI, such as Se or Te, replacing a small fraction of the column-V atoms in a
III–V binary semiconductor containing As or Sb.

Similarly, a p-type semiconductor is created by employing dopants with a defi-
ciency of valence electrons, called acceptors, to replace a small proportion of the
normal lattice atoms; the result is then a predominance of mobile holes. Examples are
a small proportion of column-III atoms such as B or In replacing column-IV atoms in
an elemental semiconductor; and a small proportion of column-II atoms such as Zn or
Cd replacing column-III atoms in a III–V binary semiconductor containing Ga or In.
Because column-IV atoms act as donors for column III, and as acceptors for column V,
they can be used to create an excess of both electrons and holes in III–V materials. The
introduction of dopants does not alter the charge neutrality of a material.

Doped materials are called extrinsic semiconductors while undoped materials (i.e.,
semiconductors that are devoid of intentional doping) are referred to as intrinsic semi-
conductors. In an intrinsic semiconductor, the concentrations (number densities) of
mobile electrons and holes are equal, i.e., n = p = ni, and the intrinsic concentration
ni grows exponentially with increasing temperature. In contrast, the concentration of
mobile electrons in an n-type semiconductor (majority carriers) is far greater than
the concentration of holes (minority carriers), so that n ≫ p. The opposite is true
in a p-type semiconductor, where holes are the majority carriers, and p ≫ n. At room
temperature, doped semiconductors typically have a majority-carrier concentration that
is approximately equal to the doping concentration.

As semiconductor devices shrink in scale, there are ever smaller numbers of dopant
atoms that are randomly distributed in position; hence, there may be only a handful of
dopants, on average, at the nanoscale. However, techniques such as single-ion implan-
tation can be used to fabricate semiconductors in which the number of dopant atoms,
and their positions, are precisely determined. Indeed, semiconductor materials can be
grown with sufficient purity so that nanodevices are devoid of impurities and solitary
dopants can be inserted at specified positions to create designer dopant arrays.
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EXAMPLE 5.3-1. Donor-Electron Ionization Energy. Consider a germanium crystal of rel-
ative permittivity ϵ/ϵO = n2 = 16 (Table 6.7-1) doped with As donor atoms. The electron effective
mass of Ge is mc = 0.34m0 (Table 5.2-1), where m0 is the free electron mass. The donor electron
moves in the field of the singly charged arsenic ion (As+), and has energy levels similar to those of an
electron in the hydrogen atom. Hence, we choose the atomic numberZ = 1 and the principal quantum
number n = 1 in the formula for the energy levels of a hydrogen-like atom, represented in (5.3-1), and
replace the electric permittivity of free space ϵO by ϵ and the reduced mass Mr bymc to accommodate
the polarization density and the crystal lattice of the semiconductor material, respectively, whereupon
the energy of the donor electron becomes

ED = −
(

1

4πϵO

)2 (
Z2

n2

)
Mre

4

2ℏ2
= −

(
1

4πϵ

)2
mce

4

2ℏ2
. (5.3-1)

Since the energy of the electron in the ground state of hydrogen (Z = 1) is En=1 ≈ −13.6 eV with
respect to the vacuum level (i.e., it is 13.6 eV below the ionization energy), the energy of the arsenic
donor electron is ED = −(mc/m0)(ϵO/ϵ)

2 × 13.6 eV ≈ −0.018 eV. The donor electron thus resides
in the Ge forbidden band, at a level ≈ 0.018 eV below the conduction band edge. Since the thermal
energy kT ≈ 0.026 eV at T = 300 K, however, essentially all of the donors are ionized at room
temperature and the donor electrons are elevated to the conduction band. The material thus has a
conduction-band donor-electron concentration that is roughly equal to the dopant concentration.

Graphene and 2D Materials
As indicated earlier in this section, the elements that reside in group-IV of the periodic
table are of increasing interest in photonics. Carbon (C), silicon (Si), germanium (Ge),
and tin (Sn) are of particular importance. Group-IV elements exist in various structural
forms, known as allotropes, which exhibit distinct physical properties and have differ-
ent applications. Although others exist, the most widely known allotropes of these four
elements are:

C: Diamond, graphite, carbon nanotubes, carbon dots, and graphene.
Si: Crystalline and amorphous silicon, as well as silicene (analog of graphene).
Ge: α-Ge, β-Ge, and germanene (analog of graphene).
Sn: α-Sn (gray tin), β-Sn (white tin), and stanene (analog of graphene).

Graphene, a material comprising a one-atom-thick carbon honeycomb lattice, has
come to the fore in recent years because of its unique properties and because it can be
fashioned into a variety of photonic devices. Graphene and its analogs listed above all
take the form of hexagonal-lattice 2D atomic sheets that are usually denoted h-C, h-Si,
h-Ge, and h-Sn, respectively, where the designation ‘h’ represents ‘hexagonal.’

The relatively new fields of graphene photonics and 2D-material photonics fall
under the rubric of group-IV photonics.

Graphene. Graphene is a 2D material comprising a single, 0.335-nm-thick layer of
graphite whose atoms are arranged in a hexagonal honeycomb structure (Fig. 5.3-4).
Graphene was first extracted from graphite in 2004 by Andre Geim and Konstantin
Novoselov, an achievement for which they were awarded the 2010 Nobel Prize in
physics. Graphene is endowed with a collection of exceptional properties that make it
useful for diverse photonics applications:

It is an excellent conductor of electricity and has an optical transmittance near
unity so it can be used as a transparent electrode (in place of indium tin oxide).
Its optical absorbance is nearly constant at ξ = πe2/ℏc ⇝ 2.3% over a broad
wavelength band that stretches from 0.7 to 25 µm; its intensity reflectance is a
negligible R ≈ 1.3× 10−4; and its intensity transmittance at normal incidence is
T ≈ 97.7%. Its current-carrying capacity is also substantial (i ≈ 108 A/cm2 on
SiO2), which makes it promising for use in batteries that can be charged rapidly.
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It is a semimetal with zero bandgap that can interact with radiation over a broad
spectral range stretching from the THz to the ultraviolet. Its absorption coefficient
α ≈ 7× 105 cm−1 is an order of magnitude greater than that of Si or GaAs. It is
readily doped, so that its electronic properties can be altered.
It has an unusually high electron mobility. When deposited on SiO2, its mobility
is µ ≈ 1.5 × 104 cm2/V·s so that the carrier drift velocity is an order of magni-
tude greater than that in Si. It therefore has an inordinately fast response and is
suitable for use in ultrafast photodetectors. Its exceptionally high area-to-volume
ratio makes it highly effective for applications involving sensing.
It is chemically stable, refractory to high temperatures, and resilient in high hu-
midity. It has high thermal conductivity and excellent mechanical strength, yet is
elastic and therefore bendable.
It exhibits fast and strong absorption saturation, rendering it suitable for use as a
saturable absorber for mode-locked lasers and as a broadband modulator.

Ef

E

k

Graphene

Figure 5.3-4 Graphene, also referred to as
h-C, is a single layer of carbon atoms ar-
ranged in a hexagonal honeycomb lattice. Its
E–k diagram is conical rather than parabolic
(compare with Fig. 5.2-3). Graphene behaves
as a semimetal with zero bandgap since its
conduction- and valence-band cones meet at
points that define the Fermi level Ef .

Because of its particular 2D symmetry, the band structure for carriers in graphene
takes the form of cones (Fig. 5.3-4), rather than the parabolas that are characteristic
of traditional semiconductors (Fig. 5.2-3). The E–k-diagram cross section is therefore
linear rather than parabolic; it is similar to that for photons and is characterized by
(5.2-5) rather than by (5.2-2). As with photons, the electronic excitations (called Dirac
fermions) behave as if they were massless; this leads to an unusually large Fermi veloc-
ity, v ≈ c/300, that underlies graphene’s fast response. Furthermore, the conduction-
and valence-band cones meet at single points (called Dirac points) that define the Fermi
level, so that graphene behaves as a semimetal with zero bandgap. A number of other 2D
materials also host massless Dirac fermions and behave as semimetals (e.g., silicene,
germanene, stanene, and β12-borophene), but most have approximately parabolic, rather
than conical, band structures. Although Dirac fermions have been most widely studied
in 2D materials, they are also present in some 3D materials, such as compressively
strained α-Sn (gray tin) and Na3Bi.

While the interaction of light with graphene is strong on a per-unit-distance basis
(α ≈ 7 × 105 cm−1), photonic devices that rely on single-pass operation encounter
an insignificant thickness of material (0.335 nm). Hence, building an effective 2D-
based device almost always requires that the interaction be enhanced, which may be
achieved by specialized doping or siting, by coupling to a photonic waveguide or cavity,
or by coupling to plasmons, phonons, or excitons. Significant enhancement of the light–
matter interaction can be attained by using traveling surface plasmon polaritons.

Other 2D Materials. By virtue of its semimetallic nature, graphene is a poor emitter
of light. However, a number of other 2D materials, including various transition-metal
dichalcogenides (TMDs) such as molybdenum disulfide, behave as direct-bandgap
semiconductors with bandgap energies Eg that lie between 0.5 and 3 eV. As with 3D
semiconductors, the bandgap energy can be tuned via chemistry, composition, and/or
quantum confinement. These materials can serve as light emitters or reflectors domi-
nated by excitonic transitions.
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Single-layer TMDs such as MoS2 and WSe2 consist of a sublayer of transition metal
sandwiched between two sublayers of chalcogen. MoS2, for example, has an overall
layer thickness of 0.65 nm and a bandgap energy of 1.8 eV. In their 3D configurations,
some of these materials (e.g., graphite, MoS2) serve as industrial lubricants. This is be-
cause consecutive atomic layers are bound only by weak van der Waals forces and easily
slide over each other, a property that made it relatively easy for Geim and Novoselov
to peel off a single graphene layer from graphite. Indeed, such 2D materials are often
called van der Waals materials. Other 3D precursors (e.g., silicon, germanium) form
tight bonds in all three dimensions so that their 2D versions, when extracted, tend to
buckle.

The number of possible TMDs that can be formed is substantial since there are tens
of transition metals and at least three chalcogens (S, Se, and Te; the elements O, Po,
and Lv are sometimes also included in this category). Certain single-layer materials
behave as insulators (e.g., hexagonal BN, with Eg ≈ 6 eV) and others behave as metals.
2D materials can be used in isolation, or combined in layers of various compositions,
to create atomically thin heterostructures that serve as planar photonic devices. Hybrid
structures comprising layers of graphene and TMDs exhibit unique properties that offer
promise for use in efficient light sources, modulators, and photodetectors.

5.4 CARRIER CONCENTRATIONS

Determining the concentration of carriers (number densities of electrons and holes) in
a semiconductor as a function of energy requires knowledge of two features that we
calculate in turn:

The density of allowed energy levels (density of states).
The probability that each of these levels is occupied (occupancy probability).

We conclude this section by analyzing semiconductor carrier concentrations in thermal
equilibrium and quasi-equilibrium.

Density of States
The quantum state of an electron in a conventional bulk semiconductor material is char-
acterized by its energy E , its wavevector k [the magnitude of which is approximately
related to E by (5.2-6) or (5.2-7)], and its spin. The state is described by a wavefunction
that satisfies certain boundary conditions.

An electron near the conduction-band edge may be approximately described as a
particle of mass mc confined to a three-dimensional cubic box of dimension d with
perfectly reflecting walls, i.e., a three-dimensional infinite rectangular potential well.
The standing-wave solutions require that the components of the vector k = (kx, ky, kz)
assume the discrete values k = (q1π/d , q2π/d , q3π/d), where the respective mode
numbers (q1, q2, q3) are positive integers. This result is a three-dimensional generaliza-
tion of the one-dimensional infinite square well (Example 5.7-1).

The tip of the vector k must lie on the points of a lattice whose cubic unit cell
has dimension π/d . There are therefore (d/π)3 points per unit volume in k-space.
The number of states whose vectors k have magnitudes between 0 and k is deter-
mined by counting the number of points lying within the positive octant of a sphere
of radius k [with volume ≈ ( 18)4πk

3/3 = πk3/6]. Because of the two possible val-
ues of the electron spin, each point in k-space corresponds to two states. There are
therefore approximately 2(πk3/6)/(π/d)3 = (k3/3π2)d 3 such points in the volume
d 3 and hence (k3/3π2) points per unit volume. It follows that the number of states
with electron wavenumbers between k and k + ∆k, per unit volume, is ϱ(k)∆k =
[(d/dk)(k3/3π2)]∆k = (k2/π2)∆k, which leads to a density of states given by
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ϱ(k) =
k2

π2
. (5.4-1)

Density of States

This derivation is identical to that used for counting the number of modes that can
be supported in a three-dimensional electromagnetic cavity (Sec. 4.4). In the case
of electromagnetic modes there are two degrees of freedom associated with the field
polarization (i.e., two photon spin values), whereas in the semiconductor case there
are two spin values associated with the electron state. In resonator optics the allowed
electromagnetic solutions for k were converted into allowed frequencies via the linear
frequency–wavenumber relation ν = ck/2π. In semiconductor physics, in contrast, the
allowed solutions for k are converted into allowed energies via the quadratic energy–
wavenumber relations specified in (5.2-6) and (5.2-7) and displayed in Fig. 5.4-1(a).
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Figure 5.4-1 (a) Cross section of the E–k diagram (e.g., in the direction of the k1 component,
with k2 and k3 fixed). (b) Allowed energy levels (at all k). (c) Density of states near the edges of the
conduction and valence bands. The quantity ϱc(E ) dE is the number of quantum states with energy
between E and E+dE , per unit volume, in the conduction band. The quantity ϱv(E ) has an analogous
interpretation for the valence band.

If ϱc(E )∆E represents the number of conduction-band energy levels (per unit vol-
ume) lying between E and E + ∆E , then, because of the one-to-one correspondence
between E and k specified in (5.2-6), the densities ϱc(E ) and ϱ(k) must be related by
ϱc(E ) dE = ϱ(k) dk. Thus, the density of allowed energies in the conduction band is
ϱc(E ) = ϱ(k)/(dE/dk). Similarly, the density of allowed energies in the valence band
is ϱv(E ) = ϱ(k)/(dE/dk), where E is given by (5.2-7). The approximate quadratic
E–k relations (5.2-6) and (5.2-7), which are valid near the edges of the conduction
band and valence band, respectively, are used to evaluate the derivative dE/dk for each
band, and the result is

ϱc(E ) =
(2mc)

3/2

2π2ℏ3
√
E − Ec , E ⩾ Ec (5.4-2)

ϱv(E ) =
(2mv)

3/2

2π2ℏ3
√
Ev − E , E ⩽ Ev. (5.4-3)

Density of States
Near Band Edges

The square-root relation in (5.4-3) is a result of the quadratic energy–wavenumber
formulas for electrons and holes near the band edges. The dependence of the density of
states on energy is illustrated in Fig. 5.4-1(c). It is zero at the band edge, and increases
away from it at a rate that depends on the effective masses of the electrons and holes. The
values ofmc andmv provided in Table 5.2-1 are averaged values suitable for calculating
the density of states.
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Occupancy Probabilities
As discussed in Sec. 4.2, the laws of statistical mechanics dictate that under conditions
of thermal equilibrium at temperature T , the probability that a given state of energy E
is occupied by an electron is determined by the Fermi function

f(E ) =
1

exp
[
(E − Ef )/kT

]
+ 1

, (5.4-4)
Fermi Function

where k is Boltzmann’s constant and Ef is the Fermi level. Also called the Fermi–
Dirac distribution, this result was initially set forth in (4.2-4) and plotted in Fig. 4.2-2.

The function f(E ) is not itself a probability distribution, and it does not integrate to
unity; rather, it is a sequence of occupation probabilities for successive energy levels.
Each energy level E is either occupied [with probability f(E )], or unoccupied [with
probability 1− f(E )]. The Fermi function is applicable for indistinguishable particles
when the electron density is nonnegligible. Unlike the valence electrons in an atom,
the electron density in a semiconductor is large so the Boltzmann approximation to the
Fermi function displayed in Fig. 4.2-2 is not applicable.

The Fermi function is displayed in Fig. 5.4-2 (for T > 0 K and T = 0 K), juxtaposed
with the conduction and valence bands of an intrinsic semiconductor. Because (5.4-4)
dictates that f(Ef ) = 1/2 , whatever the temperature T , the Fermi level is that particular
energy at which the probability of occupancy = 1/2 (when there is an allowed energy
state at Ef ). By virtue of the symmetry of the Fermi function, and the fact that the
number of electrons and number of holes are equal in an intrinsic semiconductor, the
Fermi level falls in the middle of the forbidden band, as illustrated in Fig. 5.4-2.
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Figure 5.4-2 The Fermi
function f(E ) is the proba-
bility that energy level E in
the conduction band is filled
with an electron, while 1 −
f(E ) is the probability that
energy level E in the va-
lence band is occupied by a
hole. Results are sketched for
T > 0 K and T = 0 K.

In the absence of thermal excitation, at T = 0 K, all electrons occupy the lowest
possible energy levels, subject to the Pauli exclusion principle, so that f(E ) = 1 for
E ⩽ Ef , and f(E ) = 0 for E > Ef . There are then no holes in the valence band
(it is completely filled with electrons) and no electrons in the conduction band (it is
completely empty). At T = 0 K, the Fermi level Ef therefore marks the division
between the occupied and unoccupied energy levels.

When the temperature is increased, so that T > 0 K, thermal excitations raise some
electrons from the valence band to the conduction band, leaving behind empty states
in the valence band (holes). The Fermi function f(E ) then represents the probability
that energy level E in the conduction band is filled with an electron and 1− f(E ) is the
probability that it is empty. Analogously, 1 − f(E ) is the probability that energy level
E in the valence band is occupied by a hole and f(E ) is the probability that it is not:

f(E ) = probability of occupancy by an electron in the conduction band. (5.4-5)
1− f(E ) = probability of occupancy by a hole in the valence band. (5.4-6)
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When E−Ef ≫ kT , f(E ) ≈ exp[−(E−Ef )/kT ] so that the high-energy tail of the
Fermi function in the conduction band decreases exponentially with increasing energy.
The Fermi function is then proportional to the Boltzmann distribution, which describes
the exponential energy dependence of the fraction of a population of atoms excited to
a given energy level (Sec. 4.2). By symmetry, when E < Ef and Ef − E ≫ kT ,
1− f(E ) ≈ exp[−(Ef −E )/kT ]; the probability of occupancy by holes in the valence
band then decreases exponentially as the energy decreases well below the Fermi level.

Thermal-Equilibrium Carrier Concentrations
Let n(E )∆E and p(E )∆E be the number of electrons and holes per unit volume,
respectively, whose energy lies between E and E +∆E . The densities n(E ) and p(E )
are obtained by multiplying the densities of states at energy level E provided in (5.4-2)
and (5.4-3), respectively, by the occupancy probabilities of electrons and holes at that
level as specified in (5.4-5) and (5.4-6), so that

n(E ) = ϱc(E )f(E ), p(E ) = ϱv(E )[1− f(E )]. (5.4-7)
The total electron and hole concentrations, n and p, respectively, are then obtained via

n =

∫ ∞

Ec

n(E ) dE , p =

∫ Ev

−∞
p(E ) dE . (5.4-8)

Intrinsic Semiconductors. In an intrinsic semiconductor at any temperature, n = p
because thermal excitations always create electrons and holes in pairs. The Fermi level
must therefore be placed at an energy value such that n = p. In materials for which
mv = mc, the functions n(E ) and p(E ) are also symmetric, in which case Ef must lie
precisely in the middle of the forbidden band (Fig. 5.4-3). In most intrinsic semicon-
ductors, the Fermi level lies near the middle of the bandgap.
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Figure 5.4-3 The electron and
hole concentrations, n(E ) and p(E ),
respectively, as a function of energy
E , for an intrinsic semiconductor in
thermal equilibrium. The total elec-
tron and hole concentrations are de-
noted n and p, respectively.

Doped Semiconductors. The energy-band diagrams, Fermi functions, and concen-
trations of electrons and holes for n-type and p-type doped semiconductors in thermal
equilibrium are displayed in Figs. 5.4-4 and 5.4-5, respectively. Donor electrons occupy
an energy ED that is slightly below the conduction-band edge, so that they are easily
raised to the conduction band. If ED = 0.01 eV, for example, most donor electrons at
room temperature (kT = 0.026 eV) will be thermally excited into the conduction band
(Example 5.3-1). As a result, the Fermi level [the energy at which f(Ef ) = 1/2] then
lies above the middle of the bandgap.

For a p-type semiconductor, the acceptor energy level lies at an energy EA just above
the valence-band edge so that the Fermi level lies below the middle of the bandgap. Our
attention has been directed to the mobile carriers in doped semiconductors; however, it
must be kept in mind that these materials are electrically neutral, as is assured by the
fixed donor and acceptor ions. Hence, n + NA = p + ND, where NA and ND are the
numbers of ionized acceptors and donors per unit volume, respectively.
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Figure 5.4-4 Energy-band
diagram, Fermi function
f(E ), and concentrations of
mobile electrons and holes,
n(E ) and p(E ), respectively,
for an n-type semiconductor in
thermal equilibrium.
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Figure 5.4-5 Energy-band
diagram, Fermi function f(E ),
and concentrations of mobile
electrons and holes, n(E ) and
p(E ), respectively, for a p-type
semiconductor in thermal equi-
librium.

□ Exponential Approximation of the Fermi Function. The Fermi function f(E ) given in (5.4-4)
may be approximated by the exponential function f(E ) ≈ exp [−(E − Ef )/kT ] when E−Ef ≫ kT .
Similarly, 1 − f(E ) may be approximated by an exponential function when Ef − E ≫ kT . These
approximations are applicable when the Fermi level lies within the bandgap, but away from the band
edges by an energy of at least several times kT (at room temperature kT ≈ 0.026 eV while Eg =
1.12 eV in Si and 1.42 eV in GaAs).

Substituting these exponential approximations into (5.4-8), and making use of (5.4-2) and (5.4-7),
leads to n =

∫∞
Ec
A(E − Ec)

1/2 exp [−(E − Ef )/kT ] dE , whereA = (2mc)
3/2/2π2ℏ3 is a constant.

To carry out the integration, we use the transformation u = (E −Ec)/kT , with du = dE/kT , so that
exp [−(E − Ef )/kT ] = exp (−u) exp [−(Ec − Ef )/kT ], whereupon the integral becomes

n = A(kT )3/2 exp

(
−Ec − Ef

kT

)∫ ∞

0

u1/2 exp (−u) du

=
4π(2mckT )

3/2

h3

√
π

4
exp

(
−Ec − Ef

kT

)
, (5.4-9)

from which we obtain (5.4-10). A similar analysis leads to (5.4-11), while (5.4-12) follows by multi-
plication of the two results:

n = Nc exp

(
−Ec − Ef

kT

)
(5.4-10)

p = Nv exp

(
−Ef − Ev

kT

)
(5.4-11)

np = NcNv exp

(
− Eg

kT

)
. (5.4-12)

Here Nc = 2(2πmckT/h
2)3/2 and Nv = 2(2πmvkT/h

2)3/2 represent constants associated with the
conduction and valence bands, respectively. These approximations are applicable for both intrinsic
and doped semiconductors.

If mv = mc, then Nc = Nv whereupon (5.4-10) and (5.4-11) give rise to the ratio n/p =
exp[+(Ef − Ev)/kT − (Ec − Ef )/kT ]. Hence, if Ec − Ef < Ef − Ev , the argument of the exponent
is positive and then so too is n/p. This indicates that if Ef is closer to the conduction band than to the
valence band, then n > p, and vice versa. ■
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Law of Mass Action
Equation (5.4-12), which relies on the validity of exponential approximations to the
Fermi functions, reveals that, in thermal equilibrium, the product

np = 4

(
2πkT

h2

)3
(mcmv)

3/2 exp

(
− Eg

kT

)
(5.4-13)

is independent of both the locations of the Fermi levelsEf within the forbidden band and
the semiconductor doping levels. The constancy of the this product of concentrations
is known as the law of mass action.
Intrinsic Semiconductors. For an intrinsic semiconductor, n = p ≡ ni, which,
when combined with (5.4-12), yields

ni ≈
√

NcNv exp

(
− Eg

2kT

)
, (5.4-14)

Intrinsic Carrier
Concentration

revealing that the intrinsic concentration of electrons and holes increases with increas-
ing temperature T at an exponential rate. The law of mass action may then be written
in the form

np = n2i . (5.4-15)
Law of Mass Action

The values of ni for various materials differ because of differences in the bandgap
energies and effective masses. The room-temperature intrinsic carrier concentrations
for several semiconductors are provided in Table 5.4-1.

Table 5.4-1 Intrinsic semiconductor carrier concentrations at T = 300 K.a

semiconductor ni (cm−3)

Si 1.5× 1010

Ge 2.5× 1013

GaAs 1.8× 106

GaN 1.9× 10−10

aSubstitution into (5.4-14) of the values of mc and mv provided in Table 5.2-1, along
with the values of Eg given in Table 5.3-1, fails to yield the numerical values of ni listed
in the table because of the sensitivity of (5.4-14) to the precise values of the parameters.

Doped Semiconductors. The law of mass action may also be used to determine the
concentrations of electrons and holes in doped semiconductors. A moderately doped n-
type material, for example, has a concentration of electrons n that is essentially equal
to the donor concentrationND, so that the hole concentration is p = n2i /ND. Knowledge
of n and p then allows the Fermi level to be determined via (5.4-8). When the Fermi
level lies within the forbidden band, at an energy greater than several times kT from
its edges, the approximate relations provided in (5.4-10) and (5.4-11) can be used to
determine it directly.

On the other hand, if the Fermi level lies inside the conduction (or valence) band, the
exponential approximations of the Fermi function are invalid so that np ̸= n2i and the
carrier concentrations must be calculated numerically. The material is then referred to
as a degenerate semiconductor. For very heavy doping, the donor (acceptor) impurity
band merges with the conduction (valence) band to become what is called the band
tail, which effectively results in a decreased bandgap.
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Thermal Quasi-Equilibrium Carrier Concentrations
The occupancy probabilities and carrier concentrations considered previously are ap-
plicable only for semiconductors in thermal equilibrium. Another condition, known as
thermal quasi-equilibrium, prevails when the relaxation (decay) times for transitions
within the conduction and valence bands are severally much shorter than the relaxation
time between the two bands. Indeed, the intraband relaxation time is typically far shorter
(< 10−12 s) than the radiative electron–hole recombination time (≈ 10−9 s). Under
these conditions, the conduction-band electrons achieve thermal equilibrium among
themselves, as do the valence-band holes, but the electrons and holes are not in mutual
thermal equilibrium. A state of quasi-equilibrium is created, for example, when an
external electric current or photon flux applied to a semiconductor induces band-to-
band transitions at a rate greater than that allowing interband equilibrium to be attained.

Under these circumstances, it is reasonable to assign a distinct Fermi function to each
band. The associated Fermi levels, known as quasi-Fermi levels, are denoted Efc and
Efv for the conduction and valence bands, respectively (Fig. 5.4-6). Given the electron
and hole concentrations, analytical expressions for Efc and Efv may be readily derived
(see below). When the quasi-Fermi levels lie well inside the conduction and valence
bands, respectively, the concentrations of both electrons and holes can be quite large.
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Figure 5.4-6 Carriers in
thermal quasi-equilibrium.
The conduction- and valence-
band Fermi functions fc(E )
and fv(E ) have Fermi levels
Efc and Efv , respectively.
The electron and hole
concentrations, denoted
n(E ) and p(E ), respectively,
can then both be large.

□ Determination of the Quasi-Fermi Levels Given the Electron and Hole Concentrations.

(a) At T = 0 K, the Fermi function is expressed as fc(E ) = 1 for E < Efc and 0 otherwise.
Using this expression in conjunction with (5.4-2) and (5.4-7) leads to the following integral
for (5.4-8): n =

∫ Efc
Ec

A (E − Ec)
1/2 dE = 2

3
A (Efc − Ec)

3/2, where A = (2mc)
3/2/2π2ℏ3

is a constant. It follows that Efc−Ec = (3n/2A)2/3, which leads to the following quasi-Fermi
levels (the derivation for Efv parallels that for Efc) :

Efc = Ec + (3π2)2/3
ℏ2

2mc

n2/3, (5.4-16a)

Efv = Ev − (3π2)2/3
ℏ2

2mv

p2/3. (5.4-16b)

(b) For T > 0 K, (5.4-16a) and (5.4-16b) remain approximately valid, provided that the quasi-
Fermi levels lie within the conduction and valence bands, away from the band edges, i.e., when
n and p are sufficiently large such that Efc − Ec ≫ kT and Ev − Efv ≫ kT . The function
fc(E ) then undergoes a smooth, rather than sharp, transition from unity to zero at Efc, as illus-
trated by the solid curve in the center panel of Fig. 5.4-7. The product ϱc(E )fc(E ), depicted as
the solid curve in the right-hand panel of Fig. 5.4-7, is then also a smooth curve. Nevertheless,
the area under this curve, which represents the concentration n, does not deviate substantially
from the area under the dashed curve, which is applicable for T = 0 K. Consequently, (5.4-
16a) remains approximately applicable for T > 0 K, as does (5.4-16b) via a parallel argument.
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Figure 5.4-7 Density of states ϱc(E ),
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as functions of the energy E on the
ordinates, for T = 0 K (dashed curves)
and T > 0 K (solid curves).

■

5.5 GENERATION, RECOMBINATION, AND INJECTION

Generation and Recombination in Thermal Equilibrium
The thermal excitation of electrons from the valence band to the conduction band re-
sults in electron–hole generation (Fig. 5.5-1). Thermal equilibrium requires that this
generation process be accompanied by a simultaneous reverse process of de-excitation.
Called electron–hole recombination, this latter process occurs when an electron de-
cays from the conduction band to fill a hole in the valence band (Fig. 5.5-1). The energy
released in this process may take the form of an emitted photon, in which case the
process is known as radiative recombination and the emitted light is referred to as
recombination radiation.

Generation Recombination

E
c

Ev

Figure 5.5-1 Electron–hole
generation (upward arrow) and
recombination (downward arrow).

Trap Auger

E
c

Ev

Figure 5.5-2 Electron–hole re-
combination via a trap and via
Auger recombination.

Nonradiative recombination, an alternate process, can occur via a number of in-
dependent and competing processes. These include the transfer of energy to lattice
vibrations, which creates one or more phonons, or to another free electron via Auger
recombination, a three-particle interaction that can occur when the carrier density is
sufficiently high (Fig. 5.5-2). Recombination can also take place at surfaces, and at
impurity or defect centers located at grain boundaries, dislocations, or other lattice
imperfections. A defect center whose energy lies within the forbidden band can facilitate
recombination if it is capable of trapping both an electron and a hole (Fig. 5.5-2).
Impurity-assisted recombination may be radiative or nonradiative.

Because both an electron and a hole are required for a recombination to occur, the
rate of recombination is proportional to the product of their concentrations, i.e.,

rate of recombination = rnp. (5.5-1)

The recombination coefficient r (cm3/s) in (5.5-1) is dependent on both the character-
istics of the material, including its composition and defect density, and its temperature.
It also depends on the doping level, although relatively weakly.
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The concentrations of electrons and holes in steady state, n0 and p0, respectively,
are established when the generation and recombination rates are in balance. If G 0 is the
rate of electron–hole generation in thermal equilibrium at a given temperature, we then
have

G 0 = rn0p0. (5.5-2)

The product of the electron and hole concentrations n0p0 = G 0/r is approximately
the same whether the material is n-type, p-type, or intrinsic. Hence, n2i ≈ G 0/r, which
leads to the law of mass action n0p0 = n2i . This highlights the fact that this law follows
from the balance between generation and recombination in thermal equilibrium.

Electron–Hole Injection
A semiconductor in thermal equilibrium with carrier concentrations n0 and p0 has
equal rates of generation and recombination, G 0 = rn0p0. We now consider a configu-
ration in which additional electron–hole pairs are generated at a steady rate R (pairs per
unit volume per unit time) by means of an external (nonthermal) injection mechanism,
such as light falling on the material. A new steady state will be reached in which the
carrier concentrations are n = n0 +∆n and p = p0 +∆p. It is understood, however,
that ∆n = ∆p since the electrons and holes are created in pairs.

Equating the new rates of generation and recombination, we have
G 0 + R = rnp. (5.5-3)

Substituting G 0 = rn0p0 from (5.5-2) into (5.5-3) then leads to
R = r(np− n0p0) = r

(
n0∆n+ p0∆n+∆n2

)
= r∆n(n0 + p0 +∆n), (5.5-4)

which we write in the form
R =

∆n

τ
, (5.5-5)

where the recombination lifetime is

τ =
1

r
[
(n0 + p0) + ∆n

] . (5.5-6)

For weak injection such that ∆n ≪ n0 + p0, (5.5-6) reduces to

τ ≈ 1

r(n0 + p0)
. (5.5-7)

Excess-Carrier
Recombination Lifetime

Hence, in an n-type material, where n0 ≫ p0, the recombination lifetime τ ≈ 1/rn0
is inversely proportional to the electron carrier concentration. Similarly, for a p-type
material where p0 ≫ n0, we obtain τ ≈ 1/rp0. However, this simple formulation is not
applicable when traps play a significant role in the process.

The parameter τ expressed in (5.5-6) and (5.5-7) may be regarded as the electron–
hole recombination lifetime of the injected excess electron–hole pairs. This is readily
understood by noting that the injected-carrier concentration is governed by the rate
equation

d(∆n)

dt
= R − ∆n

τ
. (5.5-8)

In steady state, d(∆n)/dt = 0 and (5.5-5) is recovered. If the source of injection is
suddenly removed (R → 0) at time t0, we obtain ∆n(t) = ∆n(t0) exp[−(t − t0)/τ ],
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indicating that ∆n decays exponentially with time constant τ . In the presence of strong
injection, however, τ is itself a function of ∆n, as evident in (5.5-6), so that the rate
equation is nonlinear and the decay is no longer exponential.

If the injection rate R is known, the steady-state injected concentration may be de-
termined from

∆n = Rτ, (5.5-9)
Steady-State Injected-
Carrier Concentration

thereby permitting the total concentrations n = n0 + ∆n and p = p0 + ∆n to
be established. Furthermore, if thermal quasi-equilibrium is assumed, (5.4-8) may be
used to determine the quasi-Fermi levels. Quasi-equilibrium is not inconsistent with the
steady-state balance of generation and recombination assumed in the above analysis; it
simply requires that the intraband equilibrium time be short in comparison with the
recombination time τ . The same type of analysis is useful in developing the theory of
the semiconductor light-emitting diode, which is based on enhancing light emission by
means of carrier injection, as will become clear in Sec. 6.3.

EXAMPLE 5.5-1. Parameters Associated with Electron–Hole Pair Injection in GaAs.
Typical parameters are set forth for an n-type sample of GaAs at T = 300 K, whose thermal equilib-
rium concentration of electrons is given by n0 = 1016/cm3. The sample is injected with electron–hole
pairs at a rate R = 1023/cm3-s and the recombination coefficient is taken to be r = 10−11 cm3/s. The
material characteristics of the GaAs sample under consideration are: Eg = 1.42 eV, mc ≈ 0.07m0,
and mv ≈ 0.50m0 (Tables 5.2-1 and 5.3-1).
(a) The equilibrium concentration of holes p0: Using ni = 1.8 × 106 cm−3 (Table 5.4-1), together

with n0 = 1016 cm−3, the law of mass action (5.4-15) provides p0 = n2i/n0 = 3.24×10−4 cm−3.
We therefore have n0 ≫ p0 for this n-type material.

(b) The steady-state excess concentration ∆n: With an injection rate R = 1023 cm−3s−1, the steady-
state concentrations are determined from (5.5-4), which provides: R = r(np−n0p0) = r∆n(n0+
p0 + ∆n) ≈ r∆n(n0 + ∆n), so that ∆n2 + n0∆n − R/r = 0. Solving this quadratic equation
for ∆n yields ∆n = 1

2

[
−n0 + (n20 + 4R/r)1/2

]
= 9.5 × 1016 cm−3. We conclude that ∆n is a

factor of 9.5 greater than n0.
(c) The recombination lifetime τ : Using n0 = 1016 cm−3 and ∆n = 9.5 × 1016 cm−3 in (5.5-6)

yields τ ≈ 952 ns.
(d) The separation between the quasi-Fermi levels, Efc−Efv , assuming that T = 0 K: This quantity

may be determined by subtracting (5.4-16b) from (5.4-16a), which provides Efc − Efv = Eg +

(3π2)2/3(ℏ2/2)[n2/3/mc + p2/3/mv]. Following the conversion of the values for n = n0 +∆n
and p = p0 + ∆n ≈ ∆n obtained above from cm−3 to m−3 by multiplying them by 106, and
dividing by the electronic charge e to convert J to eV, substitution in this equation yields

Efc − Efv = Eg +
(3π2)2/3

2

ℏ2

m0e

[
(n× 106)2/3

0.07
+

(p× 106)2/3

0.5

]
= Eg + 4.785 · 43.8× 10−68

5.74× 10−48

[
22.3× 1014

0.07
+

20.8× 1014

0.5

]
= Eg + 0.013 eV .

The result indicates that Efc − Efv is greater than the bandgap energy Eg by 0.013 eV so that
Efc −Efv = 1.433 eV. Using (5.4-16a) and (5.4-16b) individually then provides that Efc −Ec ≈
0.011 eV and Ev − Efv ≈ 0.002 eV, revealing that both quasi-Fermi levels lie within, but very
close to the edges of, the conduction and valence bands. However, since neither Efc − Ec nor
Ev − Efv are ≫ kT = 0.026 eV at T = 300 K, (5.4-16a) and (5.4-16b) should not be used
for calculating the carrier concentration at T = 300 K, thereby clarifying why T = 0 K was
expressly specified for this part of the example.
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Internal Quantum Efficiency
The recombination coefficient r set forth in (5.5-1) is generally split into a sum of
radiative and nonradiative parts, denoted rr and rnr, respectively, so that r = rr + rnr.
The internal quantum efficiency (IQE) of a semiconductor material is defined as the
ratio of the radiative electron–hole recombination coefficient to the overall (radiative
plus nonradiative) coefficient, i.e.,

ηIQE =
rr

r
=

rr

rr + rnr
. (5.5-10)

The internal quantum efficiency is important because it establishes the efficiency of
light generation internal to a semiconductor material. It is maximized by simultaneously
making the radiative and nonradiative recombination coefficients as large and as small
as possible, respectively. Radiative recombination is facilitated by spatially confining
the electrons and holes in a common location.

Given that (5.5-6) specifies that the recombination lifetime τ is inversely propor-
tional to r, the internal quantum efficiency can alternatively be written in terms of τ .
Defining the radiative and nonradiative lifetimes as τr and τnr, respectively, leads to

1/τ = 1/τr + 1/τnr . (5.5-11)

Since (5.5-10) provides that ηIQE = rr/r = (1/τr)/(1/τ), we arrive at

ηIQE =
τ

τr
=

τnr
τr + τnr

. (5.5-12)
Internal

Quantum Efficiency

The radiative recombination lifetime τr is a particularly important parameter in semi-
conductor photonics since it governs the rates of photon emission and photon absorp-
tion, as will be elucidated in Sec. 6.3.

For low to moderate injection rates, the radiative version of (5.5-7) is

τr ≈
1

rr(n0 + p0)
, (5.5-13)

which demonstrates that the radiative lifetime depends on both the material parameter
rr and the carrier concentrations. The nonradiative lifetime obeys a similar equation,
but if defect centers in the forbidden band contribute to the recombination, the lifetime
is generally more sensitive to the defect-center concentrations than to the electron and
hole concentrations. Table 5.5-1 lists representative recombination parameters for Si,
GaAs, GaN, and InGaN.

Table 5.5-1 Order-of-magnitude values for the radiative recombination coefficient rr; the
radiative, nonradiative, and overall recombination lifetimes, τr, τnr, and τ , respectively; and
the internal quantum efficiency ηIQE, for several widely used semiconductor materials.a

semiconductor rr (cm3/s) τr τnr τ ηIQE

Si 10−15 10 ms 100 ns 100 ns 10−5

GaAs 10−10 100 ns 100 ns 50 ns 0.5
GaNb 10−8 20 ns 0.1 ns 0.1 ns 0.005

aApproximate values are provided for n-type materials with a carrier concentration n0 = 1017/cm3

and defect centers with a concentration 1015/cm3, at T = 300 K.
bInGaN, which is used in practice, has a substantially larger IQE, namely ηIQE ≈ 0.3.
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Examination of the entries in Table 5.5-1 reveals that the nonradiative lifetime for
bulk (indirect-bandgap) Si is orders of magnitude shorter than its radiative lifetime, and
this is responsible for its small internal quantum efficiency. For (direct-bandgap) GaAs
and InGaN, on the other hand, the radiative and nonradiative lifetimes are far more sim-
ilar, which leads to substantial values of the internal quantum efficiency. It will become
apparent in the sequel that direct-bandgap materials are widely used for fabricating
light-emitting structures that operate via interband transitions, while indirect-bandgap
materials are not, except under special conditions.

5.6 JUNCTIONS AND HETEROJUNCTIONS

The juxtaposition of differently doped regions of the same semiconductor material in
metallurgical contact forms a homojunction; the prime example is the p–n junction
discussed below. The juxtaposition of different semiconductor materials in metallurgi-
cal contact forms a heterojunction, as discussed subsequently.

The p–n Junction
The p–n junction is a homojunction between a p-type and an n-type semiconductor.
It behaves as a diode, which, in electronics, can serve as a rectifier, logic gate, voltage
regulator (Zener diode), or tuner (varactor diode). In photonics, a diode can take the
form of a light-emitting diode (LED), laser diode (LD), photodiode (PD), or solar cell.

As illustrated in Fig. 5.6-1, the p-type region has an abundance of holes (majority
carriers) and a relatively small number of mobile electrons (minority carriers), whereas
the n-type region has an abundance of mobile electrons (majority carriers) and a rel-
atively small number of holes (minority carriers). The charge carriers are in constant
random thermal motion in all directions.
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Figure 5.6-1 Energy levels and carrier concen-
trations for p-type and n-type semiconductor mate-
rials before being brought into contact. The Fermi
levels and carrier concentrations are displayed.

When the p- and n-type regions are brought into contact, as illustrated in Fig. 5.6-2,
the following sequence of events takes place:

Electrons and holes both diffuse away from areas where their concentration is
high toward areas where it is low. Hence, mobile electrons diffuse from the n-
type region into the p-type region, leaving behind positively charged ionized donor
atoms; once in the p-type region, the electrons recombine with the abundant holes.
Meanwhile, mobile holes diffuse from the p-type region into the n-type region,
leaving behind negatively charged ionized acceptor atoms; in the n-type region
the holes recombine with the abundant mobile electrons. This diffusion process
does not continue indefinitely, however, as it results in a disruption of the charge
balance in both regions (Fig. 5.6-2).
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As a result, a narrow region on both sides of the junction becomes nearly depleted
of mobile charge carriers, and is therefore called the depletion layer. The associ-
ated donor and acceptor ions, in contrast, are fixed charges that are locked in place
by the lattice (positive ions in the n-type portion and negative ions in the p-type
portion).
The fixed charges create an electric field in the depletion layer that points from the
n-type side toward the p-type side of the junction (Fig. 5.6-2). This built-in field
opposes the diffusion of mobile carriers across the junction region. The thickness
of the depletion layer in each region is inversely related to the dopant concentration
in that region since higher charge density gives rise to a given electric field over a
smaller distance.
A net built-in potential difference V0 is established between the two sides of the
depletion layer at equilibrium, with the n-type side exhibiting a higher potential
than the p-type side.
Because the built-in potential provides a lower potential energy for an electron on
the n-type side relative to the p-type side, the energy bands bend. Moreover, since
the entire structure is in thermal equilibrium, there is only a single Fermi function
so the Fermi levels in the p- and n-type regions align (Fig. 5.6-2).
There is no net current flow across the junction. The drift current associated with
the built-in field cancels the diffusion current for both the electrons and the holes.
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Figure 5.6-2 A p–n junction in thermal
equilibrium (T > 0 K). The depletion layer,
energy-band diagram, and carrier concentra-
tions (on a logarithmic scale) for mobile elec-
trons n(x) and holes p(x) are shown as func-
tions of the position x. The built-in potential
difference V0 corresponds to an energy differ-
ence eV0, where e is the electronic charge.
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Figure 5.6-3 A forward-biased p–n junc-
tion in thermal quasi-equilibrium sports two
quasi-Fermi levels in the depletion layer: Efc

and Efv . The energy-band diagram, and elec-
tron and hole concentrations, n(x) and p(x),
respectively, are displayed as functions of the
position x. The forward-bias voltage V reduces
the height of the potential-energy hill by eV .

The Biased p–n Junction
An externally applied potential alters the potential difference between the p- and n-type
regions. This in turn modifies the flow of majority carriers, so that the junction can be
used as a “gate.” If the junction is forward biased by applying a positive voltage +V to
the p-type region [Figs. 5.6-3 and 5.6-4(a)], its potential is increased with respect to the
n-type region, so that an electric field is produced in a direction opposite to that of the
built-in electric field. The presence of the external bias voltage leads to a misalignment
of the Fermi levels in the p- and n-type regions, as well as in the depletion layer, and
hence to a departure from thermal equilibrium. The presence of the two Fermi levels,
Efc and Efv, represents a state of thermal quasi-equilibrium.
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Forward Bias. The net effect of the forward bias is to reduce the height of the
potential-energy hill by eV . It turns out that the majority carrier current then in-
creases by the exponential factor exp(eV/kT ) so that the net current becomes
i = is exp(eV/kT ) − is, where is is a constant. The excess majority-carrier holes
and electrons that enter the n- and p-type regions, respectively, become minority
carriers and recombine with the local majority carriers. Their concentration therefore
decreases with distance from the junction, as shown in Fig. 5.6-3. This process is known
as minority carrier injection.

Reverse Bias. If the junction is reverse biased by applying a (negative) voltage
−|V | to the p-type region, on the other hand, the height of the potential-energy hill is
augmented by e|V |, which serves to impede the flow of majority carriers. The corre-
sponding current is then multiplied by the exponential factor exp(−e|V |/kT ), so that
the overall current, which is written as i = is exp(−e|V |/kT ) − is, is reduced. The
net result is that a small current of magnitude approximately is flows in the reverse
direction when |V | ≫ kT/e.

Shockley Equation. The p–n junction therefore acts as a diode with a current–
voltage (i–V ) characteristic given by

i = is

[
exp

(
eV

kT

)
− 1

]
, (5.6-1)

Ideal Diode Characteristic
(Shockley Equation)

which is plotted in Fig. 5.6-4(c). Equation (5.6-1) is known as the Shockley equation.

Figure 5.6-4 (a) Voltage and current
in a p–n junction. (b) Circuit representa-
tion of a p–n junction diode. (c) Current–
voltage characteristic of an ideal p–n
junction diode.

Response Time. Understanding the process of current generation in a p–n junction
in response to a dynamic (AC) applied voltage is important for establishing the response
time of the diode. The current is determined by solving a set of differential equations that
accommodate: 1) electron and hole diffusion; 2) drift under the influence of the built-in
and external electric fields; and 3) carrier recombination. The process can be modeled
as a diffusion capacitance and a junction capacitance in parallel with an ideal diode. The
diffusion capacitance, which depends on the operating current and the minority carrier
lifetime, describes minority-carrier injection in a forward-biased diode. The junction
capacitance accounts for the time required to modify the fixed positive and negative
charges stored in the depletion layer when the applied voltage is altered.

The thickness l of the depletion layer turns out to be proportional to
√
V0 − V ;

it therefore decreases under forward-bias conditions (positive V ) and increases under
reverse-bias conditions (negative V ). Since the junction capacitance C = ϵA/l, where
A is the junction area, C is inversely proportional to

√
V0 − V . We conclude that the

junction capacitance of a forward-biased diode is larger than that of a reversed-biased
diode, and its RC response time is correspondingly longer.
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Heterojunctions
Junctions between different semiconductor materials are known as heterojunctions. The
design of semiconductor light sources relies on the extensive use of heterojunctions;
they are used not only as active regions but also as contact layers and as waveguid-
ing regions. The electron affinities of the constituent semiconductors determine the
alignments of the conduction- and valence-band edges. It is often advantageous to
lattice match the semiconductor materials and to make use of graded junctions rather
than abrupt ones. The juxtaposition of different semiconductors can have manifold
advantages in LED design:

Junctions between materials of different bandgaps create localized jumps in the
energy-band diagram, as portrayed in Fig. 5.6-5. A potential-energy discontinuity
provides a barrier that can be useful in preventing selected charge carriers from
entering regions where they are undesired. This property may be used in a p–n
junction, for example, to reduce the proportion of current carried by minority
carriers, and thus to increase injection efficiency.

p p n

E
le

ct
ro

n
 e

n
er

g
y

E
le

ct
ro

n
 e

n
er

g
y

Eg1 Eg2 Eg3

Ef

Figure 5.6-5 A p–p–n double heterojunction structure.
The middle layer is of narrower bandgap than the outer layers.
In thermal equilibrium, the Fermi levels must align in all
layers so that the edge of the conduction band drops sharply
at the p–p junction and the edge of the valence band drops
sharply at the p–n junction. The conduction- and valence-
band discontinuities are known as band offsets. When the
device is forward-biased, these jumps act as barriers that
confine the injected minority carriers to the region of lower
bandgap. Electrons injected from the n-type region, for
example, are prevented from diffusing beyond the barrier
at the p–p junction. Similarly, holes injected from the p-
type region are not permitted to diffuse beyond the energy
barrier at the p–n junction. This double-heterostructure
configuration therefore forces electrons and holes to occupy
a narrow common region. This substantially increases the
efficiency of light-emitting diodes, as discussed in Chapter 7.

Discontinuities in the energy-band diagram created by a pair of heterojunctions can
be useful for confining charge carriers to a desired region of space. For example,
a layer of narrow-bandgap material can be sandwiched between two layers of a
wider bandgap material, as shown in the p–p–n structure illustrated in Fig. 5.6-5
(which consists of a p–p heterojunction and a p–n heterojunction). This double-
heterostructure (DH) configuration is effective for the fabrication of LEDs.
Heterojunctions are also useful for creating energy-band discontinuities that ac-
celerate carriers at specific locations. The additional kinetic energy suddenly im-
parted to a carrier can be useful for selectively enhancing the probability of impact
ionization in a multilayer avalanche photodiode, for example.
Semiconductors of different bandgap type (direct and indirect) can be used in a
device to selectively choose regions of the structure where light is emitted. Direct-
bandgap semiconductors are efficient emitters of light whereas indirect-bandgap
semiconductors are not (Sec. 6.4).
Semiconductors with different types of bandgaps can be used in the same device to
select regions of the structure where light is absorbed. A semiconductor material
whose bandgap energy is larger than the photon energy of the light incident on it
is transparent, and thus acts as a window layer.
Heterojunctions of materials with different refractive indices can be used to create
photonic structures and optical waveguides that confine and direct photons.
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5.7 QUANTUM-CONFINED STRUCTURES

Heterostructures with specially designed band structures can be grown epitaxially,
as thin layers of one semiconductor material over another. Common techniques for
growing quantum-confined structures include 1) molecular-beam epitaxy (MBE),
2) liquid-phase epitaxy (LPE), and 3) vapor-phase epitaxy (VPE).

MBE operates by directing molecular beams comprising the constituent elements to
an appropriately prepared substrate in a high-vacuum environment; the compositions
and dopings of the individual layers, which can be made as thin as monolayers, are estab-
lished by manipulating the arrival rates of the constituent molecules and the temperature
of the substrate surface. LPE relies on the cooling of a saturated solution containing the
constituents that is placed in contact with the substrate. VPE makes use of gases in a
reactor; common variants of VPE include metalorganic chemical vapor deposition
(MOCVD) and hydride vapor-phase epitaxy (HVPE). Homoepitaxy is the growth
of materials that have the same composition as the substrate, whereas heteroepitaxy is
the growth of materials on a substrate of different composition, which may or may not
be lattice-matched.

In quantum-confined structures, the thickness d of a thin layer of semiconductor
material is comparable with, or smaller than, the de Broglie wavelength λdB of a ther-
malized electron in that layer. The de Broglie wavelength is expressed as λdB = h/p,
where h is Planck’s constant and p is the electron momentum (for GaAs, λdB ≈ 50 nm).
In such structures the electron’s energy is quantized, so that the energy–momentum
relation suitable for a bulk semiconductor material (Sec. 5.2) is no longer applicable.

Three classes of quantum-confined structures, representing confinement in differ-
ent dimensionalities, offer substantial advantages and are widely used in photonics:
quantum wells and multiquantum wells, quantum wires, and quantum dots. The
appropriate energy–momentum relations for these structures are derived in this section
and in Sec. 5.8. The implementation of optical sources using quantum-confined struc-
tures is considered in Secs. 6.5, 6.6, and 7.3–7.7.

Quantum Wells
A quantum-well structure, such as that pictured in Fig. 5.7-1(a), is a double het-
erostructure consisting of an ultrathin (≲ 50 nm) layer of semiconductor material
whose bandgap is smaller than that of the surrounding material (e.g., GaAs surrounded
by AlGaAs). This sandwich results in one-dimensional conduction- and valence-band
rectangular potential wells in which electrons and holes are confined, respectively,
as displayed in Fig. 5.7-1(b). Cross sections of the E–k relations are illustrated in
Fig. 5.7-1(c).

Quantum-Well Energy Levels. A sufficiently deep 1D potential well can be approx-
imated by the well-known infinite rectangular potential well of quantum mechanics
[Fig. 5.7-2(a)]. The energy levels Eq of a particle of mass m (mc for electrons and
mv for holes) confined to a one-dimensional infinite rectangular well of full width d
are determined by solving the time-independent Schrödinger equation. As explained in
Example 5.7-1, the energy levels turn out to be

Eq =
ℏ2(qπ/d)2

2m
, q = 1, 2, 3, . . . . (5.7-1)

As an example, the first three allowed energy levels of an electron in an infinitely deep
GaAs quantum well (mc = 0.07m0) of width d = 10 nm are Eq = 54, 216, and 486
meV, respectively (for comparison, note that kT = 26 meV at T = 300 K). The smaller
the width of the well, the larger the separation of the adjacent energy levels.
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Figure 5.7-1 (a) Geometry of a quantum-well structure (e.g., an ultrathin layer of GaAs surrounded
by AlGaAs). (b) Energy-level diagram for electrons and holes in their respective quantum wells.
(c) Cross sections of the E–k relations in the k2 or k3 direction. The different energy subbands are
designated by the quantum numbers q1 = 1, 2, . . .. The E–k relations for a bulk semiconductor are
represented by the dashed curves.

EXAMPLE 5.7-1. Energy Levels of a 1D Quantum Well. The allowed energies of an elec-
tron of mass m trapped in an infinitely deep, one-dimensional rectangular potential well are de-
termined by solving the one-dimensional, time-independent Schrödinger equation (5.2-1), which is
written as (−ℏ2/2m) d 2ψ(x)/dx2+V (x)ψ(x) = Eψ(x), where ψ(x) is the position wavefunction,
E is the electron energy, and the potential energy V (x) = 0 for 0 < x < d and ∞ otherwise. Inside
the well, this equation takes the form d 2ψ(x)/dx2+k2ψ(x) = 0 with k2 = 2mE/ℏ2, which has the
general solution ψ(x) = A sin(kx) + B cos(kx). At the boundaries of the well (x = 0 and x = d),
ψ(x) = 0 since the electron is trapped within its infinite walls, so we have B = 0 and sin(kd) = 0.

The solution is therefore kd = qπ , where q = 1, 2, 3, ..., which indicates that k is restricted to
the values kq = qπ/d , q = 1, 2, 3, . . . . The electron energy E = (ℏ2/2m)k2 is thus quantized
to the values Eq = (ℏ2/2m)(qπ/d)2, q = 1, 2, 3, . . . . The lowest three energy levels are therefore
E 1 = 4.9ℏ2/md 2, E 2 = 19.7ℏ2/md 2, and E 3 = 44.4ℏ2/md 2, as displayed in Fig. 5.7-2(a). By
comparison, a quantum well of finite energy depth V 0 = 32ℏ2/md 2 has energies: E 1 = 3.2ℏ2/md 2,
E 2 = 11.9ℏ2/md 2, and E 3 = 25.9ℏ2/md 2, as illustrated in Fig. 5.7-2(b). The finite well depth
compresses the energy-level spacings and results in a continuum of energy levels above V 0.

Figure 5.7-2 Energy levels of
(a) a one-dimensional (1D) infinite
rectangular potential well, and (b) a
finite quantum square well with an
energy depth V 0 = 32ℏ2/md 2. The
finite well depth leads to a com-
pression in the spacings between the
energy levels and a continuum of
energy levels above V 0.



158 CHAPTER 5 SEMICONDUCTOR PHYSICS

Quantum-Well Energy Levels in 3D Materials. Semiconductor quantum wells
are more properly be described as three-dimensional constructs. In the quantum-well
structure shown in Fig. 5.7-1(a), for example, electrons and holes are confined within
a distance d1 (the well thickness) in the x direction, but they extend over far larger
dimensions, d2 and d3, in the plane of the confining layer (d2, d3 ≫ d1). The electrons
in the y–z plane therefore behave as if they were in a bulk semiconductor.

The 3D electron energy–momentum relation is

E = Ec +
ℏ2k21
2mc

+
ℏ2k22
2mc

+
ℏ2k23
2mc

, (5.7-2)

where k1 = q1π/d1, k2 = q2π/d2, k3 = q3π/d3, and q1, q2, q3 = 1, 2, 3, . . ..
Since d1 ≪ d2, d3, however, the parameter k1 takes on well-separated discrete values,
while k2 and k3 have finely spaced discrete values that can be well approximated as a
continuum. The energy–momentum relation for electrons in the conduction band of a
3D quantum well may therefore be described by

E = Ec + E q1 +
ℏ2k2

2mc
, q1 = 1, 2, 3, . . . , (5.7-3)

where k is the magnitude of the two-dimensional vector k = (k2, k3) in the y–z plane.
Each value of the quantum number q1 corresponds to a subband whose lowest energy
is Ec + E q1. Similar relations apply for the valence band, as displayed in Fig. 5.7-1(c).

Density of States. The energy–momentum relation for a bulk semiconductor
is given by (5.2-6), where k is the magnitude of a three-dimensional vector k =
(k1, k2, k3), whose components are k1 = q1π/d , k2 = q2π/d , and k3 = q3π/d , for
d1 = d2 = d3 = d . The result for the density of states per unit volume is therefore
ϱ(k) = k2/π2, as provided in (5.4-1). This in turn leads to the density of conduction-
band states sketched in Fig. 5.4-1 and expressed in (5.4-2):

ϱc(E ) =

√
2m

3/2
c

π2ℏ3
√
E − Ec , E > 0. (5.7-4)

The key distinction for the quantum-well structure is that k1 takes on well-separated,
discrete values so that the density of states is derived from the magnitude of the two-
dimensional vector (k2, k3). For each quantum number q1, the density of states is there-
fore k/π states per unit area in the y–z plane so that ϱ(k) = k/πd1 per unit volume
in three dimensions. Since the densities ϱc(E ) and ϱ(k) are related by ϱc(E ) dE =
ϱ(k) dk, we have ϱc(E ) = ϱ(k)/(dE/dk) = (k/πd1)/(dE/dk). Moreover, since the
E–k relation cited in (5.7-3) provides dE/dk = ℏ2k/mc, we obtain

ϱc(E ) =


mc

πℏ2d1
, E > Ec + E q1

0 , E < Ec + E q1,
q1 = 1, 2, 3, . . . . (5.7-5)

In brief, for each quantum number q1, the density of states per unit volume is constant
when E > Ec + E q1. Since the overall density of states is the sum of the densities for
all values of q1, it exhibits the staircase distribution depicted in Fig. 5.7-3. Each step
of the staircase corresponds to a different quantum number q1 and may be regarded as
a subband within the conduction band, as illustrated in Fig. 5.7-1(c). The bottoms of
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these subbands move progressively higher in energy as the quantum number increases.
Substituting E = Ec + E q1 in (5.7-4), and making use of (5.7-1), reveals that the
quantum-well density of states is identical to that for the bulk material at E = Ec+E q1.
The density of states in the valence band exhibits a similar staircase distribution.

d1

Eg1

Eg2

x

E1

E2

Density of states ϱ(E)

E

E
c

Bulk
q1 = 1

q1 = 2

Figure 5.7-3 Densities of states for
the conduction and valence bands of a
quantum-well structure (solid curves)
and of a bulk semiconductor (dashed
curves).

In contrast to bulk semiconductors, the densities of states for quantum-well structures
are substantial at the lowest allowed conduction-band (and highest allowed valence-
band) energy levels. This feature has a significant influence on the optical characteristics
of these structures.

Multiquantum Wells and Superlattices

Multiquantum Wells. The energy bandgap in a semiconductor quantum-well struc-
ture can be engineered to vary in an arbitrary manner with position, thereby offering de-
vices with a broad range of unique electronic and optical properties. Such structures can
take many forms, including multiquantum-well (MQW) devices, which are fabricated
from alternating layers of materials with different bandgaps, as illustrated in Fig. 5.7-4
(left). The number of layers can stretch from just a few to more than a hundred. Yet the
devices remain thin; as an example, a MQW structure with 100 layers, each comprising
some 40 atomic planes and a thickness ≈ 10 nm, yields an overall thickness of only
≈ 1 µm.

MQW structures are readily fabricated using alternating layers of AlGaAs and GaAs
[Fig. 5.7-4 (left)] because these materials can be lattice matched over a broad range of
compositions [Fig. 5.3-2(a)], thereby minimizing the strain between the two lattices.
At the same time, the large difference in bandgap energies [Table 5.3-1] provides sub-
stantial carrier confinement. Other combinations of MQW materials that are commonly
encountered in photonics include AlInAsSb/GaSb, AlInAs/InGaAs, AlInGaP/InGaP,
GaN/InGaN, and AlxGa1−xN/AlyGa1−yN.

GaAs

AlGaAs
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GaAs AlGaAs

Conduction band

Valence band

Figure 5.7-4 Left: Multiquantum-well (MQW) structure fabricated from alternating layers of two
materials of different bandgaps, in this case AlGaAs and GaAs. The number of layers can stretch
from several to more than a hundred. Right: Quantized energy levels in a hypothetical AlGaAs/GaAs
single-crystal MQW structure.
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The hypothetical MQW structure portrayed in Fig. 5.7-4 (right) comprises a collec-
tion of ultrathin (2- to 15-nm-thick) layers of GaAs alternating with thin (20-nm-thick)
layers of AlGaAs. The well widths can differ from each other, as shown, or they can
be the same, in which case the band structure resembles that of a collection of finite
square wells [Fig. 5.7-2(b)]. For carrier motion perpendicular to the GaAs layers, the
allowed energy levels for electrons in the conduction band, and for holes in the valence
band, are then discrete and well separated (Example 5.7-1), as schematically illustrated
in Fig. 5.7-5(a).

Superlattices. If the AlGaAs barrier regions in Fig. 5.7-4(a) are made sufficiently
thin (< 1 nm), the electrons in adjacent wells can couple with each other via quantum-
mechanical tunneling, whereupon the discrete energy levels sketched in Fig. 5.7-5(a)
broaden into miniature bands, called minibands, that are separated by minigaps. The
material is then referred to as a superlattice structure because the associated (barrier)
lattice is “super to” (i.e., larger than) the atomic crystal lattice — the resultant minibands
are analogous to the full-fledged energy bands associated with the atomic lattice.

The transition from the subbands of a quantum well to the minibands of a superlattice
is analogous to the transition from the discrete energy levels of an atom to the energy
bands of a crystalline solid when the constituent atoms are brought into close proximity,
as displayed in Figs. 5.1-1 and 5.1-2. Quantum wells and superlattices can also be
created by spatially modulating the doping of a material, which creates space-charge
fields that form potential barriers.

Biased Multiquantum-Well and Superlattice Structures. The energy-band di-
agrams of unbiased and biased multiquantum-wells, and a biased superlattice, are
sketched in Fig. 5.7-5. The electric field resulting from the applied bias causes the
wells to become canted and modifies their energy levels. In superlattice structures,
the discrete energy levels broaden into minibands and minigaps. Multiquantum-well
structures are widely used in the fabrication of light-emitting diodes (Secs. 7.3 and
7.4), as well as in other photonic devices.

(c)

Miniband

Minigap

(a) (b)

Figure 5.7-5 Energy-band diagrams of MQW and superlattice structures fabricated from alter-
nating layers of materials with different bandgaps, such as AlGaAs and GaAs. (a) Unbiased MQW
structure. (b) Biased MQW structure. (c) Biased superlattice structure with minibands and a minigap.

Quantum Wires
A semiconductor material that takes the form of a thin wire surrounded by a material of
wider bandgap is known as a quantum wire structure (Fig. 5.7-6). The wire acts as a
potential well that narrowly confines electrons (and holes) in the two lateral directions,
x and y, but not in the direction z along the axis of the wire. Quantum wires, which
usually have rectangular or circular cross sections, are readily made from III–V and
II–VI semiconductors, such as InP and CdSe, respectively. Nanotubes and nanowires
fabricated from a broad variety of materials can behave as quantum wires.
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Carbon nanotubes, for example, are cylindrical carbon molecules with diameters
of one, or a few, nm in which the carbon molecules organize themselves into thin hollow
ropes held together by van der Waals forces. Single- or multiwalled nanotubes exhibit
unique optical, mechanical, and electrical properties. They can behave as semiconduc-
tors or as highly conductive metals, depending on the details of their structure. Carbon
nanotubes find a multitude of uses in photonics; interestingly, they have been used as
filaments for incandescent light sources.

Energy Levels. For a quantum wire of rectangular cross section and area d1d2, the
energy–momentum relation in the conduction band is

E = Ec + E q1 + E q2 +
ℏ2k2

2mc
, (5.7-6)

where

E q1 =
ℏ2(q1π/d1)

2

2mc
, E q2 =

ℏ2(q2π/d2)
2

2mc
, q1, q2 = 1, 2, 3, . . . , (5.7-7)

and k is the vector component in the z direction (along the axis of the wire).
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Figure 5.7-6 Densities of states in different confinement configurations. The bulk-semiconductor
conduction and valence bands split into overlapping subbands that become successively narrower as
the electron motion is restricted in a greater number of dimensions.

Density of States. Each pair of quantum numbers (q1, q2) is associated with an
energy subband that has a density of states ϱ(k) = 1/π per unit length of the wire
and therefore 1/πd1d2 per unit volume. The corresponding quantum-wire density of
states (per unit volume), as a function of energy, is

ϱc(E ) =


(1/d1d2)

(√
mc

/√
2πℏ

)√
E − Ec − E q1 − E q2

, E > Ec + E q1 + E q2

0, otherwise,
q1, q2 = 1, 2, 3, . . . . (5.7-8)

These are decreasing functions of energy, as illustrated in Fig. 5.7-6.
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5.8 QUANTUM DOTS

Quantum dots (QDs) are semiconductor particles whose dimensions typically fall in
the range 1–50 nm. Also known as nanocrystals (NCs) and quantum boxes, these
quantum-confined structures can be fabricated from many materials, and in a broad
variety of geometrical shapes, including cubes, spheres, hemispheres, pyramids, and
disks, depending on the growth mechanism and conditions. The 2023 Nobel Prize in
Chemistry was awarded to Moungi Bawendi, Louis Brus, and Alexei Ekimov for the
discovery and synthesis of quantum dots.

Quantum-dot structures brought into contact with electrodes can behave as miniature
photonic devices; important examples include single-photon emitters (SPEs) (Sec. 6.6)
and quantum-dot light-emitting diodes (QLEDs) (Sec. 7.5). Quantum-dot devices also
find use in a wide variety of photonic applications, including displays, backlights, mem-
ory elements, spectral tags, and absorbers.

While single crystals must generally be defect-free to function properly in pho-
tonic devices, quantum dots are not subject to this materials-quality restriction.

Fabrication
Quantum dots can be prepared in many ways. While innovative fabrication techniques
continue to be developed, three principal strategies are currently in use:

1. Wet-chemical methods that enable the fabrication of colloidal quantum dots
(cQDs) under mild conditions that are amenable to large-area manufacturing.

2. High-temperature, vacuum-based approaches for fabricating highly crystalline
epitaxial quantum dots (eQDs).

3. Electron-beam lithography that allows nm-size patterns to be etched onto semi-
conductor chips, on which conducting metal can then be deposited.

Using wet chemistry, self-assembled cQDs are formed from colloidal nanocrystals
provided in liquid suspension or dispersed in a plastic composite. Chemical synthe-
sis yields near-perfect crystalline clusters that range from several hundred to tens-of-
thousands of atoms and assume various shapes, depending on growth conditions. Using
simple and cost-effective liquid-phase processes such as spray coating, spin coating,
microcontact printing, and inkjet printing, cQDs are typically deposited onto substrates
or incorporated directly into devices designed to accommodate them. Self-assembly
can also be achieved by means of epitaxial synthesis that yields strained quantum-dot
layers designed to optimize device characteristics.

Colloidal quantum dots can be grown from II–VI, IV–VI, III–V, and group-IV
semiconductors, as well as from organic compounds and perovskites.

Energy Levels and Density of States
The number of atoms contained in a quantum dot, as well as its size, can vary over a
broad range; a 10-nm cube of GaAs, for example, contains some 40 000 atoms. The
number of constituent electrons can be as small as a few, or as large as millions, but all
belong to the quantum dot as a whole. As with atoms, tight electron confinement results
in a series of sharp energy levels; indeed, quantum dots are often called artificial atoms.
Unlike atoms, however, a quantum dot fabricated from a given material has the property
that its energy levels are strongly dependent on its size. Much as with the energy levels
of an electron in a quantum well (Example 5.7-1), tight confinement attendant to a small
quantum dot leads to large energy-level differences.

Since the electrons within the quantum dot are narrowly confined in all three dimen-
sions, it can be modeled as a quantum box of volume d1d2d3 (Fig. 5.7-6). In accordance
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with (5.7-1) and (5.7-2), the electron energy is therefore quantized to

E = Ec + E q1 + E q2 + E q3 , (5.8-1)

where

E q1 =
ℏ2(q1π/d1)

2

2mc
, E q2 =

ℏ2(q2π/d2)
2

2mc
, E q3 =

ℏ2(q3π/d3)
2

2mc
,

q1, q2, q3 = 1, 2, 3, . . . . (5.8-2)

The allowed energy levels are therefore discrete and well separated in all three dimen-
sions. As illustrated in Fig. 5.7-6, the density of states is thus represented by a sequence
of delta functions at the allowed energies. Although a quantum dot usually contains
a vast number of strongly interacting natural atoms, its discrete energy levels can, in
principle, be designed at will.

The energy levels of a quantum dot are those of its excitons, the electron–hole
pairs strongly bound by Coulomb attraction and spin-exchange coupling that
are generated within, and confined to, the dot.

Dot Size and Photoluminescence Wavelength
Quantum dots of different sizes emit photoluminescence at different wavelengths. Fig-
ure 5.8-1(a) illustrates the color of the photoluminescence elicited from (II–VI) CdSe
quantum dots as the dot size is gradually tuned from a diameter of 5 nm (red) to
1.5 nm (violet). The photoexcitation wavelength is not a critical parameter, provided it is
shorter than the photoluminescence emission wavelength. An analogous illustration for
CsPbX3 metal-halide perovskite quantum dots is presented in Fig. 5.8-1(b). Photoex-
cited Si quantum dots can also emit light over a broad spectral range (Example 6.6-2).

Figure 5.8-1 As a consequence of quantum confinement, the wavelength of the photoluminescence
emission from quantum dots is governed by quantum-size effects (as well as by composition). As
the quantum-dot size decreases from left to right in both panels, the wavelength of the emitted light
also decreases. (a) Photoluminescence from II–VI CdSe colloidal quantum dots (with oleylamine
surface capping molecules) dispersed in n-hexane. The dot size decreases from 5 nm (red at left) to
1.5 nm (violet at right). Photoexcitation is provided at λO = 365 nm in the ultraviolet. (Courtesy
of Don Seo, Arizona State University.) (b) Photoluminescence emission from CsPbX3 metal-halide
perovskite colloidal quantum dots dispersed in toluene, where X = I (red), Br (green), and Cl (violet).
Photoexcitation is again provided at λO = 365 nm. (Adapted from L. Protesescu, S. Yakunin,
M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko,
Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic
Materials Showing Bright Emission with Wide Color Gamut, Nano Letters, vol. 15, pp. 3692–3696,
2015.)
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Variations on the Theme
Quantum dots overcoated with semiconductor materials of higher bandgap are known
as core–shell quantum dots. The presence of the shell reduces surface defects and pro-
vides increased luminescence, tunability, and lifespan. Quantum dots overcoated with
multiple semiconductors of alternating higher and lower bandgaps are called quantum
well–quantum dots. Quantum dots can also be embedded in semiconductor materials
with larger bandgaps or dispersed in various solvents, inks, glasses, polymers, and
matrices, including solid metal-halide perovskites. Arrays and self-assembled stacks
of quantum dots are also readily fabricated. Ordered arrangements of quantum dots,
called quantum-dot solids, can be grown using a number of methods, including self-
assembly into close-packed configurations. Quantum-dot solids known as nanocrystal
superlattices can support tunneling, as with multiquantum-well superlattices (Sec. 5.7).

5.9 ORGANIC AND PEROVSKITE SEMICONDUCTORS

A brief introduction to organic and perovskite semiconductors is provided since both
classes of materials are used for fabricating LEDs (Secs. 7.6 and 7.7, respectively).

Organic Semiconductors
Organic semiconductors are widely used for the fabrication of light-emitting diodes
(Sec. 7.6), high-quality organic light-emitting displays, and photovoltaic devices. They
typically have slower response times than their inorganic cousins, but they can be de-
posited via either solution processing or vacuum processing. Organic semiconductors
can be inexpensively printed on thin plastic substrates using inkjet technology and can
be engineered to suit specific requirements, such as mechanical flexibility.

The organic semiconductors used in photonics exist in two principal variants:
1. Small organic molecules, such as pentacene, which comprises five linearly

joined benzene rings [Fig. 5.9-1(a)].
2. Conjugated polymer chains such as polyacetylene, which comprises hundreds

or thousands of carbon atoms [Fig. 5.9-1(b)].

Figure 5.9-1 Organic semiconductors for photonics exist in two main variants: (a) small organic
molecules (e.g., pentacene), and (b) conjugated polymer chains (e.g., polyacetylene). (c) Doping
polyacetylene with Na+ donors yields an n-type material, whereas doping with I− acceptors yields
a p-type material. In the representation displayed in the figure, each vertex represents a carbon atom,
each line represents a bond between two carbon atoms, and each double line represents a double bond.
Hydrogen bonds are omitted for clarity.

The alternation of single and double carbon–carbon bonds, indicating conjugation, is
common in organic semiconductors. While the double-bond electrons represented in
Fig. 5.9-1(a) and (b) are portrayed as belonging to particular atoms, in actuality they
are delocalized and shared among multiple atoms, or along a segment of the polymer
that comprises some ten repeat units. The molecules, or polymer segments, behave as
integrated systems in which the allowed electron states form bands.

When undoped, the valence band of a conjugated polymer chain is typically full, and
its conduction band empty, so that it behaves as an insulator. Doping the polymer with
sodium and iodine ions, which act as donors and acceptors, respectively, yield n-type
and p-type variants, as illustrated in Fig. 5.9-1(c). Small organic molecules, in contrast,
are often conductive in their pure state.
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Organic and Inorganic Semiconductors: A Comparison. A number of funda-
mental features distinguish organic semiconductors from their inorganic counterparts:

Binding energies. The constituent molecules are bound by weak van der Waals
forces (with bond energies ≈ 0.1 eV) whereas the atoms in inorganic semiconduc-
tors are bound by strong covalent bonds (with bond energies ≈ 3 eV).
Mechanical flexibility. Weak intermolecular bonds offer mechanical flexibility
whereas inorganic semiconductors are rigid.
Energy bands. Narrow energy bands derive from localized behavior at the molec-
ular level while the broad energy bands of inorganic semiconductors derive from
distributed behavior across the entire collection of atoms.
Energy levels. Key energy levels are the highest occupied molecular orbital (homo)
and the lowest unoccupied molecular orbital (lumo) whereas in inorganic semi-
conductors the conduction and valence bands are paramount.
Effective mass and carrier mobility. Charge carriers are endowed with large effec-
tive mass (mc/m0 ≈ 500) and small mobility (µ ≈ 10−3 cm2/V·s) whereas charge
carriers in inorganic semiconductors have small effective mass (mc/m0 < 1) and
large mobility (µ ≈ 103 cm2/V·s).
Electron transport. Intermolecular electron transfer occurs via hopping (phonon-
assisted tunneling) whereas drift and diffusion characterize electron transport in
inorganic semiconductors.
Conductivity. The electrical conductivity is usually lower than that in inorganic
semiconductors.
Moisture. Organic materials are generally sensitive to moisture whereas inorganic
semiconductors are not.

Organic Quantum Dots. Organic quantum dots, generally comprised of small or-
ganic molecules or conjugated polymer chains, can be synthesized via solution process-
ing. Many of their features are similar to those of inorganic chalcogenide quantum dots
(Sec. 5.8), but they generally exhibit inferior external quantum efficiency, luminance,
and stability and are therefore rarely used for fabricating LEDs.

Perovskite Semiconductors
Perovskites are compounds that are isostructural to calcium titanate (CaTiO3), which
is the mineral perovskite. Named in honor of the mineralogist Lev von Perovski, these
compounds are identified by the chemical formula ABX3 (A = Ca, B = Ti, and X = O for
CaTiO3). In their cubic (α) phase, perovskites exhibit the unit cell sketched in Fig. 5.9-2.
Depending on the details of their composition and preparation, they can exhibit photo-
voltaic, pyroelectric, piezoelectric, ferroelectric, photorefractive, and superconducting
properties.

Figure 5.9-2 Single unit cell of the cubic (α) phase of a
perovskite crystal with the chemical formula ABX3. Inorganic
metal-halide perovskites, such as cesium lead triiodide (CsPbI3)
for which A = Cs, B = Pb, and X = I, are useful for fabricating
high-efficiency perovskite light-emitting diodes (PeLEDs).

Perovskites have a dizzying array of variants that include organic, hybrid organic–
inorganic, and fully inorganic versions. They are available as single crystals, polycrys-
talline films, and collections of quantum dots (nanocrystals). Some perovskites exhibit
large absorption coefficients, high carrier mobilities, and long carrier lifetimes, ren-
dering them efficient absorbers and emitters of light and endowing them with superior
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charge-transport properties. Perovskites cast in the form of thin amorphous films or
quantum dots are increasingly used in photonics for fabricating light-emitting diodes
(Sec. 7.7). They are also used for displays and photovoltaic devices.

Perovskite Quantum Dots. Several features associated with perovskite quantum
dots, such as their amenability to synthesis by solution processing, resemble those
of chalcogenide quantum dots (Sec. 5.8) and organic quantum dots (Sec. 5.9). The
performance of currently available sources that make use of perovskite quantum dots
(e.g., external quantum efficiency, luminance, and stability) is markedly superior to that
of organic QD sources but still lags behind that of chalcogenide QD sources, as will be
discussed further in Sec. 7.7.
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This chapter provides an introduction to the absorption and emission of photons in
semiconductor materials and devices. Both bulk and quantum-confined structures are
considered; the latter offer a number of salutary features that render them valuable for
fabricating photonic devices. This area of study is known as semiconductor photonics
or semiconductor optics.

Photon absorption and emission underlie the operation of semiconductor photode-
tectors and light-emitting diodes, respectively:

The absorption of a photon can lead to the creation of an electron–hole pair.
Mobile charge carriers that result from the absorption of a photon alter the elec-
trical properties of a semiconductor. This process is the basis of operation of
photodetectors.
The recombination of an electron and a hole can result in the emission of a photon.
This process is responsible for the operation of semiconductor photon sources such
as light-emitting diodes (LEDs), which emit spontaneous recombination radiation,
and laser diodes (LDs), which primarily emit stimulated recombination radiation.

Photon absorption and emission occur as electrons and holes execute transitions
between allowed energy levels within their prescribed energy bands (Sec. 6.1). A sim-
plified theory of interband transitions that relies on the conservation of energy and
momentum provides the theoretical underpinnings for describing absorption, sponta-
neous emission, and stimulated emission in bulk semiconductor materials (Sec. 6.2).
The basic rules that govern these interactions are set forth in Sec. 6.3. Although these
rules are patterned on an approach used to describe the interaction of photons with
atoms provided in Secs. 4.3–4.5, they differ in some respects because of the special
properties of semiconductors described in Chapter 5. In Sec. 6.4, we focus on injection
electroluminescence, the heart of LED functionality. This phenomenon was first ob-
served in 1907 in a rudimentary point-contact diode, a device sometimes considered to
be the prototypical LED. Photon interactions in quantum wells and quantum dots are
considered in Secs. 6.5 and 6.6, respectively, and a brief discussion of semiconductor
refractive indices follows in Sec. 6.7.

6.1 CARRIER TRANSITIONS IN BULK SEMICONDUCTORS

A number of mechanisms can lead to the absorption and emission of photons in bulk
semiconductors. The most important of these are:

Band-to-Band (Interband) Transitions. An absorbed photon can cause an electron
in the valence band to make an upward transition to the conduction band, thereby
creating an electron–hole pair in the process [Fig. 6.1-1(a)]. Conversely, electron–hole
recombination can result in the emission of a photon. Band-to-band transitions may be
assisted by one or more phonons.

Impurity-to-Band Transitions. An absorbed photon can result in a transition between
a donor (or acceptor) level and a band in a doped semiconductor. In a p-type material, for
example, a low-energy photon can lift an electron from the valence band to the acceptor
level, where it becomes trapped by an acceptor atom [Fig. 6.1-1(b)]. A hole is left behind
in the valence band and the acceptor atom is ionized. Or a hole may be trapped by an
ionized acceptor atom; the result is that the electron decays from its acceptor level to
recombine with the hole. The energy may be released radiatively (in the form of an
emitted photon) or nonradiatively (in the form of phonons). The transition may also be
assisted by traps in defect states, as illustrated in Fig. 5.5-2.
170
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Figure 6.1-1 Examples of the absorption and emission of photons in bulk semiconductors.
(a) Band-to-band transitions in GaAs can result in the absorption or emission of photons of wavelength
λO < λg = hcO/Eg = 0.87 µm. (b) The absorption of a photon of wavelength λA = hcO/EA = 14 µm
results in a valence-band to acceptor-level transition in mercury-doped germanium (Ge:Hg). (c) Free-
carrier transitions within the conduction band of Ge.

Free-Carrier (Intraband) Transitions. An absorbed photon can impart its energy to
an electron in a given band, causing it to move higher within that band. An electron in
the conduction band, for example, can absorb a photon and move to a higher energy
level within the conduction band [Fig. 6.1-1(c)]. This is followed by thermalization, a
process whereby the electron relaxes down to the bottom of the conduction band while
releasing its energy in the form of phonons. The strength of free-carrier absorption is
proportional to the carrier density and decreases with photon energy as a power-law
function.

Phonon Transitions. Long-wavelength photons can release their energy by directly
exciting lattice vibrations, i.e., by creating phonons.

Excitonic Transitions. The absorption of a photon in a semiconductor can result in
the formation of a free electron in the conduction band and a hole that rises to the top
of the valence band, where its energy is minimized. The electron and hole can then be
bound together by their mutual Coulomb attraction to form an exciton; the attractive
potential results in a reduction of the total energy of the electron and hole. This entity
is much like a hydrogen atom in which the hole plays the role of the proton. Excitons
typically have lifetimes that range from hundreds of ps to ns. A photon may be emitted
as a result of the electron and hole recombining, which annihilates the exciton in the
process.

Absorption Coefficient. The various types of transitions delineated above all con-
tribute to the overall absorption coefficient, which is displayed in Fig. 6.1-2 for Si
and GaAs over a broad range of wavelengths. For photon energies hν greater than the
bandgap energy Eg, the absorption is dominated by band-to-band transitions, which
underlie the operation of most photonic devices.

Absorption Edge. The spectral region where the material changes from being rela-
tively transparent (hν < Eg) to strongly absorbing (hν > Eg) is called the absorption
edge. The absorption coefficient in the vicinity of the absorption edge is illustrated in
Fig. 6.1-3 for several commonly encountered semiconductors. Direct-bandgap semi-
conductors exhibit a more abrupt absorption edge than do indirect-bandgap semicon-
ductors, as is apparent in Figs. 6.1-2 and 6.1-3.
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Figure 6.1-2 Experimental optical absorp-
tion coefficient α vs. photon energy hν (lower
abscissa) and free-space wavelength λO (up-
per abscissa) for bulk, intrinsic Si and GaAs
semiconductors in thermal equilibrium (T =
300 K). Results are displayed over a broad
range of free-space wavelengths. Silicon is
relatively transparent over the wavelength re-
gion λO ≈ 1.1 to 12 µm, while GaAs is
relatively transparent over the region λO ≈
0.87 to 12 µm. The bandgap energy Eg is
1.12 eV for Si and 1.42 eV for GaAs.
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Figure 6.1-3 Experimental optical absorption coefficient α vs. photon energy hν (lower abscissa)
and free-space wavelength λO (upper abscissa) for Ge, Si, GaAs, GaN, and several other III–V binary
semiconductors, in the vicinity of their absorption edges (T = 300 K). The absorption coefficients
follow different functional forms for direct- and indirect-bandgap materials in this region.

6.2 INTERBAND TRANSITIONS

We proceed by introducing a simplified theory of direct interband (band-to-band) pho-
ton absorption and emission in bulk semiconductors, ignoring the other types of tran-
sitions.

Bandgap Wavelength
Direct interband absorption can take place only at optical frequencies for which the
photon energy hν > Eg. The minimum frequency at which this is possible is therefore
νg = Eg/h, which, in accordance with (5.1-1), corresponds to a maximum wavelength
λg = cO/νg = hcO/Eg. (The bandgap wavelength λg is also called the long-wavelength
limit in this context.) If the bandgap energy and wavelength are specified in eV and µm,
respectively, the approximate relationship provided in (5.1-2) proves to be convenient.
Bandgap wavelengths and energies are provided in Table 5.3-1 for selected elemental
and binary III-V semiconductors, and can be extracted from Figs. 5.3-2 and 5.3-3 for
III–V and II–VI compound semiconductors of various compositions, respectively.
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Direct-Bandgap Photon Absorption and Emission
As discussed above, and illustrated in Fig. 6.2-1(a), electron excitation from the valence
to the conduction band may be induced by the absorption of a photon of appropriate
energy (hν > Eg or λ < λg). This generates an electron–hole pair that augments the
concentration of mobile charge carriers and increases the conductivity of the material.
The material then behaves as a photoconductor whose conductivity is proportional to
the photon flux, i.e., as a photoconductive photodetector.

Figure 6.2-1 (a) The absorption of a photon results in the generation of an electron–hole pair.
Photodetectors operate on this principle. (b) The recombination of an electron–hole pair results
in the spontaneous emission of a photon. Light-emitting diodes (LEDs) operate on this principle.
(c) Electron–hole recombination can be induced by a photon, resulting in the stimulated emission of
an identical photon. Semiconductor laser diodes (LDs) operate on this principle.

Conversely, electron de-excitation from the conduction to the valence band (electron–
hole recombination) may result in the spontaneous emission of a photon of energy
hν > Eg [Fig. 6.2-1(b)], or in the stimulated emission of a photon [Fig. 6.2-1(c)]
if a photon of energy hν > Eg is initially present (Sec. 4.3). Spontaneous emission
is the phenomenon that underlies the operation of the light-emitting diode, whereas
stimulated emission is responsible for the operation of the semiconductor laser diode
(Sec. 7.8).

Conservation Laws
The conditions required for interband absorption and emission to take place are based
on the conservation of energy and momentum.

Conservation of Energy. The absorption or emission of a photon of energy hν
requires that the energies of the two states involved in the interaction (say, E 1 and E 2 in
the valence and conduction bands, respectively, as depicted in Fig. 6.2-1) be separated
by hν. For photon emission to occur via electron–hole recombination, for example, an
electron occupying energy level E 2 must interact with a hole occupying energy level
E 1 such that energy is conserved, as illustrated in Fig. 6.2-1(b):

E 2 − E 1 = hν. (6.2-1)

Conservation of Momentum. Momentum must also be conserved in the process
of photon emission and absorption, so that p2 − p1 = hν/c = h/λ, or k2 − k1 =
2π/λ. However, the magnitude of the photon momentum h/λ is tiny in comparison
with the range of momentum values that electrons and holes can assume. As discussed
in Sec. 5.2, the semiconductor E–k diagram (Fig. 5.2-2) extends to values of k ≈ 2π/a,
where a is the crystal lattice constant. Since a ≪ λ, it follows that 2π/λ ≪ 2π/a so
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that the momenta of the electron and the hole participating in the interaction must be
approximately equal, i.e., k2 ≈ k1. This condition, known as the k-selection rule, is
manifested in the E–k diagram by vertical lines, such as those sketched in Fig. 6.2-1(b),
indicating that the change in k is negligible on the scale of the diagram.

Energies and Momenta of the Electron and Hole with Which a Photon Interacts.
As discussed above, the conservation of both energy and momentum requires that a pho-
ton of frequency ν interact with electrons and holes of specific energies and momenta,
as determined by the semiconductor E–k relation.

Using the parabolic approximations for the E–k diagram of a direct-bandgap semi-
conductor, as provided in (5.2-6) and (5.2-7), and writing Ec − Ev = Eg, (6.2-1) may
be written as

E 2 − E 1 =
ℏ2k2

2mv
+ Eg +

ℏ2k2

2mc
= hν, (6.2-2)

from which we have
k2 =

2mr

ℏ2
(hν − Eg), (6.2-3)

where the reduced mass mr is given by

1

mr
=

1

mv
+

1

mc
. (6.2-4)

Substituting (6.2-3) into (5.2-6) and (5.2-7) provides the energy levels E 1 and E 2

with which the photon interacts:
E 2 = Ec +

mr

mc
(hν − Eg), (6.2-5)

E 1 = Ev −
mr

mv
(hν − Eg) = E 2 − hν. (6.2-6)

In the special case when mc = mv, we obtain E 2 = Ec +
1
2(hν − Eg), as required by

symmetry.

Optical Joint Density of States. We now determine the density of states ϱ(ν) with
which a photon of energy hν interacts when energy and momentum are conserved in
a direct-bandgap semiconductor. This quantity incorporates the density of states for
both the conduction and valence bands, and is known as the optical joint density of
states. The one-to-one correspondence between E 2 and ν embodied in (6.2-5) permits
ϱ(ν) to be related to the conduction-band density of states ϱc(E 2) by making use of
the incremental relation ϱc(E 2) dE 2 = ϱ(ν) dν, from which ϱ(ν) = (dE 2/dν)ϱc(E 2),
whereupon

ϱ(ν) =
hmr

mc
ϱc(E 2). (6.2-7)

Using (5.4-2) in conjunction with (6.2-5) then leads directly to the number of inter-
acting states per unit volume per unit frequency,

ϱ(ν) =
(2mr)

3/2

πℏ2
√
hν − Eg , hν ⩾ Eg, (6.2-8)

Optical Joint
Density of States
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which is sketched in Fig. 6.2-2. The one-to-one correspondence between E 1 and ν in
(6.2-6), together with ϱv(E 1) from (5.4-3), results in an expression for ϱ(ν) identical
to that stated in (6.2-8).

Eg hν

ϱ (ν)

Figure 6.2-2 For direct interband transitions
between parabolic conduction and valence bands,
the density of states with which a photon of
energy hν interacts is proportional to

√
hν − Eg ,

as provided in (6.2-8).

Indirect-Bandgap Photon Absorption and Emission
Photon Absorption is Not Unlikely in an Indirect-Bandgap Semiconductor.
The energy and momentum conservation required for photon absorption in an indirect-
bandgap semiconductor is readily accommodated by means of a two-step process
(Fig. 6.2-3). The electron is first excited to a high energy level within the conduction
band by a k-conserving vertical transition. It then quickly relaxes to the bottom of the
conduction band via thermalization, whereby its momentum is transferred to phonons.
The generated hole behaves similarly. Since the process occurs sequentially, it does not
require the simultaneous presence of three bodies and is thus not unlikely in indirect-
bandgap semiconductors. Indeed, Si and Ge are widely used as photodetector materials,
as are direct-bandgap semiconductors such as AlGaAs and InGaAs.

Figure 6.2-3 Photon absorption in an indirect-
bandgap semiconductor via a k-conserving (ver-
tical) transition. The photon generates an excited
electron in the conduction band, leaving behind a
hole in the valence band. The electron and hole
then undergo thermalization — fast transitions to
the lowest and highest available levels in the con-
duction and valence bands, respectively, releasing
their energy in the form of phonons. The process is
sequential so it is not unlikely.

Photon Emission is Unlikely in an Indirect-Bandgap Semiconductor. On the
other hand, radiative electron–hole recombination is unlikely in an indirect-bandgap
semiconductor. This is because a transition from near the bottom of the conduction
band to near the top of the valence band (where electrons and holes are most likely to
reside, respectively) requires an exchange of momentum that cannot be accommodated
by the emitted photon (Fig. 6.2-4). Momentum may be conserved, however, if phonons
participate in the interaction. Although they typically have small energies (≈ 0.01–
0.1 eV; see Fig. 6.1-2), phonons can carry substantial momenta so that their transitions
appear horizontal on the E–k diagram, as portrayed in Fig. 6.2-4. The net result is that
the k-selection rule is violated but momentum is conserved.

Because phonon-assisted emission involves the simultaneous participation of three
bodies (electron, photon, and phonon), however, the probability of its occurrence is sub-
stantially reduced. Thus, Si, which is an indirect-bandgap semiconductor, has a signifi-
cantly lower radiative recombination coefficient rr than does GaAs, which is a direct-
bandgap semiconductor (Table 5.5-1). Hence, silicon does not emit light efficiently via
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interband transitions, whereas GaAs does. Under certain circumstances, however, incor-
porating isoelectronic co-dopants into a material can mitigate momentum-conservation
limitations, as explained in Sec. 7.3.

E

k

Photon

Phonon

Figure 6.2-4 Photon emission via an interband
transition in an indirect-bandgap semiconductor. The
recombination of an electron near the bottom of
the conduction band with a hole near the top of
the valence band requires the conservation of mo-
mentum, which entails the participation of one or
more phonons. Simultaneous multiparticle interac-
tions have a reduced likelihood of taking place.

6.3 ABSORPTION, EMISSION, AND GAIN

We now proceed to determine the probability densities for a photon of energy hν being
emitted or absorbed by a bulk semiconductor material via a direct interband transition.
Conservation of energy and momentum, as specified in (6.2-5) and (6.2-6), determine
the energies E 2 and E 1 of the electron and hole with which a photon of energy hν may
interact. The probability densities are determined by the following three factors, which
are discussed in turn:

1. Occupancy probabilities.
2. Transition probabilities.
3. Optical joint density of states.

Occupancy Probabilities
The occupancy conditions for photon emission and absorption that take place via tran-
sitions between the discrete energy levels E 2 and E 1 are stated as follows:
Emission condition: A conduction-band state of energy E 2 is filled (with an electron)

and a valence-band state of energy E 1 is empty (i.e., filled with a hole).
Absorption condition: A conduction-band state of energy E 2 is empty and a valence-

band state of energy E 1 is filled (with an electron).
The probabilities that these occupancy conditions are satisfied for various values of

E 2 and E 1 are established by the Fermi functions fc(E ) and fv(E ) associated with the
conduction and valence bands of a semiconductor in thermal quasi-equilibrium, respec-
tively. Since the occupancies of conduction and valence band states are independent,
the probability fe(ν) that the emission condition is satisfied for a photon of energy hν
is the product of the probabilities that the upper state is filled and that the lower state is
empty, i.e.,

fe(ν) = fc(E 2) [1− fv(E 1)]. (6.3-1)

Similarly, the probability fa(ν) that the absorption condition is satisfied is

fa(ν) = [1− fc(E 2)] fv(E 1). (6.3-2)

For LED operation, it is necessary (but not sufficient) that photon emission be more
likely than photon absorption, as is evidenced by the derivation provided below.
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□ Condition for the Photon Emission Rate to Exceed the Photon Absorption Rate.

(a) For a bulk semiconductor in thermal equilibrium, the rate of photon emission cannot exceed
the rate of photon absorption. In thermal equilibrium Efc = Efv = Ef so that, in accordance
with (5.4-4), f(E ) = 1/ {exp [(E − Ef )/kT + 1]}. The difference between the emission
and absorption conditions, provided by (6.3-1) and (6.3-2), respectively, is fe(ν) − fa(ν) =
fc(E 2) − fv(E 1). Since fc(E ) = fv(E ) = f(E ) in thermal equilibrium, we have fe(ν) −
fa(ν) = f(E 2) − f(E 1). Because f(E ) is a monotonically decreasing function of E , we
therefore obtain f(E 2) < f(E 1) so that fe(ν) − fa(ν) < 0. Hence, fe(ν) < fa(ν), which
reveals that the rate of emission is smaller than the rate of absorption.

(b) For a semiconductor in thermal quasi-equilibrium (Efc ̸= Efv), with radiative transitions
occurring between a conduction-band state of energy E 2 and a valence-band state of energy
E 1 with the same value of k, emission is more likely than absorption if the separation between
the quasi-Fermi levels is larger than the photon energy, i.e., if

Efc − Efv > hν. (6.3-3)
Net Emission Condition

In quasi-equilibrium, fe(ν)− fa(ν) = fc(E 2)− fv(E 1) = 1/ {1 + exp [(E 2 − Efc)/kT ]}−
1/ {1 + exp [(E 1 − Efv)/kT ]}. The quantity fe(ν) − fa(ν) > 0 if exp [(E 2 − Efc)/kT ] <
exp [(E 1 − Efv)/kT ], or equivalently if E 2 − Efc < E 1 − Efv or if E 2 − E 1 < Efc − Efv .
Since E 2 − E 1 = hν, we conclude that the emission rate is greater than the absorption rate
if Efc − Efv > hν. This implies that the separation between the two Fermi levels must be
greater than the bandgap energy, i.e., that Efc and Efv must lie within the conduction and
valence bands, respectively.

■

Transition Probabilities
Satisfying the emission or absorption occupancy condition does not insure that emis-
sion or absorption actually takes place, however. These processes are governed by the
probabilistic laws of the interaction between photons and atomic systems discussed
in Secs. 4.3–4.5 in connection with blackbody and thermal radiation. As they relate
to semiconductors, these laws are generally expressed in terms of emission into (or
absorption from) a narrow band of frequencies lying between ν and ν + dν:

Summary: Transition Cross Section

As provided by the Füchtbauer–Ladenburg equation set forth in (4.4-11), a
radiative transition between two discrete energy levels E 1 and E 2 is charac-
terized by a transition cross section σ(ν) = (λ2/8πtsp)g(ν), where ν is the
frequency, tsp is the effective spontaneous lifetime, and g(ν) is the lineshape
function (centered about the transition frequency ν0 = (E 2 − E 1)/h, with
transition linewidth∆ν and with unity area). In semiconductors, the radiative
electron–hole recombination lifetime τr, discussed in Sec. 5.5, plays the role
of tsp so that

σ(ν) =
λ2

8πτr
g(ν) . (6.3-4)
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Summary: Spontaneous Emission

If the occupancy condition for emission is satisfied, (4.4-13) dictates that
the probability density (per unit time) for the spontaneous emission of a
photon into any of the available radiation modes in the narrow frequency
band between ν and ν + dν is

Psp(ν) dν =
1

τr
g(ν) dν, (6.3-5)

where τr again replaces tsp.

Summary: Stimulated Emission and Absorption

Following (4.5-15), if the occupancy condition for emission is satisfied and a
mean spectral photon-flux density ϕν (photons per unit time per unit area per
unit frequency) at frequency ν is present, the probability density (per unit
time) for the stimulated emission of one photon into the narrow frequency
band between ν and ν + dν is

Wi(ν) dν = ϕν σ(ν) dν = ϕν
λ2

8πτr
g(ν) dν. (6.3-6)

If the occupancy condition for absorption is satisfied and a mean spectral
photon-flux density ϕν at frequency ν is present, the probability density for
the absorption of one photon from the narrow frequency band between ν and
ν + dν is identical to the result presented in (6.3-6).

Since each transition has a different central frequency ν0, and since a collection of
such transitions is under consideration, we explicitly label the central frequency of the
transition by writing g(ν) as gν0(ν). In semiconductor photonics, the homogeneously
broadened lineshape function gν0(ν) associated with a pair of energy levels generally
arises from electron–phonon collisional broadening. It therefore typically exhibits a
Lorentzian lineshape function of width ∆νFWHM ≈ 1/πT2 [see (4.6-3) and (A.2-17)],
where the electron–phonon collision time T2 is of the order of ps. If T2 = 1 ps, for
example, then ∆ν = 318 GHz, corresponding to an energy width h∆ν ≈ 1.3 meV.
The radiative lifetime broadening of the levels is negligible in comparison with the
collisional broadening.

The processes of spontaneous emission and absorption discussed above,
together with the principles of photon optics set forth in Chapter 3, are
fundamental to LED operation.

Overall Emission and Absorption Transition Rates
For a pair of energy levels separated by E 2−E 1 = hν0, the rates of spontaneous emis-
sion, stimulated emission, and absorption of photons of energy hν for a semiconductor
material (in units of photons/s-Hz-cm3), are obtained in the following manner: The
appropriate transition probability density Psp(ν) or Wi(ν) [as provided in (6.3-5) or
(6.3-6), respectively] is multiplied by the appropriate occupancy probability fe(ν0) or
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fa(ν0) [as provided in (6.3-1) or (6.3-2), respectively], and by the optical joint density
of states ϱ(ν0) that can interact with the photon [as set forth in (6.2-8)]. The overall
transition rate for all allowed frequencies is then calculated by integrating over ν0.

The rate of spontaneous emission at frequency ν, for example, is given by

r sp(ν) =

∫
[(1/τr)gν0(ν)] fe(ν0) ϱ(ν0) dν0. (6.3-7)

When the collision-broadened linewidth ∆ν is substantially smaller than the width of
the product fe(ν0)ϱ(ν0), which is the usual situation, gν0(ν) may be approximated
by δ(ν − ν0), whereupon the sifting property of the delta function reduces (6.3-7)
to r sp(ν) = (1/τr)ϱ(ν)fe(ν). The rates of stimulated emission and absorption are
obtained in a similar manner, resulting in the following formulas:

r sp(ν) =
1

τr
ϱ(ν)fe(ν) (6.3-8)

r st(ν) = ϕν
λ2

8πτr
ϱ(ν)fe(ν) (6.3-9)

rab(ν) = ϕν
λ2

8πτr
ϱ(ν)fa(ν). (6.3-10)

Emission and
Absorption Rates

These equations, together with (6.2-8)–(6.3-2), permit the rates of spontaneous
emission, stimulated emission, and absorption arising from direct interband transitions
(photons/s-Hz-cm3) to be calculated in the presence of a mean spectral photon-flux
density ϕν (photons/s-Hz-cm2). The products ϱ(ν)fe(ν) and ϱ(ν)fa(ν) are analogous
to the products of the lineshape function and the atomic number densities in the upper
and lower levels, g(ν)N2 and g(ν)N1, respectively, used in the study of emission and
absorption in atomic systems.

The determination of the occupancy probabilities fe(ν) and fa(ν) requires knowl-
edge of the quasi-Fermi levels Efc and Efv. It is via the control of these two parameters
(by the application of an external bias to a p–n junction, for example) that the emission
and absorption rates are modified to produce semiconductor photonic devices that carry
out different functions. Equation (6.3-8) is the basic result that underlies the operation
of the direct-bandgap p–n junction LED, which is based on spontaneous emission
(Sec. 6.4). Equation (6.3-9) is applicable for laser diodes, which operate on the basis
of stimulated emission (Sec. 7.8). Equation (6.3-10) is appropriate for semiconductor
photodetectors, which function by means of photon absorption.

Spontaneous-Emission Spectral Density in Thermal Equilibrium
A semiconductor in thermal equilibrium has only a single Fermi function so that (6.3-1)
becomes fe(ν) = f(E 2)[1 − f(E 1)]. If the Fermi level lies within the bandgap, away
from the band edges by at least several times kT , use may be made of the exponential
approximations to the Fermi functions, f(E 2) ≈ exp[−(E 2−Ef )/kT ] and 1−f(E 1) ≈
exp[−(Ef − E 1)/kT ], whereupon fe(ν) ≈ exp[−(E 2 − E 1)/kT ], i.e.,

fe(ν) ≈ exp

(
− hν

kT

)
. (6.3-11)
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Using (6.2-8) for ϱ(ν), and (6.3-11) for fe(ν), in (6.3-8) then provides

r sp(ν) ≈ D0

√
hν − Eg exp

(
−hν − Eg

kT

)
, hν ⩾ Eg, (6.3-12a)

Spectral Density
(Thermal Equilibrium)

where

D0 =
(2mr)

3/2

πℏ2τr
exp

(
− Eg

kT

)
(6.3-12b)

is a parameter that increases with temperature at an exponential rate.
The functional form of the spontaneous emission rate (6.3-12), which is sketched in

Fig. 6.3-1 as a function of hν, is determined by two factors: 1) the density of states,
which increases as

√
hν − Eg ; and 2) the Fermi function, which decreases exponen-

tially as hν−Eg. The spontaneous emission rate can be increased by augmenting fe(ν).
As is clear from (6.3-1), this can be achieved by increasing fc(E 2) and decreasing
fv(E 1), which entails a departure from thermal equilibrium. A sufficient number of
both electrons and holes must be available in the junction region to attain the conditions
required for LED operation, as detailed in Sec. 7.1.

Figure 6.3-1 Direct interband spontaneous-
emission spectral density r sp(ν) for a semiconduc-
tor in thermal equilibrium (photons/s-Hz-cm3),
plotted as a function of the photon energy hν.
Emission is present for photon energies greater
than the bandgap energy Eg , over a range of photon
energies of approximate width 1.8kT .

Gain Coefficient in Thermal Quasi-Equilibrium

The net gain coefficient γ0(ν) corresponding to the rates of stimulated emission and
absorption specified in (6.3-9) and (6.3-10) is determined by defining a thin cylinder of
unit area and incremental thickness dz, and assuming that a mean spectral photon-flux
density is directed along its axis. If ϕν(z) and ϕν(z)+dϕν(z) are the densities entering
and leaving the cylinder, respectively, dϕν(z) must be the mean spectral photon-flux
density emitted from within the cylinder. The incremental number of photons, per unit
time per unit frequency per unit area, is simply the number of photons gained, per unit
time per unit frequency per unit volume [r st(ν) − rab(ν)], multiplied by the thickness
of the cylinder dz, so that

dϕν(z) = [r st(ν)− rab(ν)] dz. (6.3-13)

Inserting the expressions provided in (6.3-9) and (6.3-10) into (6.3-13) therefore
leads to

dϕν(z)

dz
=

λ2

8πτr
ϱ(ν) [fe(ν)− fa(ν)]ϕν(z) = γ0(ν)ϕν(z), (6.3-14)
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where the net gain coefficient γ0 is given by

γ0(ν) =
λ2

8πτr
ϱ(ν) fg(ν). (6.3-15)

Gain Coefficient

The quantity ϱ(ν) fg(ν) in the semiconductor system plays the role of Ng(ν) in the
atomic system. With the help of (6.3-1) and (6.3-2), the Fermi inversion factor fg(ν)
may be written as

fg(ν) ≡ fe(ν)− fa(ν) = fc(E 2)− fv(E 1), (6.3-16)
Fermi Inversion Factor

since E 1 and E 2 are related to ν via (6.2-5) and (6.2-6). Finally, with the help of (6.2-8),
the gain coefficient (6.3-15) can be cast in the form

γ0(ν) = D1

√
hν − Eg fg(ν) hν > Eg , (6.3-17a)

with

D1 =

√
2m

3/2
r λ2

h2τr
. (6.3-17b)

The sign and spectral form of the Fermi inversion factor fg(ν) are governed by the
quasi-Fermi levels Efc and Efv, which in turn depend on the state of excitation of the
semiconductor carriers. When the semiconductor is pumped to a sufficiently high level
by means of an external source of power, net gain may be achieved in a laser diode.

Absorption Coefficient in Thermal Equilibrium

Since a semiconductor in thermal equilibrium has only a single Fermi level,Ef = Efc =
Efv, (4.2-4) provides

fc(E ) = fv(E ) = f(E ) =
1

exp[(E − Ef )/kT ] + 1
. (6.3-18)

The Fermi inversion factor of (6.3-16), fg(ν) = fc(E 2) − fv(E 1) = f(E 2) − f(E 1),
is then < 0 since f(E ) decreases monotonically with E , and E 2 > E 1. Hence, the
gain coefficient γ0(ν) is always negative, whatever the location of the Fermi level Ef .
A semiconductor in thermal equilibrium, whether intrinsic or doped, therefore always
attenuates light with an attenuation (absorption) coefficient α(ν) ≡ −γ0(ν),

α(ν) = D1

√
hν − Eg

[
f(E 1)− f(E 2)

]
, (6.3-19)

Absorption Coefficient

where E 2 and E 1 are specified in (6.2-5) and (6.2-6), respectively, and D1 is specified
in (6.3-17b).

If Ef lies within the bandgap, but away from the band edges by an energy of at least
several times kT , then f(E 1) ≈ 1 and f(E 2) ≈ 0 whereupon f(E 1)− f(E 2) ≈ 1. In
that case, the direct interband contribution to the absorption coefficient takes the form

α(ν) ≈
√
2 c2m

3/2
r

τr

1

(hν)2

√
hν − Eg . (6.3-20)
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EXAMPLE 6.3-1. Absorption Coefficient for GaAs in Thermal Equilibrium. Equa-
tion (6.3-20) is plotted in Fig. 6.3-2 for GaAs, using the following parameters:n = 3.6,mc = 0.07m0,
mv = 0.50m0, m0 = 9.1× 10−31 kg, a doping level such that τr = 0.4 ns (this differs from that set
forth in Table 5.5-1 because of the difference in doping level), Eg = 1.42 eV, and a temperature such
that f(E 1) − f(E 2) ≈ 1. As the temperature increases, f(E 1) − f(E 2) decreases below unity and
the absorption coefficient provided in (6.3-19) is reduced.

–1 0 1 2

2 1
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o
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Figure 6.3-2 Calculated absorption coefficient
α(ν) (cm−1) resulting from direct interband tran-
sitions, as a function of the photon energy hν (eV)
and the wavelength λO (µm), for GaAs. It is useful
to compare this curve with the empirical measure-
ment displayed in Fig. 6.1-3, which encompasses
all absorption mechanisms.

□ Frequency and Wavelength of Maximum Interband Absorption in Thermal Equilibrium.
In accordance with (6.3-20), the absorption coefficient α(ν) is proportional to (hν − Eg)

1/2 (hν)−2.
This function attains its maximum value at νp, the frequency at which its derivative with respect to ν
is zero. This occurs when −2(hνp − Eg)

1/2 + 1
2
hνp(hνp − Eg)

−1/2 = 0 or 1
4
hνp = hνp − Eg so

that hνp = 4
3
Eg . To determine the (free-space) wavelength λp at which the absorption is maximized,

α(ν) must be written as α(λO), and the derivative with respect to λO determined. Since ν = cO/λO, we
have α(λO) ∝ (hcO/λO − hcO/λg)

1/2
(λO/hcO)

2 ∝ (1/λO − 1/λg)
1/2

(λO)
2. Setting the derivative of

α(λO) equal to zero yields 2 (1/λp − 1/λg)
1/2

λp − 1
2
(1/λp − 1/λg)

−1/2
(λ2

p/λ
2
p) = 0 whereupon

4 (1/λp − 1/λg)λp = 1, which in turn leads to λp = 3
4
λg or λp (µm) = 3

4
·1.24/Eg (eV). Although

λp cannot in general be evaluated as cO/νp, doing so in this case leads to 3
4
cOh/Eg , which is the correct

result. Using GaAs as an example, we have Eg = 1.42 eV so that λp = 3
4
· 1.24/1.42 = 0.65 µm,

which lies in the red. Note that these calculations are applicable only for absorption mediated by direct
interband transitions. ■

Absorption Near the Band Edge. Equation (6.3-20) specifies that the absorption
coefficient near the band edge in a direct-bandgap semiconductor follows the functional
form

√
hν − Eg . However, the sharp onset of absorption at hν = Eg is an idealization.

As is evident in Fig. 6.1-3, direct-bandgap semiconductors generally exhibit an expo-
nential absorption tail, known as the Urbach tail, with a characteristic width ≈ kT that
extends slightly into the forbidden band. This arises from thermal and static disorder
in the crystal associated with several factors, including phonon-assisted absorption,
randomness in the doping distribution, and variations in material composition.

In indirect-bandgap semiconductors (e.g., Ge, Si, and GaP in Fig. 6.1-3), absorption
near the band edge generally follows the functional form (hν − Eg)

2, rather than the
square-root relation applicable for direct-bandgap semiconductors.

6.4 INJECTION ELECTROLUMINESCENCE

Electroluminescence is a phenomenon whereby light is emitted by a material that is
subjected to an electric field. An important example of electroluminescence is injection
electroluminescence, which can occur when an electric current is injected into a semi-
conductor. The earliest observation of injection electroluminescence, dating to 1907,
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relied on current injected into a Schottky-barrier diode fabricated from an indirect-
bandgap semiconductor material (p. 169). Modern LEDs rely on injection electrolumi-
nescence emitted using forward-biased semiconductor p–n junctions fabricated from
direct-bandgap semiconductor materials, in which photons are generated when elec-
trons from the conduction band recombine with holes from the valence band.

Injection Electroluminescence from Schottky-Barrier Diodes
The injection electroluminescence experiments carried out by Round and Losev in the
early 1900s (p. 169) made use of point-contact Schottky-barrier diodes fabricated using
indirect-bandgap semiconductors. We provide a brief review of this early work.

Cat-Whisker, Point-Contact, and Crystal Diodes. The iconic car-whisker diode
is a rectifying element that served as a demodulator for amplitude-modulated (AM)
signals in the early days of radio technology. The “cat whisker” itself was a short length
of curved metallic wire that sometimes incorporated a coiled section to serve as a spring.
The cat whisker was adjusted to exert just the right pressure at its point of contact
with the semiconductor crystal so that a rectifying junction would be formed. These
devices were also called point-contact diodes and crystal diodes. Devices of this
kind were first constructed by Jagadis Bose in 1894 using PbS (galena) semiconductor
crystals. Not long thereafter, Greenleaf Pickard refined the structure and shepherded
crystal diodes into widespread use in crystal-radio receivers. Diodes such as these were
ubiquitous until the early 1920s, when they were replaced by vacuum tubes, which had
the distinct merit that they offered amplification.

The Experiments of Round and Losev. Working at the Marconi Company in 1907,
the British radio engineer Henry Round (p. 169) was the first to observe injection
electroluminescence.† His one-off experiment made use of a forward-biased metal-
point-contact/SiC rectifying junction. In 1927, Oleg Losev (p. 169), evidently unaware
of Round’s work, conducted similar experiments in which he observed light emission
from forward-biased metal-point-contact/semiconductor junctions consisting of SiC
and ZnO crytallites.‡ Losev investigated this phenomenon over a period of many years
and established that the light emission was not of thermal origin, and posited instead
that it was a form of electroluminescence. Losev discovered that some devices emitted
light when either forward- or reverse-biased, while other devices emitted light only
when reverse-biased.

Schottky-Barrier Diodes. In modern terminology, the devices used by Round and
Losev are forward-biased Schottky-barrier diodes that comprise a metallic point contact
and a SiC indirect-bandgap semiconductor crystal. The origin of rectification in metal–
semiconductor contacts was elucidated by Walter Schottky in 1938 via a theoretical
construct in which he incorporated barrier layers at the surfaces where the two materials
made contact. A distinct merit of Schottky-barrier diodes is that they can be fabricated
in material systems where it is difficult to prepare both p-type and n-type semiconductor
forms. Schottky diodes also often serve as large-bandwidth photodetectors.

The band diagrams of a Schottky-barrier diode under equilibrium, moderate forward-
bias, and strong forward-bias conditions are displayed in Figs. 6.4-1(a), (b), and (c),
respectively.

† H. J. Round, A Note on Carborundum, Electrical World, vol. 83, p. 309, 1907.
‡ O. V. Losev, Luminous Carborundum Detector and Detection with Crystals (in Russian), Telegrafiya i

telefoniya bez provodov (Wireless Telegraphy and Telephony), vol. 44, pp. 485–494, 1927.
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Figure 6.4-1 Band diagram of a Schottky-barrier diode formed with an n-type semiconductor.
(a) Under thermal-equilibrium conditions, the Fermi levels Ef in the two materials align. (b) Under
moderate forward-bias conditions, the barrier height is substantially reduced. (c) Under strong
forward-bias conditions, minority-carrier injection can lead to the emission of photons whose energy
is comparable to the bandgap energy Eg = Ec − Ev .

Thermal-Equilibrium Conditions. Under equilibrium conditions, electrons diffuse
from the semiconductor to the metal upon contact, bringing the Fermi levels of the
two materials into alignment [Fig. 6.4-1(a)]. This results in a region just inside the
semiconductor interface that is depleted of free electrons, so that the accompanying
fixed positive charges in the semiconductor cause its valence and conduction bands to
bend upward. The discontinuity in the allowed energy states of the two materials gives
rise to the Schottky barrier, which blocks the flow of electrons from the metal back into
the semiconductor and is therefore responsible for the rectifying nature of the device.

Moderate Forward-Bias Conditions. In their usual mode of operation, Schottky-
barrier diodes make use of majority-carrier injection [Fig. 6.4-1(b)]. This is in contrast
to p–n junction devices, which principally function via minority-carrier injection.

Strong Forward-Bias Conditions. Under strong forward-bias conditions, it is possi-
ble to inject minority carriers into the semiconductor region via tunneling through the
surface potential barrier [Fig. 6.4-1(c)]. These minority carriers can then recombine
with the n-type majority carriers in the semiconductor, emitting recombination radi-
ation in the process. This is the origin of the injection electroluminescence observed
by Round and Losev. The voltage required to achieve minority carrier injection in
a Schottky-barrier diode is typically larger than that at which a p–n junction LED
operates. Indeed, Round reported operating voltages that ranged between 10 and 110 V.

Reverse-Bias Conditions. Under reverse-bias conditions, minority carriers can be
created in Schottky-barrier diodes via avalanche multiplication. In that scenario, impact
ionization results in the creation of holes and electrons in the valence and conduction
bands, respectively, and light is emitted when the carriers recombine. This provides an
explanation for Losev’s observation of electroluminescence under reverse-bias condi-
tions in some devices.

Injection Electroluminescence from p–n Junction Diodes
As described above, the early electroluminescence experiments carried out by Round
and Losev made use of Schottky-barrier diodes fabricated from indirect-bandgap semi-
conductors, principally SiC. In the late 1960s, technological advances made it possible
to fabricate SiC p–n junction diodes, but these devices produced only little more in-
jection electroluminescence than their Schottky-barrier progenitors. The reason is the
indirect-bandgap nature of SiC.

Modern light-emitting diodes are p–n junction devices fabricated from
direct-bandgap semiconductor materials. These structures provide orders-
of-magnitude enhancement in the electroluminescence photon flux.
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Semiconductor in Thermal Equilibrium. Electron–hole radiative recombination
leads to luminescence from a semiconductor material. In principle, this is true even
at room temperature, but the concentration of thermally excited electrons and holes is
so small at T = 300 K that the photon flux generated by radiative recombination is
nearly undetectable, as illustrated in Example 6.4-1.

EXAMPLE 6.4-1. Electroluminescence from GaAs in Thermal Equilibrium. At room
temperature, the intrinsic concentration of electrons and holes in GaAs is ni ≈ 1.8 × 106 cm−3

(Table 5.4-1). Since the radiative electron–hole recombination coefficient rr ≈ 10−10 cm3/s
(under the conditions specified in Table 5.5-1), the radiative recombination rate rrnp = rrn

2
i ≈

324 photons/cm3-s, as discussed in Sec. 5.5. A 2-µm-thick layer of GaAs is therefore expected to
produce a photon-flux density ϕ ≈ 0.065 photons/cm2-s, which is negligible, as may be understood
by consulting Table 3.4-1. (Light emitted from a layer of GaAs thicker than about 2 µm suffers
reabsorption.) Choosing the photon energy hν at the bandgap energy for GaAs, Eg = 1.42 eV or
1.42e = 2.27 × 10−19 J, the emitted intensity turns out to be I = hνϕ ≈ 1.5 × 10−20 W/cm2. Of
course, the GaAs also emits thermal radiation in accordance with Planck’s radiation law (4.7-9).

If thermal equilibrium conditions are maintained, this intensity cannot be apprecia-
bly increased (or decreased) by doping the material. In accordance with the law of mass
action (5.4-15), the product np is fixed at n2i if the material is not too heavily doped
so that the radiative recombination rate rrnp = rrn

2
i depends on the doping level only

through rr. An abundance of electrons and holes is required for a large recombination
rate; in an n-type semiconductor n is large but p is small, whereas the converse is true
in a p-type semiconductor.

Semiconductor in the Presence of Carrier Injection. The photon emission rate
can be appreciably increased, however, by using external means to increase the concen-
tration of excess electron–hole pairs in the material ∆n. This may be accomplished, for
example, by illuminating the material with light, but it is typically achieved by forward
biasing a p–n junction diode, which serves to inject excess carrier pairs into the junction
region, as illustrated in Fig. 5.6-3.

As detailed below, and illustrated schematically in Fig. 6.4-2, the emitted photon flux
Φ (photons/s) within a volume V (cm3) may be determined from∆n (pairs/cm3), which
is related to the electron–hole pair injection rate R (pairs/cm3-s) via the electron–hole
recombination time τ .

Injected carriers

(rate R )

Emitted photons
(rate Φ) Figure 6.4-2 Spontaneous photon emission resulting

from electron–hole radiative recombination, as might
occur in a forward-biased p–n junction region.

Excess Carrier Concentrations. Denoting the equilibrium concentrations of elec-
trons and holes in the absence of pumping (excitation) as n0 and p0, respectively, we
use n = n0+∆n and p = p0+∆p to represent the steady-state carrier concentrations
in the presence of pumping (Sec. 5.5). The excess electron concentration∆n is precisely
equal to the excess hole concentration ∆p because electrons and holes are produced in
pairs. It is assumed that the excess electron–hole pairs recombine at a rate 1/τ , where
τ is the overall (radiative and nonradiative) electron–hole recombination time.
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Under steady-state conditions, the pumping (generation) rate must precisely balance
the recombination (decay) rate, so that R = ∆n/τ . The steady-state excess-carrier
concentration is then proportional to the pumping rate,

∆n = Rτ. (6.4-1)

For carrier injection rates that are sufficiently small, we have τ ≈ 1/r(n0 + p0),
as explained in Sec. 5.5, where r is the (radiative and nonradiative) recombination
coefficient, so that R ≈ r∆n (n0 + p0).

Photon Flux. However, only radiative recombinations generate photons. The internal
quantum efficiency ηIQE = rr/r = τ/τr , defined in (5.5-10) and (5.5-12), accounts for
the fact that only a fraction of the recombinations are radiative in nature. The injection
of RV carrier pairs per second therefore leads to the generation of a photon flux Φ =
ηIQERV photons/s, i.e.,

Φ = ηIQERV = ηIQE
V∆n

τ
=
V∆n

τr
. (6.4-2)

The internal photon flux Φ is seen to be proportional to the steady-state concentration
of excess electron–hole pairs ∆n, and therefore to the carrier-pair injection rate R .

The internal quantum efficiency (IQE), introduced in Sec. 5.5, plays a crucial role
in determining the performance of electron-to-photon converters such as these. As
schematized in Fig. 6.2-4, photon emission is unlikely in an indirect-bandgap semicon-
ductor. Direct-bandgap semiconductors are used to fabricate LEDs (and LDs) precisely
because the IQE is substantially larger than it is for indirect-bandgap semiconductors
(e.g., at room temperature ηIQE ≈ 0.5 for GaAs while ηIQE ≈ 10−5 for Si, as displayed in
Table 5.5-1). It is important to keep in mind, however, that the IQE depends on doping,
temperature, and defect concentration.

EXAMPLE 6.4-2. Injection Electroluminescence from GaAs. Consider a slab of GaAs
for which τ = 50 ns and ηIQE = 0.5 (Table 5.5-1), so that a steady-state excess concentration of
injected electron–hole pairs ∆n = 1017 cm−3 yields a photon-flux concentration ηIQE∆n/τ ≈ 1024

photons/cm3-s. For photons at the bandgap energy Eg = 1.42 eV, the corresponding optical power
density is then ≈ 2.3×105 W/cm3. If the thickness of the slab is 2 µm, the generated optical intensity
is ≈ 46 W/cm2, which is a factor of ≈ 1021 greater than the value at thermal equilibrium established
in Example 6.4-1. If the area of the slab is 200 µm × 10 µm, the emitted optical power under these
conditions is calculated to be ≈ 0.9 mW, which is substantial.

Indirect-Bandgap p–n Junction Diodes. The electroluminescence light emitted by
SiC p–n junction diodes is not appreciably greater than that emitted by SiC Schottky-
barrier diodes because the indirect-bandgap nature of the material leads to miniscule
values of the IQE (Fig. 6.2-4). Nevertheless, SiC diodes continued to be manufactured
until the early 1990s because they were the only semiconductor source of violet light
available. [The bandgap of the 6H-SiC polytype is Eg ≈ 3.05 eV, corresponding to
λO ≈ 407 nm, as shown in Fig. 5.3-2(b).] Only when direct-bandgap, high internal
quantum efficiency III–nitride LEDs began to be manufactured in the mid-1990s, did
SiC LEDs lose their allure. Also abandoned in that era, as a consequence of their limited
lifetimes, were blue-emitting LEDs fabricated from direct-bandgap II–VI ZnSe/ZnS.

Direct-Bandgap p–n Junction Diodes. The calculations presented in the remain-
der of this section reveal that p–n junction diodes fabricated from direct-bandgap semi-
conductors are strong sources of injection electroluminescence.
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Injection-Electroluminescence Spectral Density. We begin by elaborating on the
derivation of the injection-electroluminescence spectral density for direct-bandgap
semiconductors in the context of the interband-transition theory presented in Secs. 6.2
and 6.3. It was demonstrated in those sections that spontaneous injection electrolumi-
nescence is a result of electron-hole recombination, as illustrated in Figs. 6.2-1(b) and
6.4-3.

E
2

E
c

Eg

E
1

Ev

hν

k

Figure 6.4-3 As explained in Secs. 6.2 and 6.3,
the spontaneous emission of a photon of energy hν
results from the recombination of an electron of
energyE 2 with a hole of energyE 1 = E 2−hν. The
transition is represented by a vertical line because
the momentum carried away by the photon, hν/c,
is negligible on the scale of the figure (i.e., the k-
selection rule is obeyed).

The rate of spontaneous emission r sp(ν) (photons/s-Hz-cm3), as provided in (6.3-8),
is given by

r sp(ν) =
1

τr
ϱ(ν)fe(ν), (6.4-3)

Spontaneous
Emission Rate

where τr is the radiative electron–hole recombination lifetime. The optical joint density
of states, specified in (6.2-8), is written as

ϱ(ν) =
(2mr)

3/2

πℏ2
√
hν − Eg , hν ⩾ Eg, (6.4-4)

Optical Joint
Density of States

while the emission condition set forth in (6.3-1) is

fe(ν) = fc(E 2) [1− fv(E 1)]. (6.4-5)
Emission Condition

The Fermi functions that appear in the emission condition, fc(E 2) and fv(E 1), char-
acterize the conduction and valence bands, respectively, under conditions of thermal
quasi-equilibrium.

The semiconductor parameters Eg, τr, mv, and mc, along with the temperature T ,
determine the spectral distribution r sp(ν), given the quasi-Fermi levels Efc and Efv.
These in turn are determined from the concentrations of electrons and holes provided
in (5.4-7) and (5.4-8),∫ ∞

Ec

ϱc(E )fc(E ) dE = n = n0 +∆n, (6.4-6)

∫ Ev

−∞
ϱv(E )[1− fv(E )] dE = p = p0 +∆n, (6.4-7)
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where n0 and p0 are the concentrations of electrons and holes in thermal equilibrium (in
the absence of injection), respectively, and∆n = Rτ is the steady-state injected-carrier
concentration, as specified in (6.4-1). The densities of states near the conduction- and
valence-band edges are provided in (5.4-2) and (5.4-3), respectively.

Injection-Electroluminescence Photon Flux. The spontaneous photon flux Φ is es-
tablished by integrating the spectral density r sp(ν) over all frequencies and volume.
Use of the definite integral

∫∞
0 u1/2e−audu = (

√
π/2)a−3/2 then leads directly to

Φ = V

∫ ∞

0

r sp(ν) dν =
V (mr)

3/2

√
2π3/2 ℏ3 τr

(kT )3/2 exp

(
Efc − Efv − Eg

kT

)
. (6.4-8)

Effect of Pumping Level on Electroluminescence Spectral Density and Photon Flux.
The expressions for the quasi-Fermi levels of a pumped semiconductor derived below,
together with the result for the electroluminescence spectral density under weak in-
jection discussed in Examples 6.4-3 and 6.4-4, demonstrate that increased pumping
leads to an increase in the electroluminescence spectral density and photon flux. More
specifically, (6.4-1) shows that increasing the pumping level R augments ∆n, which, in
accordance with (6.4-9d), stretches (Efc − Efv)− Eg so that it extends over a greater
range of energies. This in turn increases the spontaneous emission rate given in (6.4-3)
and (6.4-10), and the spontaneous photon flux Φ specified in (6.4-8).

Injection electroluminescence is generated by direct-bandgap semiconductors
in thermal quasi-equilibrium, whereas thermal light is generated by all systems
in thermal equilibrium.

□ Derivation of the Quasi-Fermi Levels of a Pumped Semiconductor. The energy bands,
Fermi functions, and quasi-Fermi levels for a direct-bandgap semiconductor in quasi-equilibrium are
displayed in Fig. 6.4-4 for T = 0 K and T > 0 K.

Figure 6.4-4 Energy bands, Fermi functions, and quasi-Fermi levels for a semiconductor in thermal
quasi-equilibrium: (a) under ideal conditions when T = 0 K; and (b) at a temperature T > 0 K.
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(a) Under ideal conditions at T = 0 K, when there is no thermal electron–hole pair generation
[Fig. 6.4-4(a)], the quasi-Fermi levels turn out to be related to the concentrations of injected
electron–hole pairs ∆n via

Efc = Ec + (3π2)2/3
ℏ2

2mc

(∆n)2/3 (6.4-9a)

Efv = Ev − (3π2)2/3
ℏ2

2mv

(∆n)2/3. (6.4-9b)

The calculations that lead to (6.4-9) follow the same path as those used to arrive at (5.4-16);
indeed (6.4-9) is identical to (5.4-16) except that n2/3 and p2/3 are replaced by (∆n)2/3. At
T = 0 K, the Fermi function fc(E ) is unity for E < Efc and 0 otherwise. This result may
be used in conjunction with (5.4-2) and (5.4-7) to evaluate the integral set forth in (5.4-8).
Making use of the substitution x = (E − Ec) then provides

∆n =

∫ Efc

Ec

A(E − Ec)
1/2dE = 2

3
A(Efc − Ec)

3/2, (6.4-9c)

where A = (2mc)
3/2/2π2ℏ3 is a constant. We thus arrive at Efc − Ec = (3/2A)2/3 ∆n2/3,

which leads to (6.4-9a), and (6.4-9b) follows suit. Finally, we subtract (6.4-9b) from (6.4-9a),
and make use of the reduced mass 1/mr = 1/mc + 1/mv defined in (6.2-4), to arrive at

Efc − Efv = Eg + (3π2)2/3
ℏ2

2mr

(∆n)2/3, (6.4-9d)

where ∆n ≫ n0, p0. Under these conditions, all injected electrons ∆n occupy the lowest
allowed energy levels in the conduction band, and all injected holes ∆p occupy the highest
allowed levels in the valence band.

(b) It is useful to examine the dependence of fe(ν) and r sp(ν) on ∆n. Equation (6.4-9d) dictates
that ∆n2/3 is proportional to (Efc − Efv) − Eg; hence, increasing ∆n is graphically mani-
fested as an increase in the widths of fe(ν) and r sp(ν) in Fig. 6.4-5. Moreover, the effect of
temperature on the Fermi functions sketched in Fig. 6.4-4(b) can be used to establish the effect
of increasing temperature on r sp(ν), as illustrated in Fig. 6.4-5. Combining (6.2-5), (6.2-6),
and (6.3-1), we have fe(ν) = fc(E 2)[1− fv(E 1)], with E 2 = Ec + (mr/mc)(hν − Eg) and
E 1 = E 2 − hν. At T = 0 K, the Fermi function fc(E 2) is unity as long as E 2 < Efc and is
0 otherwise. Similarly, the Fermi function fv(E 1) is unity for E 1 < Efv and is 0 otherwise.
For hν > Eg , as hν increases, we see that E 2 increases and E 1 decreases. But as long as these
two values lie below Efc and above Efv , respectively, fc(E 2) = 1 and 1 − fv(E 1) = 1, so
that fe(ν) = 1. When hν exceeds the value Efc−Efv , we see that E 2 exceeds Efc and E 1 lies
below Efv , so that fc(E 2) = 0 and 1 − fv(E 1) = 0, indicating that fe(ν) = 0. The function
fe(ν) therefore has a rectangular profile with value 1 for Eg < hν < Efc − Efv , and value 0
otherwise, as portrayed in Fig. 6.4-5(a). According to (6.4-3), the rate of spontaneous emission
r sp is proportional to ϱ(ν)fe(ν), where ϱ(ν) ∝ (hν − Eg)

1/2. Therefore, the dependence of
r sp on ν is as illustrated in Fig. 6.4-5(a) for T = 0 K. The effect of increasing the temperature
(T > 0 K) is to smooth the Fermi function so that the functions fe(ν) and r sp(ν) take the
forms displayed in Fig. 6.4-5(b).

Figure 6.4-5 Effect of pumping level R
and temperature T on: 1) the emission con-
dition fe(ν); 2) ϱ(ν); and 3) the spontaneous
photon emission rate r sp(ν). As R increases,
so too does the excess carrier concentration
∆n. This in turn expands the widths of fe(ν)
and r sp(ν), in accordance with (6.4-9d),
thereby increasing the electroluminescence
spectral density. (a) T = 0 K. (b) T > 0 K.

■
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EXAMPLE 6.4-3. Electroluminescence Spectral Density Under Weak Injection. This
example provides an analytical expression for the spontaneous spectral density under weak injec-
tion. Some of the more salient features of this spectral density, along with representative numerical
estimates, are examined in Example 6.4-4. In accordance with (6.4-3)–(6.4-5), the spectral density,
optical joint density of states, and emission condition are given by r sp(ν) = ϱ(ν)fe(ν)/τr, ϱ(ν) =

[(2mr)
3/2/πℏ2](hν − Eg)

1/2, and fe(ν) = fc(E 2)[1 − fv(E 1)], respectively. For sufficiently weak
injection, such that the Fermi levels lie within the bandgap and away from the band edges by several
kT , so that Ec − Efc ≫ kT and Efv − Ev ≫ kT , the Fermi functions may be approximated by their
exponential tails, in which case fc(E 2) ≈ exp[−(E 2 − Efc)/kT ] and 1 − fv(E 1) ≈ exp[−(Efv −
E 1)/kT ]. The probability that the emission condition is satisfied can then be written as fe(ν) ≈
exp [(Efc − Efv)/kT ] · exp [−(E 2 − E 1)/kT ] = exp [(Efc − Efv)/kT ] · exp (−hν/kT ). Substitut-
ing this into the expression for r sp(ν) provided in (6.4-3) then yields

r sp(ν) = D
√
hν − Eg exp

(
−hν − Eg

kT

)
, hν ⩾ Eg, (6.4-10a)

Spectral Density
(Weak Injection)

where

D =
(2mr)

3/2

πℏ2τr
exp

(
Efc − Efv − Eg

kT

)
(6.4-10b)

is an exponentially increasing function of the separation between the quasi-Fermi levels Efc − Efv .
Equation (6.4-10), which is displayed in Fig. 6.4-6, has precisely the same form as (6.3-12) and

the same shape as the curve portrayed in Fig. 6.3-1, which represent the thermal-equilibrium spectral
density. However, the weak-injection magnitude is larger than the thermal-equilibrium magnitude by
the factor D/D0 = exp[(Efc − Efv)/kT ]. This factor can be very large in the presence of injection,
representing a greatly enhanced magnitude for injection electroluminescence. In thermal equilibrium,
when Efc = Efv , (6.4-10) reduces to (6.3-12), as expected.

Figure 6.4-6 Spectral density of the direct
interband injection-electroluminescence rate
r sp(ν) (photons/s-Hz-cm3), vs. the photon en-
ergy hν, under conditions of weak injection,
from (6.4-10). The peak photon energy, hνp =
Eg + kT/2, is indicated, as is the energy width
h∆ν ≈ 1.8 kT (see Example 6.4-4).

EXAMPLE 6.4-4. Features of the Spectral Density (Weak Injection).
(a) Peak photon energy hνp: With the help of the substitution u = (hν − Eg)/kT , (6.4-10) may

be written in the form r sp(ν) = D(kT )1/2u1/2 exp(−u). The function u1/2 exp(−u) attains
its peak value when its derivative with respect to u vanishes, i.e., when −u1/2 exp(−u) +
1
2
u−1/2 exp(−u) = 0, from which we obtain u = 1

2
, so that (hν − Eg)/kT = 1

2
. Hence, the

spectral density of the emitted light described by (6.4-10) attains its peak value at a photon
energy hνp given by

hνp = Eg +
1
2
kT . (6.4-11)

At T = 300 K, we obtain kT/2 = 0.013 eV. Since Eg = hνg ranges from about 1.5 to 3 eV
over the visible region, we have kT/2 ≪ Eg , indicating that the electroluminescence photon
energy exceeds the bandgap energy by only a slight amount, as is clear from Fig. 6.4-6.
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(b) Peak wavelength λp: The peak wavelength is calculated by writing (6.4-10) as a function of
the free-space wavelength λO and setting dr sp(λO)/dλO = 0. In this case, it turns out that
the peak wavelength can also be directly determined by inserting (5.1-1) together with the
formula νp = cO/λp into (6.4-11), which leads to 1/λp = 1/λg + kT/2hcO and thence to
λp = λg/(1+λgkT/2hcO). A Taylor-series expansion then yields an approximate expression
for the peak wavelength, which lies below the bandgap wavelength λg by a slight amount:

λp ≈ λg − λ2
gkT/2hcO . (6.4-12)

The visible band is covered by a bandgap wavelength λg that extends from about 800 nm
to 400 nm. At T = 300 K, we have kT = 0.026 eV so that λ2

gkT/2hcO ≈ 6.67 nm at
λg = 800 nm and≈ 1.67 nm at 400 nm. Clearly, the conditionλ2

gkT/2hcO ≪ λg is maintained
over the full band of human vision, which also justifies the Taylor-series expansion used above.

(c) Photon-energy width h∆ν: The peak of the function u1/2e−u occurs at u = 1
2
, where

the function has the value ( 1
2
)1/2e−1/2. The function reaches half its peak value where

u1/2e−u = 1
2
× ( 1

2
)1/2e−1/2, i.e., where u1/2e−u = ( 1

2
)3/2e−1/2. Squaring both sides of

this equation leads to ue−2u = ( 1
2
)3e−1 = 0.046. Computation yields the roots of this

equation, which are u1 ≈ 0.051 and u2 ≈ 1.84. The difference between these values,
u2 − u1 = 1.79 ≈ 1.8, corresponds to [(hν2 − Eg)/kT − (hν1 − Eg)/kT ] ≈ 1.8 so that
h(ν2 − ν1) ≈ 1.8 kT . The FWHM photon-energy width is therefore

h∆ν ≈ 1.8 kT. (6.4-13)

The photon energy width h∆ν is seen to be independent of the photon energy hν.
(d) Wavelength spectral width ∆λ: The magnitude of the wavelength spectral width ∆λ is de-

termined from the frequency spectral width ∆ν ≈ 1.8 kT/h set forth in (6.4-13) above.
Since ν = cO/λO, we have ∆ν = −(cO/λ

2
O)∆λ which, with the help of λg ≡ cO/νg , yields

|∆λ| ≈ (λ2
g/cO)∆ν = 1.8λ2

gkT/hcO . Expressing ∆λ and λg in µm, and kT in eV, the fore-
going equation is written as ∆λ (µm)×10−6 ≈ 1.8 [λ2

g (µm2)×10−12/hcO] · [kT (eV) · e] or
∆λ (µm) ≈ [1.8/(106 × hc/e)] · [λ2

g (µm2)] · [kT (eV)]. Finally, since (106 × hcO/e) = 1.24
and 1.8/1.24 ≈ 1.45, we obtain

∆λ ≈ 1.45λ2
g kT. (6.4-14)

Wavelength Spectral Width
(∆λ and λg in µm; kT in eV)

In contrast to the frequency spectral width ∆ν, which is independent of νg , the wavelength
spectral width ∆λ increases quadratically with λg .

(e) Representative values of hνp −Eg , h∆ν, λg −λp , and ∆λ over the visible spectrum: Values
are tabulated below for selected features of the spectral density for p–n junction injection
electroluminescence, under weak injection and at T = 300 K, as provided in (6.4-10). The
following parameters are evaluated: 1) the deviation of the peak electroluminescence photon
energy from the bandgap energy (hνp − Eg); 2) the photon-energy width (h∆ν); 3) the
deviation of the peak emission wavelength from the bandgap wavelength (λg − λp); and
4) the wavelength spectral width (∆λ). These parameters are calculated at Eg = 1.55 eV
(λg = 800 nm) and at Eg = 3.10 eV (λg = 400 nm), which lie at the red and blue ends of
the visible spectrum, respectively, at T = 300 K. The width-to-deviation ratio is the same for
both the photon energy and the wavelength, i.e., h∆ν/(hνp − Eg) = ∆λ/(λg − λp) = 3.6.

Table 6.4-1 Values for hνp − Eg , h∆ν, λg − λp , and ∆λ at λg = 800 nm and 400 nm
for T = 300 K.

bandgap energy Eg / hνp − Eg = h∆ν = λg − λp = ∆λ =
bandgap wavelength λg

1
2
kT 1.8 kT 1

2
λ2
gkT/hcO 1.8λ2

gkT/hcO

1.55 eV / 800 nm 0.013 eV 0.047 eV 6.67 nm 24 nm
3.10 eV / 400 nm 0.013 eV 0.047 eV 1.67 nm 6 nm
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(f) Strong injection: The formulas presented above are based on (6.4-10), which was derived
under the assumption of weak carrier injection, i.e., the quasi-Fermi levels were assumed to lie
within the bandgap, which allowed the Fermi functions to be approximated by their exponential
tails outside the bandgap region. A number of other potential sources of broadening were
also ignored in formulating these results. These include thermal and static disorder in the
crystal associated with phonon-assisted effects, and randomness in the doping and chemical
composition of the materials used in fabrication (alloy broadening). The values presented in
(6.4-11) and (6.4-13) should therefore be taken to be lower bounds, so that

hνp − Eg >
1
2
kT (6.4-15)

h∆ν > 1.8 kT. (6.4-16)

Moreover, since the sketch of r sp(ν) provided in Fig. 6.4-5 is applicable for all levels of pump-
ing, appropriate values of hνp − Eg and ∆ν can similarly be determined for arbitrary pump-
ing levels. The conversion of these frequency-based parameters into their wavelength-based
counterparts depends solely on the reciprocal relation between wavelength and frequency, and
therefore follows the same route as that used to derive the results presented in (b) and (d)
above from those provided in (a) and (c), respectively. We conclude that the proportionality
of λg − λp and ∆λ to λ2

g displayed in (6.4-12) and (6.4-14), respectively, remains intact for
all pumping levels. Furthermore, since (6.4-12) reveals that λp ≈ λg , where λp is the peak
emission wavelength, the proportionality in (6.4-14) can be equivalently written as

∆λ ∝ λ2
p . (6.4-17)

The peak wavelength of the injection electroluminescence emitted by a
direct-bandgap semiconductor is determined principally by its bandgap
wavelength, whereas the peak wavelength of the light emitted by a thermal
source is established solely by its thermodynamic temperature via Wien’s
law.

6.5 QUANTUM-WELL AND MULTIQUANTUM-WELL TRANSITIONS

Multiquantum-well and superlattice structures were considered in Sec. 5.7. The photon
interactions in these structures bear a considerable resemblance to those for bulk semi-
conductors (Sec. 6.1). As illustrated in Fig. 6.5-1, and discussed below, several mecha-
nisms play important roles in absorption and emission in quantum-confined structures:

Interband (band-to-band) transitions
Excitonic transitions
Intersubband transitions
Miniband transitions

Figure 6.5-1 Photon absorption and emission in quantum-well and multiquantum-well structures.
(a) Interband transitions. (b) Excitonic transitions. (c) Intersubband transitions. (d) Miniband
transitions in a superlattice structure.
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Interband Transitions. Interband emission and absorption takes place between states
in the valence and conduction bands [Fig. 6.5-1(a)], much as in bulk semiconductors.
Because of quantum confinement, however, the optical joint density of states (6.2-8)
must be replaced by the staircase joint density of states

ϱ(ν) =


hmr

mc

mc

πℏ2l
=

2mr

ℏl
, hν > Eg + Eq + E ′

q

0, otherwise,
(6.5-1)

which derives from (5.7-5) and (6.2-7). Interband transitions are responsible for the
operation of MQW light-emitting diodes (Fig. 7.3-4), superluminescent diodes, and
laser diodes.

Excitonic Transitions. The one-dimensional carrier confinement associated with
MQW structures results in an increase in the exciton binding energy. This leads to strong
excitonic transitions, even at T = 300 K, as schematized in Fig. 6.5-1(b). Excitonic
transitions play an important role in many quantum-confined photonic devices.

Intersubband Transitions. Transitions that take place between energy levels within a
single band of a MQW structure [Fig. 6.5-1(c)] are known as intersubband transitions.
Devices that operate on the basis of these intraband transitions include the quantum-
well quantum cascade laser and the quantum-well infrared photodetector. In the latter
device, which offers large bandwidth, the absorption of a photon causes a transition
from a bound energy level to the continuum.

Miniband Transitions. In superlattices, the discrete MQW energy levels broaden into
minibands that are separated by minigaps. Such miniband transitions [Fig. 6.5-1(d)]
are important in the operation of superlattice quantum cascade lasers.

6.6 QUANTUM-DOT SINGLE-PHOTON EMITTERS

As discussed in Sec. 5.8, aggregations of quantum dots can serve as photonic devices
that range from light-emitting diodes to backlights. Still, individual quantum dots, when
embedded in photonic structures (e.g., microcavities, semiconductor heterostructures,
and 2D materials) can be used as optically or electrically excited single-photon emit-
ters (SPEs). Because an individual quantum dot can emit only one photon at a time, the
photons are separated from each other in time and therefore exhibit natural antibunching
and sub-Poisson behavior. Quantum-dot single-photon emitters have been fabricated
from II–VI, III–V, and group-IV semiconductors, as well as from organic and perovskite
materials.

Efficient, on-demand sources of such pure, highly indistinguishable, single-photon
streams are useful for enabling scalable quantum information processing, communi-
cations, computing, and cryptography. Although SPEs can be created using other ap-
proaches (e.g., diamond defect centers, single-walled carbon nanotubes, and defects in
2D materials), the simplicity and easy availability of quantum dots is appealing. QDs
can also be used to generate entangled photons, another form of nonclassical light.

Two examples of quantum-dot single-photon emitters are provided below:

EXAMPLE 6.6-1. Quantum-Dot/Micropillar Single-Photon Emitter.
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Indistinguishable photons of high purity (in this case signifying that one and only one
photon is emitted at a time) can be generated by making use of resonance fluorescence.
One implementation consists of a single InAs/GaAs self-assembled quantum dot
embedded in a 2.5-µm-diameter, cryogenically cooled micropillar microcavity, such
as that pictured at right. Excitation is provided by 25-nW, 3-ps-duration optical pulses
of wavelength λO = 897 nm, which is resonant with the microcavity, delivered at
a repetition rate of 81 MHz. This device offers a substantial Purcell spontaneous-
emission enhancement factor (FP > 5) by virtue of its small cavity volume and high
quality factor (Q > 6000). A carefully coupled single-mode optical fiber can extract
> 3.5 × 106 single photons/s with an extraction efficiency ηXTE ≈ 0.65, yielding an
overall system efficiency ≈ 4.5%.

EXAMPLE 6.6-2. Silicon-Photonics Quantum-Dot Emitter. Carrier confinement in a
quantum dot leads to a reduction in positional uncertainty ∆x. In accordance with the Heisenberg
position–momentum uncertainty relation ∆x∆p ⩾ ℏ

2
set forth in (A.2-9) of Appendix A, a decrease

in ∆x is accompanied by a concomitant increase in the momentum uncertainty ∆p. This obviates the
need for phonon momentum to participate in radiative recombination in an indirect-bandgap quantum
dot, greatly increasing efficiency. This behavior is analogous to the co-doping of GaP with impurities
such as N, which take up residence at sharply localized positions in the crystal, enabling GaP:N LEDs
to emit light (Sec. 7.3). In brief, the small size of an indirect-bandgap Si quantum dot significantly
enhances radiative recombination via interband transitions. Light emission from porous silicon is also
possible by virtue of an enhancement of the radiative rate facilitated by induced surface-localized
excitons resulting from surface passivation.

6.7 REFRACTIVE INDEX

The ability to control the refractive index of a semiconductor is important in the design
of many photonic devices, particularly those that make use of optical waveguides, laser
diodes, and integrated photonics. Semiconductor materials are dispersive, so that the
refractive index is dependent on the wavelength. Indeed, the refractive index is related
to the absorption coefficient α(ν) inasmuch as the real and imaginary parts of the sus-
ceptibility must satisfy the Kramers–Kronig relations. The group index and refractive
index for GaAs, calculated from the Sellmeier equation, are displayed in Fig. 6.7-1. The
refractive index depends on temperature and doping level.

Wavelength λo ( m)

3.4
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3.6

3.7

3.8
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1 2 3 4

N

n

Figure 6.7-1 Refractive index n and group
index N for GaAs as a function of the free-space
wavelength λO. The results are determined from the
Sellmeier equation.

The refractive indices of selected elemental and binary bulk semiconductors, under
specific conditions and near the bandgap wavelength, are provided in Table 6.7-1. The
refractive indices of ternary and quaternary semiconductors can be approximated via
linear interpolation between the refractive indices of their components.
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Table 6.7-1 Refractive indices n of selected
semiconductor materials.a

Material Refractive Index

elemental semiconductors
Ge 4.0
Si 3.5

iii–v binary semiconductors
AlN 2.2
AlP 3.0
AlAs 3.2
AlSb 3.8
GaN 2.5
GaP 3.3
GaAs 3.6
GaSb 4.0
InN 3.0
InP 3.5
InAs 3.8
InSb 4.2

aResults reported are for photon energies near the
bandgap energy of the material (hν ≈ Eg) and at
T = 300 K.
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Robert J. Keyes (1927–2012) and Theodore M. Quist (1931–2013), left and right, respectively,
displayed the high-efficiency p–n junction light-emitting diode they co-invented while working at MIT
Lincoln Laboratory in 1962. Operated at room temperature, this direct-bandgap GaAs semiconductor
device generated spontaneous recombination radiation centered at 920 nm in the near infrared.

LED Lighting: Devices and Colorimetry. Malvin Carl Teich.
Google Books. Published 2024.
©2024 Malvin Carl Teich.
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Light can be emitted from a semiconductor material as a result of electron–hole re-
combination. Materials capable of emitting such light do not glow at room temperature
because the concentrations of thermally excited electrons and holes are too small to
produce discernible light. However, an external source of energy can be used to produce
electron–hole pairs in sufficient numbers so that they generate copious amounts of
spontaneous recombination radiation, causing the material to luminesce. A convenient
way of achieving this is to forward bias a p–n junction, which fosters the injection of
electrons and holes in the vicinity of the junction. The ensuing recombination radiation
is injection electroluminescence, as described in Chapter 6.

A light-emitting diode (LED) is a forward-biased p–n junction fabricated from
a direct-bandgap semiconductor material that emits injection electroluminescence
[Fig. 7.0-1(a)]. If the forward voltage is increased beyond a certain point, the number
of electrons and holes in the junction region can become large enough to achieve a
population inversion, whereupon stimulated emission (i.e., emission induced by the
presence of photons) becomes more prevalent than absorption. Under those conditions,
the junction region may be used as a semiconductor optical amplifier [Fig. 7.0-1(b)] or,
with appropriate feedback, as a laser diode (LD) [Fig. 7.0-1(c)].

+ -
p n

+ -
np

+ -
np

Figure 7.0-1 A forward-biased semiconductor p–n junction diode operated as: (a) a light-emitting
diode (LED); (b) a semiconductor optical amplifier; and (c) a laser diode (LD).

The first truly useful LED was a GaAs p–n junction device fabricated in 1962 by
Robert Keyes and Theodore Quist at MIT Lincoln Laboratory (p. 198). This device
had high output power and a near-ideal (85%) quantum efficiency, as reported in a
manuscript submitted to the Proceedings of the IRE on 25 May 1962 and published
on 1 August 1962.† The development of the GaAs LED was announced publicly at the
Solid-State Device Research Conference in Durham, New Hampshire on 9 July 1962.‡
Similar results were reported within months by research groups at General Electric,
IBM, and RCA, and the first commercial GaAs LED was offered by the Texas Instru-
ments Corporation in the same time frame.

† R. J. Keyes and T. M. Quist, Recombination Radiation Emitted by Gallium Arsenide (Correspondence),
Proceedings of the IRE, vol. 50, pp. 1822–1823, 1 August 1962 (submitted 25 May 1962).

‡ R. J. Keyes and T. M. Quist, Radiation Emitted by Gallium Arsenide Diodes, presented at the Solid-State
Device Research Conference, Durham, New Hampshire, 9–11 July 1962; abstract published in IRE Transactions on
Electron Devices, vol. 9, No. 6, p. 503, July 1962. This GaAs device emitted continuous-wave (CW) spontaneous
recombination radiation with a peak wavelength near λp = 920 nm (hν = 1.35 eV) when operated at 300 K, and
close to 855 nm (hν = 1.45 eV) when operated at 77 K. The authors reported that the emitted light was perceived
to be red, which accords with the results of subsequently conducted experiments (Example 8.5-2).
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This chapter is devoted to investigating the operation of light-emitting diodes. These
highly efficient electronic-to-photonic transducers are indispensable in many appli-
cations by virtue of their small size, high intensity, high efficiency, high reliability,
ruggedness, and durability. Infrared LEDs are used in remote controls for consumer
products such as optical mice, headphones, and keyboards, as well as in short-haul,
modest-bit-rate communication systems. Visible LEDs are widely used in indication
applications (in which the observer directly views the source); examples include mo-
bile phones, indicator lights, computers, games, information displays, signage, traffic
signals, backlighting, among others. Ultraviolet LEDs are useful in applications such
as water purification, surgical sterilization, equipment decontamination, resin curing,
and printing; they are also used for the detection of chemical and biological agents,
many of which fluoresce at particular wavelengths when exposed to ultraviolet light.

Chapter 8 will describe the operation of the visual system and the perception of color
in preparation for the exposition in Chapter 10 on the use of LEDs in illumination
applications (in which the observer views the light scattered from objects illuminated
by the source).

7.1 PHOTON FLUX AND QUANTUM EFFICIENCY

As is clear from the foregoing discussion, the simultaneous availability of electrons
and holes substantially enhances the flux of spontaneously emitted photons from a
semiconductor. Electrons are abundant in n-type material, and holes are abundant in p-
type material, but the generation of copious amounts of light requires that both electrons
and holes be plentiful in the same region of space. This condition may be readily
achieved in the junction region of a forward-biased p–n junction diode (Sec. 5.6). As
shown in Fig. 7.1-1, forward biasing causes holes from the p-type side and electrons
from the n-type side to be forced into the common junction region by the process of
minority carrier injection, where they recombine and emit photons.
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Figure 7.1-1 Energy-band diagram
of a heavily doped p–n junction that
is strongly forward biased by an ap-
plied voltage V (compare with the less
strongly forward-biased energy-band
diagram in Fig. 5.6-3). The dashed
lines represent the quasi-Fermi levels,
which are separated as a result of the
bias. The simultaneous abundance of
electrons and holes within the junc-
tion region results in strong electron–
hole radiative recombination (injec-
tion electroluminescence).

The light-emitting diode (LED) is a forward-biased p–n junction with a large radia-
tive recombination rate arising from injected minority carriers. The semiconductor ma-
terial is direct-bandgap to ensure high quantum efficiency. In this section we determine
the output power, as well as the spectral and spatial distributions of the light emitted
from an LED, and derive expressions for the efficiency, responsivity, and response time.
We occasionally refer to this genre of LEDs as electroluminescent LEDs (ELLEDs)
to distinguish them from phosphor-conversion LEDs (PCLEDs), which contain an
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auxiliary photoluminescent material designed to modify the wavelength of the emitted
electroluminescence (Chapter 10 is devoted to PCLEDs).

Internal Photon Flux and Internal Quantum Efficiency
Current and Current Density. A sketch portraying a simple forward-biased p–n
homojunction diode is presented in Fig. 7.1-2. A DC current i injected into the junction
region gives rise to a current density within the device given by

J = i/A , (7.1-1)

where J is the current density and A is the junction area. The injected current increases
the steady-state carrier concentration ∆n, which in turn fosters radiative recombination
and spontaneous emission.

Figure 7.1-2 Schematic representation of a forward-biased
LED. The injected current leads to an increase in the steady-state
carrier concentration and to radiative recombination in the active
region, and thence to spontaneous emission. The junction region
has thickness l, area A, and volume V .

Carrier Injection and Concentration. The total number of carriers per second pass-
ing through the junction region is i/e, where e is the electronic charge, so the carrier
injection rate R (carriers/s-cm3) is

R =
i/e

V
. (7.1-2)

Since R = ∆n/τ , as per (6.4-1), the steady-state carrier concentration is

∆n =
(i/e)τ

V
. (7.1-3)

Combining (7.1-2) with (6.4-2), which specifies that the internal photon flux is given
by Φ = ηIQERV , then leads to

Φ = ηIQE (i/e) . (7.1-4)

Internal Quantum Efficiency (IQE). The internal quantum efficiency (IQE) de-
fined in (5.5-10) and (5.5-12) is therefore given by

ηIQE =
Φ

(i/e)
. (7.1-5)

Internal Quantum Efficiency

This simple and intuitively appealing formula quantifies the production of photons by
electrons in the LED junction region. It states that the IQE is simply the ratio of the
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generated photon flux Φ (photons/s) to the injected electron flux i/e (electrons/s), i.e.,
it is the fraction of the injected electron flux that is converted to photon flux. On a
microscopic scale, ηIQE is the probability that an individual injected electron generates
an emitted photon in the junction.

Enhancing the Internal Quantum Efficiency. The internal quantum efficiency can be
enhanced by using a double-heterostructure configuration (Sec. 5.6), and even more so
by employing a multiquantum-well active region (Sec. 5.7). Structures such as these
accommodate higher carrier concentrations, which reduces the radiative lifetime (5.5-
13) and thus increases the internal quantum efficiency (5.5-12). The internal quantum
efficiency can also be enhanced by lattice matching the heterostructure confinement
layers to the active region. Narrow quantum wells confine carriers even more tightly
than double heterostructures, further enhancing the IQE. Still, the number of useful
quantum wells is often limited because of the difficulty of populating all of them.
Performance is also optimized by using high-quality materials to minimize defects and
by avoiding the presence of surfaces to which both electrons and holes have access,
which minimizes nonradiative recombination.

Yet another approach for increasing the IQE relies on making use of a plasmonic
LED, in which metallic nanoparticles are embedded in a layer adjacent to a MQW
active region. This serves to engender coupling between localized surface plasmons
(LSPs) of the metallic nanoparticles and the light emitted from the proximate MQWs.
This can provide a substantial enhancement of the spontaneous-emission rate r sp(ν)
via the Purcell effect, which in turn leads to an increase in the IQE and increased LED
output power.

Extraction Efficiency
The extraction efficiency (XTE), also called the transmission efficiency, is a measure
of the fraction of the internal photon flux that can be successfully extracted from an
LED. In practice, it is calculated via a series of steps that recite the transmission through,
and Fresnel reflection from, the various elements of the device structure.

Although the photon flux generated in the junction region is radiated uniformly in all
directions, the flux that emerges from the device depends on the direction of emission.
This is didactically illustrated by considering the photon flux transmitted through a
planar material into air along three possible ray directions, denoted A, B, and C in the
geometry of Fig. 7.1-3:

p n

A

B

C

l
1

θc

Figure 7.1-3 Not all light generated in an
LED with a planar surface is able to emerge
into air. Ray A is partly reflected. Ray B
suffers more reflection. RayC lies outside the
critical angle and therefore undergoes total
internal reflection, so that it is trapped in the
structure.

Ray Traveling in a Direction Normal to the Surface. The photon flux traveling in the
direction of ray A is attenuated by the factor

η1 = exp(−αl1), (7.1-6)

where α is the absorption coefficient of the n-type material and l1 is the distance from
the junction to the surface of the device. Furthermore, for normal incidence, reflection
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at the semiconductor–air boundary permits only a fraction of the light,

η2 = 1− (n− 1)2

(n+ 1)2
=

4n

(n+ 1)2
, (7.1-7)

to be transmitted, where n is the refractive index of the semiconductor material. The
reflectance R for the photon flux, as established by the Fresnel equations, is given by
(2.6-23). For GaAs, n = 3.6, so that η2 = 0.68. The overall transmittance for the
photon flux traveling in the direction of ray A is therefore ηA = η1η2.

Ray Traveling in a Direction Within the Critical Angle. The photon flux traveling in
the direction of ray B has farther to travel and therefore suffers a larger absorption; it
also has greater reflection losses. Thus, ηB < ηA.

Ray Traveling in a Direction Outside the Critical Angle. The photon flux trav-
eling in the direction of a ray that lies outside a cone defined by the critical angle
θc = sin−1(1/n), such as that depicted by ray C in Fig. 7.1-3, suffers total internal
reflection in an ideal material and is not transmitted [see (1.3-2)]. As derived below,
the fraction of the emitted photon flux that lies within the solid angle subtended by this
cone, and is therefore extractable, is

η3 =
1
2(1− cos θc) =

1
2

(
1−

√
1− 1/n2

)
≈ 1/4n2. (7.1-8)

For a material with refractive index n = 3.6, as an example, only 1.9% of the total
generated photon flux can be transmitted. For a parallelepiped of refractive index n >√
2, the ratio of the isotropically radiated photon flux that can emerge, to the total

generated photon flux, is 3(1−
√
1− 1/n2 ), as shown in Example 1.3-1. However,

some fraction of the photons emitted outside the critical angle can be absorbed and
reemitted within this angle, so that in practice, η3 may assume a value larger than that
specified by (7.1-8). Loss and Fresnel reflection must also be incorporated for these
rays.

□ Extractable Fraction of Photon Flux Specified in (7.1-8). Snell’s law for a ray traveling at the
critical angle in a material of refractive index n and escaping into air (n = 1) at the surface is given
by n sin θc = 1 · sin(90◦), so sin θc = 1/n and cos θc =

√
1− sin2 θc =

√
1− 1/n2. The area of the

spherical cap atop the cone defining the critical angle is A =
∫ θc
0

2πr sin θ r dθ = 2πr2(1− cos θc).
Since the area of the entire sphere is 4πr2, the fraction of the emitted photon flux that lies within the
solid angle subtended by the cone is A/4πr2. Hence, η3 = 1

2
(1− cos θc) =

1
2

(
1−

√
1− 1/n2

)
.

Since
√

1− 1/n2 ≈ 1− 1/2n2 for 1/n2 ≪ 1, we have η3 ≈ 1
2
(1/2n2) = 1/4n2, as in (7.1-8). ■

EXAMPLE 7.1-1. Extraction of Light from a Planar-Surface LED.
(a) As established above, the critical angle within which light can escape from a material of

refractive index n into air at a planar surface is θc = sin−1(1/n). In accordance with (7.1-
8), if absorption and Fresnel reflection are ignored, the fraction of the photon flux that is
not trapped by total internal reflection, and can therefore be extracted, is η3 ≈ 1/4n2. The
numerical values for θc and η3 for GaAs (n = 3.6), GaN (n = 2.5), and a transparent polymer
(n = 1.5) are therefore:

θc(GaAs) = sin−1(1/3.6) = 16.1◦ and η3(GaAs) = 0.019

θc(GaN) = sin−1(1/2.5) = 23.6◦ and η3(GaN) = 0.040

θc(polymer) = sin−1(1/1.5) = 41.8◦ and η3(polymer) = 0.111.
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(b) In the absence of Fresnel reflection, the fraction of the photon flux that can be extracted can be
enhanced by coating the LED surface with a transparent material whose refractive index lies
between that of the LED material and air. Consider the example of a GaAs LED (n1 = 3.6)
coated with a transparent polymer (n2 = 1.5), and ignore absorption and Fresnel reflection
at the semiconductor–polymer boundary. The critical angle of a ray traveling from GaAs into
the polymer is established from Snell’s law, n1 sin θc1 = n2 so that θc1 = sin−1(n2/n1) =
sin−1(1.5/3.6) = 24.6◦. Using (7.1-8), we therefore arrive at η3 = 1

2
[1 − cos(24.6◦)] =

0.045. As specified above in (a) , light escaping from GaAs into air yields η3(GaAs) = 0.019
so the enhancement in the fraction of extracted light offered by the polymer is 0.045/0.019 ≈
2.4.

(c) It can be shown, however, that if Fresnel reflection at the semiconductor–polymer and polymer–
air interfaces are incorporated (but absorption is ignored), use of a material of intermediate
refractive index does not enhance the fraction of photon flux that can be transferred from the
LED into air. The additional Fresnel reflection at the added interface negates the benefit of the
reduction in refractive-index mismatch attained by incorporating that interface. The use of an
intermediate-index material in the form of a quarter-wave film can sometimes be useful in this
connection, however.

Enhancing the Extraction Efficiency. Antireflection coatings and other techniques
can be used to reduce Fresnel reflection and thereby increase the XTE, as discussed
below.

Geometry. The extraction efficiency (XTE) can be enhanced in a multitude of ways.
One approach involves selecting a geometry for the LED die (LED chip) that allows
a greater fraction of the light to escape. A spherical dome surrounding a point source
at its center, for example, permits all rays to escape, although they remain subject to
Fresnel reflection. As illustrated in Fig. 7.1-4, several other geometries offer enhanced
extraction efficiencies in comparison with the parallelepiped: hemispherical domes,
cylindrical structures (which have an escape ring along the perimeter in addition to the
escape cone toward the top surface), inverted cones, and truncated inverted pyramids.
However, geometries that entail complex processing steps are often avoided in practice
because of increased manufacturing costs. Simple planar-surface-emitting LEDs are
suitable when the intended viewing angle deviates little from the normal or when the
light is coupled into an optical fiber, as it is in telecommunications applications.

Figure 7.1-4 LED-die geometries that offer enhanced extraction efficiencies relative to the
parallelepiped.

Surface Roughening. Another approach is to roughen the planar surface, which en-
hances the extraction efficiency by permitting rays beyond the critical angle to escape
via scattering, as illustrated in Fig. 7.1-5. Indeed, an irregular surface appears auto-
matically under certain growth conditions. Alternatively, the emission surface can be
textured, such as with an array of microscopic cones or pyramids, or with nanoparti-
cles. Another twist is to make use of the morphology of the light-emitting organs of
some biological organisms, such as fireflies, which serve to enhance light extraction by
reducing refractive-index mismatch and total internal reflection. Bioinspired surface
patterning has been successfully used to increase the extraction efficiency of LEDs and
OLEDs.
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p n

l
1

θc
Figure 7.1-5 An LED with a roughened
planar surface permits rays beyond the critical
angle to escape, thereby increasing the extrac-
tion efficiency (XTE).

Contact Geometry. Top-emitting LEDs often make use of current-spreading layers
(also referred to as window layers), which are transparent conductive semiconductor
layers that spread the region of light emission beyond that surrounding the electrical
contact. Current-blocking layers, which prevent current from entering the active region
below the top contact, can also be used to control the light emission. The contact
geometry can be designed to maximize light transmission.

Other Techniques. A whole host of other techniques are also used to enhance the
extraction efficiency. These include the use of distributed Bragg reflectors between
the active layer and an absorbing substrate to reflect the light back toward the desired
direction of emission, and reflective and transparent contacts. Another favored approach
is the use of a transparent substrate in conjunction with flip-chip packaging, which
allows the light to be extracted through the substrate rather than through the top surface
of the device. The XTE can also be enhanced by guiding light to the surface of the
device via a 2D photonic crystal, such as a regular array of 100–250-nm diameter holes
formed in the current-spreading layer.

External Photon Flux and External Quantum Efficiency
External Photon Flux. The external photon flux ΦO, also called the output photon
flux, is related to the internal photon flux Φ = ηIQE (i/e) provided in (7.1-4) by

ΦO = ηXTEΦ = ηXTEηIQE (i/e) . (7.1-9)

While the IQE relates the internal photon flux to the injected electron flux i/e via (7.1-
5), the extraction efficiency XTE specifies the fraction of the internal photon flux that
is successfully extracted from the structure, as depicted in Figs. 7.1-3–7.1-5.

External Quantum Efficiency (EQE). A combined quantum efficiency that accom-
modates both the internal and extraction quantum efficiencies is the external quantum
efficiency (EQE),

ηEQE = ηXTEηIQE. (7.1-10)
External Quantum Efficiency

Using this quantity, the external photon flux in (7.1-9) can be written as

ΦO = ηEQE (i/e) , (7.1-11)
External Photon Flux
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which declares that the EQE is simply the ratio of the external photon flux to the injected
electron flux, i.e., the ratio of the flux of emitted photons to that of injected electrons.

Since each photon is endowed with energy E = hν, the LED optical output power
PO is readily written in terms of the external photon flux provided in (7.1-11) as

PO = hνΦO = ηEQE hν (i/e) . (7.1-12)
LED Output Power

In the current state of the technology, the internal quantum efficiency (IQE) for an LED
usually falls between 50 and 100%, and the average extraction efficiency (XTE) is in
the vicinity of 50%. The external quantum efficiency (EQE) therefore generally lies in
the range between 25% and 75%.

Power-Conversion Efficiency (PCE). A related measure of LED performance is
the power-conversion efficiency (PCE), also known as the energy-conversion effi-
ciency (ECE) and the overall efficiency. In some quarters, this quantity is also called
the wall-plug efficiency but we abstain from use of this terminology to avoid confusion
with the wall-plug luminous efficiency, a different (but similarly named) measure that
will be introduced in Sec. 8.9.

The PCE is defined as the ratio of the emitted optical power PO to the electrical
drive power PEL , where

PEL = iV, (7.1-13)
Electrical Drive Power

so that

ηPCE =
PO

PEL

=
PO

iV
= ηEQE

hν

eV
, (7.1-14)

Power-Conversion
Efficiency

where V is the voltage drop across the device. For hν ≈ eV , we obtain ηPCE ≈ ηEQE.
Like the EQE, therefore, the PCE for a well-designed device lies in the range

1/4 ≲ ηPCE ≲ 3/4 . (7.1-15)

The empirical value of the power-conversion efficiency depends on the wavelength at
which the LED operates: ηPCE ≈ 3/4 for blue, ≈ 1/2 for red, and ≈ 1/4 for green (as a
result of the “green gap” discussed in Sec. 7.3); ηPCE is even smaller for amber LEDs.
The PCE is dimensionless since it has units of W/W.

Resonant-Cavity LEDs. The quantum efficiencies ηEQE and ηPCE may be enhanced
by making use of a resonant-cavity light-emitting diode (RCLED). A pair of mirrors
(e.g., distributed Bragg reflectors) is used to confine injection electroluminescence to a
wavelength-sized, resonant microcavity in one dimension. RCLEDs exhibit a number of
attractive features: 1) the spontaneous-emission rate is enhanced by the Purcell effect,
which results in an increase in the IQE; 2) the spectral width of the emitted light is
reduced below kT when the cavity resonance is narrower than the spectral-intensity
profile; ) the temperature stability is then also enhanced because the cavity is less
sensitive to temperature changes than is the semiconductor energy gap; and 4) the
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emission is more narrowly confined in angle, which results in an increase in the XTE.
As illustrated in Fig. 7.1-6, a substantial fraction of the light is emitted into a resonant
mode whose angular extent falls principally within the extraction cone.

Source

Modified
emission

Extraction
cone

Figure 7.1-6 A plane-parallel-reflector
resonant-cavity light-emitting diode (RCLED).
Two closely spaced reflectors (the one at left
with a reflectance near 100% and the one at
right with a reflectance of, say, 50%) form a
wavelength-size cavity in one dimension that
confines the light and funnels a large portion
of it into a spatial region that lies within the
extraction cone.

A photonic-crystal structure can also be incorporated in an RCLED to guide much of
the residual light toward the surface of the device, thereby further increasing the XTE.
The increased values of the IQE and the XTE for RCLEDs lead directly to enhanced
values of the external and power-conversion quantum efficiencies, ηEQE = ηXTEηIQE and
ηPCE = ηEQE(hν/eV ), respectively. However, RCLEDs are inherently low power devices
by virtue of the small sizes of their active regions.

Responsivity
The responsivity R of an LED is defined as the ratio of the emitted optical power PO to
the injected current i, i.e., R = PO/i. Using (7.1-12), we obtain

R =
PO

i
=
hν ΦO

i
= ηEQE

hν

e
. (7.1-16)

The responsivity in W/A, when λO is expressed in µm, is then

R = ηEQE
1.24

λO
. (7.1-17)

LED Responsivity
(W/A; λO in µm)

For example, if λO = 1.24 µm, then R = ηEQE W/A; if ηEQE were unity, the maximum
optical power that could be produced by an injection current of 1 mA would be 1 mW.
Thus, for ηEQE = 1/2 at λO = 1.24 µm, we have R = 1/2 mW/mA.

In accordance with (7.1-12), the LED output power PO is proportional to the injected
current i. In practice, however, this relationship is valid only over a restricted range.
For the particular device whose light–current (L–i) curve is shown in Fig. 7.1-7, the
emitted optical power is proportional to the injection (drive) current only when the latter
is less than about 20 mA. In this range, the responsivity has a constant value of about 0.3
mW/mA, as determined from the slope of the curve. For larger drive currents, saturation
causes the proportionality to fail; the responsivity then declines with increasing drive
current. Since λO = 0.420µm for this LED, (7.1-17) reveals that it has an EQE = 0.10.

7.2 SPATIAL, SPECTRAL, AND TEMPORAL FEATURES
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Figure 7.1-7 Optical power at the output
of an LED vs. injection (drive) current. This
MQW InGaN/GaN LED emits in the violet
region of the spectrum at λO = 420 nm; the
device structure is exhibited in Fig. 7.3-4.

Spatial Distribution
The far-field radiation pattern for light emitted into air from a planar surface-emitting
LED is similar to that of a Lambertian radiator. The intensity varies as cos θ, where
θ is the angle from the emission-plane normal to the direction of view; the intensity
decreases to half its value at θ = 60◦. This angular pattern represents the projected area
of a uniform surface intensity when viewed at different angles. The uniform intensity
distribution in turn follows from the randomized photon directions inside the LED that
emerge from multiple photon scatterings.

LED
chip

Figure 7.2-1 Polymer-encapsulated LED in a 5-mm-diameter
dual in-line package (DIP). Encapsulation protects the LED
chip (die), increases light extraction by reducing refractive-index
mismatch, and serves as a lens to shape the beam.

LEDs are often encapsulated in transparent polymer lens domes such as epoxy or sil-
icone for a number of reasons (Fig. 7.2-1). Lenses of different shapes alter the emission
pattern in different ways, as illustrated schematically for hemispherical and parabolic
lenses in Fig. 7.2-2. Polymer lenses can also enhance the XTE. A lens with a refractive
index close to that of the semiconductor optimizes the extraction of light from the
semiconductor into the polymer. The shape of the lens can then be tailored so as to
maximize the extraction of light at the polymer–air interface. Polymer materials usually
have refractive indices that are intermediate between those of semiconductors and air
and, in practice, yield an enhancement in light extraction by a factor of 2 to 3. Molded
acrylic or polycarbonate collimators that make use of total internal reflection in con-
junction with refraction are often used to provide parallel light rays for LED lighting
applications, as illustrated in Fig. 1.4-3.

A parameter that is often used to represent the angular width of a light beam emitted
from an LED is the viewing angle (or 50%-power angle) 2θ1/2 , which is defined as
twice the half-angle at which the intensity decreases to half its maximum value. The
radiation pattern from edge-emitting LEDs and LDs is usually quite narrow and the
intensity can often be empirically described by the function coss θ, with s > 1. If
s = 10, for example, the intensity decreases to half its value at θ ≈ 21◦.

Spectral Density
The spectral density r sp(ν) of the spontaneous injection electroluminescence emitted by
an LED is sketched as a function of frequency in Fig. 6.4-5. The direct-bandgap theory
that underlies this result, which is summarized in Sec. 6.4, assumes that the current
injected into a semiconductor p–n junction induces quasi-equilibrium conditions. In
accordance with the results presented in Example 6.4-4, the frequency spectral width
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Figure 7.2-2 Radiation patterns of surface-emitting LEDs: (a) In the absence of a lens, the spatial
radiation pattern is roughly Lambertian so that the intensity decreases to half its value at 2θ1/2 = 120◦.
(b) Spatial radiation pattern with a hemispherical lens. (c) Spatial radiation pattern with a parabolic
lens.

∆ν of the LED spectrum is independent of peak frequency, while the wavelength spec-
tral width ∆λ increases quadratically with peak wavelength λp, i.e.,

∆λ ∝ λ2p . (7.2-1)
LED Spectral Width

The validity of this result is borne out in Example 7.2-1.

EXAMPLE 7.2-1. Behavior of LED Spectral Width with Wavelength. Figure 7.2-3 dis-
plays the observed spectral densities for a collection of LEDs with peak wavelengths that cover the
ultraviolet (indicated as magenta), visible (curve colors match the peak wavelengths), and near infrared
(indicated as gray). AlN, with the smallest bandgap wavelength of all binary III–nitride compounds,
generates light at 210 nm in the mid-ultraviolet region of the spectrum. As will be discussed in Sec. 7.3,
AlGaN and AlInGaN are typically used to fabricate LEDs in the near- and mid-ultraviolet; InGaN
usually serves the violet, blue, and green; and AlInGaP is the material of choice in the yellow, orange,
and red. InGaAsP is usually used in the near infrared. The spectral widths displayed in Fig. 7.2-3
roughly increase as λ2

p over the full spectral range, in accordance with (7.2-1).

Figure 7.2-3 Spectral density vs. wavelength for a collection of LEDs operating: (a) in the
ultraviolet and visible regions; and (b) in the near-infrared region. The peak intensities are all
normalized to unity. As indicted in (6.4-17), the wavelength spectral widths ∆λ increase roughly
as λ2

p in all spectral regions. Note the different abscissa scales in the two panels.

Temporal Response
The response time of LEDs used for illumination is usually limited by the RC time
constant of the device, τRC , because the junction area, and therefore the capacitance,
is large. The response time of communication-system LEDs, in contrast, is generally
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limited principally by the lifetime τ of the injected minority carriers that are respon-
sible for radiative recombination. For a sufficiently small injection rate R , the injec-
tion/recombination process can be described by a first-order linear differential equation
(Sec. 5.5), and therefore by the response to sinusoidal signals. An experimental deter-
mination of the highest frequency at which an LED can be effectively modulated is
easily obtained by measuring the output light power in response to sinusoidal electric
currents of different angular frequencies χ. If the injected current assumes the form
i = ı̄ + i1 cos(χt), where i1 is sufficiently small so that the emitted optical power PO

varies linearly with the injected current, the emitted optical power behaves as PO =
P + P1 cos(χt+ φ).

The associated transfer function, which is defined as H(χ) = (P1/i1) exp(jφ),
assumes the form

H(χ) =
R

1 + jχτ
, (7.2-2)

which is characteristic of a resistor–capacitor circuit. The risetime of the LED is τ
(s) and its 3-dB bandwidth is B = 1/2πτ (Hz). A larger bandwidth B is therefore
attained by decreasing the risetime τ , which comprises contributions from both the
radiative lifetime τr and the nonradiative lifetime τnr through the relation 1/τ = 1/τr+
1/τnr. However, reducing τnr results in an undesirable reduction of the internal quantum
efficiency ηIQE = τ/τr. It may therefore be desirable to maximize the internal quantum
efficiency–bandwidth product ηIQEB = 1/2πτr rather than the bandwidth alone. This
requires a reduction of only the radiative lifetime τr, without a reduction of τnr, which
can be achieved by carefully choosing the semiconductor material and doping level.
Typical risetimes of LEDs are in the range 1 to 50 ns, corresponding to bandwidths of
hundreds of MHz.

7.3 LED MATERIALS AND DEVICE STRUCTURES

LED Materials
The growth and development of single-crystal III–V semiconductors, materials that do
not occur in nature, revolutionized photonics in the 1950s. The properties of important
binary, ternary, and quaternary III–V semiconductors, in the context of their constituent
elements and their location in the periodic table, were introduced in Sec. 5.3. Many of
these materials have direct bandgaps and high internal quantum efficiencies, as well as
long lifespans.

Today’s LED (and LD) industries are built almost exclusively around direct-bandgap
ternary and quaternary III–V material systems, such as those identified in Fig. 7.3-1.
The upper and lower abscissas of this figure represent bandgap wavelength λg (µm)
and bandgap energy Eg (eV), respectively [the relationship between these quantities
is provided in (5.1-1) and (5.1-2)]. Just two compositionally tunable III–V materials,
InGaN and AlInGaP, suffice for generating bright LED light across virtually the entire
visual spectrum, as exemplified in Fig. 7.2-3. Devices that make use of these materials
can be grown on readily available substrates, are robust in the face of degradation
induced by defects, and can be manufactured reliably and inexpensively. Nevertheless,
the performance of red, orange, and amber LEDs fabricated from these materials, and
particularly green LEDs, is inferior to that available with blue LEDs.

It is apparent from Fig. 7.3-1 (and Table 5.3-1) that the bandgap wavelengths for
selected triplets of binary III–V compounds obey:

λg(GaN) < λg(GaP) < λg(GaAs) (7.3-1)
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Figure 7.3-1 Bandgap wavelength λg (µm) (upper abscissa), and corresponding bandgap energy
Eg (eV) (lower abscissa), for commonly used elemental and III–V binary, ternary, and quaternary
semiconductor materials. Consecutive rows, beginning from the top, represent AlInGaN, AlGaN,
InGaN, InGaAsP, AlInGaP, InGaP, GaAsP, AlGaAs, InGaAs, and GaAsSb. Shaded and unshaded
regions indicate direct- and indirect-bandgap compositions, respectively.

λg(AlP) < λg(GaP) < λg(InP) . (7.3-2)

The entries in (7.3-1) all have Ga in common while the entries in (7.3-2) all have P in
common. These inequalities are a consequence of the fact that N, P, and As in (7.3-
1), and Al, Ga, and In in (7.3-2), reside in rows of the periodic table (Fig. 5.3-1) that
have successively larger principal quantum numbers. This signifies progressively larger
atomic radii, less tight binding, and larger bandgap wavelengths.

The bandgap wavelength λg of a semiconductor is instrumental in determining
the wavelength λO of the light emitted by an LED fabricated from that material.

Early LEDs
GaAs. The first III–V material to play an important role in photonics was GaAs.
Robert Keyes and Theodore Quist, working at MIT Lincoln Laboratory in 1962, used
this direct-bandgap, binary semiconductor to fabricate the first truly useful LED (see
p. 198 and footnotes on p. 199). The near-ideal (85%) quantum efficiency of the device
was the result of a novel fabrication technique in which the p-type layer was formed by
indiffusion of Zn into the bulk of the n-type single crystal (Zn is a column-II acceptor
for GaAs, as discussed in Sec. 5.3). The peak emission wavelength of this device was
λp = 920 nm at T = 300 K, which Keyes and Quist perceived as red (Example 8.5-2).
Within months, a number of other research groups had also fabricated LEDs (as well
as LDs) from GaAs.

Not long thereafter, several other direct-bandgap, binary III–V semiconductors,
grown by vapor-phase epitaxy (VPE) and liquid-phase epitaxy (LPE), were also
fabricated in the form of LEDs and LDs, emitting light in the vicinity of their bandgap
wavelengths. These included GaSb, InP, InAs, and InSb (see Table 5.3-1). Yet other
binary semiconductors, including II–VI compounds (Fig. 5.3-3), followed suit.

GaAsP. Adding phosphorus to GaAs forms the ternary semiconductor GaAs1−xPx,
a material whose bandgap wavelength decreases as the mole-fraction of phosphorus
increases (Fig. 7.3-1). The first GaAs1−xPx LED was fabricated by Holonyak and
Bevacqua in 1962 (see p. 338 and footnote on p. 339); this device functioned as an LED
at room temperature and as a laser diode at sufficiently low temperatures. However, the
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external quantum efficiency of GaAs1−xPx degrades markedly as the mole-fraction of
phosphorus increases beyond ≈ 40% because the substantial lattice mismatch between
the GaAs substrate and the GaAsP epilayer gives rise to a high density of dislocations.
Moreover, the bandgap ultimately changes from direct to indirect with increasing phos-
phorus level, which is an impediment to attaining efficient emission at wavelengths
shorter than the red. However, the light emitted by a GaAsP LED appears brighter to
the eye than that emitted by a GaAs device of the same optical power because its shorter
wavelength is more effective at stimulating the photopic visual system (Fig. 8.5-3).
Nevertheless, the light emitted from both a GaAsP and a GaAs LED is perceived to
have the same hue (Example 8.5-2).

GaAsP:N. In the early 1970s, George Craford (see p. 338) and his colleagues demon-
strated that emission in the red, orange, yellow, and green could be elicited from GaAsP,
as well as from other indirect-bandgap materials such as GaP, by doping the material
with isoelectronic nitrogen impurities (GaAsP:N or GaP:N). The impurities serve as a
layer of optically active traps within the bandgap. Since isoelectronic impurities have
highly localized wavefunctions, the nitrogen atoms can be viewed as residing at sharply
localized positions in the lattice (small ∆x). By virtue of the uncertainty principle set
forth in (A.2-9) of Appendix A, a small value of ∆x is accompanied by a large value
of ∆p, thereby enabling large momentum changes to be accommodated. The emission
process can therefore proceed via a nonradiative transition from the conduction-band
minimum to the nitrogen level and a radiative transition from the nitrogen level to the
valence-band maximum, the momentum change being absorbed by the isoelectronic
nitrogen atom. Indeed, the external quantum efficiency of GaAsP:N devices exceeds that
of GaAsP devices over the entire range of emission wavelengths. Despite the fact that all
external quantum efficiencies are typically< 1%, LEDs made of GaAsP, GaAsP:N, and
GaP:N are inexpensive to fabricate and continue to be used in low-intensity applications
such as indicator lamps.

AlGaAs. Just as adding phosphorus to GaAs leads to a reduction in bandgap wave-
length, so too does adding aluminum. As is evident in Fig. 7.3-1, the bandgap wave-
length of the ternary compound AlxGa1−xAs can be compositionally tuned over the
direct-bandgap range 630 ⩽ λg ⩽ 873 nm. This encompasses the near infrared
and the red, falling just short of the orange (Fig. 2.4-1). Unlike GaAsP, AlGaAs
has the merit that lattice matching to GaAs is maintained for all mole fractions of
aluminum [Fig. 5.3-2(a)]. However, nonuniform carrier distributions in the active
region of AlxGa1−xAs/GaAs multiquantum-well structures tend to adversely affect
performance, so AlGaAs LEDs are often instead fabricated in the form of double-
heterostructure configurations that make use of different barrier and well compositions,
i.e., as AlxGa1−xAs/AlyGa1−yAs. AlGaAs structures are generally considered to be
less reliable than AlInGaP devices inasmuch as layers with high Al content are subject
to corrosion and oxidation.

Red, Orange, and Yellow LEDs
AlInGaP. The quaternary semiconductor AlxInyGa1−x−yP provides bright emission
in the red, orange, and yellow regions of the spectrum (Fig. 2.4-1), and is widely used
in LED lighting applications (see p. 338). Much as with GaAs, the addition of Al
and In to GaP decreases and increases λg, respectively. The bandgap wavelength of
AlInGaP can be compositionally tuned over a region that includes the longer wavelength
reaches of the visible band and a limited portion of the near-infrared band (Fig. 7.3-1).
Specifically, emission can be attained over the range 506 nm (AlP) ⩽ λg ⩽ 919 nm
(InP), although indirect-bandgap behavior prevails over the shortest wavelength reaches
of this range. As such, this material is not suitable for fabricating devices that emit in
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the green. The substrate for AlInGaP devices is usually GaAs, although efficiency can
be increased by making use of a transparent, wafer-bonded GaP substrate instead. Other
enhancements include the use of multiquantum-well active regions and resonant-cavity
(RC) configurations that provide directed emission patterns.

Green, Blue, and Violet LEDs
InGaN. In the same way that AlInGaP provides bright emission in the red, orange,
and yellow, the direct-bandgap ternary semiconductor InxGa1−xN provides bright
emission in the green, blue, and violet (Fig. 2.4-1). Together with AlInGaP, InGaN
is widely used in LED lighting applications (see p. 306). The addition of In to GaN
increases its bandgap wavelength, much as it does for GaAs and GaP. The bandgap
wavelength for InGaN can, in principle, be compositionally tuned over the (broad)
wavelength range 366 nm (GaN) ⩽ λg ⩽ 1.91 µm (InN) (Fig. 7.3-1). In practice,
however, it becomes increasingly difficult to grow InGaN as the concentration of In
increases, so this material is typically used only over the more modest wavelength
range 366 ⩽ λg ⩽ 580 nm, comprising the near-ultraviolet, violet, blue, and green.
While InGaN devices do serve the green, they do so with reduced external quantum
efficiency. III–nitride compounds are often grown by MBE, MOCVD, or HVPE, and
usually make use of sapphire, Si, or SiC substrates. Lattice mismatch and large dislo-
cation concentrations are well-tolerated by the III–nitrides (unlike the III–V arsenides
and phosphides). Buffer layers are also used for accommodating differences in thermal-
expansion coefficients. As with AlInGaP, other enhancements include the use of MQW
active regions and RC configurations. As will be discussed extensively in Chapter 10,
the emission of blue light by InGaN LEDs enables the direct generation of bright white
light via phosphor-conversion devices.

Green Gap. It is apparent from the discussions presented above that AlInGaP is
not suitable for fabricating green-emitting devices because of its transition to indirect-
bandgap behavior, while InGaN exhibits reduced external quantum efficiency in the
green as a result of indium-related materials-growth issues. These fundamental limi-
tations lead to what is known as the “green gap.” A number of novel semiconductor
materials are under consideration for possible use in fabricating green LEDs; these
include the III–V compounds AlxIn1−xP and GaN1−xAsx, certain II–IV–N alloys, and
halide perovskites (Sec. 5.9). It will be some time before it can be established whether
any of these materials can rise to the challenge.

Ultraviolet LEDs
GaN. Gallium nitride is a direct-bandgap binary semiconductor whose bandgap
wavelength λg = 366 nm falls in the near-ultraviolet region. Much as GaAs was the
progenitor of InGaAs, AlGaAs, and InGaAsP, GaN served as the progenitor of InGaN,
AlGaN, and AlInGaN. The growth of GaN was not perfected until the early 1990s, an
achievement that was hailed as an important breakthrough in LED technology at the
time because it signaled that blue InGaN LEDs, and therefore metameric-white LEDs,
were not far behind (see p. 306 and footnote on p. 307).

AlInGaN. While InGaN and AlGaN can be compositionally tuned over a broad range
of bandgap wavelengths (Figs. 5.3-2(b) and 7.3-1), the direct-bandgap quaternary semi-
conductor AlxInyGa1−x−yN has the additional merit that it can be lattice matched to
a GaN substrate for certain values of x and y, thereby increasing device quantum effi-
ciency. This lattice matching is analogous to that of AlInGaP to GaAs and of InGaAsP
to InP. LEDs fabricated from lattice-matched AlInGaN are generally employed over
a wavelength range extending from 250 nm in the MUV (the bandgap wavelength of
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AlInN that is lattice matched to GaN) to 366 nm in the NUV (the bandgap wavelength
of GaN). Multiquantum-well structures of the form AlInGaN/InGaN/AlInGaN serve
as active regions for these devices. The inclusion of indium in AlGaN also yields an en-
hancement in the internal quantum efficiency. AlInGaN can also serve as a transparent
contact layer.

Device Structures
LEDs are generally constructed in surface-emitting or edge-emitting configurations. A
surface-emitting device, such as that illustrated in Fig. 7.3-2(a), emits light from a face
of the device that lies parallel to the plane of the active region. An edge-emitting LED,
in contrast, emits light from the edge of the active region, as portrayed in Fig. 7.3-2(b).

Figure 7.3-2 Sketch of (a) a surface-emitting LED
and (b) an edge-emitting LED.

Examples of surface-emitting AlInGaP and InGaN multiquantum-well (MQW) de-
vices are presented in Examples 7.3-1 and 7.3-2, respectively. As discussed above,
AlInGaP is widely used in the red, orange, yellow-orange (amber), and yellow regions
of the spectrum, while InGaN is generally the material of choice in the green and blue.
The use of a MQW structure enhances the quantum efficiency. Devices such as these
are used in myriad applications, including traffic signals, signage, and LED lighting.

EXAMPLE 7.3-1. Surface-Emitting AlInGaP MQW LED. Surface-emitting AlInGaP
MQW LEDs, which generate light in the red, orange, amber, and yellow, are widely used. As a
particular example, an AlInGaP/InGaP LED used in a short-haul, plastic fiber-optic communication
link that operates in the red is depicted in Fig. 7.3-3. As discussed in Sec. 7.1, resonant-cavity (RC)
structures are sometimes used to improve performance.

GaAs
substrate

AlInGaP/InGaP
MQW

active region

GaAs
contact layer

-

+

AlInGaP
confinement

layers
AlAs /AlGaAs
Bragg reflectors

Figure 7.3-3 Surface-emitting AlInGaP/InGaP
MQW resonant-carity light-emitting diode (RCLED)
used in a plastic-fiber communication link operating
at λO = 650 nm in the red. A top-emitting structure is
employed since the GaAs substrate is opaque at this
wavelength. The distributed-Bragg-reflector (DBR)
mirrors of the RC structure comprise AlAs/AlGaAs
layers whose aluminum content is sufficiently high
that they are transparent to the 650-nm light. A lens
facilitates coupling of the emitted light to a fiber.
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EXAMPLE 7.3-2. Surface-Emitting InGaN MQW LED. Surface-emitting InGaN MQW
LEDs, which generate light in the green and blue, are also used in many applications. The substrate
for such devices is often GaN on sapphire (Fig. 7.3-4). However, the number of quantum wells is
generally limited because of population limits imposed by the hole diffusion length; low and/or thin
barriers are preferred. Performance can be enhanced by making use of flip-chip packaging, surface
roughening, and RC structures, as explained in Sec. 7.1.
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Figure 7.3-4 Flip-chip packaged, surface-emitting GaN/InGaN MQWLED operating at λO =
420 nm in the violet. Light is extracted through the GaN-on-sapphire transparent substrate, which
is roughened by texturing with an array of tiny pyramids to increase the extraction efficiency (XTE).
The particular structure illustrated has an active region that comprises 5-nm GaN barriers and 2.5-nm
InxGa1−xN wells.

MicroLEDs
MicroLEDs are used in applications that are well-served by close-packed, individually
addressable LEDs whose individual sizes range from single-digits to 100 µm. Fab-
ricated using conventional LED materials such as InGaN, microLEDs make use of
filters, phosphors, and/or quantum dots to provide pixels of different colors. Devices of
this genre offer high brightness, high contrast, high efficiency, high stability, and long
lifespans. In many respects, they are superior to conventional liquid-crystal displays
(LCDs) and OLED displays, and are increasingly used in high-resolution displays such
as those found in smartphones, medical devices, TVs, outdoor signage, augmented-
reality (AR) devices, and compact wearable devices. They are also being promoted for
use in video walls, TV walls, and cinema screens. Other potential applications range
from visible-spectrum lightwave communications to optogenetics.

7.4 LEDS FOR ILLUMINATION

Crystalline III–V multiquantum-well LEDs rely on a well-established and mature man-
ufacturing technology with a long history of commercialization. Highly reliable devices
with long lifespans and low maintenance are ubiquitous. It is not an exaggeration to say
that MQWLEDs have revolutionized lighting worldwide.
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Colors
Under daylight (photopic) conditions, human vision is maximally sensitive at a wave-
length of 555 nm, which falls in the yellowish-green region of the spectrum (Fig. 8.5-3).
LEDs used for illumination are generally fabricated from AlInGaP and InGaN com-
pound semiconductors. As discussed above, AlInGaP is a direct-bandgap semiconduc-
tor over the longer wavelengths of the visible spectrum and is ideal for fabricating
red, orange, amber, and yellow LEDs. InGaN, also a direct-bandgap semiconductor,
is ideally suited for the fabrication of green, blue, and violet LEDs. Multiquantum-well
structures are invariably used since they provide superior performance.

The semiconductor material most commonly used for fabricating red, orange,
and yellow LEDs for illumination applications is AlInGaP, while the material
generally used for fabricating green, blue, and violet LEDs is InGaN.

An example of the use of these materials in a traffic-signal indicator application is
provided in Fig. 7.4-1. White light for illumination is often synthesized by the judicious
combination of light of several colors, as will be elucidated in Fig. 9.1-2 and Sec. 11.3.

Figure 7.4-1 LED traffic signal based on
III–V semiconductor materials.

Representative Parameters
Representative values for the key measures generally used to characterize the perfor-
mance of LED sources for lighting applications (as detailed in Secs. 8.8 and 8.9) are
displayed in the upper portion of Table 7.4-1. These data deliberately focus on small-
area MQWLEDs, which enables their performance to be directly compared with the
performance of small-area quantum-dot LEDs (QLEDs) as presented in the lower por-
tion of Table 7.4-1. The table entries confirm that the blue, green, and red InGaN and
AlInGaP MQWLEDs exhibit superior external quantum efficiency, energy conversion
efficiency, optical power (radiant flux), luminous flux, and wall-plug luminous efficacy.
Fortunately, the excellent performance of the MQWLEDs scales with device area and
power, as will become clear in Chapter 10.

Drive Circuitry
An LED is usually driven by a current source, as schematically illustrated in Fig. 7.4-
2(a). This is most simply implemented by means of a constant-voltage source in series
with a resistor, as depicted in Fig. 7.4-2(b). The emitted light is readily modulated by
varying the injected current. Analog and digital modulation are portrayed in Figs. 7.4-
2(c) and 7.4-2(d), respectively. The performance of LED drivers can be enhanced by
incorporating circuitry that regulates bias current, matches impedance, and provides
nonlinear compensation to limit the maximum current. Fluctuations in the intensity of
the emitted light may be stabilized by monitoring it with a photodetector and using the
output as feedback to control the injected current.

When it is desired to simply adjust the light intensity emitted by an LED, it is usually
convenient to use pulse-width modulation (PWM) to regulate the applied current, as
depicted in Fig. 7.4-3. This approach has the advantage that the average drive current
supplied to the LED, which determines the intensity of the emitted light, is established
by changing the duty cycle of the current, i.e., the proportion of time that the current
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Table 7.4-1 UPPER TABLE (MQWLEDs): Specifications for representative, discrete, small-area
blue, green, and red III–V semiconductor multiquantum-well light-emitting diodes. (Data for Cree
(Wolfspeed) XP-E2 LEDs. These devices are supplied in pockets on a tape containing 1000 LEDs;
the tape is wound onto a reel to facilitate automated, high-throughput assembly.)

LOWER TABLE (QLEDs): Representative parameter values for discrete, small-area
blue, green, and red quantum-dot light-emitting diodes comprising 40-nm-thick, single emissive
layers of solution-processed II–VI colloidal CdSe/ZnSe core–shell quantum-dots. (Data adapted
from H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, S. Wang,
Z. Du, L. S. Li, and Z. Zhang, Visible Quantum Dot Light-Emitting Diodes with Simultaneous High
Brightness and Efficiency, Nature Photonics, vol. 13, pp. 192–197, 2019.)

UNITS: The successive columns display: peak emission wavelength λp (nm),
photopic luminous efficiency function at peak wavelength V (λp), device active area A (cm2), voltage
V (V), current density J (mA/cm2), current i (mA), electrical power consumption PEL (mW),
external quantum efficiency (EQE), power-conversion efficiency (PCE), radiant flux PO (mW),
radianceL (W/sr-m2), luminanceLV (lm/sr-m2), luminous flux PV (lm), luminous efficacy of radiation
(LER) (lm/W), wall-plug luminous efficacy (WPE) (lm/W), and wall-plug luminous efficiency (WPC).

DISCRETE III–V SEMICONDUCTOR MULTIQUANTUM-WELL LEDs

ledsa λp V (λp)
b A V J ic,d P e

EL ηeEQE ηePCE P e
O Lf Lg

V P i,j
V ηjLER ηjWPE ηkWPC

Blue 465 0.106 0.07 3.1 4930 350 1085 0.40 0.35 380 17040 1230000 27.5 72.4 25.3 0.037
Green 528 0.834 0.07 3.2 4930 350 1120 0.30 0.22 250 11210 6390000 140 570 125 0.183
Red 625 0.361 0.07 2.2 4930 350 770 0.40 0.36 280 12550 3100000 68.5 247 89.0 0.130

DISCRETE II–VI SEMICONDUCTOR QUANTUM-DOT LEDs

qledsa λp V (λp)
b A V J id P e

EL ηeEQE ηePCE P e
O Lf Lg,h

V P j
V ηjLER η

j
WPE ηkWPC

Blue 483 0.195 0.04 3.8 105 4.20 16.0 0.081 0.060 0.96 75.9 10100 0.127 133 7.94 0.012
Green 532 0.878 0.04 3.8 53.0 2.12 8.06 0.229 0.137 1.10 87.5 52500 0.660 600 81.9 0.120
Red 602 0.666 0.04 3.1 18.0 0.72 2.23 0.216 0.165 0.37 29.2 13300 0.167 455 74.9 0.110

aTable entry values are rounded.
bPhotopic luminous efficiency function at peak emission wavelength (Fig. 8.5-3).
cIncreasing the drive current to 1 A results in an approximate doubling of the radiant flux and luminous flux, at
the expense of reduced values of ηEQE stemming from efficiency droop.
dThe current i (mA) is the product of the current density J (mA/cm2) and the device active area A (cm2).
eThe electrical power consumption PEL = iV , EQE, PCE, and output optical power PO are interrelated via
(7.1-12)–(7.1-14).
fThe radiance is given by L = PO/ΩA, where Ω is the solid angle and A is the emission area (Table 8.8-1). The
LEDs are assumed to radiate light with a Lambertian profile [Fig. 7.2-2(a)] so that Ω = π.
gFor a source that is (nearly) monochromatic, the radiance L is related to the luminance LV provided in (8.8-4)
by (8.9-1) and (8.9-2), which yield LV = ηLERL ≈ 683V (λO)L. The luminance is often used in place of the
radiance for characterizing the performance of LEDs that operate in the visible.
hThe highest values of the luminance attained for the blue, green, and red QLEDs were LV = 62600, 614000, and
356000 cd/m2, respectively — these levels were associated with reduced values of ηEQE as a result of efficiency
droop.
iMeasured at a junction temperature of 25◦C and a viewing angle 2θ1/2 ≈ 130◦.
jRadiometric and photometric units are linked via the luminous efficacy of radiation ηLER (lm/W), as specified in
(8.9-1) and (8.9-5). For monochromatic light, ηLER ≈ 683V (λO) lm/W, in accordance with (8.9-2). By definition,
ηLER ⩽ ηMAXLER = 683 lm/W (the maximum value is attained for a monochromatic yellowish-green source at
λO = 555 nm); also, ηWPE ⩽ ηMAXWPE = 683 lm/W, as set forth in (8.9-8).
kThe wall-plug luminous efficiency ηWPC is related to the wall-plug luminous efficacy ηWPE via ηWPC = ηWPE/683,
as stated in (8.9-9). For (nearly) monochromatic LED light, the relationship can be written as ηWPC ≈ ηPCEV (λp),
where λp is the peak wavelength, as specified in (8.9-10).
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Figure 7.4-2 Schematics of circuits used as LED drivers: (a) an ideal DC current source; (b) a DC
current source formed by a constant-voltage source in series with a resistor; (c) transistor control of
the current injected into an LED to provide analog modulation of the emitted light; and (d) transistor
switching of the current injected into an LED to provide digital modulation of the emitted light.

is applied. Because the current level is fixed whenever it is present, this scheme avoids
the intrinsic nonlinearity between the LED output intensity and the input current that
is inherent in the device.

Figure 7.4-3 In pulse-width modulation (PWM),
the average LED drive current (which determines the
light intensity generated by the LED) is regulated
by modifying the duty cycle of the applied current
pulses. Since the current always has a fixed value
when applied, the use of this approach circumvents
the intrinsic nonlinearity between LED output intensity
and input current.

Pulse-frequency modulation (PFM), a closely related technique, operates similarly.
In this approach, the average current supplied to the LED is determined by varying the
frequency of brief current pulses of fixed duration, rather than by varying the widths of
the individual pulses as in PWM. In both cases, the LED will appear to be continuously
illuminated as long as the rate at which the LED is turned on and off exceeds the human
flicker-fusion threshold.

7.5 QUANTUM-DOT LIGHT-EMITTING DIODES (QLEDS)

As discussed in Sec. 5.8, colloidal quantum dots can be grown from a broad selection of
semiconductor materials, organic compounds, and perovskites, all of which can serve
as emissive media for light-emitting diodes. A number of salutary features of QDs ren-
der them suitable for fabricating electrically addressable, efficient quantum-dot light-
emitting diodes (QLEDs). The discussion in this section is devoted to a consideration
of electroluminescent QLEDs fabricated from II–VI (chalcogenide) semiconductors
(Fig. 5.3-3). The chalcogenides are the most commonly used materials for QLEDs
since the synthesis of gallium-based III–V semiconductor quantum dots is a difficult
enterprise using currently available solution-based growth techniques. QLEDs usually
employ core–shell quantum dots rather than bare QDs since the presence of the shell
mitigates surface defects and suppresses nonradiative recombination, thereby providing
enhanced luminescence, tunability, and lifespan. We consider discrete (single-color),
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tandem (multicolor), and white quantum-dot light-emitting diodes (WQLEDs) in
turn. We also provide a comparison of the performance of small-area discrete QLEDs
and MQWLEDs in the current state of their technologies.

Discrete Single-Color Devices
An electrically pumped, monochromatic QLED, in its simplest conception, is sketched
in Fig. 7.5-1. Electron and hole injection layers facilitate the injection of charge carriers
into the emissive quantum-dot (QD) layer sandwiched between them, where the carriers
recombine and emit spontaneous photons. However, attaining high external quantum
efficiency requires a more elaborate multilayer device structure to foster both a large
internal quantum efficiency and a proper balance of electron and hole injection currents.
Balanced injection obviates the accumulation of long-lived charged excitons that abet
nonradiative Auger recombination (Fig. 5.5-2), a process whereby the energy released
in the course of recombination is transferred to other charge carriers rather than to the
creation of useful photons. Auger recombination, along with the quantum-confined
Stark effect (QCSE), contribute to efficiency droop, an undesirable effect in which
device efficiency decreases with increasing current density.

Figure 7.5-1 Structure of a simple, electrically pumped, II–
VI, blue QLED. Injected carriers recombine in the QD layer,
emitting spontaneous photons. Quantum dots of different sizes
emit electroluminescence of different wavelengths, as exempli-
fied in Fig. 5.8-1(a) for photoluminescence. Electrically ad-
dressable horizontal or serial vertical stacks of blue, green, and
red QLED emitters generate light with an arbitrary mixture of
these primaries. Tandem blue, green, and red quantum-dot layers
designed to emit white light are known as white quantum-dot
light-emitting diodes (WQLEDs).

Comparing QLEDs and MQWLEDs. Representative parameter values for small-
area blue, green, and red discrete QLEDs fabricated from colloidal, II–VI CdSe/ZnSe,
core–shell quantum dots are presented in the lower portion of Table 7.4-1. We briefly
compare the performance of these devices with that of blue, green, and red discrete
III-V MQWLEDs of comparable area, as reported in the upper portion of Table 7.4-1:

Advantages of QLEDs over MQWLEDs.

Superior tunability over a broader range of wavelengths.
Narrower emission linewidths.
Larger selection of saturated colors and hence color gamuts.
Greater range of device design choices.
More suitable for displays because of superior color purity.

Advantages of MQWLEDs over QLEDs.

Superior technology and more reliable manufacturing processes.
Greater stability at high temperatures.
Larger current densities and radiative recombination rates.
Superior external, power-conversion, and wall-plug luminous efficiencies.
Substantially larger radiant flux and luminous flux.
More suitable for lighting applications.
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Tandem Multicolor Devices
Horizontally or vertically stacked, electrically addressable structures can be used to si-
multaneously generate red, green, and blue light (Fig. 7.5-1). Of substantial significance
is the tandem configuration, in which two or more light-emitting units (LEUs) are
serially stacked and linked by intermediate connection layers (ICLs), also known as
charge-generation layers. Electrons and holes generated in these layers are efficiently
injected into the adjacent LEUs, resulting in multiple photon emissions from a single
electron–hole pair. This minimizes current flow, thereby averting device degradation
and Auger recombination (Fig. 5.5-2); and also allows the emitters in each LEU to be
separately confined, which mitigates nonradiative energy transfer among them. Fully
solution-processed tandem QLEDs with high efficiency have been fabricated, as have
flexible tandem and individually addressable devices.

White Quantum-Dot Devices (WQLEDs)
Tandem QLEDs that generate white light, known as WQLEDs, comprise serial stacks of
blue, green, and red quantum-dot layers that function independently and are optimized
for the emission of white light. These devices usually operate on the basis of additive
color mixing (Fig. 9.1-2 and Sec. 11.3). Single-layer WQLEDs in which the three
colors of QDs are mixed are generally avoided because white light emission is at-
tained only for a specific value of the drive current. Representative operating parameters
for a solution-processed, small-area, tandem WQLED fabricated using alloyed 11-nm-
diameter core–shell CdSe/ZnS red and green quantum dots, and 13-nm-diameter core–
shell ZnCdS/ZnS blue quantum dots, are displayed in the top row of Table 7.6-1. The
performance of these devices is laudable, but efforts directed toward their improvement
continue. Analogous data for small-area white organic light-emitting diodes (WOLEDs)
and small-area quantum-dot white perovskite light-emitting diodes (QPeWLEDs) are
tabulated in the middle and bottom rows of Table 7.6-1, respectively. Performance
comparisons for QLEDs with WOLEDs and QPeWLEDs are provided in Sec. 7.6.

7.6 ORGANIC LIGHT-EMITTING DIODES (OLEDS)

Organic light-emitting diodes can be fabricated from small organic molecules or from
conjugated polymer chains (Sec. 5.9). Small-molecule organic light-emitting diodes,
called SMOLEDs or simply OLEDs, are efficient generators of electroluminescence
for the primary colors blue, green, and red. Polymer light-emitting diodes, called
PLEDs or P-OLEDs, resemble OLEDs in their construction but usually have an n-type
active region into which holes are injected by a p-type organic layer. TADF-OLEDs,
which make use of thermally activated delayed fluorescence (TADF) emitters, offer
an effective mechanism for attaining high efficiency. The energy gap between the singlet
and triplet excited states (S1 and T1, respectively) in these materials is sufficiently small
that temperature fluctuations can drive transitions to the singlet state. White organic
light-emitting diodes are called WOLEDs.

Organic light-emitting diodes can be fabricated either by vacuum deposition or by
solution processing; the latter includes screen, inkjet, and microcontact printing, as well
as spin-coating and blade coating. While vapor deposition is useful for constructing
complex multilayer device structures, it is a time-consuming process and is limited to
small-area devices. Solution processing, in contrast, is simpler, faster, and less expen-
sive, and can be used to construct devices that are not only large in area, but are also
flexible and stretchable. Solution-processing technology is widely used for fabricating
efficient SMOLEDs, PLEDs, and TADF-OLEDs.
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Small-Molecule Devices (SMOLEDs)
A SMOLED is formed from two thin (≈ 100-nm) organic semiconductor films juxta-
posed to form an organic heterostructure. As portrayed in Fig. 7.6-1(a), this structure
is sandwiched between two inorganic electrodes, an anode that injects holes and one or
more cathodes that inject electrons. This is in contrast to carrier injection in inorganic
LEDs, which relies on heavily doped p- and n-type crystalline materials together with
strong forward bias.

The injected carriers are transported to the heterojunction (the active region), and
form bound excitons that recombine to generate spontaneous emission. Different het-
erostructure materials give rise to recombination radiation of different wavelengths,
enabling a multicolor OLED to be constructed by patterning several heterostructures
on a single substrate. These heterostructures can be fabricated side-by-side, in a striped
configuration, to form a color-tunable horizontal stack, such as that sketched in Fig. 7.6-
1(a). They can alternatively be fabricated one atop the other, to form a serial vertical
stack with a blue emitter on top, a green emitter sandwiched in the middle, and a red
emitter on bottom, as sketched in Fig. 7.6-1(b).
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Figure 7.6-1 OLED structures fabricated in the form of: (a) a horizontal stack of blue, green,
and red emitters, which is color tunable but requires patterning, and (b) a serial, vertical stack of
emitters. Calcium (capped by Al to avoid degradation) and indium tin oxide (ITO, which is transparent)
are often used as the cathode and anode materials, respectively. The exciton recombination radiation
emitted at the organic heterojunctions exits through the transparent anode and glass substrate. Organic
semiconductors such as electron-transporting aluminum tris(8-hydroxyquinoline) (Alq3) and hole-
transporting triphenyl diamine derivative (TPD) were initially used to fabricate OLEDs, but today’s
devices incorporate a dizzying array of organic materials. Luminescent dopants can be infused into
the active regions to enhance the IQE and to create white light.

The energy levels of bound excitons in organic materials are similar to those of
electrons in dye molecules, comprising both singlet (S) and triplet (T) states. In a singlet
state, the electron spin is antiparallel to that of the remainder of the molecule, so that
the total spin angular-momentum quantum number S = 0 and the spin multiplicity
2S + 1 = 1. In a triplet state, in contrast, the electron spin is parallel to that of the
remainder of the molecule, which results in S = 1 and 2S + 1 = 3. Hence, the spin
multiplicity of the triplet state is three times that of the singlet state.

Radiative transitions that take place between two states of the same multiplicity
(i.e., S → S or T → T) are spin-allowed, and the resulting luminescence process is
called fluorescence. The luminescence resulting from spin-forbidden transitions (i.e.,
S → T or T → S), in contrast, is called phosphorescence. The lifetimes of fluorescent
transitions are usually far shorter than those of phosphorescent transitions (e.g., nsec
vs. msec) as a result of the forbidden nature of the latter. Since the ground states of most
organic compounds are singlets, radiative decay of singlet excitons is highly favored.
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Nevertheless, triplet-exciton radiative recombination can be facilitated by infusing
the active region of the device with special fluorophores that bind to the organic
molecules or conjugated polymer chains comprising the heterostructure. This enables
the triplet excitons to efficiently transfer their energy to the fluorophore while their spin
angular momentum is concomitantly transferred to the organic molecule or polymer
to which the exciton is bound. This in turn serves to increase the internal quantum
efficiency of the device by a factor of four, since 2S + 1 = 3 for the triplet state. This
approach has the additional merit that it allows the color of the emitted light to be
determined by the choice of fluorophore rather than by the exciting excitons.

Polymer Devices (PLEDs)
PLEDs are often comprised of light-emitting polymer materials (LEPs) that are deriva-
tives of poly(p-phenylene vinylene) (PPV) and polyfluorene. The substitution of appro-
priate side chains on the polymer backbone can modify the color of the emitted light.
Although solution-processed P-OLEDs can be readily printed and are less expensive to
fabricate than OLEDs, they generally have lower efficiencies and shorter lifespans. The
desirable features of small-molecule and large-molecule polymeric organic materials
can be combined by using molecules called phosphorescent dendrimers. These are
large molecular balls that contain a heavy-metal ion core (e.g., Ir(2-phenylpyridine)3)
that facilitates triplet-exciton radiative recombination via spin–orbit coupling by virtue
of the layers of branching-ring structures bonded around it.

White Organic Devices (WOLEDs)
As discussed in Sec. 7.5, small-area tandem WQLEDs, which have been fabricated us-
ing solution-processed, inorganic II–VI quantum dots, offer excellent performance (top
row of Table 7.6-1). To reiterate, tandem architectures involve serially stacking multiple
light-emitting units (LEUs) and linking them via intermediate connection layers (ICLs);
solution processing offers low manufacturing cost and large-scale production capabil-
ities. White organic light-emitting diodes (WOLEDs), which operate on the basis of
additive color mixing (Fig. 9.1-2 and Sec. 11.3), have been fabricated using serial stacks
such as those displayed in Fig. 7.6-1(b). (WOLEDs are the unit cells of large-area white
OLED light panels, such as discussed in Sec. 11.7.)

However, attaining high efficiency in this type of organic device is challenging. In
particular, it turns out that solution-processed WOLED ICLs are hampered by subopti-
mal charge injection, along with issues related to surface wettability, orthogonal solu-
bility, and chemical corrosion. In the current state of WOLED technology, an effective
alternative approach is to make use of a single emissive layer consisting of blended
light-emitting compounds (guest materials) in a matrix (host material). One way of
implementing such a structure is via a hyperfluorescence device, in which the emissive
layer contains a host material and two blended, interacting emitters. Singlet excitons
converted from the first triplet excited state T1 of a TADF sensitizer are captured and
used by a traditional fluorescent emitter via a process known as Förster resonance
energy transfer (FRET). This mechanism plays a role analogous to that played by
photoluminescence in phosphor-conversion LEDs (Sec. 10.2).

Comparing WOLEDs and WQLEDs. Representative operating parameters for
a small-area, tandem hyperfluorescence WOLED that operates on the basis of a
vacuum-evaporated, TADF blue emitter/sensitizer and yellow fluorescent emitter are
displayed in the middle row of Table 7.6-1. Analogous data for a small-area, white
quantum-dot light-emitting diode (WQLED) and a small-area white quantum-dot
perovskite light-emitting diode (QPeWLED) are provided in the top and bottom rows
of Table 7.6-1, respectively. Parameter-value comparisons in the following are based
on the entries in Table 7.6-1.
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Advantages of WOLEDs over WQLEDs.

Longer lifespans.
Thinner structures.
Flexible and bendable devices.
Larger color gamut.
Superior black expression.
Wider viewing angle.
Greater current density and wall-plug luminous efficiency.

Advantages of WQLEDs over WOLEDs.

Wavelength tunability via quantum-dot size adjustment.
More established technology and reliable manufacturing processes.
Availability of high-efficiency tandem structures.
More facile solution-processing.
Fewer functional layers.
Superior photostability.
Superior color purity.
Larger current density, external efficiency, luminance, and luminous flux.
More suitable for lighting applications.

QWOLEDs. Quantum-dot white organic light-emitting diodes (QWOLEDS)
have been grown in the laboratory. They possess many of the advantages of WOLEDs,
and have the additional merits of being more amenable to solution processing and
offering superior color purity and brightness. On the other hand, they generally suffer
from increased temperature sensitivity are require more complex and costly manufac-
turing procedures. QWOLEDs fabricated using TADF nanoaggregates embedded in a
fluorescent crystalline host matrix that contains phosphorescent dopants exhibit high
carrier mobilities and superior performance.

7.7 PEROVSKITE LIGHT-EMITTING DIODES (PELEDS)

Perovskites, which were introduced in Sec. 5.9, are versatile photonic materials whose
composition can range from organic to hybrid organic-inorganic to fully inorganic.
Like chalcogenide quantum dots (Secs. 5.8, 6.6, and 7.5) and organic semiconductors
(Secs. 5.9 and 7.6), perovskites can often be inexpensively fabricated by making use of
solution-processing methods such as spin coating.

Some perovskites exhibit high carrier mobilities, long carrier lifetimes, and large
absorption coefficients, endowing them with superior charge-transport properties and
enables them to serve as highly efficient sources of electroluminescence and photo-
luminescence. As with MQWLEDs, QLEDs, and OLEDs, variations on the theme
of perovskite light-emitting diodes (PeLEDs) abound. And like their antecedents,
PeLEDs are compositionally tunable: the emission wavelength depends on the particu-
lar perovskite recipe. They can generate monochromatic light in the visible, as well as
in the near-infrared and near-ultraviolet. PeLEDs should not be conflated with polymer
light-emitting diodes known as PLEDs.

Of particular importance for the fabrication of PeLEDs are metal-halide perovskites
(MHPs), materials that possess a compelling combination of chemical robustness and
high-quality optical properties (Sec. 5.9). PeLEDs can consist of a single perovskite or
can make use of a mixture of different perovskites. The emissive region can be fabri-
cated in the form of a thin polycrystalline film, which creates a polycrystalline-film
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Table 7.6-1 TOP ROW (WQLED): Representative parameter values for a small-area, tandem,
white quantum-dot light-emitting diode with individual 20-nm-thick, solution-processed, ZnCdS/ZnS
blue-QD, CdSe/ZnS green-QD, and CdSe/ZnS red-QD emissive layers, in a structure com-
prising ITO/PEDOT-PSSa/TFB-PVKb/blue-QDs/ZnO-PMAc/TFB/green-QDs/ ZnO-PMA/TFB/red-
QDs/ZnO/Ag.(Data adapted from C. Jiang, J. Zou, Y. Liu, C. Song, Z. He, Z. Zhong, J. Wang, H. Yip,
J. Peng, and Y. Cao, Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode
with an External Quantum Efficiency Exceeding 25%, ACS Nano, vol. 12, pp. 6040-6049, 2018.)

MIDDLE ROW (WOLED): Representative parameter values for a small-area,
white organic light-emitting diode with a 100-nm-thick, vacuum-evaporated, single emissive layer
comprising a host matrix (DBFDPO)d, a TADF blue emitter/sensitizer (ptBCzPO2TPTZ)e, and a
yellow fluorescent emitter (TBRb)f,g . (Data adapted from D. Ding, Z. Wang, C. Duan, C. Han,
J. Zhang, S. Chen, Y. Wei, and H. Xu, White Fluorescent Organic Light Emitting Diodes with 100%
Power Conversion, Research, vol. 2022, no. 0009, DOI:10.34133/research.0009, 2022.)

BOTTOM ROW (QPeWLED): Representative parameter values for a small-area,
white perovskite light-emitting diode with a 15-nm-thick, single emissive layer comprising solution-
processed CsPbI3 perovskite quantum dots of mixed α (cubic) and δ (orthorhombic) phases. (Data
adapted from J. Chen, J. Wang, X. Xu, J. Li, J. Song, S. Lan, S. Liu, B. Cai, B. Han, J. T. Precht,
D. Ginger, and H. Zeng, Efficient and Bright White Light-Emitting Diodes Based on Single-Layer
Heterophase Halide Perovskites, Nature Photonics, vol. 15, pp. 238–244, 2021.)

UNITS: The successive columns display: device active area A (cm2), forward voltage
V (V), current density J (mA/cm2), current i (mA), electrical power consumption PEL (mW),
external quantum efficiency (EQE), current luminous efficacy (CLE) (cd/A), luminanceLV (lm/sr-m2),
luminous flux PV (lm), wall-plug luminous efficacy (WPE) (lm/W), wall-plug luminous efficiency
(WPC), chromaticity coordinates x and y, and correlated color temperature Tc (K).

WHITE QLED, WHITE OLED, and WHITE QUANTUM-DOT PeLED

sourceh A V J ii PEL ηEQE ηCLE Lj
V Pk

V ηlWPE ηmWPC xn yn T o
c

WQLEDp 0.04 15.2 20.0 0.800 12.2 19.5 45.6 9400 0.118 9.71 0.014 0.42 0.42 3420
WOLEDq 0.09 4.05 1.16 0.104 0.42 0.269 86.3 1000 0.028 65.3 0.096 0.30 0.42 6225
QPeWLEDr 0.04 4.55 8.30 0.332 1.51 0.065 12.2 1015 0.013 8.53 0.012 0.38 0.41 4210

aPEDOT-PSS: poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate).
bTFB-PVK: poly(9,9-dioctylfluorene- co-N-(4-butylphenyl)diphenylamine)/poly(9-vinylcarbazole).
cZnO-PMA: ZnO nanoparticle and polyoxometalate phosphomolybdic acid intermediate connection bilayer.
dDBFDPO: 4,6-bis(diphenylphosphoryl)dibenzofuran.
eTADF: 9-(4-(4,6-Bis(4-(diphenylphosphoryl)phenyl)-1,3,5-triazin-2-yl)phenyl)-3,6-di-tert-butyl-carbazole.
fTBRb: 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene.
gThe components were combined in the following proportions: DBFDPO:40%-ptBCzPO2TPTZ:0.1%-TBRb.
hTable entry values are rounded.
iThe current i (mA) is the product of the current density J (mA/cm2) and the device active area A (cm2).
jThe luminance LV (cd/m2) is the product of ηCLE (cd/A) and J (A/m2), as provided in (8.9-11).
kThe luminous flux PV (lm) is the product of the luminance LV (lm/m2-sr), the device active area A (m2), and the
radiation solid angle Ω. For a Lambertian radiator [Fig. 7.2-2(a)], we have Ω = π so that PV = πALV.
lThe wall-plug luminous efficacy ηWPE is defined as PV/PEL, as specified in (8.9-4). Equation (8.9-8) provides that
ηWPE ⩽ ηMAXWPE = 683 lm/W (the maximum value is attained for a monochromatic source at λO = 555 nm).
mThe wall-plug luminous efficiency ηWPC is related to the ηWPE via ηWPC = ηWPE/683, in accordance with (8.9-9).
nThe chromaticity coordinates x and y, which are measures of perceived color, are defined in Sec. 9.6.
oThe correlated color temperature Tc, a measure of the color of a source of light, is defined in Sec. 9.8.
pMaximum parameter values observed for devices of this type: ηMAXEQE = 0.274, ηMAXCLE = 60.7 cd/A, and
LMAX
V = 210000 cd/m2. Current maximum value for solution-processed tandem QLEDs: ηMAXCLE ≈ 183 cd/A.

qMaximum parameter values observed for devices of this type with supplementary outcoupling enhancement:
ηMAXEQE = 0.307, ηMAXCLE = 96.1 cd/A, LMAX

V = 40 105 cd/m2, and ηMAXWPE = 120 lm/W. Current maximum value for
solution-processed tandem OLEDs: ηMAXCLE ≈ 93 cd/A.
rMaximum parameter values observed for devices of this type: ηMAXEQE = 0.065, ηMAXCLE = 12.2 cd/A, and
LMAX
V = 12 200 cd/m2.
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perovskite light emitting diode (PPeLED), or in the form of an assembly of perovskite
quantum dots (nanocrystals), which creates a quantum-dot perovskite light-emitting
diode (QPeLED). White perovskite light-emitting diodes (PeWLEDs) are increas-
ingly being used to generate white light, as are are quantum-dot white perovskite
light-emitting diodes (QPeWLEDs).

Metal-Halide (MHP) Devices
The physical and chemical properties of fully inorganic, direct-bandgap metal-halide
perovskites (MHPs), such as the cesium-lead halides CsPbI3, CsPbBr3, and CsPbCl3,
make them particularly suitable for use in LEDs and other photonic components. MHPs
that make use of lead, which operate in the visible region, are also called lead-halide
perovskites (LHPs). The bandgap wavelength of these materials can be composition-
ally tuned to cover the entire visible region.

Polycrystalline-Film Devices (PPeLEDs)
PeLEDs often have an emissive layer prepared in the form of a thin polycrystalline films,
enabling the carriers to be spatially localized within the individual grains, which in-
creases the efficiency of radiative recombination. Alternatively, they can be constructed
in the form of 2) perovskite grains embedded in a polymer matrix or as perovskite
quantum dots. As discussed in connection with (5.5-10) and (10.2-1), the internal elec-
troluminescence quantum efficiency (IQE) and the photoluminescence quantum yield
PLQY are maximized by making the radiative decay rate as large as possible. The
individual grains of the thin polycrystalline film spatially localize the carriers in a com-
mon location, which enhances the radiative recombination and increases the quantum
efficiency in turn. Embedding perovskite grains in a polymer matrix achieves the same
goal.

The structures and charge-transport characteristics of PeLEDs share a number of
features in common with those of OLEDs: the electrodes sandwiching the emissive
region deliver the electrons and holes that generate recombination radiation in this thin
region (Fig. 7.6-1).

Figure 7.7-1 Schematic of a generic perovskite LED.
The device consists of a collection of layers whose func-
tions are indicated. For a PPeLED, the perovskite emissive
layer (highlighted) consists of a thin polycrystalline film
that contains one or more perovskite compounds, whereas
for a QPeLED it comprises an assembly of perovskite
quantum dots (nanocrystals). The photons generated in
the emissive layer result from radiative recombination of
the injected electron–hole pairs. The emissive layer is
surrounded by a pair of passivation layers that mitigate
nonradiative recombination fostered by surface defects.
The passivation layers are in turn surrounded by carrier-
injection (transport) layers, which make contact with the
conductive electrodes that provide forward bias to the
device.

EXAMPLE 7.7-1. External Quantum Efficiency of a FAPbI3 Perovskite LED. The ex-
ternal quantum efficiency of PeLEDs can be substantially enhanced by adding various multifunctional
molecules to the material. For example, the performance of an α-phase formamidinium lead triiodide
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(FAPbI3) perovskite LED, which has a bandgap Eg = 1.5 eV and operates at 800 nm in the NIR,
is substantially improved by the addition of 2-(4-(methylsulfonyl)phenyl)ethylamine (MSPE) (see
Y. Sun, L. Ge, L. Dai, C. Cho, J. F. Orri, K. Ji, S. J. Zelewski, Y. Liu, A. J. Mirabelli, Y. Zhang,
J.-Y. Huang, Y. Wang, K. Gong, M. C. Lai, L. Zhang, D. Yang, J. Lin, E. M. Tennyson, C. Ducati,
S. D. Stranks, L.-S. Cui, and N. C. Greenham, Bright and Stable Perovskite Light-Emitting Diodes
in the Near-Infrared Range, Nature, vol. 615, pp. 830–835, 2023). The additive mitigates nonradia-
tive pathways by removing nonradiative dark regions in the perovskite films while simultaneously
suppressing the quenching of perovskite luminescence at the interface with charge-transport layers.
The FAPbI3 perovskites were prepared by spin-coating from FAI, PbI2, and MSPE precursors. The
external quantum efficiency depends strongly on the molar fraction of MSPE relative to PbI2, and
attains its maximum value of (≈ 20%) for a molar fraction MSPE/PbI2 that is ≈ 0.5.

Quantum-Dot Devices (QPeLEDs)
However, the defects at the various surfaces of these perovskites films, such as the
grain boundaries, limit the efficiency of light emission. These effects can often be
mitigated by making use of core–shell perovskite quantum dots. Like conventional
chalcogenide quantum dots, core–shell structures have a high tolerance for defects and
can be synthesized in monodisperse form from inexpensive commercial precursors
using solution-based methods. As a result of compositional tuning and quantum-size
effects, MHP quantum dots can emit over the full visible spectrum as well as in the near
infrared and near ultraviolet.

The colors of the photoluminescence elicited from CsPbX3 colloidal quantum dots
of cubic shape and cubic crystal structure are illustrated in Fig. 5.8-1(b) for different
compositions and dot sizes [X = I (red), Br (green), and Cl (violet)]. Mixed MHP QDs,
such as I/Br and Br/Cl, emit in the green and blue, respectively. All of these materials
are stable in the α (cubic) phase although CsPbI3 can also easily be prepared in the δ
(orthorhombic) phase. The photoluminescence from CsPbX3 quantum dots is charac-
terized by narrow emission linewidth (∆λFWHM ≈ 10–45 nm), high photoluminescence
quantum yield (PLQY → 100%) (Sec. 10.2), high carrier mobility, but short radiative
lifetime (τr ≈ 1–30 ns). The performance and lifespan of these materials are currently
limited by sensitivity to moisture, oxygen, and light, which degrade performance.

As with chalcogenide quantum dots (Sec. 7.5), perovskite quantum dots are useful
for fabricating LEDs. Emissive regions employing MHP quantum dots, which possess
excellent color purity and high PLQY, result in LEDs with high external quantum
efficiency that can be further enhanced by molecular additives. MHP quantum dots
can also serve as photoluminescent media in a phosphor-conversion configuration or
as matrices that operate as high-mobility charge-transport materials. Thin sheets of
these materials can be inexpensively fabricated using solution processing and printed on
flexible substrates such as plastic, generally at room temperature. This is in distinction to
III–V colloidal quantum dots, which are difficult to grow, and to organic quantum dots,
which are seldom used for device fabrication for the reasons explained in Sec. 5.9.

As discussed in Sec. 7.6, white organic light-emitting diodes (WOLEDs) can be fab-
ricated in many different configurations. Metal-halide perovskites (MHPs) can be sim-
ilarly configured in ways that are attractive for use as white perovskite light-emitting
diodes (PeWLEDs). Moreover, quantum-dot white perovskite light-emitting diodes
(QPeWLEDs) are increasingly available.

7.8 LASER DIODES AND LIGHT-EMITTING DIODES
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The compounds discussed in Sec. 7.3 also used not only for fabricating light-emitting
diodes, but also for laser diodes, quantum-confined lasers, microcavity lasers, and
nanocavity lasers. As illustrated in Fig. 7.0-1, light-emitting diodes (LEDs) and laser
diodes (LDs) both have, at their heart, a forward-biased p–n junction fabricated from
a direct-bandgap semiconductor. The essential distinction is that light emitted from
an LED is spontaneous emission, whereas light from an LD is stimulated emission.
The transition from a partially coherent beam generated by a light-emitting diode to a
coherent beam generated by a laser diode as the drive current increases, as illustrated in
Fig. 7.0-1, is marked by a threshold current beyond which the light intensity increases
sharply, as well as a pronounced narrowing of both the spectrum and divergence angle
above threshold. We discuss III–V semiconductor laser diodes, metal-halide perovskite
laser diodes, and silicon photonics in turn.

Traditional III–V Semiconductor Laser Diodes
The earliest laser diodes comprised single, heavily doped p–n junctions of GaAs and
GaAsP, which emitted in the near infrared and red, respectively. Four independent
groups, at GE, IBM, and MIT Lincoln Laboratory, reported the operation of these
devices in November and December 1962, just months after the initial report of the
GaAs LED by Keyes & Quist (p. 198). A GaAs p–n junction diode fabricated at MIT
Lincoln Laboratory in 1963, which functioned as a laser diode when cooled and as an
LED at room temperature, is depicted in Fig. 7.8-1.

Figure 7.8-1 Sketch of a GaAs laser diode fabricated
at MIT Lincoln Laboratory in 1963. The width and length
of the device were 200 µm and 1 mm, respectively. When
operated in pulsed mode at 77 K, this device emitted coherent
light at 845 nm. (Courtesy MIT Lincoln Laboratory; Image
adapted from M. C. Teich, “Two Quantum Photoemission
and dc Photomixing in Sodium,” Ph.D. Dissertation, Cornell
University, February 1966, Fig. 3, p. 16).

For both LEDs and LDs, the source of energy is the electric current injected into the
junction. It is far easier to elicit partially coherent light from an LED than coherent light
from an LD for three principal reasons: 1) Operation as a laser diode requires an injected
current that generates a density of electrons and holes in the junction region that is large
enough to create a population inversion, thereby rendering stimulated emission more
prevalent than absorption and providing gain; 2) Operation as an LD requires a suitable
feedback mechanism that can initiate and sustain laser action. In the simplest case, this
can be implemented by cleaving the semiconductor material along its crystal planes,
which results in a sharp refractive-index discontinuity between the crystal and the sur-
rounding air and thereby gives rise to substantial reflection. The semiconductor crystal
then simultaneously acts as a gain medium and as a Fabry–Perot optical resonator, as
illustrated in Fig. 7.8-2; 3) Operation as an LD laser requires a population inversion,
which is facilitated by low temperatures.

From the inception of their development in the early 1960s, LEDs were able to
operate at room temperature in a continuous-wave (CW) mode. LDs, on the other hand,
were able to operate only in pulsed mode and at cryogenic temperatures. Laser diodes
that were operated at temperatures that were too high, or were driven by current pulses
that were too long, behaved as LEDs. When the reduction of temperature in these
devices was sufficient, the result was substantial spectral and spatial narrowing as the
partially coherent LED light moved toward coherent LD light.

Today’s semiconductor lasers operate CW at room temperature. They also assume a
bewildering variety of forms. They function at wavelengths that stretch from the mid ul-
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Figure 7.8-2 In its simplest configuration, a
laser diode is a forward-biased, heavily doped
p–n junction in which two surfaces perpendic-
ular to the plane of the junction act as reflectors
in a Fabry–Perot resonator. These surfaces can
be created by cleaving the structure along its
crystal planes to ensure that they are parallel.
The other two surfaces perpendicular to the
plane of the junction are then roughened to
eliminate feedback in that direction.

traviolet to the far infrared — and at output powers that range from nW (for nanolasers)
to W (for individual laser diodes) to kW (for banks of laser diodes). They come in all
shapes and sizes, including quantum-confined devices and compact microcavity and
nanocavity lasers.

Laser diodes find extensive use in long-haul optical fiber communication systems,
where they can be readily modulated by controlling the injected current. They are also
used in high-density optical data-storage systems such as DVD players, and in scanning,
reading, and high-resolution color-printing systems. LDs are also employed in lidars
and in directional lighting applications, such as automotive headlights. Banks of laser
diodes are used to optically pump optical fiber amplifiers and solid-state lasers, thereby
converting the relatively broadband, multimode laser-diode light into the narrowband,
single-mode light emitted by diode-pumped solid-state lasers. There is a school of
thought that promulgates expanding the use of laser diodes in place of light-emitting
diodes for specialized illumination applications that make use of their directionality and
the absence of efficiency droop above laser threshold.

The advent of quantum-confined semiconductor lasers such as multiquantum-well,
multiquantum-dot, and quantum cascade lasers, together with compact lasers such as
vertical-cavity, microdisk, photonic-crystal, and nanolasers, has greatly facilitated the
integration of lasers with other optical components in compact configurations, which
in turn has opened the door to myriad new uses.

Silicon Photonics Light Sources
Silicon has long been the leading materials platform for integrated electronics, for a
whole host of reasons: it is 1) abundant and inexpensive; 2) readily grown in pure form
and in bulk; 3) easy to dope, oxidize, and manipulate; 4) stable at high temperatures; and
5) compatible with CMOS (omplementary metal-oxide-semiconductor) technology.
Its ubiquity, availability, and properties have also made it an attractive platform for
integrated photonics. The high refractive-index contrast of silicon and its oxides allows
strong optical confinement in a compact volume. This, together with its transparency in
the 1.3–1.6-µm telecommunications band, and its CMOS compatibility, promotes its
use for devices used in telecommunications.

A notable exception to the adaptability of Si is centered on its use as an active
medium for LEDs and LDs. The development of Si-based light sources has been ham-
pered by its indirect bandgap, which restricts its ability to generate light efficiently via
interband transitions (Fig. 6.2-4). Over the years, extensive efforts have been devoted to
surmounting this roadblock, either by mitigating the indirect nature of silicon’s bandgap
or by avoiding it altogether. Early efforts directed toward increasing the efficiency of
light emission involved the use of alternatives to its crystalline form, such as porous
silicon (in which nanopores pervade the diamond structure); silicon nanocrystals, su-
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perlattices, and quantum dots (Example 6.6-2); and Er3+-doped silicon-based hosts
and superlattices. To date, none of these approaches has been particularly successful,
however. A more fruitful approach has been to co-opt light-emitting interactions in
silicon other than those associated with interband transitions. In particular, the silicon
Raman laser relies on stimulated Raman scattering and is thus indifferent to the nature
of the bandgap. Still, Raman devices require optical rather than electrical pumping,
which reduces their appeal for many applications. Yet, silicon Raman lasers have been
successfully integrated with direct-bandgap emitters such as InP that serve as an optical
pump.

Fortunately, substantial progress has been made in recent years in implementing
silicon-based on-chip light sources for use in photonic integrated circuits (PICs).
Three approaches are currently in use, each with its own limitations and merits:

1. Flip-chip integration (direct-mounting integration) of III–V laser diodes into a
separately fabricated silicon platform, often with optical butt coupling. This approach,
which makes use of solder bumps, requires sub-micrometer-scale alignment precision
and is not scalable to large wafer volumes or complex laser designs, but it is straight-
forward.

2. Heterogeneous integration (hybrid approach) of III–V lasers into prepatterned sil-
icon circuits, typically via wafer bonding and with optical evanescent coupling to evade
lattice-matching limitations. This approach is incompatible with the clean CMOS-
foundry environment. However, it accommodates a whole host of materials and can
also relegate photon storage to the undoped silicon platform (with its low loss and high
Q) via hybrid modes, thereby facilitating the fabrication of narrow-linewidth, dense-
comb, and mode-locked lasers.

3. Direct heteroepitaxial growth of III–V lasers on Si substrates using intermediate
buffer layers to minimize dislocations in the light-emitting region. This approach is
encumbered with the large lattice-constant and thermal mismatches between Si and III–
V materials, which result in dislocations that reduce efficiency by acting as nonradiative
recombination centers. However, this can be largely counterbalanced by employing
quantum-dot, rather than quantum-well emitters, since: 1) quantum dots are less af-
fected by the threading dislocations initiated by lattice and thermal mismatches, and
2) quantum dots enjoy substantially reduced sensitivity to temperature changes.

On balance, direct heteroepitaxy appears to be the most attractive alternative for
large-scale, low-cost, fabrication of silicon-based on-chip light sources.

It is worth noting that group-IV photonics also offers a route to the development of
on-chip light sources via combinations of indirect-bandgap semiconductors such as Si,
Ge, Sn, and C. Germanium-based structures are leading the way, although considerable
challenges remain. Interestingly, the use of such materials is not new: the first LED,
dating to 1907, was a forward-biased SiC Schottky diode (p. 169).
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The trichromatic theory of color vision was proposed in 1801 by Thomas Young (1773–1829), an
English physician, and extended by the German scientist Hermann von Helmholtz (1821–1894) in
1850. The theory postulates that there are three types of color receptors in the eye and that they suffice
for perceiving all colors in nature.
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Parts I and II of this book (Chapters 1–7) are devoted to chronicling the properties of
light and describing various means for generating it. Parts III and IV (Chapters 8–11),
in contrast, are dedicated to describing the detection and perception of light. The design
of LED lighting systems requires a thorough understanding of how the human visual
system operates and how colors (including white) are perceived. This chapter introduces
the fundamental principles that underlie color vision while Chapter 9 describes the
perception of color.

The visual system comprises two parallel but interconnected structures. The scotopic
visual system relies on rod photoreceptors that contain the rod opsin photopigment
(also called scotopsin) and operate at very low light levels and only in gray-scale.
The photopic visual system, in contrast, relies on three types of less-sensitive cone
photoreceptors that contain cone opsin photopigments (also called photopsins) and
operate at normal light levels and in color. The rods are situated in the peripheral visual
field and provide high sensitivity (at the expense of visual acuity), whereas the cones
are principally localized in the central visual field and offer high visual acuity (at the
expense of sensitivity).

The presentation in this chapter begins with a macroscopic (systemwide) purview
and draws to a close from a microscopic (cellular) perspective. We begin with an
overview of the central pathways in the visual system that govern the transfer of
information from the retina to the cortex (Sec. 8.1). This is followed by a description
of the structure and function of the components of the peripheral visual system that
involve image formation and image transduction, i.e., the eye (Sec. 8.2) and the retina
(Sec. 8.3), respectively. We proceed to discuss the light-sensitive photoreceptors in
the retina, namely the rods and cones (Sec. 8.4). In particular, we examine their
morphology, phototransduction processes, interplay with other types of cells in the
retina, and spatial distribution across the retina and fovea.

We then turn to the trichromatic theory of color vision (Sec. 8.5), which was pro-
posed by Thomas Young (p. 234) in 1802 and refined some fifty years later by Hermann
von Helmholtz (p. 234) and James Clerk Maxwell (p. 24). The Young–Helmholtz theory
has been eminently successful in explaining color vision.† They postulated that the eye
contained three types of photoreceptors, now called cones, that responded in different
wavelength regions and that different relative strengths of their signals were interpreted
by the brain as different visible colors. The three types of photoreceptors were said to
be short-, middle-, and long-preferring, now called S-, M-, and L-cones. Young and
Helmholtz were evidently unaware of earlier work by Palmer that had espoused the
concept of three different color receptors in 1777 (Palmer’s manuscript was not found
until 1956). We present modern results for the cone spectral sensitivities, the relative
effectiveness of light of different wavelengths in stimulating the photopic visual system.

This is followed by an examination of the relation between the trichromatic and
opponent-process theories of color vision (Sec. 8.6). We rely on color blindness, tetra-
chromacy in some humans, and non-trichromatic vision in the animal kingdom to illus-
trate that trichromatic vision is not universal (Sec. 8.7). We then introduce radiometric
and photometric units to provide quantitative metrics that can be used to describe the
physical and perceptual features of color vision, respectively (Sec. 8.8). We conclude
by examining the collection of luminous efficacies and efficiencies that serve as key

† T. Young, The Bakerian Lecture. On the Theory of Light and Colours, Philosophical Transactions of the
Royal Society of London, vol. 92, pp. 12–48, 1802; H. L. F. von Helmholtz, Physiologische Optik, in G. Karsten,
ed., Handbuch der physiologischen Optik, Volume 9, Allgemeine Encyklopädie der Physik, pp. 1–874, Leopold
Voss (Leipzig), 1867 [Translation: Handbook of Physiological Optics, N. Wade, ed. and J. P. C. Southall, translator,
Thoemmes Continuum (Bristol), 2000].
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measures LED lighting.

8.1 VISUAL PATHWAYS

The process of visual detection is complex and relies on a host of interdisciplinary and
interconnected processes that involve signaling in different modalities and at different
scales. The percept of a simple flash of light, for example, entails a sequence of de-
tections and transductions that involve multiple cascaded mechanical, chemical, and
electrical processes.

The principal pathways for the transmission of information from the peripheral visual
system to the cortex are highlighted in Fig. 8.1-1. The collection of retinal-ganglion-cell
axons that originate at the retina and comprise the optic nerve (cranial nerve II) carry
visual information in the form of action potentials to neurons in the lateral geniculate
nucleus, which resides in the thalamus (all sensory information, with the exception of
olfaction, is routed through the thalamus on its way to the cortex). Retinal-ganglion-cell
axons also project to other sub-cortical areas in the midbrain, including the superior
colliculus, where visual, auditory, and somatosensory information are coordinated and
where rapid saccadic eye movements originate; and also to the pretectal region, where
pupillary reflexes are produced. Axons from the geniculate project to the primary
visual cortex, a sub-region of the visual cortex.

Figure 8.1-1 Visual information flows, via
the optic nerve and optic tract, from the retina
in the peripheral visual system to the lateral
geniculate nucleus and superior colliculus in the
central visual system, and thence, via the optic
radiation, to the visual cortex in the occipital lobe
of the brain.

A more detailed view of the wiring diagram of the visual pathways is provided in the
two panels of Fig. 8.1-2. Each optic-nerve bundle comprises approximately 1.2 million
retinal-ganglion-cell axons (also called optic-nerve fibers). As schematized in this
figure, at the optic chiasm each eye sends half of these axons to regions on the same
(ipsilateral) side of the brain and the other half to regions on the opposite (contralateral)
side. The pathways are wired such that each geniculate receives input only from the
contralateral half of the visual field via the optic tract; the two halves of the visual
field (hemifields) are distinguished by the dark and light shadings at the entrances to
the eyes in Fig. 8.1-2. As an example, an object in the right visual field is imaged on the
nasal retina of the right eye, whose optic-nerve fibers project solely to the left geniculate.
In short, the left geniculate receives information from ganglion-cell axons in both eyes,
but all arriving axons are linked to the right visual field. Similarly, the right geniculate
is innervated only by ganglion cells linked to the left visual field.

The horizontal field-of-view available in human vision is roughly 200◦, of which
about 160◦ is available to each eye and approximately 120◦ is binocular (seen with both
eyes), which enables distance and depth to be estimated. The vertical field-of-view is
about 135◦ and the solid angle subtended by each eye is estimated to be Ω ≈ 4.57 sr.
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The geniculate neurons in turn project, via the optic radiation, principally to layer 4
of a sub-area of the human visual cortex known by several interchangeable names:

Primary visual cortex.
Visual area 1, denoted V1.
Striate cortex.
Brodmann’s area 17.

Higher-level areas of the visual cortex, denoted V2–V5 and schematically labeled in
Fig. 8.1-2, are dedicated to various aspects of visual perception:

1. V1 deals with processing the elementary features of a visual scene such as edges,
orientations, colors, and contrast.

2. V2 is involved in processing information related to orientation, luminance, and
color.

3. V3 is responsible for the analysis of spatial frequency and stereoscopic depth.
4. V4 plays a key role in color perception and object recognition.
5. V5 (also known as middle-temporal or MT) is dedicated to motion and depth

perception.
Each of these areas exhibits a columnar cortical structure and there are extensive feed-
back connections back to the LGN and among the different areas.

The two brain hemispheres communicate via the corpus callosum, which contains
some 200 million nerve fibers.

Figure 8.1-2 Top view of the visual system that reveals the information flow from the retina to the
superior colliculus and lateral geniculate nucleus via the optic nerve and optic tract. All ganglion-cell
axons responsive to a particular half of the visual field, comprising half of all optic nerve fibers from
each eye, meet at the optic chiasm and continue via the optic tract to the contralateral geniculate. The
optic radiation comprises geniculate-cell axons carrying information to the primary visual cortex (area
V1), which resides in the occipital lobe of the brain. The corpus callosum permits the two halves of
the brain to share information.

8.2 EYE

The optics of the eye, portrayed in simplified form in Fig. 8.2-1, serves to project a two-
dimensional image of visual space onto the retina. The bulb of the eye, also called the
globe, is roughly spherical in shape so that the location of its various features can be
conveniently described in terms of the azimuthal angle, polar angle, and radial distance
in a spherical coordinate system. Together with its appendages, the globe is recessed in
a protective, pyramidal, bony socket in the skull called the orbit, within which it may
move in three dimensions.
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Figure 8.2-1 Principal components of the
eye. The spatial configurations of the iris and
lens change autonomically as the light level and
object distance are modified, respectively. Like
an adjustable camera f -stop, the iris governs
the amount of light admitted to the eye via the
pupil. The thickness of the lens is altered by the
ciliary muscle surrounding it, which changes its
focusing power and enables it to selectively focus
on an object at a particular distance.

The elements of the eye, most of which contain multiple cellular layers, serve the
following functions:

Cornea. The cornea protects the eye from damage. Its anterior surface is approx-
imately spherical, with a radius of curvature typically just under 8 mm, which
serves as a lens and is responsible for about 2/3 of the eye’s refractive power.
Aqueous Humor. The aqueous humor is the transparent fluid that fills the space
between the cornea and the lens. It provides nutrients for both, which are avascular
to ensure transparency, and maintains the intraocular pressure.
Pupil. The pupil admits light to the eye. Its diameter, which is governed by the
smooth muscles of the iris, changes from about 8 mm to 1.5 mm as the ambient
light goes from dim to bright. The retinal image is of optimal quality when the
effects of aberration and diffraction are balanced, which corresponds to a pupil
diameter of about 2.5 mm.
Iris. The iris autonomically expands or contracts with the level of ambient light
to control the amount of light entering the pupil. The circular ciliary body, which
produces the aqueous humor, is an extension of the iris.
Lens. The lens, an avascular and transparent structure, is responsible for the re-
maining 1/3 of the refractive power of the eye. It autonomically adjusts its focal
length f to provide a crisp image at the retina. When viewing objects close at
hand, the ciliary muscle adjacent to the lens contracts and the lens becomes more
bulbous, which decreases its focal length and makes it optically more powerful;
this process is known as accommodation. The lens is often assumed to obey the
thin-lens imaging equation 1/z1 + 1/z2 = 1/f (Sec. 1.5), but its refractive index
increases toward its center so it is more properly considered as a graded-index
(grin) optical element (Sec. 2.5).
Vitreous Humor. The vitreous humor is the transparent fluid that fills the space
between the lens and the retina. It serves to maintain the spherical shape of the eye
while acting as a shock absorber and, like the aqueous humor, helps maintain the
lens.
Sclera. The sclera is the opaque white outer layer of the eye that serves as its
supporting wall and protects it from injury. Strong and fibrous, it extends from
the optic nerve to the outer edge of the cornea, with which it is contiguous. The
sclera is covered by conjunctiva, clear mucus membranes that lubricate the eye.
Extraocular muscles attached to the sclera move the globe as a whole.
Choroid. The choroid, which lies beneath the sclera, contains melanin-pigmented
connective and vascular tissue. It provides the blood supply for the photoreceptor
layer of the retina and absorbs stray light. The choroid, ciliary body, and iris
comprise the uvea.
Retinal Pigment Epithelium. The retinal pigment epithelium (RPE) consists of
a single layer of melanin-containing cells that lies between the choroid and the
photoreceptor layer of the retina, for which it provides protection and maintenance.
The RPE absorbs scattered light, thereby preventing back-reflection, and provides
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metabolic support.
Retina, Macula, and Fovea. The two-dimensional image projected onto the retina
by the optics of the eye is detected by the light-sensitive rods and cones (collec-
tively called photoreceptors) that reside therein. The retina’s neural circuitry, fed
by the photoreceptor outputs, processes and encodes the image information into a
parallel stream of action potentials carried to higher visual centers by the retinal-
ganglion-cell axons. Action potentials are required to traverse these relatively long
distances. The macula and fovea are sub-regions of the retina.
Optic Disc. The optic disc (optic nerve head) is a raised, nearly circular region on
the retina located about 3–4 mm to the nasal side of the fovea, where the retinal-
ganglion-cell axons that comprise the optic nerve exit the eye. This region is devoid
of photoreceptors and corresponds to the blind spot of the eye.
Fundus. The posterior lining of the eye that lies opposite the pupil and comprises
the retina, macula, optic disc, and their attendant blood vessels is known as the
fundus.

The unit of refractive power widely used in visual science is the diopterD, which
is defined as the reciprocal of the focal length expressed in meters, i.e.,D = 1/f .

8.3 RETINA

The retina is an intricate layered structure that lines the posterior region of the eye. In
adults, it lies approximately 25 mm posterior to the cornea, has an area of about 10 cm2,
and is nominally 270-µm thick. The function of the retina is to detect the optical image
focused on it by the optics of the globe, to transduce that image into collections of neural
action potentials, and to arrange for these action potentials to be transmitted to higher
visual centers in the brain.

The retina is divided into several lateral regions with different anatomical character-
istics, as delineated in Fig. 8.3-1. The macula lutea is a region at the center of the pos-
terior retina opposite the pupil that has, roughly speaking, a diameter of about 5.5 mm
(18.3◦ of visual field). The macula contains protective, antioxidant, carotenoid pigments
that filter out damaging blue light and render it yellowish in color. The macula in turn
comprises a number of roughly circular subregions that contain cells with different
morphologies and functions (the diameters of these subregions are indicated):

Figure 8.3-1 Diagram displaying the principal lateral
regions of the retina and their rough dimensions: Area and
thickness of the retina: 10 cm2 and 270 µm, respectively.
Diameter of the macula: 5.5 mm (18.3◦). Diameter of
the fovea: 1.5 mm (5◦). Diameter of the foveola: 0.3 mm
diameter (1◦). Not shown in the diagram are the annular
perifovea and parafovea, nor is the central umbo displayed.
The conversion factor for length to degrees at the retina is
≈ 3.33◦/mm. The diagram is not to scale.

Perifovea. An annular region in the macula that circumscribes the parafovea. Mea-
sured from the umbo, it is an annulus of inner diameter 2.5 mm (8.3◦) and outer
diameter 5.5 mm (18.3◦). The width of the perifoveal band is thus 1.5 mm. The
perifovea principally contains rods but also contains some cones.
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Parafovea. An annular region of the macula that lies between the perifovea and the
fovea. Measured from the umbo, it is an annulus of inner diameter 1.5 mm (5◦) and
outer diameter 2.5 mm (8.3◦). The parafoveal band thus has a width of 0.5 mm.
Fovea. A circular region in the macula with a diameter of 1.5 mm (5◦). The fovea
takes the form of a depression within which the retinal thickness is reduced from
≈ 270 µm to ≈ 170 µm, since several cellular layers are eliminated. This serves to
diminish scattering and thereby to enhance visual acuity. The central region of the
fovea that is totally rod-free has a diameter of 0.5 mm (1.7◦). Although the fovea
comprises ⩽ 1% of the area of the retina, its output influences some 50% of the
cells in the visual cortex.
Foveola. This rod-free, capillary-free, and pedicle-free zone in the central area
of the fovea has a diameter of 0.3 mm (1◦). The paucity of S-cones (blue cones)
renders vision in this small region essentially dichromatic. The foveola contains
approximately 18000 specialized red (L-cones) and green (M-cones) cones; their
outer segments are about twice the length of those in the parafovea and they are
more densely packed than elsewhere. The foveola exhibits higher visual acuity
than other areas of the fovea.
Umbo. The very center of the foveola, with a diameter of 0.15 mm (0.5◦), offers the
highest visual acuity of all regions. The Müller cells that reside in the umbo, which
are unique in form, are glial cells that provide structural and nutritional support.

8.4 PHOTORECEPTORS

Photoreceptors are specialized retinal neurons that convert absorbed photons into
chemical and electrical signals that are processed by the neural circuitry of the retina
before being sent to higher centers in the visual system. There are two varieties, rod
photoreceptors and cone photoreceptors, called rods and cones for short, and their
structures are remarkably similar for all vertebrates. The human retina contains about
120 million rods, whose diameters and outer-segment lengths are roughly 2 µm and
30 µm, respectively in the region where their density is highest. It also contains some
6.5 million cones, whose diameters and outer-segment lengths are about 2 µm and
35 µm, respectively in the fovea. Both rods and cones use sophisticated adaptation
techniques to ensure that visual function is maintained over the daily twelve order-
of-magnitude variation in light level that reaches earth. Photoreceptors also exhibit
light-waveguiding capabilities [Fig. 1.6-1(c)]; their long axes point toward the light
rays that enter the eye at the pupil.
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Rods and Cones Serve Different Functions

Rods mediate scotopic vision (night vision) and offer the ultimate in sensitiv-
ity; when fully dark-adapted, and at luminances LV ≲ 10−2 cd/m2, rods can
reliably signal the absorption of a single photon. The threshold of rod vision
lies at about LV = 10−6 cd/m2. However, rods operate in gray-scale and are
rendered inoperative by saturation at photopic light levels. Their response
time is also significantly longer than that of cones.
Cones, so-named because the infoldings of their outer segments taper slightly
in some retinal regions, mediate photopic vision (day vision) at luminances
LV > 3 cd/m2 and excel at spatial and temporal resolution. Cones, which
enable color vision, do not saturate at high levels of steady illumination.
However, they are about a factor of 100 less sensitive than rods at scotopic
light levels.
Both rods and cones participate in mesopic (twilight) vision, which is opera-
tive at luminances in the range 0.01 ≲ LV ≲ 3 cd/m2.

Morphology
Although rods and cones have their own unique features, their structure and operation
are similar in many respects. As displayed in Fig. 8.4-1, both are divided into outer and
inner segments, and are conveniently represented in terms of four subcellular compart-
ments:

An outer segment (OS) that contains lipid bilayers housing opsin molecules co-
valently bound to chromophores (visual pigment) and is dedicated to the detection
of photons and phototransduction.
An inner segment (IS), containing metabolic machinery (mitochondria), that is
devoted to the synthesis of proteins and lipids (Golgi apparatus and endoplasmic
reticulum).
A cell nucleus in the inner segment that is the cell’s genetic locus and that regulates
its activities.
A synaptic terminal, lying at the edge of the inner segment and in the outer
plexiform layer, where a decrease in exocytosis of the neurotransmitter glutamate
signals an increase in incident light level at the photoreceptor OS.

Figure 8.4-1 Cellular features shared by vertebrate
rods and cones. The absorption of a photon at the outer
segment (OS) triggers a molecular conformational change
in an opsin molecule and the activation of its bound
chromophore, which then modifies the sodium-ion current
at the OS plasma membrane. Endowed with the spatial
and temporal information inherent in the optical stimulus,
this current modulates the neurotransmitter release at the
synaptic terminal. The neurotransmitter signal is fed to the
outer and inner plexiform layers of the retina, where analog
and digital signal processing take place, respectively. Ulti-
mately, the image information is encoded into neural spike
trains carried to higher visual centers by retinal-ganglion-
cell axons. The inner segment provides the photoreceptors
with energy and maintenance.
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Phototransduction
The transduction of light at the retina is the process whereby an optical image incident
on the outer segments of a collection of rods and cones is processed and ultimately
converted into a parallel stream of neural action potentials that propagate on the retinal-
ganglion-cell axons that form the optic nerve and optic tract, and that carry the infor-
mation to higher visual centers in the brain. The biochemical cascade underlying the
transduction process is complex but reasonably well understood.

As indicated in the caption to Fig. 8.4-1, the process is initiated at an individual
photoreceptor by the absorption of a photon, which triggers a molecular conformational
change in a retinal-based chromophore resident in the photoreceptor OS. That in turn
activates the opsin molecule to which the chromophore is bound, resulting in a modi-
fication of the sodium-ion current flow at the OS plasma membrane. Controlled by the
photoreceptor cell nucleus in the outer nuclear layer (ONL), the decrease in sodium cur-
rent causes the transmembrane potential of the entire cell to become hyperpolarized.
This reduces the internal calcium-ion concentration and ultimately leads to a decrease
in neurotransmitter exocytosis at the photoreceptor synaptic terminal located at the
edge of the inner segment (IS) in the outer plexiform layer (OPL).

The photoreceptor output signal undergoes analog signal processing controlled by
horizontal and bipolar cells in the OPL. Bipolar cells activated in response to an
increase in photon absorption at the photoreceptor level are termed on bipolar cells
whereas those activated in response to a decrease in photon absorption are termed off
bipolar cells. Both are present in the OPL and their concomitant responses, opposite
in sign, suggest that the important variable is the change in glutamate concentration
rather than its absolute value. Because the diurnal variation in ambient light level
is so large, the OPL circuitry is designed so that its output relays the contrast of
various features of the image rather than the absolute level of photoreceptor activity.
The center–surround receptive field structure of bipolar cells facilitates this process.
The inner plexiform layer (IPL) is the site where digital signal processing of the
temporal and complex features of the stimulus encoded in the photoreceptor output is
implemented by amacrine, interplexiform, and bipolar cells, whose somas lie in the
inner nuclear layer (INL).

The ganglion-cell layer (GCL) contains the somas of the retinal ganglion cells
(RGCs). on (off) bipolar cells are presynaptic to on-center (off-center) RGCs; both
generate random sequences of action potentials that propagate to the central nervous
system on axons found in the nerve-fiber layer (NFL). The information carried on these
axons is generally incorporated in the time-varying firing rate, which is superposed
on a background of randomly firing spontaneously action potentials that constitutes
noise. There are some 30 types of RGCs, each of which forms a mosaic that spatially
tiles the retina and constitutes a unique representation of the visual scene. The different
representations are computed in parallel by relying on retinal neural circuit elements
that are concomitantly configured in multiple ways.

The collected outputs of the RGC mosaics are carried to higher visual centers in
parallel by the 1.2 million RGC axons of the optic nerve. The optic nerves from both
eyes decussate at the optic chiasm and become the optic tracts, each responsive to a
different hemifield. The constituent RGC axons project to the lateral geniculate nuclei
in the thalamus, as displayed in Figs. 8.1-1 and 8.1-2.

EXAMPLE 8.4-1. OCT Imaging of the Retina. The retinal layers involved in the transduction
process described above can be viewed by making use of optical coherence tomography (OCT), a
noninvasive, non-contact, in vivo imaging technique that relies on light interferometry. A test beam
from the instrument directed at the pupil passes through the vitreous and impinges normally on the
retina. Axial sections that reveal the reflectances and depths of the various retinal layers are obtained
at multiple locations. The technique is also useful for imaging the optic nerve head and the anterior
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eye. The axial and lateral resolution available with OCT retinal imaging is in the vicinity of 1–15 µm.
Superior resolution is attained by making use of adaptive optics in conjunction with OCT (AO-OCT).
This imaging technique has proven to be highly effective for imaging multilayered media in other
disciplines as well.

OCT imaging was initially implemented in the time domain by making use of an interferometric
configuration in which echoes were successively recorded from refractive-index boundaries in a sam-
ple as an auxiliary mirror increased the observation depth. The development of spectral-domain OCT
(SD-OCT) constituted a substantial advance since it allowed echoes from the entire depth of the sam-
ple to be simultaneously measured, which provided higher detection sensitivity, data-acquisition rates,
and resolution. Swept-source OCT (SS-OCT), perhaps the most effective variation on the theme,
makes use of a frequency-swept diode laser as the light source and yields superior efficiency. SS-OCT
also provides deeper tissue penetration since it operates at longer wavelengths, further improving
performance.

An OCT scan collected from the macula of a normal subject is displayed in Fig. 8.4-2. The eight
boundaries separating the principal retinal layers are highlighted in color and the layers are identified
at the bottom of the figure.

Figure 8.4-2 Cross-sectional image of the normal macula, which contains the fovea, obtained
using spectral-domain optical coherence tomography (SD-OCT). The key at the bottom of the figure
identifies the retinal layers; the eight boundaries separating them are highlighted in different colors.
The roles played by the various layers in the transduction of light at the retina were described
earlier. (Data adapted from S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu,
Automatic Segmentation of Seven Retinal Layers in SDOCT Images Congruent with Expert Manual
Segmentation, Optics Express, vol. 18, pp. 19413–19428, 2010, Fig. 1.)

Photoreceptor Spatial Density
The spatial density of rods and cones across a horizontal retinal strip (number/mm2),
from the umbo at 0◦ retinal eccentricity (azimuthal angle) to approximately 80◦ in the
temporal and nasal retinas, is plotted in Fig. 8.4-3. There is some variation in the curves
across individuals. The density of cones (green curve) is highest at the umbo, which is
devoid of rods, while the density of rods (blue curve) is highest at ≈ 17.5◦ eccentricity
in the temporal retina, where there are few cones. The spatial extents of the fovea and
macula are indicated below the plot (horizontal red bars). The five micrographs at the
top of the plot illustrate representative configurations of rods (blue dots) and cones
(green dots) at several eccentricities. The diameters of the rods and cones become
larger toward the periphery, as can be discerned from the sketches. The increasing rod
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diameters compensate for the decreasing rod density as the eccentricity increases, so
that essentially all of the light falling on the retina is intercepted.

Figure 8.4-3 Spatial density of rods and cones across a horizontal strip of the retina that contains
the fovea and optic disc, from the umbo (0◦ retinal eccentricity) to ≈ 80◦ in the temporal and nasal
retinas. The density of cones is highest at the umbo while the density of rods is highest at approximately
17.5◦ eccentricity in the temporal retina, which is more convenient for carrying out experiments since
it is not obscured by the optic disc. The spatial extents of the fovea and macula are indicated at the
bottom of the plot. The micrographs above the plot are horizontal sections at the photoreceptor layer,
all taken with the same magnification, that illustrate representative rod and cone configurations. (Data
adapted from citealp*osterberg35; citealp*curcio90; and citealp*rodieck98.)

Foveal Cone Mosaic. The central region of vision with the highest acuity, the fovea,
contains mainly cones (Fig. 8.4-3). The distribution of S-, M-, and L-cones for a normal
subject at an eccentricity of 1.2◦ nasal, just a tad beyond the foveola, is illustrated
in Fig. 8.4-4. Foveal cones are in large part packed tightly in a hexagonal configu-
ration; at this eccentricity the cone spacing and density are ≈ 4 µm and ≈ 40000
cones/mm2, respectively. The proportion of M- and L-cones varies widely for subjects
with normal color vision and each type of cone is spatially distributed in more-or-less
random fashion. The S-cones are not nearly as closely spaced as the M- and L-cones
because the short-wavelength component of the image at the retina (to which the S-
cones are sensitive) is blurred as a result of axial chromatic aberration in the eye’s lens;
hence, closer spacing would not improve acuity. Approximately half the fibers in the
optic nerve carry information from the fovea; the other half carry information from the
remainder of the retina.

Figure 8.4-4 Foveal cone mosaic. The distribution of S-, M-, and
L-cones for a retinal patch at 1.2◦ eccentricity (nasal) for a subject
with normal color vision. In this pseudocolor image, the S-, M-, and
L-cones are portrayed as blue, green, and red, respectively. Of the
roughly 700 cones featured in this image, the S-, M-, and L-cones
constitute 6%, 32%, and 62% of the total, respectively. (Data adapted
from H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams,
Organization of the Human Trichromatic Cone Mosaic, Journal of
Neuroscience, vol. 25, pp. 9669–9679, Fig. 4, 2005.)
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8.5 TRICHROMATIC VISION

In the normal human retina, color vision is mediated by three types of cones, each
containing a different opsin and exhibiting a unique spectral response:

S-cones (blue cones), with peak sensitivity at a Short wavelength (≈ 425 nm).
M-cones (green cones), with peak sensitivity at a Middle wavelength (≈ 535 nm).
L-cones (red cones), with peak sensitivity at a Long wavelength (≈ 565 nm).

Cones are widely referred to as blue, green, or red, but these designations are misleading
for two reasons: 1) the peak sensitivities of the three types of cones are in the violet,
green, and yellow-green, respectively, rather than in the blue, green, and red (Figs. 2.4-1
and 8.5-1); and 2) the color sensation elicited when a particular type of cone is excited
is not simply blue, green, or red.

Trichromacy is not a property of the incident light, but rather is a consequence
of the presence of three types of cone photoreceptors in the human retina.

Cone Spectral Sensitivities
Humans derive color information from the relative responses of three types of cones,
each with a unique visual-sensitivity spectrum. Figure 8.5-1(a) displays the psy-
chophysical spectral sensitivity, on linear coordinates and normalized to unity, for
S-, M-, and L-cones. These curves are known as the cone fundamentals. The spectral
peaks for S-, M-, and L-cones generally fall in the ranges 420–430, 530–535, and
560–565 nm, respectively; the three opsins underlying the cone sensitivities comprise
different amino-acid sequences, and there is significant variability of opsin genotype
among normal humans. Both energy-based and photon-number-based versions of the
sensitivity curves have been established [the relationship is spelled out in (3.4-6)].

The magnitudes of the weighted versions of these curves, displayed in Fig. 8.5-1(b),
nominally reflect the relative densities of each cone type in a typical normal observer
(see caption of Fig. 8.4-4). Every curve displayed in Fig. 8.5-1(a),(b) is sufficiently
broad that it extends over an appreciable portion of the visible spectrum and the collec-
tion of curves in each panel spans the entire visible spectrum. Consequently, it is not
possible to excite only one type of cone with a physical light source.

EXAMPLE 8.5-1. Iodopsin Absorptions Predict Photopic Visual Sensitivity. The
wavelength dependencies of the behavioral and biological sensitivities associated with the S, M, and
L cones are illustrated in normalized form, on semilogarithmic coordinates, in Fig. 8.5-2. The three
curves represent human psychophysical measurements carried out with protanopic, deuteranopic, and
tritanopic observers (definitions provided in Example 8.7-1), and have been corrected for wavelength-
dependent filtering imposed by the lens and macular pigment. A similar plot is presented in Fig. 8.5-
1(a) on linear coordinates. The symbols represent the normalized absorption spectra of the underlying
cone opsin molecules, determined spectroscopically and also corrected for wavelength-dependent
filtering. The cone opsins, or photopsins, are also called iodopsins when bound to a chromophore.
The small volumes of cone opsins available in the eye precluded the direct determination of their
absorption spectra until suitable laboratory techniques were developed in the 1990s. Based on the
alignment of the curves with the symbols, the behavioral data can be said to follow from the biological
data.

Photopic Luminous Efficiency Function
The photopic luminous efficiency function V (λO) displayed in Fig. 8.5-3, also known
as the photopic luminosity function, represents the overall measured photopic sen-
sitivity curve as a function of the wavelength λO for a standard trichromatic human
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Figure 8.5-1 (a) Normalized psychophysical spectral sensitivity curves for S-, M-, and L-cones
on linear coordinates; the peaks have values of unity and occur at the wavelengths 445, 540, and 565
nm, respectively, in these particular data. The M and L curves overlap extensively since the molecular
structures of their underlying opsins are quite similar. These curves, called the cone fundamentals,
are also designated s̄(λO), m(λO), and l̄(λO), respectively, and serve as color matching functions for
the LMS color space discussed in Sec. 9.5. (Data adapted from A. Stockman, L. T. Sharpe, and
C. Fach, The Spectral Sensitivity of the Human Short-Wavelength Sensitive Cones Derived from
Thresholds and Color Matches, Vision Research, vol. 39, pp. 2901–2927, 1999 and A. Stockman
and L. T. Sharpe, The Spectral Sensitivities of the Middle- and Long-Wavelength-Sensitive Cones
Derived from Measurements in Observers of Known Genotype, Vision Research, vol. 40, pp. 1711–
1737, 2000. ) (b) S-, M-, and L-cone spectral sensitivity curves weighted by their relative densities
at an eccentricity of 1.2◦ (see caption of Fig. 8.4-4).

Figure 8.5-2 Normalized human psychophysical
sensitivities associated with the three types of cones
(S – – , M · · · , L — ), vs. the free-space wave-
length λO. Normalized absorption spectra for the
three underlying cone iodopsins (S ▲ , M ▷◁ , L x)
vs. λO. The two sets of data are in accord. (Data
adapted from A. Stockman, D. I. A. MacLeod, and
N. E. Johnson, Spectral Sensitivities of the Human
Cones, Journal of the Optical Society of America A,
vol. 10, pp. 2491–2521, 1993.)

observer, normalized to unity at its peak (λO = 555 nm). As such, V (λO) is a sum of
the weighted spectral sensitivity curves for the M- and L-cones portrayed in Fig. 8.5-
1(b). The S-cones play a negligible role in this enterprise since there are few in the
fovea.

The photopic luminous efficiency function was adopted as a standard by the Com-
mission Internationale de l’Éclairage (CIE, International Commission on Illumination)
in 1924 (see introduction to Chapter 9). An updated version for daylight adaptation,
denoted V ∗(λO), was set forth in 2005.† It should be kept in mind, however, that V (λO)
varies among observers and is affected by the spatial properties of the target, the retinal
location, and the mean state of chromatic adaptation. An analogous scotopic luminous
efficiency function, V ′(λO), was adopted as a standard by the CIE in 1951.

The photopic luminous efficiency function is a representation of the relative
effectiveness of light of different wavelengths in stimulating the photopic visual
system.

† L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, A Luminous Efficiency Function, V ∗(λ), for Daylight
Adaptation, Journal of Vision, vol. 5, pp. 948–968, 2005; A Luminous Efficiency Function, V ∗

D65(λ), for Daylight
Adaptation: A Correction, Color Research and Application, vol. 36, pp. 42–46, 2011.
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Figure 8.5-3 The photopic luminous effi-
ciency function V (λO) is the overall measured
photopic sensitivity curve, plotted as a func-
tion of the free-space wavelength λO, for a
standard human observer. This dimensionless
normalized function, which attains its peak
value of unity at λO = 555 nm, is a sum of the
weighted M and L spectral sensitivity curves
displayed in Fig. 8.5-1(b); the S cones play a
negligible role. V (λO) represents the relative
effectiveness of light of different wavelengths
in stimulating the photopic visual system.

EXAMPLE 8.5-2. The Color of Near-Infrared Light. A substantial body of research, dating
to Helmholtz’s time, shows that the perception of light by humans extends over a wavelength range
far greater than that usually recognized, which is 380–780 nm. In experiments carried out with lasers
operated at five different near-infrared wavelengths, Sliney reported in 1976 that the photopic lumi-
nous efficiency function V (λO) displayed in Fig. 8.5-3, when plotted on semilogarithmic coordinates,
extended over a far broader range of wavelengths, namely 310–1100 nm (the details vary with the
radiance of the source and there is variation among individual observers). He established that there
was no sharp perceptual dividing line between the spectral regions conventionally referred to as visible
and near infrared. Sliney further reported that all wavelengths in the range 625–1100 nm appear red
to the normal observer. Indeed, Keyes and Quist (p. 198), in their initial reports on the development
of the GaAs LED in 1962, reported that the 930-nm radiation emitted from their device was visible
and was perceived as red (see footnote on p. 199).

Univariance
Cones do not directly sense the wavelength of the incoming photons: The absorption of
a photon at the outer segment of a cone triggers an all-or-none conformational change in
the chromophore, whatever the photon’s wavelength. However, for a cone of a particular
type, the rate of photon absorption from a beam of light of a given wavelength is
proportional both to the absorption spectrum of the cone at that wavelength and to
the incident photon flux; the closer the wavelength of the photon is to the spectral peak
and/or the larger the photon flux, the greater the absorption rate. Consequently, different
combinations of wavelength and photon flux can result in an identical cone response, a
principle known as univariance. W. A. H. Rushton, the vision scientist who formulated
this principle, put it this way: “The output of a receptor depends upon its quantum catch,
but not upon what quanta are caught.”

Trichromatic vision is mediated by local comparisons of the relative photon-
absorption rates of the three types of cones, and not by the direct sensing of the
wavelengths of the incident photons. Just as mixing the light of three primary
colors suffices for generating all visible colors, comparing the light absorbed
by three types of cones suffices for perceiving all visible colors.

8.6 OPPONENT CHANNELS
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Two plausible and competing theories of color vision emerged in the nineteenth century.
The first was the Young–Helmholtz trichromatic theory of 1801/1850 that follows natu-
rally from the presence of three types of retinal cones with distinct spectral sensitivities
[Fig. 8.5-1(a)].

The second was a theory proposed by the German physiologist Ewald Hering in 1874
that relied on opponent channels. Hering formulated his opponent-process theory in
response to observations that certain colors, when mixed, yield a composite that has
no hint of either of the two constituent colors. He noted, for example, that mixing red
and green never produced “reddish-green;” rather, it produced a color such as yellow
or gray. Nor did mixing blue and yellow ever produce “bluish-yellow.” The constituent
colors in these opponent pairs appeared to cancel each other.

This observation is in contrast to mixtures that do retain features of the constituent
colors, such as red and blue (magenta), blue and green (cyan), and red and yellow
(orange). Hering also observed patterns in the colors of afterimages; after fixating on
a red patch, for example, viewing a white screen yields a green afterimage. All of
these observations could not be reconciled within the confines of the Young–Helmholtz
theory and led Hering to propose that color vision involved three separate, spectrally
opponent (mutually antagonistic) channels: black–white (luminance), red–green, and
blue–yellow. In the mid-1950s, a series of influential hue-cancelation experiments car-
ried out by Dorothea Jameson and Leo Hurvich provided psychophysical evidence that
supported Hering’s observations.

Two-Stage Zone Model
The Young–Helmholtz and Hering theories, it turns out, are not mutually exclusive
but rather describe sequential stages of visual-system processing. Trichromatic theory
describes the initial stage of color vision, which is governed by the spectral character-
istics of the light entering the eye and involves the excitation of the L-, M-, and S-cone
outer segments (OS, Fig. 8.4-2); this is the first stage of the two-stage zone model. The
subsequent additive and subtractive neural interconnections among the outputs of the
cones that are configured in the outer plexiform layer (OPL) implement the opponent
channels; this is the second stage of the two-stage zone model.

More specifically, the signals from the three types of cones are selectively added
and subtracted to form three cone-opponent channels in the OPL, as schematically
illustrated in Fig. 8.6-1:

1. A black–white (luminance) channel is formed from the addition of the L- and
M-cone responses.

2. A red–green cone-opponent channel is formed from the subtraction of the M-cone
response from the L-cone response (or vice-versa).

3. A blue–yellow cone-opponent channel is formed from the subtraction of the sum
of the L- and M-cone responses from the S-cone response (or vice versa).

Figure 8.6-1 Schematic of the two-stage zone
model. The first stage comprises the OSs of the
L-, M-, and S-cones. Additive (solid arrows) and
subtractive (dashed arrows) signals are combined to
give rise to three channels at the second (OPL) stage:
the luminance channel L+M, the red–green cone-
opponent channel L−M and the blue–yellow cone-
opponent channel S−(L+M). The circles represent
generalized gain control that implements adaptation.

The combination of the cone signals, as schematized in Fig. 8.6-1, leads to results that
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can be quantitatively illustrated in the spectral domain by making use of the normalized
L-, M- and S-cone spectral sensitivity curves displayed in Fig. 8.5-1(a). Subtracting the
M curve from the L curve yields the L−M relative spectral sensitivity curve illustrated
as red in Fig. 8.6-2(a); this curve exhibits excitation when red is present and suppression
when green is present, thus representing opponency in the red–green chromatic channel.
Similarly, green–red opponency is represented by the M−L curve shown as green in
Fig. 8.6-2(a); this curve reveals excitation when green is present and suppression when
red is present. Evidently, suitably balanced mixtures of red and green light can cancel
activity on these channels. Analogously, subtracting the sum of the L and M curves from
the S curve in Fig. 8.5-1(a) yields the S−(L+M) curve illustrated as blue in Fig. 8.6-
2(b); this curve represents opponency in the blue–yellow chromatic channel. Simi-
larly, yellow–blue opponency is represented by the (L+M)−S curve shown as yellow
in Fig. 8.6-2(b). Spike-train recordings from color-opponent neurons yield analogous
curves, in which the zero level corresponds to the spontaneous firing rate, positive
values indicate firing rates above the spontaneous rate, and negative values indicate
firing rates suppressed below the spontaneous rate.

Figure 8.6-2 Relative spectral sensitivities of cone-opponent signals at the output of the second
stage of the zone model portrayed in Fig. 8.6-1. (a) Red–green opponency is represented by L−M
(red curve) and M−L (green curve). The red curve is positive at longer wavelengths that include red,
and negative at shorter wavelengths that include green. (b) Blue–yellow opponency is represented by
S−(L+M) (blue curve) and (L+M)−S (yellow curve). The blue curve is positive at shorter wavelengths
that include blue, and negative at longer wavelengths that include yellow. The wavelengths at the zero
crossings are indicated. Yellow is nominally represented as L+M since it derives from red plus green
(Fig. 9.1-2). (Adapted from A. Stockman and D. H. Brainard, Color Vision Mechanisms, in M. Bass,
C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. van Stryland,
eds., Handbook of Optics: Volume III – Vision and Vision Optics, 3rd ed., McGraw–Hill, Chap. 11,
Fig. 4 middle panels, 2010.)

While it is the cones that receive color, it is the visual system that perceives
color. Spectrally opponent color channels are silenced in the simultaneous
presence of suitably balanced opponent color mixtures.

The information generated in the three opponent channels is ultimately carried from
the retina to the lateral geniculate nucleus, and thence to higher visual centers. Red–
green information is usually provided to the four dorsal layers of the LGN via the axons
of parvocellular retinal ganglion cells (also called P, midget, and small-cell RGCs),
which are located in the ganglion-cell layer (GCL, portrayed in Fig. 8.4-2). The axons
of magnocellular retinal ganglion cells (also called M, parasol, and large-cell RGCs)
in the GCL, which project to the two ventral layers of the LGN, carry transient and
movement information. Certain S-cones in the retina feed koniocellular cells, which
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reside in the regions surrounding the LGN layers. The processing of color in the cortex
is more complex and less-well understood. In the end, however, the range of perceived
color gradations is enormous, as illustrated in Fig. 8.7-3.

Separation into Luminance and Chromaticity Components
As indicated above, trichromatic color vision is implemented by the three types of cones
that are present in the retina while opponent-channel color vision is implemented by
the subsequent neural circuitry that processes the outputs of the cones. The net result
is a separation of color into (chromatic) chromaticity components and an (achromatic)
luminance component. Transforming the cone signals into opponent signals has the
merit that it decorrelates the visual information carried by the cone signals, thereby
enhancing signal-transmission efficiency. It will become apparent in the sequel that
Grassmann’s first law (Sec. 9.2), along with the iconic CIE 1931 XYZ color space
(Sec. 9.5), reflect this separation.

8.7 NON-TRICHROMATIC VISION

Although ubiquitous, trichromacy is not a universal feature of human color vision.
Other configurations exist, as the following examples attest:

EXAMPLE 8.7-1. Color Blindness. While humans are ordinarily trichromats, there are nu-
merous variations on the theme of trichromacy. Some observers with color blindness, often referred
to as color-vision deficiencies (CVDs), have the usual three types of cones but the opsins therein do
not function normally; such observers are called anomalous trichromats. Other observers lack one or
more types of cones and fall in the category of dichromats or monochromats:

Anomalous trichromats possess three types of functioning cones, as do those with normal vision,
but one of their cone types has an anomalous opsin:

– Protanomaly indicates reduced sensitivity to red.
– Deuteranomaly indicates reduced sensitivity to green.
– Tritanomaly indicates reduced sensitivity to blue.

Dichromats have only two types of functioning cones; the third type is absent or impaired:
– Protanopia indicates the absence (or dysfunction) of L-cones.
– Deuteranopia indicates the absence (or dysfunction) of M-cones.
– Tritanopia indicates the absence (or dysfunction) of S-cones.

Monochromats have only one type of functioning photoreceptor. Although they are totally color
blind in accordance with the principle of univariance discussed above, they can nevertheless
distinguish some color samples in color-matching experiments by using their past experience to
associate perceived brightness with semantic color identifiers:

– Cone monochromats have only one type of functioning cone.
– Rod monochromats, also called achromats, are devoid of functioning cones but so have

functioning rods and are therefore not blind.
In comparison with observers endowed with normal vision, those with color blindness are more

likely to conflate different colors in color-matching experiments. The color wheels depicted in
Fig. 8.7-1 illustrate that CVD observers can perceive a limited number of spectral hues, or in the
case of monochromats, none at all. The precise nature of a color-vision abnormality depends on the
number of cone types involved and the extent of their dysfunction.

Females are less prone to color-vision deficiencies than males because the genes that give rise
to the L- and M-cone opsins reside on the X-chromosome. Females have two such chromosomes,
providing them with redundancy against an anomaly, whereas males have only one. Indeed, only about
0.4% of females are affected by CVDs, while about 8.5% of males are (the most common CVD is
deuteranomaly, which affects about 5% of males). The exception that proves the rule is tritanopia: the
gene that codes for the production of the S-cone opsin does not reside on the X-chromosome and both
females and males do indeed have the same incidence of CVDs.
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Figure 8.7-1 Left to Right: Color wheel as seen by: a normal color-vision trichromat; a
deuteranomalous trichromat; a protanopic dichromat; and a monochromat. The deficiencies are
defined in the text.

EXAMPLE 8.7-2. Tetrachromatic Human Vision. Some human observers have color-
perception experiences that are superior to those of trichromats. Retinal tetrachromats possess opsin
genotypes that lead to four, rather than three, types of retinal cones, which offers an enhanced visual
space. The perceptual capabilities of tetrachromats have been empirically compared with those of
trichromats, and it has been shown that tetrachromats benefit from a wider range of certain color-
perception variations, some of which can be accommodated within standard trichromatic theory.
Still, because the equipment and techniques used for conducting such experiments are geared to
trichromats, they may well be suboptimal for discovering unknown salutary features of tetrachromatic
vision.

Concetta Antico, an Australian-American artist who is a tetrachromat, is pictured in Fig. 8.7-2.
In principle, she can perceive about 1.5 times the number of color gradations than can a trichromat,
but it is difficult to quantify the range of advantages she possesses. Although tetrachromacy is not
uncommon in the human population as a whole, females are more likely to possess this enhancement
than males. As discussed in connection with Example 8.7-1, this is because the genotypes for the L-
and M-cone opsins reside on the X-chromosome; females have two such chromosomes, which enables
them to host a different variant on each. More than 15% of human females are tetrachromats but few
recognize that they are endowed with this special competence.

Figure 8.7-2 Color expert and artist Concetta
Antico is a tetrachromat and can perceive more
color gradations than a normal trichromat. More
than 15% of human females are tetrachromats, but
few recognize that they have this capability.

EXAMPLE 8.7-3. Color Vision in the Animal Kingdom. While humans are generally
trichromats, this is not the default in the animal kingdom. The number of cone types in the retina
depends on the species and, as displayed in Fig. 8.7-3, animals can be monochromats, dichromats,
trichromats, tetrachromats, or even multichromats (e.g., mantis shrimp, not shown). In analogy with
the enhanced incidence of tetrachromats among human females discussed in Example 8.7-2, male
squirrel monkeys and marmosets are dichromats while most females of those species are trichromats.
The greater the number of cone types, the larger the number of color gradations that can be discerned.
Human trichromats are estimated to be able to discern 2 million color gradations, comprising 500
luminance, 200 hue, and 20 saturation gradations. The principle of univariance dictates that the
perception of hue relies on the presence of two or more cone types; as an order-of-magnitude estimate,
therefore, dichromats and tetrachromats can perhaps discern 100 and 300 hue gradations, respectively.
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Figure 8.7-3 Animals can be monochromats, dichromats, trichromats, or tetrachromats. The
number of discernible color gradations increases with the number of cone types with which a species
is endowed. A substantial majority of humans are trichromats.

8.8 RADIOMETRIC AND PHOTOMETRIC UNITS

Radiometric Units
Radiometric units characterize the strength of a source of electromagnetic radiation,
such as light or infrared radiation, in terms of its physical properties. In the context of
wave optics, as described in Sec. 2.1, the simplest examples of such units are the optical
energy E , optical power P, and optical intensity (irradiance) I . Analogous examples
from the perspective of photon optics, provided in Sec. 3.4, are the mean photon number
n, mean photon flux Φ, and mean photon-flux density ϕ.

The radiometric measures most often employed in vision science and lighting tech-
nology are represented in the left-hand columns of Table 8.8-1. These include: radiant
energy (J), which is the total energy emitted by a point source in all directions; radiant
flux (W), which represents the radiant energy per unit time and corresponds to the
optical power; radiant intensity (W/sr), which is the power radiated per unit solid angle
(sr) about the source (radiant intensity should not be confused with optical intensity);
irradiance (W/m2), commonly referred to as intensity, which is the power per unit
area; and radiance (W/m2-sr), which is the radiant flux emerging from, or incident
on, an extended surface, per unit area of that surface, per unit solid angle. The radiance
is conserved in ray optics since both the irradiance and solid angle decrease as the
inverse square of distance; it is generally used for characterizing optical systems whose
acceptance solid angles and apertures are limited. The irradiance, on the other hand, is
more often used for characterizing optical systems that deliver light to large areas.

Spectral radiometric measures are also widely used for characterizing broadband
sources. Wavelength-based examples of spectral measures include the spectral radiance
Lλ, spectral irradiance Iλ, and spectral density Sλ of blackbody and graybody radiation,
as discussed in Sec. 9.7. Frequency-based examples of spectral measures include the
spectral irradiance Iν , spectral radiant fluxPν , and spectral radiant energyEν introduced
in Sec. 3.4.

Photometric Units
Photometric units incorporate the effectiveness of a source of visible light in exciting
the human visual system. Photometric units are designated by use of the subscript ‘V’
(for visual). The photometric measures most often employed in vision science and light-
ing technology are specified in the right-hand columns of Table 8.8-1. The photometric
counterparts of each of the radiometric measures set forth in the left-hand columns of
the table are: the luminous energy EV (lm-s) is analogous to the radiant energy (J); the
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Table 8.8-1 Common radiometric and photometric measures used in lighting technology.

radiometrica photometricb

Radiant energy E (J or W-s) Luminous energy EV (lm-s)
Radiant flux P (W) Luminous fluxc PV (lm)d

Radiant intensity I (W/sr) Luminous intensity IV (cd)e

Irradiance I (W/m2
) Illuminance IV (lx)f,g

Radiance L (W/m2-sr) Luminance LV (cd/m2
)h,i

aBroadband sources are often also characterized by spectral measures in radiometry.
bPhotometric units are subscripted with ‘V’ (for visual). cLuminous flux is also called luminous power.
dThe abbreviation for lumen is lm. eOne candela, abbreviated cd, is one lm/sr.
fOne lux, abbreviated lx, is one lm/m2. gWhen the light is emitted from a surface, the illuminance is also
called the luminous exitance (or luminous emittance) MV.
hOne cd/m2 signifies one lm/m2-sr and is equivalent to 0.3142 millilambert and to 0.2919 foot-lambert.
iAs discussed in the sequel, the brightness BV, which is the psychophysical magnitude estimate of the luminance,
increases with LV in fractional power-law fashion [see (8.8-7)].

luminous flux PV (lm) corresponds to the radiant flux (W); the luminous intensity IV (cd)
has as its counterpart the radiant intensity (W/sr); the illuminance IV (lx) is associated
with the irradiance (W/m2) and assumes that the light is incident on a surface [the
luminous exitance or luminous emittance MV assumes that the light is emitted from a
surface and has the same units (lm/m2)]; and the luminance LV (cd/m2) corresponds to
the radiance (W/m2-sr). The solid angle of interest is often that subtended by the pupil
of the eye. Just as the radiance is geometrically invariant in ray optics, so too is the
luminance.

Historically, the standard source of light used in photometric measurements was a
candle manufactured to certain specifications; this later evolved into a blackbody radi-
ator at 2042 K (the freezing point of platinum at atmospheric pressure). Subsequently,
photometric units were mathematically related to their radiometric counterparts by
invoking a standard observer, which obviated the necessity of having to establish pho-
tometric values by the direct visual observation of a stimulus by an individual observer.

In photopic photometry, the connection between the photometric and radiometric
measures provided in Table 8.8-1 is centered on the photopic luminous efficiency func-
tion V (λO) displayed in Fig. 8.5-3. This function represents the relative effectiveness
of light of different wavelengths in stimulating the photopic visual system, as discussed
in Sec. 8.5; it was established as a standard in the CIE 1924 photometry system, as
indicated in the introduction to Chapter 9.

Photometric measures are related to their radiometric counterparts via inner
products of the spectral versions of the radiometric measures and the photopic
luminous efficiency function V(λO). The integration is over wavelength, so the
inner products maintain their form for all spatial variants of these quantities,
including luminous flux, luminous intensity, illuminance, and luminance.

Luminous Flux
The luminous flux PV (lm) is proportional to the inner product of the wavelength-based
power spectral density of the incident light Sλ(λO) and the photopic luminous efficiency
function V (λO). The integration is carried out over the range of visible wavelengths,
which is conventionally taken to extend from 380 to 780 nm. The luminous flux is
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therefore expressed as

PV = 683

∫ 780

380

Sλ(λO)V (λO) dλO . (8.8-1)
Luminous Flux (lm)

The constant of proportionality 683.002 lm/W ≈ 683 lm/W linking photomet-
ric and radiometric measures reconciles modern and earlier definitions of the
candela.

For the special case of a monochromatic source of light of wavelength λO , the spectral
density Sλ(λO) is a delta function of area PO , so that (8.8-1) can be written as PV =
683

∫
PO δ(λ−λO)V (λ) dλ , where λ serves as a dummy variable. With the help of the

sifting property of the delta function in the integrand, we therefore obtain

PV = 683PO V (λO) . (8.8-2)
Luminous Flux (lm)

(Monochromatic Source)

Luminous Intensity
If the visible light emitted by a source takes the form of a well-defined cone of full
vertex angle (or radiation angle) 2θ, where θ is the angle measured from the emission-
plane normal, the luminous intensity IV may be expressed in terms of the luminous
flux PV as

IV =
PV

2π(1− cos θ)
. (8.8-3)

Luminous Intensity

The denominator of (8.8-3) represents the solid angle Ω subtended by the cone, which
is the area of the spherical cap atop the cone on a unit sphere.

EXAMPLE 8.8-1. Luminous Intensity as a Function of Radiation Angle. A light
source that emits 300 lm into a cone of radiation angle 2θ = 120◦ (which corresponds to the 50%-
power angle of a Lambertian radiator) produces a luminous intensity IV = PV/π ≈ 95.5 cd. For a
source that emits uniformly in all directions, 2θ = 360◦ and IV = PV/4π. At the opposite extreme,
when the source emits into a sufficiently small radiation angle, such that cos θ ≈ 1− θ 2/2, (8.8-3)
reduces to IV ≈ PV/πθ

2. In that case, if PV = 300 lm and the radiation angle is 2θ = 20◦, we have
θ = 10◦ ≈ 0.1745 rad so that IV ≈ PV/πθ

2 = 3135 cd.

Luminance and Illuminance
Luminance. As specified in Table 8.8-1, the luminance LV, whose units are cd/m2

(or equivalently lm/m2-sr), is the photometric counterpart of the radiance L, whose
units are W/m2-sr. The relevant area is the projected area A seen by the observer and
the relevant solid angle Ω is often that subtended by the pupil of the eye (Example 8.8-
2). In analogy with (8.8-1), the luminance is proportional to the inner product of the
wavelength-based spectral radiance of the incident light and the photopic luminous
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efficiency function over the range of visible wavelengths. The proportionality constant
is again fixed at 683 lm/W, which gives rise to

LV = 683

∫ 780

380

Lλ(λO)V (λO) dλO . (8.8-4)
Luminance (cd/m2)

For the special case of a monochromatic source of wavelength λO, the spectral radiance
Lλ(λO) is a delta function of areaL, whereL is the radiance, so that the sifting property
of the delta function in the integrand converts (8.8-4) to

LV = 683LV (λO) . (8.8-5)
Luminance (cd/m2)

(Monochromatic Source)

Luminance of a Lambertian Radiator. The luminance of a Lambertian radiator, such
as a source of blackbody radiation, is independent of the angle at which it is viewed
since both the intensity of the source and the projected area are proportional to the
cosine of the angle from the emission-plane normal [Fig. 7.2-2(a)]. Most flat-surface
sources, exit pupils of illuminating optical systems, and diffusely reflecting surfaces
behave approximately as Lambertian radiators. Emitters that behave as point sources,
in contrast, are isotropic radiators.

Illuminance. In accordance with Table 8.8-1, the illuminance IV, with units of lm/m2

(or equivalently lx), is the photometric counterpart of the irradiance I , with units of
W/m2. Again, in analogy with (8.8-1), the illuminance is given by

IV = 683

∫ 780

380

Iλ(λO)V (λO) dλO . (8.8-6)
Illuminance (lx)

EXAMPLE 8.8-2. Solid Angle Subtended by the Pupil of the Human Eye. Since a
circle has 2π radians and 360◦, conversion between the two takes the form θ (rad) = (2π/360) θ (deg).
The monocular horizontal and vertical fields-of-view subtended by the pupil are known to be
θx ≈ 160◦ and θy ≈ 135◦, corresponding to θx ≈ 2π160/360 = 8π/9 rad and θy ≈ 2π135/360 =
3π/4 rad, respectively. The solid angle subtended by the pupil can thus be estimated by constructing a
rectangular pyramid with its apex at the pupil, which subtends Ω = 4 sin−1[sin(θx/2) sin(θy/2)] sr.
Inserting the values provided above into this formula leads to Ω ≈ 4 sin−1[sin(4π/9) sin(3π/8)] ≈
4.57 sr. For a full hemisphere, the fields-of-view are θx = θy = π rad, which yields Ω ≈
4 sin−1[sin(π/2) sin(π/2)] = 4 sin−1[1] = 2π sr, as expected.

EXAMPLE 8.8-3. Natural-Light Luminance and Illuminance Levels. Typical values of
the photometric luminance LV and illuminance IV for a number of common sources of natural light
are set forth in Table 8.8-2, assuming that the intercepted solid angle Ω = 1/2 sr. The radiometric
irradiance (referred to as the intensity in the optics and photonics literature) for some of these same
sources of light is reported in Table 3.4-1.

EXAMPLE 8.8-4. Luminance Levels for a Tea-Light Candle. By way of illustration, an
image of a tea-light candle viewed with a luminance camera is portrayed in Fig. 8.8-1. As with the
palette of false colors used to represent temperature in thermography (Fig. 4.8-2), the false colors
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Table 8.8-2 Luminance and illuminance for various sources of natural light.

Luminance LV Illuminance IV
source (cd/m2) (lx)

Starlight 2× 10−2 1× 10−2

Moonlight 2× 10−1 1× 10−1

Nighttime 2× 100 1× 100

Twilight 2× 101 1× 101

Dark day 2× 102 1× 102

Overcast daylight 2× 103 1× 103

Bright daylight 2× 104 1× 104

Direct sunlight 2× 105 1× 105

Figure 8.8-1 Image of a tea-light candle, against
a black background, viewed with a luminance camera
manufactured by Technoteam Bildverarbeitung GmbH.
The various luminance levels (cd/m2), coded as false
colors, are indicated in the key on the right-hand side of
the figure. (Adapted from an image by Anders Thorseth,
24 May 2019, via Wikimedia Commons.)

used to display luminance levels in Fig. 8.8-1 are chosen arbitrarily. Furthermore, neither bears any
relationship to the real colors associated with the color temperatures displayed in Fig. 9.7-1(b).

Brightness
Magnitude estimation is a psychophysical paradigm in which an observer is asked to
judge the magnitudes of a series of stimuli of different strengths and to assign to them
numerical values, say on a scale between 0 and 100. Magnitude-estimation experiments
using stimuli of many different modalities were pioneered by S. S. Stevens in the 1950s.
The technique has long been known to be highly reliable when the measurements are
carefully conducted and properly analyzed.

In visual magnitude-estimation experiments, observers are instructed to view spots
of light and to estimate their brightnessBV as the luminanceLV is adjusted over a broad
range of values. Brightness is an attribute of visual perception according to which an
area appears to emit, transmit, or reflect, more or less light (Sec. 9.4). It is a psychophys-
ical variable that depends not only on the responses of the photoreceptors to a stimulus,
but also on the neural processing carried out at higher visual centers in the brain.

Under suitably constrained stimulus and observation conditions, the empirical rela-
tion that emerges from such experiments is a brightness–luminance formula that obeys
a fractional power-law form,

BV = b

(
LV

L0
− 1

)β
, (8.8-7)

Brightness–Luminance Relation

where BV is the perceived brightness, b and L0 are constants, and LV is the stimulus
luminance. The power-law exponent β typically lies in the range

1/4 ⩽ β ⩽ 1/2 , (8.8-8)
Brightness Exponent



8.9 LUMINOUS EFFICACY AND EFFICIENCY 257

so that it represents compressive behavior. For circular patches of light subtending a
few degrees of visual angle, observations are often consistent with β ≈ 1/3 , whereas
for point sources they are frequently closer to β ≈ 1/2 . Since luminance is invariant to
position, so too is brightness.

Brightness and luminance are often conflated. Brightness is a psychophysical
variable that relies on the responses of photoreceptors and higher-level neural
circuitry, whereas luminance is simply the photometric counterpart of radiance.

The psychophysical brightness–luminance relation presented in (8.8-7) is generally
applicable only in the absence of spatial contrast, i.e., for isolated, self-luminous sources
presented on a dark background. The observer is assumed to be adapted to dark or to
a steady luminance. Brightness enables object recognition over a vast range of diurnal
illumination levels (Sec. 8.5). Indeed, many color spaces, such as sRGB, implement an
expansive power-law nonlinearity at large values of the luminance, called the gamma
correction, to compensate for the intrinsic compressive power-law nonlinearity rep-
resented in (8.8-7). The viewing situation described above is substantially different
from that of normal viewing, where vision is dominated by contrast estimation (i.e.,
by differences in light level).

EXAMPLE 8.8-5. Brightness Ratio for Monochromatic Sources in Photopic Vision.
In the domain of photopic vision, LV/L0 in (8.8-7) is generally ≫ 1. Using (8.8-5), and assum-
ing that β ≈ 1/3 , the brightness–luminance relation provided in (8.8-7) can then be approximated
by BV(λO) ≈ b 3

√
LV(λO)/L0 = b 3

√
683L/L0

3
√
V (λO) . The ratio of perceived brightnesses for two

monochromatic sources of wavelengths λ1 and λ2, assuming they have the same radiance L and
roughly the same proportionality constant b, are then expected to obey

BV(λ1)

BV(λ2)
≈ 3

√
V (λ1)

V (λ2)
, (8.8-9)

Brightness Ratio
(Monochromatic Sources)

for both simultaneous and sequential viewing.

8.9 LUMINOUS EFFICACY AND EFFICIENCY

Several quantities are commonly used to characterize the performance of light sources
for illumination. Among these are measures of luminous efficacy, which carry units;
and measures of luminous efficiency, which are unitless and assume values that range
from zero to unity. In this section we compare and contrast the following quantities:

The luminous efficacy of radiation (LER) (lm/W).
The wall-plug luminous efficacy (WPE) (lm/W or LPW).
The wall-plug luminous efficiency (WPC).
The current luminous efficacy (CLE) (cd/A).

It is particularly important to distinguish between the luminous efficacy of radiation
and the more commonly used wall-plug luminous efficacy. As discussed in some detail,
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although these quantities are distinct they are often conflated since their appellations are
similar and both carry units of lm/W.

Luminous Efficacy of Radiation (LER)
The luminous efficacy of radiation (LER) is defined as the ratio of the luminous flux to
the radiant flux of a source, or equivalently, as the ratio of the luminance to the radiance,

ηLER =
PV

PO

=
LV

L
, (8.9-1)

Luminous Efficacy of Radiation (lm/W)

where PV and LV are defined in (8.8-1) and (8.8-4), respectively. The LER is a measure
of the efficacy of a source of light in exciting the photopic visual system and, as such,
converts watts to lumens.

Given the spectral density of an arbitrary source of light Sλ(λO), it is straightforward
to determine the LER: divide both sides of (8.8-1) by PO and calculate ηLER = PV/PO

using the normalized spectral density Sλ(λO)/PO. For the special case of monochro-
matic light of wavelength λO, inserting (8.8-2) in (8.9-1) yields

ηLER = 683V (λO). (8.9-2)
Luminous Efficacy of Radiation (lm/W)

(Monochromatic Source)

In particular, for a monochromatic source at λO = 555 nm, where V (λO) assumes its
maximum value of unity (Fig. 8.5-3), (8.9-2) becomes

ηMAXLER = 683 lm/W. (8.9-3)

For a monochromatic light source of wavelength 555 nm, a luminous flux of
1 lm corresponds to a radiant flux of 1/683 W, i.e., to 1.464 mW.

Wall-Plug Luminous Efficacy (WPE)
The wall-plug luminous efficacy (WPE), also called the overall luminous efficacy
and the luminous efficacy of the source, is defined as

ηWPE =
PV

PEL

=
PV

iV
, (8.9-4)

Wall-Plug Luminous Efficacy
(lm/W)

where PV is the luminous flux defined in (8.8-1) and PEL = iV is the electrical drive
power supplied to the light-emitting device, as provided in (7.1-13); the quantities i and
V are the drive current and drive voltage, respectively.

Since the WPE is the ratio of the emitted optical power to the electrical power feeding
the device, and the LER is the ratio of the luminous flux to the emitted optical power,
the two luminous efficacies are related by combining (7.1-14), (8.9-1), and (8.9-4):

ηWPE = ηPCE ηLER . (8.9-5)
Relation of Luminous Efficacies
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While the PCE has units of W/W and is thus dimensionless, the LER has units of lm/W,
and hence so too does the WPE.

Two distinct definitions of luminous efficacy exist, though both have units of
lm/W: 1) The wall-plug luminous efficacy (wpe) , which is the ratio of
the luminous flux to the electrical power that feeds a light-emitting device, and
2) The luminous efficacy of radiation (ler) , which is the ratio of the
luminous flux to the optical power emitted by the device. The wpe is the more
comprehensive of the two measures since it is a concatenation of the ler with
the power-conversion efficiency (pce) , which is the ratio of the optical
power emitted by the device to the electrical power driving it.

Moreover, since ηPCE ⩽ 1, it is evident that

ηWPE ⩽ ηLER. (8.9-6)

In the particular case of monochromatic light, combining (8.9-2) with (8.9-5) leads to

ηWPE ≈ 683 ηPCEV (λO). (8.9-7)
Wall-Plug Luminous Efficacy (lm/W)

(Monochromatic Light)

Hence, the maximum value of the wall-plug luminous efficacy, ηMAXWPE , is attained when
the light-emitting device has unity power-conversion efficiency (ηPCE = 1) and emits
light at 555 nm (V = 1), which leads to

ηMAXWPE = 683 lm/W. (8.9-8)

Wall-Plug Luminous Efficiency (WPC)
The term luminous efficiency is also in common use. The wall-plug luminous effi-
ciency, also known as the wall-plug luminous coefficient (WPC), is defined as the
wall-plug luminous efficacy normalized to its maximum possible value of 683, as pro-
vided in (8.9-8):

ηWPC =
ηWPE
ηMAXWPE

=
ηWPE
683

. (8.9-9)
Wall-Plug Luminous Efficiency

This dimensionless quantity has a value that lies between zero and unity, and is the
photometric counterpart of the radiometric power-conversion efficiency ηPCE . For
monochromatic light, combining (8.9-7) and (8.9-9) yields the simple formula

ηWPC ≈ ηPCEV (λO). (8.9-10)
Wall-Plug Luminous Efficiency

(Monochromatic Light)

As indicated earlier, the various terms used in lighting technology are often conflated
so that efficiencies are sometimes (improperly) expressed in lm/W and efficacies are
(improperly) expressed as dimensionless fractions.

Numerical values for the wall-plug luminous efficacy and wall-plug luminous effi-
ciency, along with a number of other measures, are provided in Table 11.9-1 for all
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manner of light sources. Quantities analogous to those set forth in (8.9-4) and (8.9-9)
are also defined for light sources contained within housings that introduce losses of
their own. Known as the luminaire wall-plug luminous efficacy ηLUM and the luminaire
wall-plug luminous efficiency ηLUC, these quantities are defined in (11.6-1) and (11.6-3),
respectively.

Current Luminous Efficacy (CLE)
A measure that is sometimes used in the technical characterization of light-emitting
devices for illumination is the current luminous efficacy (CLE), which is also called
the current efficiency (see, e.g., Table 7.6-1). The CLE is defined as

ηCLE =
IV
i

=
LV

J
, (8.9-11)

Current Luminous Efficacy (cd/A)

where IV and LV are, respectively, the luminous intensity (cd) and luminance (cd/m2)
of the source, as specified in Table 8.8-1; and i (A) and J (A/m2) are, respectively,
the electrical current and electrical current density interior to the device, which are
related by (7.1-1). While the CLE bears some similarity to the WPE defined in (8.9-4),
it represents the ratio of different photometric and electrical quantities, and is not nearly
as widely used.

EXAMPLE 8.9-1. Luminous Efficacy of Radiation for a Laser Pointer. Laser pointers
emit nearly monochromatic light at various wavelengths that correspond to fully saturated spectral
colors. Consider three such devices, constructed as follows:

Violet laser pointer: An InGaN laser diode that emits light at 405 nm.
Green laser pointer: A frequency-doubled YVO4:Nd3+ laser chip pumped by an 808-nm
AlGaAs laser diode that emits light at 532 nm.
Red laser pointer: An AlInGaP laser diode that emits light at 650 nm.

The values of the luminous efficiency of radiation V (λO) at these wavelengths are determined by
referring to the photopic luminous efficiency function presented in Fig. 8.5-3. For convenience, this
graph is reproduced in Fig. 8.9-1, where it is augmented by photos of the three laser-pointer spots at
their appropriate wavelengths.

Figure 8.9-1 Photopic luminous efficiency
function V (λO) vs. free-space wavelength λO.
This plot mimics the one provided in Fig. 8.5-
3, differing only in that it includes photographs
of the reflected light spots generated by the
violet, green, and red laser pointers, which are
situated at their corresponding wavelengths on
the abscissa. Their values of V (λO) differ sub-
stantially: V (405 nm) = 0.0008, V (532 nm) =
0.8804, and V (650 nm) = 0.1070. In accord-
ance with the discussions provided in Exam-
ples 8.8-5 and 8.9-3, the green spot is brighter
than the red one, which in turn is brighter than
the violet one.

These three values of V (λO) are also provided in Table 8.9-1. Since the radiant flux (optical power)
emitted by all three devices is PO = 2 mW, it is straightforward to determine the photon flux Φ, the
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luminous efficacy of radiation ηLER, and the luminous flux PV, all of which are specified in the table.
Although the green laser pointer emits a radiant flux of onlyPO = 2mW, its luminous fluxPV is> 1 lm
since its wavelength falls near the 555-nm peak of the V (λO) curve, which is in the yellowish-green
region.

Table 8.9-1 The parameter values for the nearly monochromatic light emitted by violet, green, and
red laser pointers are useful for highlighting the distinction between radiant flux and luminous flux.
Successive columns in the table represent: color, wavelength λO (nm), laser material, radiant flux
(optical power) PO (W), photon flux ΦO = PO/hν = λOPO/hcO (s−1), photopic luminous efficiency
function V (λO) from Fig. 8.9-1 (dimensionless), luminous efficacy of radiation ηLER = 683V (λO)
from (8.9-2) (lm/W), and luminous flux PV = ηLERPO (lm).

color λO Laser Material PO ΦO V (λO) ηLER = 683V (λO) PV = ηLERPO

Violet 405 InGaN 0.002 4.1× 1015 0.0008 0.5464 0.001
Green 532 YVO4:Nd3+ 0.002 5.3× 1015 0.8804 601.3 1.203
Red 650 AlInGaP 0.002 6.5× 1015 0.1070 73.08 0.146

EXAMPLE 8.9-2. Efficiencies and Efficacies for a Red Laser Pointer. To highlight the
distinctions among the various definitions of efficiency and efficacy, and related parameters used in
illumination engineering, the following parameter estimates are provided for a 2-mW AlInGaP red
laser pointer operated at λO = 650 nm.

The radiant flux (or optical power) PO = 2 mW is generated by supplying the device with an
electrical current i = 20mA at an electrical voltage V = 2.0V, corresponding to an electrical
drive power PEL = iV = 40 mW, as specified in (7.1-13).
The power-conversion efficiency is ηPCE = PO/PEL = 0.05, in accordance with the definition
provided in (7.1-14).
The photopic luminous efficiency function assumes the value V (λO = 650 nm) ≈ 0.1070, as
displayed in Fig. 8.9-1 of Example 8.9-1.
The luminous efficacy of radiation is ηLER = 683 · V (650 nm) = 683× 0.1070 ≈ 73 lm/W, as
provided in Table 8.9-1 of Example 8.9-1.
The wall-plug luminous efficacy is ηWPE = ηPCE ηLER = 0.05 × 73 = 3.65 lm/W, in accordance
with (8.9-4) and (8.9-5).
The wall-plug luminous efficiency is given by ηWPC = ηWPE/683 = 0.0053, following (8.9-9).
The luminous flux corresponding to the radiant flux PO = 2 mW is determined via the relation
PV = ηLERPO = 0.146 lm, in accordance with (8.9-1) and Table 8.9-1 of Example 8.9-1.
The luminous intensity for a source of luminous flux PV emitting into a small radiation angle
2θ was established in Example 8.8-1 to be IV ≈ PV/πθ

2; in particular for PV = 0.146 lm and
θ ≈ 10−3 rad, we arrive at IV = (0.146/π)× 106 ≈ 46000 cd.
The current luminous efficacy for a source of luminous intensity IV ≈ 46000 cd generated by a
drive current of 0.02 A is ηCLE ≈ 2.3× 106 cd/A, in accordance with (8.9-11).

To be clear, although both the luminous efficacy of radiation (LER) and the wall-plug luminous
efficacy (WPE) both have units of lm/W, their values can differ substantially: in the example at hand,
ηLER = 73 lm/W whereas ηWPE = 3.65 lm/W. Indeed, (8.9-6) mandates that ηWPE ⩽ ηLER, which follows
from the fact that the WPE is a concatenation of the LER and the power-conversion efficiency (PCE),
as specified in (8.9-5), and ηPCE ⩽ 1.

EXAMPLE 8.9-3. Brightness Ratios for Light from Different-Color Laser Pointers.
The validity of the formula for the brightness ratio (8.8-9) is qualitatively supported by making use of
the photographs of the reflected violet, green, and red laser-pointer spots portrayed in Example 8.9-1.

The experiment was conducted as follows:
1. The light from the violet, green, and red laser pointers, each with a radiant flux PO = 2 mW,

impinged on a matte-black foam board at near normal incidence.
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2. The diffusely reflecting black board had a wavelength-independent reflectance R ≈ 0.1 and
behaved as a Lambertian reflector, so that the luminance was invariant to the observer’s angle
of view.

3. The laser spots were viewed with the naked eye. The optics of the eye guided the light to the
retina and established the manner in which it was distributed over solid angle and area. This
enabled the radiance at the retina L to be determined from the radiant flux PO.

4. The laser spots were photographed on reflection from the matte-black foam board with an
iPhone 13 Pro camera that made use of a 12.2-Megapixel, visible/NIR, Sony IMX703 CMOS
array sensor. The camera was outfitted with an external K&F series-B variable neutral-density
(ND) filter that served to reduce the photon flux sufficiently so the array sensor operated within
its linear regime. The filter was adjustable over the range 2 ⩽ ND ⩽ 400, corresponding to a
radiant-flux transmittance adjustable over the range 0.0025 ⩽ T ⩽ 0.5. This is an open system.

5. Both the camera and the eye are responsive to photon flux and incorporate time expo-
sure/integration mechanisms. However, the two instruments differ substantially and each
operates in its own intrinsic color dimensions, which results in device-dependent color imaging.
Nevertheless, for the comparison at hand, the photographs taken with the camera are expected
to qualitatively track the reflected integrated radiant flux viewed by the eye.

The analysis that permitted the brightness ratios to be estimated proceeds as follows:
1. SincePO was the same for all three sources, and since the optical rays traversing the eye followed

paths that were essentially independent of wavelength, the radiance L at the fovea was the same
for all three sources.

2. The foveal cones transformed the radiometric radiance L into the wavelength-dependent photo-
metric luminance LV(λO). Since all three sources were monochromatic, these quantities could
be related by LV(λO) = 683L · V (λO) lm/W, where V (λO) is the photopic luminous efficiency
function, as provided in (8.8-5) and in Fig. 8.9-1.

3. As set forth in Table 8.9-1, the light from the green, red, and violet laser pointers had photopic
luminous efficiencies given by V (532 nm) = 0.8804, V (650 nm) = 0.1070, and V (405 nm) =
0.0008, respectively. In accordance with (8.8-9), therefore, under ideal conditions the light from
the green laser pointer should be a factor of 3

√
0.8804/0.1070 = 2 brighter than that from the

red laser pointer, and a factor of 3
√

0.8804/0.0008 = 10 brighter than that from the violet one.
Only qualitative comparisons are warranted, however, since this calculation does not account
for the processing of the individual laser-spot images by the iPhone 13 Pro camera software, nor
by the sRGB Photoshop software used to format the images, nor by the sRGB monitor display
software, each of which may include its own gamma correction.

4. Examination of the photographs presented below the curve in Fig. 8.9-1 reveals that it is indeed
plausible to suggest that the green laser spot is brighter than the red laser spot, which in turn is
brighter than the violet laser spot. The high brightness of the light from the green laser pointer
testifies as to why it is preferred over the red laser pointer, and especially over the rarely used
violet one.
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Colorimetry is the science and technology of color and its measurement. It is con-
cerned with the spectral properties of stimuli and how they are interpreted as color
at the retina and at higher neural waystations in the visual system. Understanding the
principles of colorimetry enables color to be precisely controlled for a wide variety
of applications, ranging from textile and paint manufacture, to color-reproduction pro-
cesses such as printing and displays, to LED lighting.

Basic colorimetry, also called tristimulus colorimetry, developed as a technical
field in the mid-nineteenth century. It describes the approaches, procedures, and out-
comes of color matching experiments, and focuses on the perception of colors and their
mixtures. It enables an observer to ascertain when two colors look alike, while circum-
venting the far more complex question of what they look like. Although limited to the
comparison of stimuli that are temporally and spatially identical, and are viewed under
identical conditions, basic colorimetry provides a versatile platform for evaluating the
nature and use of color under a wide variety of circumstances.

It has long been understood, however, that color perception also involves phenomena
that lie beyond the purview of basic colorimetry. These include time-dependent and
space-dependent features, examples of which are the adaptation state of the observer
and the color of the region surrounding the area of interest in a scene, respectively. Color
perception is also dependent on the intensity and spectral properties of the source of
light, and involves memory and nonlinearity (Sec. 8.8). As codified by Wyszecki,† these
features lie within the domain of advanced colorimetry, where consideration is given
to what colors look like in natural and complex settings, both relative to each other and
under different viewing conditions. Advanced colorimetry is generally cast in the form
of color appearance models, which began to appear the mid-twentieth century. The
ultimate goal of advanced colorimetry is to permit all perceptual attributes of color to
be predicted, under the broadest range of viewing conditions. This is a tall order that
requires models of substantial complexity.

We begin in Sec. 9.1 with the notion of color matching, along with the concepts of
additive and subtractive elementary color mixing. This is followed in Sec. 9.2 by a nar-
ration of Grassmann’s celebrated four laws of color mixing, which are used principally
in basic colorimetry and are approximate. Grassmann’s second and third laws, which
relate to complementary and metameric colors, respectively, are elucidated in Sec. 9.3.
Relative color appearance and color appearance phenomena that lie outside the confines
of basic colorimetry, such as Hering’s observations pertaining to opponent colors, are
introduced in Sec. 9.4.

Color spaces are colorimetry systems that rely on specific sets of stimulus-based
primaries that offer particular features. A number of color spaces associated with both
basic and advanced colorimetry are examined in Sec. 9.5. Grassmann’s first and fourth
laws, which characterize the essential elements of color and the linearity of luminance
perception, respectively, provide important contributions to this section. Chromaticity
diagrams, which are 2D planar constructs derived from 3D color spaces, greatly facili-
tate the visualization and interpretation of colorimetric data, as explained in Sec. 9.6.

Color temperature, a widely used measure in illumination engineering, characterizes
the color of a thermal source of light in a concise manner, as detailed in Sec. 9.7.
Correlated color temperature is an analogous measure used to characterize a nonthermal
source of light whose color resembles that of a thermal source, as described in Sec. 9.8.
Finally, the color rendering index, discussed in Sec. 9.9, is a measure that indexes how
well a light source illuminating an object renders its color.

† G. Wyszecki, Current Developments in Colorimetry, in COLOUR73: Survey Lectures and Abstracts of the
Papers Presented at the Second Congress of the International Colour Association Held at the University of York
2–6 July 1973, Hilger (London), pp. 21–51, 1973.
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The CIE. The Commission Internationale de l’Éclairage, the abbreviation for which
is CIE in French, is known as the Internationale Beleuchtungskommission in German
and the International Commission on Illumination in English. The CIE was established
in August 1913 — a brief history recounting its creation is provided in the caption
of Fig. 9.0-1. Based in Vienna, it is an authoritative source in the fields of vision,
color measurement of light, photobiology, lighting technology, interior lighting, exte-
rior lighting, and digital imaging. To this day, the CIE remains the international arbiter
on light and illumination, and develops the standards on color and lighting.

The CIE holds conferences and symposia, and annually publishes dozens of Techni-
cal Reports (TRs), Technical Notes (TNs), International Standards (ISs), and Position
Statements. Of its eight divisions, the two that are most closely allied with the material
considered in this book are Division 1 (Vision and Color) and Division 3 (Interior
Environment and Lighting Design):
The mandate of Division 1 is to “study visual responses to light and to establish standards of response
functions, models and procedures of specification relevant to photometry, colorimetry, color render-
ing, visual performance and visual assessment of light and lighting.” The mandate of Division 3 is
to “study and evaluate visual factors which influence the satisfaction of the occupants of a building
with their environment, and their interaction with thermal and acoustical aspects, and to provide
guidance on relevant design criteria for both natural and man-made lighting; as well as to study design
techniques, including relevant calculations, for the interior lighting of buildings; incorporating these
findings and those of other CIE Divisions into lighting guides for interiors in general, for particular
types of interiors and for specific problems in interior lighting practice.”

Figure 9.0-1 The Commission Internationale de l’Éclairage (CIE)
was built on the foundation of its predecessor, the Commission
Internationale de Photométrie (CIP), which had been established in
Paris in 1900 to set standards for the measurement of light emitted by
incandescent gas lamps, which were widely used for street lighting
in the late nineteenth century. At the CIP meeting held in Berlin
in August 1913, the CIE was established as its successor. The new
commission was given a broad mandate to consider all issues related
to the lighting industry and to the science appertenant thereto, and
to forge international agreements on lighting. A collection of the
delegates’ signatures collected at the Esplanade Hotel conference
dinner during the 1913 meeting is displayed at left. (Adapted from
J. W. T. Walsh and A. M. Marsden, History of the CIE: 1913–1988,
CIE Report No. 82-1990, p. 5, photocopy ed. 1999.)

A listing of some of the milestones attained by the CIE that are germane to the topics reviewed in
this chapter is provided below:

1924: The CIE established the photopic luminous efficiency function V (λO) (Fig. 8.5-3), which
represents the relative effectiveness of light of different wavelengths in stimulating the photopic
visual system. An updated version for daylight adaptation, denoted V ∗(λO), dates from 2005.
1931: Based on a 1922 colorimetry report from the Optical Society of America (OSA), together
with the scientific and technological developments of the following decade, the CIE arrived at:
a definition of the CIE 1931 2◦ standard colorimetric observer; its corresponding color matching
functions; the CIE 1931 RGB and XYZ color spaces; and the standard illuminants A, B, and C.
1951: The CIE established the scotopic luminous efficiency function V ′(λO), which is analogous
to the photopic luminous efficiency function V (λO) set forth by the CIE in 1924.
1960: The CIE introduced the CIE 1960 UCS (uniform color space) for the calculation of the
correlated color temperature (CCT). Although this color space has been superseded by 1976
CIELUV and CIELAB for most applications, it continues to be used for the determination of
the CCT since it turns out to be more uniform for nominally white chromaticities.
1964: The 10◦ standard colorimetric observer, and its corresponding color matching functions,
were added to the CIE repertoire, along with the standard daylight illuminant D65.
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1965: In response to the widespread use of fluorescent lamps, the CIE recommended use of
the color rendering index (CRI) as a metric. The CRI is computed using the otherwise-obsolete
1964 CIEUVW color space.
1976: The CIE introduced the CIELUV and CIELAB uniform color spaces with the goal of
improving perceptual uniformity; these were the initial formal color appearance models in the
CIE colorimetry-systems repertoire and have stood the test of time.
2007: The CIE initiated consideration of LED lighting with studies of LED measurements and
the color-rendering properties of metameric-white LEDs.
2015: The CIE introduced a new cone-fundamental-based CIE colorimetry system with color
matching functions that accommodate observer age and stimulus field size.
2016: The CIE introduced the CAM16 color appearance model as a successor to CIECAM02.
The accompanying color space, CAM16-UCS, is under consideration for adoption.

9.1 COLOR MATCHING AND MIXING

Color Matching
Color matching is an experimental technique in which an observer is asked to view
two adjacent colored lights (visual stimuli), and to make adjustments on one of them
until the two look alike. The experiments are usually conducted by using a circular split
screen, called a bipartite field, with a diameter of 2◦ (so that the image falls within
the fovea) or 10◦, although other diameters are used as well (Fig. 8.4-3). A test light is
projected onto one of the hemispheres, say the upper one, while a comparison light that
is adjustable by the observer is projected onto the other. The adjustable light comprises
a mixture of three primary lights with fixed spectral colors but adjustable luminances.
The observer modifies the luminance of each of the three primaries until a match to the
test patch is attained. The manner in which the procedure is conducted is illustrated in
Fig. 9.1-1 and detailed in the figure caption. The operating and adaptation conditions
for the test and comparison lights are required to be similar.

Figure 9.1-1 Maximum-saturation method of color
matching using red, green, and blue primaries. The
upper and lower hemispheres are the test and compar-
ison patches, respectively. The sliders alter the relative
contributions of the primaries to the comparison patch.
(a) Starting point. (b) Color matching is improved by
increasing the red and green, and reducing the blue.
(c) Color matching is optimized by further increasing
the red and green, and reducing the blue.

Using this procedure in conjunction with a particular set of primaries, it is possible
to obtain a color match most, but not all, of the time. It turns out that some test colors
cannot be mimicked by a combination of the three primary lights; this situation arises
when the test color is too saturated to be matched by the primaries or, stated differently,
is out of their gamut. All is not lost, however, since in those cases, the experimental
protocol is altered so that one of the primaries is removed from the comparison patch
and its variable intensity is instead added to the test patch, which serves to desaturate
it and bring it within the gamut. A match between the modified test color and the
two remaining primary colors can then always be found. The intensity of the primary
light required to be added to the test color to achieve a match is considered to be
subtracted from the comparison color, i.e., to be negative. Allowing a primary color
to have a ‘negative intensity’ over some range of color matches allows all test colors to
be matched, whatever the choice of the primaries. Indeed, real primaries always give
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rise to negative values because three such primary lights cannot severally and uniquely
stimulate the three types of cones since their sensitivities overlap throughout the visible
spectrum. There is no unique way of defining the three primaries; red, green, and blue
are often used because they are convenient and offer matching over a wide range of test
colors.

For monochromatic test patches that range over all visible wavelengths, the results of
the color matching procedure can be succinctly summarized by plotting the intensities
of each of the primaries required to effect a color match over all wavelengths. The triad
of plots of this form, one for each primary, are known as the color matching functions
for those particular primaries.

Color matching allows an observer to ascertain when two colors look alike,
while avoiding the subjective task of having to describe what they look like.

Color matches vary with retinal size and position. However, they generally survive
changes in context and adaptation, provided that the changes are applied equally to
both lights. Moreover, a color match that satisfies a particular normal observer will
generally satisfy all normal observers. Much of the behavioral data that contribute
to our understanding of how color vision operates, from Grassmann’s laws discussed
below to the chromaticity diagrams presented in Sec. 9.5, are built upon color matching
experiments. Grassmann’s laws inform us that polychromatic test patches can also be
used in color matching experiments.

Elementary Color Mixing
The superposition of two or more beams of light is described by additive color mixing.
This phenomenon is most clearly demonstrated by the superposition of red, green,
and blue (RGB) spectral lights in equal proportions, as illustrated in Fig. 9.1-2. In the
absence of light the result is black, as is apparent at the periphery of the illuminated
screen, whereas the superposition of all three primary lights yields white (or gray), as
appears at the center of the screen. White, black, and their neutral gray intermediaries
are referred to as achromatic colors.

Moreover, as is clear in Fig. 9.1-2, the superposition of any two primary lights
in equal proportion yields a particular secondary light: red plus green yields yellow;
green plus blue yields cyan; and blue plus red yields magenta. The secondaries are
lighter in shade than the primaries. Additive color mixing is sometimes illustrated in
the form of temporal color mixing by viewing a spinning multicolored disk, an approach
promulgated by Maxwell. Color mixing finds use in applications ranging from OLED
displays (Sec. 7.6) to LED lighting (Sec. 11.3). More generally, the superposition of
RGB spectral lights in arbitrary proportions is displayed in the RGB color solid provided
in Figs. 9.5-2(a),(b).

Figure 9.1-2 Additive color mixing in an
RGB color system. A device that generates light
with a selectable color can be constructed from
LEDs that emit in the Red (R), Green (G), and
Blue (B). When projected in equal proportions, the
overlapping light beams exhibit the following colors:

R + G → Y (Yellow)
G + B → C (Cyan)
B + R → M (Magenta)
R + G + B → W (White)
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In subtractive color mixing, illustrated in Fig. 9.1-3, the primaries are usually cyan,
magenta, and yellow (CMY) pigments or transparencies. An important application of
subtractive color mixing is printing, in which an external source of white light is re-
flected from printer’s ink on white paper. The absence of pigment yields white (white
light reflected from white paper), whereas the presence of all three pigments in equal
proportions yields black (all external white light is absorbed by the pigments and none
is reflected). The mixing of any two pigments in equal proportion gives rise to reflected
light with a secondary color: cyan plus magenta yields blue; magenta plus yellow yields
red; and yellow plus cyan yields green. The secondaries are darker in shade than the
primaries. The result of mixing CMY primaries in arbitrary proportions is illustrated
in the CMY color solid portrayed in Figs. 9.5-2(c),(d).

Figure 9.1-3 Subtractive color mixing in a CMY
color system. Inks that reflect light with a selectable
color can be achieved by mixing Cyan (C), ma-
genta (M), and yellow (Y) pigments on a white
background. When mixed in equal proportion, the
reflected light exhibits the following colors:
C + M → B (Blue)
M + Y → R (Red)
Y + C → G (Green)
C + M + Y → K (Black)

9.2 GRASSMANN’S LAWS

Hermann Grassmann, a German polymath, studied how mixtures of light that simulta-
neously impinge on the same region of the retina are perceived. Building on the work of
Newton, Helmholtz, and Maxwell, he extended the scope of elementary additive color
mixing introduced in the previous section. His empirical laws, which are approximate,
serve as the underpinnings of colorimetry and comprise a set of principles that describe
how the addition of colors in various proportions is perceived. Grassmann’s laws, which
have stood the test of time, are the precursors to our contemporary understanding of
color spaces and chromaticity diagrams, and inform our understanding of human color
vision.

Interpretations of Grassmann’s Laws. An examination of the literature pertaining to
Grassmann’s laws reveals that different authors interpret them very differently. Some
authors even frame his laws in terms of a set of axioms, although Grassmann never
presented them in that form. The rendition of Grassmann’s laws provided below closely
hews to the original text of his 1853 article, published in German in Annalen der
Physik.†

† H. Grassmann, Zur Theorie der Farbenmischung, Annalen der Physik, vol. 165(5), pp. 69–84, 1853.



9.3 COMPLEMENTARY AND METAMERIC COLORS 271

Grassmann’s Laws of Color Mixing

Hermann Grassmann, in an article entitled Zur Theorie der Farbenmischung that
appeared in Annalen der Physik in 1853, set forth four empirical laws of additive
color mixing. His work provided a roadmap for describing how mixtures of colored
lights are perceived. Using modern terminology, Grassmann’s four laws can be cast
in the following form:

1. Elements of Color. Three elements are necessary and sufficient to specify
a color: (a) hue, (b) saturation, and (c) luminance. (Grassmann referred
to these elements, respectively, as: (a) der Farbenton, (b) die Intensität des
beigemischten farblosen Lichtes, and (c) die Intensität der Farbe.)

2. Complementary Colors. Every color has an associated complementary
color, such that the mixing of their lights can give rise to achromatic (white
or gray) light.

3. Metameric Colors. Metamers are lights that have matching colors (identical
hue and saturation) but non-matching power spectral densities. Mixing two
metamers yields a third metamer with the same hue and saturation.

4. Linearity in Luminance. The total luminance of a mixture of light is the sum
of the luminances of the constituent lights, signifying that color mixing is
linear in luminance.

Grassmann’s first law laid the foundations for the definition of the iconic CIE 1931
XYZ color space considered in Sec. 9.5. Grassmann’s fourth law, which enunciated
that color mixing is linear in luminance, ensures that a panoply of alternative color
representations exist and that they are all linear transforms of each other, a result that is
extensively used in Sec. 9.5. The linearity in luminance (and its variants) in the visual
system parallels the linearity in radiance (and its variants) in photodetectors.

9.3 COMPLEMENTARY AND METAMERIC COLORS

We now proceed to discuss in greater detail Grassmann’s second and third laws, which
pertain to complementary and metameric colors, respectively.

Complementary Colors
Every color has a complementary color, which, when the two are mixed gives rise
to a desaturation of the stronger of the two or, when mixed in equal proportion to an
achromatic white or gray. In the RGB color model, the complements of the primaries
red, green, and blue (RGB) are the secondaries cyan, magenta, and yellow (CMY),
respectively. White light can be generated as the combination of two, rather than three,
complementary colors because the secondary color complementary to the primary con-
sists of the other two primaries. Hence, all three primaries are effectively present, which
enables white to be produced; mixing blue and yellow, for example, gives rise to white
(or gray) because yellow is itself a combination of red and green. The mixing of comple-
mentary colors is illustrated in Examples 9.3-1 and 9.3-2, while the mixing of noncom-
plementary colors is portrayed in Example 9.3-3 (image colors were generated using
sRGB in Adobe Photoshop®).
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EXAMPLE 9.3-1. Mixing Blue and Yellow. Blue and yellow are complementary colors. As is
apparent in Fig. 9.3-1, when the proportion of blue exceeds that of yellow (B>Y), the result is bluish;
conversely, when the yellow exceeds the blue (Y>B), the result is yellowish. Panels B>Y and Y>B,
which are desaturated versions of B and Y, respectively, are themselves complementary colors. When
mixed in equal proportions (B=Y), the outcome is fully desaturated, achromatic white. When displayed
at a reduced luminance, as sketched in Fig. 9.3-2, B>Y and Y>B remain complementary colors and
the B=Y mixture yields fully desaturated achromatic gray rather than white. Still, complementary
colors presented adjacently to each other offer the strongest contrast.

Figure 9.3-1 Mixing the complementary col-
ors blue and yellow in different proportions.

Figure 9.3-2 Mixing the complementary col-
ors blue and yellow at reduced luminance.

EXAMPLE 9.3-2. Mixing Red and Cyan. imilarly, red and cyan are complementary colors.
As is clear in Fig. 9.3-3, when the proportion of red exceeds that of cyan (R>C), the result is reddish;
conversely, when the cyan exceeds the red (Y>B), the result is pale cyan. Panels R>C and C>R,
which are desaturated versions of R and C, respectively, are themselves complementary colors. Again,
when mixed in equal proportions (R=C), the outcome is fully desaturated, achromatic white. When
displayed at reduced luminance, as sketched in Fig. 9.3-4, R>C and C>R remain complementary
colors and the R=C mixture yields fully desaturated achromatic gray rather than white.

Figure 9.3-3 Mixing the complementary col-
ors red and cyan in different proportions.

Figure 9.3-4 Mixing the complementary col-
ors red and cyan at reduced luminance.

EXAMPLE 9.3-3. Mixing Red and Blue. In contrast to the outcome of mixing complemen-
tary colors, as displayed in Examples. 9.3-1 and 9.3-2, mixing noncomplementary colors such as red
and blue does not lead to desaturation, and mixing in equal proportions does not lead to an achromatic
result (as there is no green present). As depicted in Fig. 9.3-5, an equal proportion of red and blue
(R=B) yields magenta. When displayed at reduced luminance, as sketched in Fig. 9.3-6, the R=B
mixture remains magenta.

Figure 9.3-5 Mixing the noncomplementary
colors red and blue in different proportions.

Figure 9.3-6 Mixing the noncomplementary
colors red and blue at reduced luminance.

There is a distinction between complementary and opponent colors in visual perception.
As illustrated in Example 9.3-2, the color complementary to red is cyan, whereas the
color opponent to red is green, as discussed in Sec. 8.6. Indeed, mixing red and green
yields yellow, while mixing red and cyan yields white (since cyan itself is a mixture of
green and blue) (Fig. 9.1-2).
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Metameric Colors
Sources of light with distinct power spectral densities Sλ(λO) that are nevertheless
perceived to be identical with respect to hue and saturation are known as metamers.
Yellow light appears identical to the observer, as an example, whether its spectrum is a
monochromatic line of wavelength of λO = 590 nm, or two monochromatic lines, one
in the red and another in the green. When perceptually indistinguishable, such spectra
are said to give rise to metameric colors.

As another example, light with a uniform wavelength-based power spectral density
Sλ(λO) appears white to the eye (Example 9.6-3). But as demonstrated in Figs. 9.3-1
and 9.3-3, white light can also be produced by the additive mixing of blue and yellow,
or red and cyan, which have spectra that consist of individual narrow lines. All three
of these sources of white light are indistinguishable to the eye despite the fact that they
are easily distinguished by a spectrophotometer. White is an achromatic color whose
perception is induced by light with particular spectra. This feature of human vision
proves important in the design of LED lighting, where metameric white light plays a
key role, as discussed in Chapter 10.

white light has a uniform power spectral density. Light that does not have a
uniform power spectral density, but is nevertheless perceived as white, is called
metameric white light.

It will become clear in Sec. 9.5 that the origin of metamerism resides in the fact that
the visual percept of a particular color is created by a triplet of numbers known as the
tristimulus values — but identical tristimulus values can be generated by light with
very different spectral properties. Furthermore, the mixing of two metamers results in
a third metamer, as provided in Grassmann’s third law, because their tristimulus values
are conserved in additive color mixing.

Variations on the theme of metamerism exist. Illuminant metamerism refers to a
situation in which the colors of two objects perceived by an observer match for one
illuminant, but fail to match for a different illuminant. Observer metamerism refers to
a situation in which the colors of two objects match for one observer, but fail to match
for another observer. A measure of metamerism is provided by the color rendering
index (CRI) discussed in Sec. 9.9, which serves to assess the difference in sample and
reference spectral reflectances using a standardized set of different colored reflectors.

9.4 COLOR APPEARANCE

Describing the appearance of a color is a complex enterprise that relies on a collection
of terms, measures, and abstractions. As a point of departure, it is useful to first set forth
a number of definitions, which we draw in large part from the second edition of the CIE
International Lighting Vocabulary:



274 CHAPTER 9 COLORIMETRY

Definitions of Color Appearance Terms and Measures

Color. A characteristic of visual perception described by the attributes hue,
brightness (or lightness), and colorfulness (or saturation or chroma). Color
depends not only on the spectral features of the stimulus, but also on the
colors that surround it and on the state and experience of the observer.
Color Gamut. A volume in a color space, or more commonly an area in a
chromaticity diagram, that defines a range of achievable colors under a given
set of viewing conditions.
Unrelated Colors. Colors perceived as belonging to an area or an object seen
in isolation from other colors.
Related Colors. Colors perceived as belonging to an area or an object seen in
relation to other colors.
Achromatic Colors. Colors such as white, black, and gray, that are devoid of
hue.
Brightness. An attribute of visual perception according to which an area
appears to emit, transmit, or reflect, more or less light (Sec. 8.8).
Lightness. The brightness of an area judged relative to the brightness of a
similarly illuminated reference white area. Lightness is relative brightness. It
is approximately constant across changes in luminance level.
Hue. An attribute of visual perception according to which an area appears to
be similar to one of the colors red, yellow, green, and blue, or to a combination
of adjacent pairs of these colors when considered in a closed ring.
Colorfulness. An attribute of visual perception according to which the per-
ceived color of an area appears to be chromatic to a lesser or greater degree.
Colorfulness describes the intensity of the hue in a particular color sample.
It increases with increasing luminance level.
Saturation. The colorfulness of an area judged relative to its own brightness.
Chroma. The colorfulness of an area judged relative to the brightness of a
similarly illuminated reference white area. Chroma is relative colorfulness.
It is approximately constant across changes in luminance level.

Absolute and Relative Color Appearance. Color appearance can be described in
terms of absolute measures (basic colorimetry), or in terms of relative measures that
are normalized to accommodate changes in the viewing and illumination conditions
(advanced colorimetry):

Absolute Color Appearance is described by the attributes hue, colorfulness
(saturation), and brightness. Unrelated colors exhibit only these perceptual
attributes. In the context of Grassmann’s empirical laws for self-luminous sources
(Sec. 9.2), these attributes are referred to as hue, saturation, and luminance.
Relative Color Appearance is described by the attributes hue, chroma, and light-
ness. These attributes correspond to the absolute attributes listed above, but are
normalized to allow for changes in illumination and viewing conditions. Related
colors exhibit these perceptual attributes in addition to those listed above for un-
related colors.

As discussed in Sec. 9.1, color matching can be described on the basis of three
spectral colors with adjustable luminances. A proper description of color appearance,
on the other hand, generally requires five perceptual parameters: brightness, lightness,
hue, colorfulness, and saturation (chroma can be derived from these). For related colors,
the description simplifies and it suffices to consider three relative color appearance
attributes: hue, chroma, and lightness.
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Color Appearance Phenomena. While basic colorimetry is suitable for describing
color matching in a broad variety of contexts, its applicability is subject to a standard
set of constraints. Color-vision effects that cannot be explained by basic colorimetry
because of a violation of one or more of these constraints fall in the domain of advanced
colorimetry and are known as color appearance phenomena. Violations often involve
the viewing field and/or features such as background color, illumination color, lumi-
nance level, adaptation level, object structure, and visual-system nonlinearity. These
violations often serve as the bases for optical illusions. Representative color appearance
phenomena include the following:

Chromatic adaptation.
Simultaneous contrast exhibited using different backgrounds.
Change of hue with luminance (Bezold–Brücke effect).
Change of hue with colorimetric purity (Abney effect).
Increase of brightness with saturation (Helmholtz-Kohlrausch effect).
Increase of colorfulness with luminance (Hunt effect).
Increase of contrast with luminance (Stevens effect).
Increase of emissive image contrast with surround luminance (Bartleson-Breneman
effect).

Chromatic adaptation, the ability of the human visual system to preserve the ap-
pearance of the colors of an object under different illumination colors, is one of the most
important of the color appearance phenomena. This behavior was first considered by
Johannes von Kries, who, like his contemporary Max Planck (p. 61), was a student of
Helmholtz (p. 234). In 1902, von Kries suggested that each type of cone photoreceptor
adapts independently to its illumination, with its gain determined by the particular scene
under view.† This notion has stood the test of time; most modern models of chromatic
adaptation rely on von Kries’ approach but use different nonlinear adaptation functions
and/or incorporate modifications that leave his basic structure intact. Edwin Land’s
retinex theory, for example, is a version of the von Kries model in which the usual
spectral effects are augmented by spatial effects that make use of the average response
over a particular region of the scene to normalize the response at a given point. The
retinex approach is successful in explaining color variations attendant to changes in the
background of the stimulus.

As indicated in the introduction to this chapter, the origin of formal color appearance
models in CIE colorimetry systems can be traced back to the creation of the 1976
CIELUV and 1976 CIELAB uniform color spaces (Sec. 9.5), in which attempts were
made to quantitatively predict the relative color appearance attributes hue, chroma,
and lightness. In the same way that the two-stage zone model set forth in Sec. 8.6
explains how cone-opponent theory can be joined with trichromatic theory to elucidate
color discrimination, various expanded three-stage zone models can serve as stepping
stones toward elucidating color appearance phenomena. Given the complexity of the
underlying neural system, however, it is ambitious to expect this from a mechanistic
approach.

Most recently, the many advances that have been achieved over the years have re-
sulted in CAM16, the current CIE CAM standard set forth in 2016, and its associated
uniform color space CAM16-UCS (Sec. 9.5). The CAM16 model incorporates the
perceptual attributes brightness, lightness, hue, colorfulness, saturation, and chroma.

It is important to recognize that some color appearance phenomena, including chro-

† J. von Kries, Theoretische Studien ueber die Umstimmung des Sehorgans (Theoretical Studies on the Retuning
of the Visual Organ), in Festschrift der Albrecht-Ludwigs-Universität in Freiburg zum fünfzigjärigen Regierungs-
Jubiläum Seiner Königlichen Hoheit des Grossherzogs Friedrich, C. A. Wagner’s Universitäts-Buchdruckerei,
pp. 143–158, 1902 [Translation: Chromatic Adaptation, in D. L. MacAdam, ed., Sources of Color Science: Selected
and Edited by David L. MacAdam, pp. 109–119, MIT Press, 1970].
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matic adaptation, have substantial cognitive, as well as sensory, aspects. Previous ex-
perience with particular sources of light, viewing environments, and objects plays an
important role in color interpretation. A shadow falling across an object is ignored, for
example, as is the curvature of the object.

Image appearance models, more complex forms of color appearance models, in-
corporate various aspects of temporal vision and spatial vision, and allow for the mea-
surement of image differences. Whereas color appearance models consider attributes
such as hue, colorfulness, chroma, brightness, and lightness, image appearance models
also consider attributes such as contrast, graininess, sharpness, and resolution.

9.5 COLOR SPACES AND COLOR SOLIDS

A color space is a mathematical structure resembling a 3D vector space that enables
color to be specified, created, and visualized. In its simplest conception, its basis vectors
represent a set of physical primary colors such as red, green, and blue. The color space
supports a palette of perceived colors, such as those associated with the tristimulus
values determined via color matching experiments conducted in the laboratory, using
the primary lights specified.

It can be said that the era of modern basic colorimetry began with the RGB color
space conceptualized by the CIE in 1931 on the basis of the extensive maximum-
saturation color matching data collected by W. David Wright and John Guild (p. 265)
in the late 1920s. The CIE 1931 RGB color space relies on monochromatic RGB
primaries of wavelengths 700, 546.1, and 435.8 nm, respectively. Since RGB color
models admit additive color mixing and offer a wide range of colors, and since red,
green, and blue LEDs are widely available, RGB color spaces are widely used in LED
lighting. Several variants of these color spaces are detailed at the end of this section.

A color space need not make use of physical lights as primaries, however, nor need it
display a palette of supported colors arising from color matching experiments. Experi-
mental color-matching data can be mathematically transformed into color spaces whose
primary lights are physically unrealizable (imaginary) and therefore not visible, and
whose palette displays visual attributes such as hue (color), saturation (colorfulness),
and luminance (brightness). The basis vectors are then linked to a set of color matching
functions.

Color Solids. Color solids, sometimes called color volumes, are 3D analogs of 2D
color wheels that display the panoply of colors (gamut) supported by different color
spaces. They depict how various color-appearance features, such as hue, chroma, and
lightness, relate to one another. In the early 1900s, the artist Albert Munsell developed a
roughly spherical color solid that allowed colors to be visually and spatially organized so
that they were intuitively understandable and useful for various applications. Munsell’s
construct is still in use today, as will be seen in Fig. 9.9-1) as an example.

Color Systems. While a color space offers a mathematical platform for representing
colors, a color system couples a color space with a medium and technological imple-
mentation for the supported colors (e.g., lighting, display, printing). The Munsell Color
System, for example, augmented his initial theoretical framework by including practical
implementations such as color samples and color atlases.

Color Spaces Abound. Different color spaces make use of different primaries (de-
grees of freedom) and offer different salutary features. In this section, our attention
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will be principally directed to five commonly used color spaces labeled: LMS, CIE
1931 XYZ, 1976 CIELUV, CAM16-UCS, and sRGB. The first is the LMS color space
associated with the S-, M-, and L-cones in the human retina, each of which is endowed
with its own spectral sensitivity curve (Sec. 8.5). The primaries that give rise to the
cone fundamentals s̄(λO), m(λO), and l̄(λO) as color matching functions should hypo-
thetically stimulate each of the three types of cones severally and uniquely. Since the
three cone sensitivity curves overlap significantly, however, this is not possible, which
results in imaginary primaries. In practice, this color space is principally used today for
modeling chromatic adaptation and color-vision deficiencies.

The second, CIE 1931 XYZ, was mathematically constructed from CIE 1931 RGB.
It was adopted by the CIE (Commission Internationale de l’Éclairage) in 1931, and is
the grandfather of all color spaces. The CIE selected imaginary primaries that rendered
the associated color matching functions everywhere nonnegative. This space separates
hue, saturation, and luminance, the elements of color inherent in Grassmann’s first law
(Sec. 9.2), and accommodates the full gamut of perceptible colors. It has remained
the de facto standard among color spaces for nearly a century and continues to enjoy
widespread use. Grassmann’s fourth law (Sec. 9.2) teaches that color mixing in trichro-
matic photopic vision is approximately linear so that one color space can be readily
transformed to another.

The third color space, 1976 CIELUV, was created as an early color appearance
model with the additional advantage of improved uniformity, signifying that a specified
Euclidian distance anywhere within the space represents the same degree of perceived
color difference. The fourth, CAM16-UCS is an updated color space developed in 2016
that offers superior uniformity and increased subtlety. The use of a uniform color spaces
(UCS) facilitates the interpretation of color mixing data and the determination of color
differences.

Finally, the fifth is the family of RGB color spaces born of the digital era, which
are commonly used for display, illumination, and printing. These color spaces typically
focus on attributes of the stimulus rather than on the processing carried out in the retina
and visual system. However, like all color spaces, color solids, and color systems, they
too are ultimately accountable to the biology of color perception. Three related and
widely used color models, CMY, HSV, and HSL, are briefly mentioned at the close of
the section and selected color solids are displayed.
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Definitions, Notation, and Significance of Different Fonts

Primary Lights. A set of three independent lights (real or imaginary) used to
match a test patch (actually or hypothetically). Red, green, and blue primary
lights in the RGB color model are denoted R, G, and B, respectively, and
yield white light when added together in appropriate proportions.
Color Matching Functions. Three functions of wavelength, denoted r̄(λO),
ḡ(λO), and b̄(λO), characterize the human observer by specifying the inten-
sities of the primary lights required to match spectral colors at every wave-
length.
Tristimulus Values. For monochromatic light, the three intensities of the color
matching functions, denotedR, G, and B, that represent a particular spectral
color; for polychromatic light, the three inner products of the incident spectral
density and the color matching functions.
Color Space. Akin to a 3D vector space, but often limited to a unit cube.
An RGB color space, with basis vectors labeled RGB, displays all supported
colors associated with the tristimulus valuesRGB. A color space is specified
either by its stimulus-based primaries or by its color matching functions.
Normalized Tristimulus Values. The tristimulus values R, G, and B, each
normalized by division by the sum R + G + B, and denoted r, g, and b,
respectively, so that b = 1− r − g.
Chromaticity Diagram. A projection of the normalized tristimulus values
onto a 2D plane parameterized by the dimensionless chromaticity coordinates
r and g, as discussed in Sec. 9.6.

Summary. The usual notation for color spaces takes the following form:
An RGB color space is associated with: 1) the primariesRGB; 2) the color
matching functions r̄(λO)ḡ(λO)b̄(λO); 3) the tristimulus values RGB; and
4) the normalized tristimulus values (chromaticity coordinates) rgb.

LMS Color Space
The cone fundamentals, designated as s̄(λO), m(λO), and l̄(λO) and displayed in
Fig. 8.5-1(b), serve as color matching functions for the LMS color space. A particular
spectral color along the abscissa of the plot is mapped to a perceived color via the set of
ordinates of the color matching functions, which are called the LMS tristimulus
values. For light of arbitrary spectrum, the tristimulus values are determined by
computing the inner products of the wavelength-based spectral density incident on
the eye and the color matching functions. The three-dimensional space spanning all
LMS tristimulus values is a cube that represents all perceived colors and is known as
the LMS color space. The primaries that give rise to the cone fundamentals are three
imaginary lights that hypothetically stimulate the three types of cones severally and
uniquely.

Although LMS holds a special place in the pantheon of color spaces by virtue of its
biological basis for trichromats, it is not unique and is only occasionally used (prin-
cipally for modeling chromatic adaptation and color blindness). Now that the LMS
cone fundamentals have been determined with exceptional accuracy, however, the CIE
is engaged in the ab initio establishment of a comprehensive new colorimetry system
based on the cone fundamentals. Such a system is far more intuitive than one based on
imaginary primaries.

As suggested by Grassmann’s fourth law, the conversion of one color space to
another takes the form of a matrix transformation of their tristimulus values
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and, by extension, of their color matching functions.

CIE 1931 XYZ Color Space
Long before the cone spectral sensitivity curves depicted in Fig. 8.5-1(a) were mea-
sured, a consensus had been reached that it was important to establish a single color
space as a standard to advance commerce and industry. As indicated in the introduction
to this chapter, the CIE convened a meeting in Cambridge, England in 1931 with the
express purpose of doing so and the XYZ color space emerged as that standard. As
mentioned above, this space separates hue, saturation, and luminance, in accordance
with Grassmann’s first law (Sec. 9.2), by drawing on imaginary primaries labeled X,
Y, and Z. It accommodates the full gamut of perceptible colors. The definition of this
color space, like all others, specifies a well-defined source of illumination, lighting
conditions, and viewing geometry, all of which affect color appearance (Sec. 9.4).

Color-Matching Functions. The color-matching functions for the standard ob-
server are displayed in Fig. 9.5-1. They were selected by the CIE so that the three
functions, x̄(λO), ȳ(λO), and z̄(λO), were everywhere nonnegative and had equal areas.
The peak value of ȳ(λO) was chosen to be unity. The three color matching functions
overlap significantly and the primaries are imaginary.

Figure 9.5-1 CIE (Commission Internationale
de l’Éclairage) 1931 standardized set of color-
matching functions: x̄(λO), ȳ(λO), and z̄(λO). The
perceived color of a source of light of arbitrary
spectral density Sλ(λO) is specified in terms of the
tristimulus values X , Y , and Z computed from
Sλ(λO) and the three color-matching functions.

An important feature, and a particular convenience, of this space is that the central color
matching function ȳ(λO), portrayed as the green curve in Fig. 9.5-1, was defined to be
identical to the photopic luminous efficiency function V (λO) displayed in Fig. 8.5-3.
Incorporating luminance information into the color-matching functions formed a useful
bridge between the CIE 1924 photometry (light-measurement) system and the CIE 1931
colorimetry (color-measurement) system.

Tristimulus Values. For a monochromatic stimulus, the tristimulus valuesXY Z can
be inferred from the ordinate values in Fig. 9.5-1, much as with the LMS color space.
For light of arbitrary wavelength-based power spectral density Sλ(λO) entering the eye,
the integrated tristimulus values are calculated by constructing inner products of the
spectral density and the color-matching functions:

X = k
λ2

∫
λ1

Sλ(λO) x̄(λO) dλO , Y = k
λ2

∫
λ1

Sλ(λO) ȳ(λO) dλO , Z = k
λ2

∫
λ1

Sλ(λO) z̄(λO) dλO .

(9.5-1)

The inner products representing the integrated tristimulus values effectively
serve to project an infinite-dimensional spectral-density space onto a 3D
color-response space. This compressed version of the spectrum embodies
Grassmann’s proportionality and additivity laws, integrated over wavelength.
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The integrals in (9.5-1) have the same form as that for the luminous flux PV in pho-
tometry reported in (8.8-1), the key distinction being that here the three color matching
functions replace the photopic luminous efficiency function V (λO). In both cases, if the
light entering the eye consists of a mixture of components, the overall spectral density
is the sum of the spectral densities associated with the individual components.

Reflected and Transmitted Light. If the light entering the eye has been reflected from
a colored object (such as the artwork displayed in Fig. 2.7-5), its spectral density is the
product of that of the light incident on the object S in(λO) and the intensity reflectance
of the object R(λO), i.e., Sλ(λO) = S in(λO)R(λO). On the other hand, if the light
entering the eye has been transmitted through a colored object or a colorant (such as
stained glass or printer’s ink on paper), its spectral density is the product of that of the
light incident on the object S in(λO) and the intensity transmittance of the object T(λO),
so that Sλ(λO) = S in(λO)T(λO).

Relative Colorimetry. In relative colorimetry, a subclass of basic colorimetry, the
normalization constant in (9.5-1) is often set to

k ≡ 1

/
λ2

∫
λ1

Sλ(λO) ȳ(λO) dλO , (9.5-2)

which renders theXY Z tristimulus values dimensionless and fixes Y at unity. Each of
the tristimulus values then falls within, or close to, the interval [0,1] and the XYZ color
space is represented by something close to a unit cube. Some researchers instead fix the
normalization constant at

k′ = 100 k . (9.5-3)

The maximum value, which is Y = 1 or Y = 100 depending on the normalization
chosen, then represents the brightest possible white that can be attained.

The normalized tristimulus values that represent a perceived color in XYZ color
space are established by calculating the inner products of the color-matching
functions and the power spectral density of the light entering the eye. For light
consisting of a mixture of components, the spectral densities and tristimulus
values of the components are summed, in accordance with Grassmann’s laws.

Absolute Colorimetry. In absolute colorimetry, another subclass of basic colorime-
try, the tristimulus values in (9.5-1) are usually expressed in the form of inner products
between the color matching functions and a normalized version of the power spectral
density, Sλ/PO . Again, reconciliation of the modern and earlier definitions of the can-
dela requires the prefactor of 683 lm/W. Given that the relations provided in (9.5-1)
involve integrations only over wavelength, they can be cast in analogous forms for other
spatial variants of the spectral radiant flux, such as the spectral radiant intensity, spectral
irradiance, or spectral radiance. In particular, since the color matching function ȳ(λO)
and the photopic luminous efficiency function V (λO) are identical, i.e.,

ȳ(λO) ≡ V (λO) , (9.5-4)

the tristimulus value Yabs is most conveniently expressed in terms of the spectral radi-
ance Lλ. Referring to (8.8-4) reveals that Yabs is then identical to the luminance LV:

Yabs = 683

∫ 780

380

Lλ(λO) ȳ(λO) dλO ≡ LV . (9.5-5)
Tristimulus Value Yabs
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In absolute colorimetry, the tristimulus value Yabs , with units of cd/m2, is the
sole repository of luminance information. In relative colorimetry, Y is instead
fixed at 1 or 100 , depending on the normalization selected, which is arbitrary.

Experimental Colorimetry. The experimental tristimulus values for an arbitrary
source of light are determined by making use of an instrument known as a tristimulus
colorimeter.

Normalized Tristimulus Values. Further normalization of theXY Z tristimulus val-
ues capacitates a convenient projection onto a plane. This mapping is achieved by divid-
ing each tristimulus value in (9.5-1) by the sum of the three, which yields normalized
tristimulus values xyz given by

x = X
X+Y+Z

, (9.5-6a) y = Y
X+Y+Z

, (9.5-6b) z = Z
X+Y+Z

. (9.5-6c)

In this case, the normalization procedures used earlier in connection with relative and
absolute colorimetry are superfluous since all of the constants k in (9.5-1) cancel. The
result is two independent, dimensionless parameters, x and y; the third parameter z is
redundant since

x+ y + z = 1 so that z = 1− x− y. (9.5-7)

Since the dependence on luminance is removed in the course of carrying out this nor-
malization procedure, the (unnormalized) tristimulus value Y displayed in (9.5-5), rep-
resenting the luminance, is carried along separately.

xyY Color Space. The xyY color space is designed as a partially normalized cross
between the (unnormalized) CIE 1931 XYZ color space and the associated (normal-
ized) tristimulus values xyz. It carries the full complement of information contained
in XYZ, although in slightly different form. The dimensionless, normalized tristimu-
lus values x and y represent chromaticity information (hue and saturation) while the
orthogonal, unnormalized tristimulus value Y represents luminance. The xyY color
space is the antecedent of the xy chromaticity diagram described in Sec. 9.6.

EXAMPLE 9.5-1. Numerical Computation of Tristimulus Values for Arbitrary Spectra.
In the context of the XYZ color space, light with an arbitrary, continuous power spectral density
Sλ(λO) gives rise to the tristimulus values specified in (9.5-1). For light consisting of a mixture
of components, the overall spectral density is the sum of the spectral densities associated with the
individual components. In practice, the overall spectral density is measured with a spectrometer, the
output of which is generally restricted to a set of discrete, normalized, numerical values S(λi), called
the sampled spectrum, at free-space wavelengths λi spaced 1 nm apart over the range 360–830 nm, as
suggested by current CIE recommendations. Tables for the sampled color-matching functions x̄(λi),
ȳ(λi), and z̄(λi), similarly spaced 1 nm apart over the same wavelength range, are readily available
on the web. The tristimulus values may then be numerically calculated via the following discretized
forms of (9.5-1),

X ≈ k

830∑
λi=360

S(λi) x̄(λi) , Y ≈ k

830∑
λi=360

S(λi) ȳ(λi) , Z ≈ k

830∑
λi=360

S(λi) z̄(λi) , (9.5-8)

where k ≈ 1/
∑λi=830

λi=360 S(λi) ȳ(λi). The summands of X , Y , and Z are then readily computed with
the help of a spreadsheet, such as excel, and their sums yield estimates of the relative inner products
X , Y , and Z.
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EXAMPLE 9.5-2. Numerical Computation of xyY Values for Arbitrary Spectra. The
numerical computation of the tristimulus valuesXY Z for a source of arbitrary spectrum is described
in Example 9.5-1. The chromaticity coordinates x and y associated with the CIE 1931 xyY color
space are determined from the X , Y , and Z values calculated in (9.5-8) by making use of (9.5-6a)
and (9.5-6b). The luminance Y is obtained directly from (9.5-8).

EXAMPLE 9.5-3. Transformation from LMS to XYZ Color Space. The LMS color-
matching functions displayed in Fig. 8.5-1(b) differ markedly from the XYZ color-matching functions
portrayed in Fig. 9.5-1. In accordance with Grassmann’s fourth law, however, a simple linear
transformation, encoded in the form of a 3× 3 matrix, moves one space into the other. A commonly
used version of this matrix, suitable for the CIE 1931 2◦ standard colorimetric observer, takes the
form  X

Y
Z

 =

 1.94735 −1.41445 0.36476
0.68990 0.34832 0

0 0 1.9349

 L
M
S

 . (9.5-9)

Examination of (9.5-9) reveals that X is a mixture of L, M , and S whereas Z represents S. The
luminance Y is a mixture of L and M in the relative proportions 0.69 and 0.35; these values are in
rough accord with the curves portrayed in Fig. 8.5-1(b), which characterize the foveal cone mosaic
displayed in Fig. 8.4-4 (as described in the figure caption thereof).

1976 CIELUV Uniform Color Space
One factor that limits the usefulness of the CIE 1931 XYZ and xyY color spaces con-
sidered above is that they are not visually uniform. In an effort to improve perceptual
uniformity, in 1976 the CIE created the L*u*v* color space, commonly abbreviated CIE
1976 CIELUV, by employing coordinates that are nonlinear functions of the tristimulus
values XY Z. The intent was to create a uniform color space (UCS) in which the
Euclidian distance between any two points approximately represents a measure of their
perceived color difference in terms of hue, chroma, and lightness. In particular, light-
ness L∗ in the CIELUV color space is proportional to the cube root of the tristimulus
value Y representing luminance, as in the brightness–luminance relation provided in
(8.8-7) and (8.8-8).

CIELUV replaced CIE 1960 UCS, an earlier uniform color space, by virtue of its
generally superior perceptual uniformity. Still, CIELUV turns out to be only moderately
more perceptually uniform than CIE 1931 XYZ, which is one of the reasons that the
latter endures. CIELUV is often called upon for computer-graphics applications and
for self-luminous colored emitters, and is readily implemented from XYZ via a matrix
transformation.

CAM16-UCS Uniform Color Space
Color appearance models (CAMs) must have the capacity, at a minimum, to predict
the relative color appearance attributes of hue, chroma, and lightness (Sec. 9.4). In
particular, they must accommodate chromatic adaptation, which represents the ability
of the human visual system to preserve the appearance of the colors of an object under
different colors of illumination. This aspect of color perception is implemented by a
chromatic-adaptation transform (CAT). The CAM16 color appearance model, which
dates from 2016, is a successor to CIECAM02 that incorporates a number of updates
and improvements. CAM16 is slightly different from CIECAM16, which is expressly
designed for color management systems. The prediction of brightness and colorfulness,
as well as luminance-dependent effects such as the Stevens effect, requires models of
greater complexity. CAMs make use of interval scales for hue but rely on ratio scales
for colorfulness, saturation, chroma, brightness, and lightness.
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In principle, the 1976 CIELUV color space considered earlier is a CAM since
the source and stimulus chromaticities provided at its input yield predictions for hue,
chroma, and lightness at its output. In practice, however, CIELUV is not a viable CAM
since its (subtractive) chromatic-adaptation transform is physiologically unrealistic and
its performance in predicting color differences is poor.

CAM16 is accompanied by a color space called CAM16-UCS. This is the updated,
current version of a succession of CIE color spaces of increasing subtlety and uniformity
that have been developed since the advent of 1976 CIELUV. Extensive studies have
demonstrated that CAM16-UCS is highly reliable for predicting color differences for
both the CIE 2◦ and 10◦ observers. Based on a large number of individual datasets,
its performance has been determined to be superior to that of other color-difference
formulas.†

Accurate color-difference determination is essential for assessing metamerism
(Sec. 9.3), and, as will be seen in the sequel, for determining correlated color tem-
perature (Sec. 9.8) and color rendering index (Sec. 9.9). CAMs and their associated
color spaces have specific constraints regarding viewing conditions, however, so it is
important to assess their usefulness for particular LED lighting applications.

RGB Color Spaces
The RGB color model is frequently used to achieve additive color mixing since red,
green, and blue are convenient primaries and their addition generates a wide range of
colors that include a significant portion of the gamut of human vision. We examine a
number of additive RGB color spaces based on the RGB color model.

CIE 1931 RGB Color Space. The earliest RGB color space was constructed by the
CIE in 1931 on the basis of the extensive color-matching experiments conducted in the
late 1920s by the British scientists W. David Wright and John Guild (p. 265), working
at Imperial College and at the National Physical Laboratory, respectively.‡ Both series
of experiments made use of multiple observers. Some of the experiments relied on
monochromatic primaries at various wavelengths and intensities, along the lines of the
approach portrayed in Fig. 9.1-1, while others used broadband primaries. Ultimately,
the monochromatic RGB primary wavelengths chosen for the CIE standard were 700,
546.1, and 435.8 nm, respectively; these were convenient because they made use of the
strong green and blue emission lines from a Hg-vapor discharge. The associated color
matching functions, r̄ḡb̄, were used to define the 1931 CIE standard colorimetric
observer.

However, the use of these primaries led one of the CIE 1931 RGB color matching
functions to be negative over a region of wavelengths. This is related to the fact that
monochromatic primaries cannot uniquely and severally stimulate the three types of
cones in the human retina because of the substantial overlap in their spectral sensitivity
curves (Fig. 8.5-1). Moreover, none of the color matching functions provided an explicit
representation for luminance, which was desirable. These two deficits were rectified by
the mathematical construction of CIE 1931 XYZ, which was created concomitantly
with CIE 1931 RGB. These two CIE 1931 color spaces offered the first quantitative
linkages between the visible wavelengths of the electromagnetic spectrum and the phys-
iological perception of color. The transformation from RGB to XYZ (Example 9.5-4)
results in a tristimulus value Y that is proportional to the luminance LV, as desired.

† M. R. Luo, Q. Xu, M. Pointer, M. Melgosa, G. Cui, C. Li, K. Xiao, and M. Huang, A Comprehensive Test
of Colour-Difference Formulae and Uniform Colour Spaces Using Available Visual Datasets, Color Research and
Application, DOI:10.1002/col.22844, 2023.

‡ W. D. Wright, A Re-Determination of the Trichromatic Coefficients of the Spectral Colours, Transactions of
the Optical Society (London), vol. 30, pp. 141–164, 1929; J. Guild, The Colorimetric Properties of the Spectrum,
Philosophical Transactions of the Royal Society of London, vol. A230, pp. 149–187, 1931.
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EXAMPLE 9.5-4. Transformation from CIE 1931 RGB to CIE 1931 XYZ Color Space.
The matrix that encodes the transformation from CIE 1931 RGB to CIE 1931 XYZ color space is
expressible as  X

Y
Z

 =

 0.49000 0.31000 0.20000
0.17697 0.81240 0.01063

0 0.01000 0.99000

 R
G
B

 . (9.5-10)

The tristimulus value X is a mixture of R, G, and B that is chosen to be nonnegative; Y , which
represents the luminance, is given by Y ≈ 0.18R+0.81G+0.01B, indicating thatB plays a negligible
role; and Z ≈ B. Implementing this transformation trades the color matching function r̄(λO), which
is negative over a region of wavelengths, for the color matching function x̄(λO), which is always
nonnegative (Fig. 9.5-1), but is bimodal and is associated with an imaginary primary.

RGB Color-Space Variants. Advances in digital electronics and photonics in the late
twentieth and early twenty-first centuries fostered the development of many specialized
RGB color spaces for various applications. Examples include displays for computer
monitors, smartphones, and television receivers, and, of course, LED lighting. The
specification of color for OLED displays (Sec. 7.6) and LED lighting (Sec. 11.3) is
established by the excitations applied to physical red, green, and blue light emitters.
Backlit LCD displays also produce red, green, and blue light.

RGB color spaces can be represented in the form of unit cubes, in which the R, G, and
B coordinates span the interval [0,1]. These spaces are constructed using particular sets
of RGB primaries, with cyan, magenta, and yellow serving as secondaries. The color
solid representing one such space is displayed in Figs. 9.5-2(a),(b) from perspectives
focusing on the coordinates (1,1,1) and (0,0,0), which are white and black, respectively.
A multitude of RGB color spaces that make use of different primaries are in common
use. RGB color spaces can be device-dependent or device-independent, designations
indicating whether the resultant color does or does not depend on the system used for
display.

Figure 9.5-2 (a) RGB color solid from a perspective that focuses on (1,1,1), which is white.
(b) RGB color space from a perspective that focuses on (0,0,0), which is black. (c) CMY color solid
from a perspective that focuses on (1,1,1), which is black. (d) CMY color solid from a perspective
that focuses on (0,0,0), which is white.

CMY Color Space. The color solid representing the CMYK color space, which is
generally used in color printing, is also represented by a unit cube with coordinates
that span the interval [0,1]. The primary colors are CMY (cyan, magenta, and yellow),
and the secondaries are red, green, and blue. Unlike RGB, which is additive, this color
space is subtractive. The color solid is displayed in Figs. 9.5-2(c),(d) from perspectives
focusing on the coordinates (1,1,1) and (0,0,0), which are black and white, respectively.
The coordinate (1,1,1) is black since C, M, and Y allow only R, G, and B to be transmit-
ted, respectively, so no residual color remains at (1,1,1). In principle, C, M, and Y are
sufficient to attain black, but in practice it turns out that mixing equal components of
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these three inks yields dark brown instead, so black (K) is usually added as an adjunct.
CMYK color spaces are usually device-dependent.

Device-Centric to Human-Centric Transformations. Display colors are established
by specifying the voltages or currents to be applied to individual photonic devices or
pixels to generate red, green, and blue light. As discussed in Sec. 9.2, however, human
color perception is more suitably described by hue, saturation, and luminance. For
applications such as computer graphics, a Cartesian RGB color space (such as sRGB)
is readily transformed to a human-centric configuration such as HSV or HSL, which are
often referred to as color models. The colorimetric properties of the transformed space
are related to those of the color space from which it is derived. HSV and HSL color
models are briefly considered in turn. They are often preferred by those working in the
visual arts, for whom hue and saturation are intuitive, and who traditionally create color
using tints (mixtures with white), shades (mixtures with black), and tones (mixtures
with both).

HSV Color Model. The HSV (hue, saturation, and value) color model, also known
as HSB (hue, saturation, and brightness), serves as an alternative to RGB because it is
easier to visualize and is device-independent. A color solid frequently used to represent
this color model is the hexcone displayed in Fig. 9.5-3. The primary and secondary
colors (red, yellow, green, cyan, blue, and magenta) are represented at the six vertices of
its hexagonal base, which appears at the top of the figure. HSV is also often represented
in the form of a right circular cylinder.

Figure 9.5-3 Hexcone color solid representing the HSV color
model. The three HSV variables (hue, saturation, and value) are
represented by azimuthal angle (0◦ is defined as red, 120◦ is green,
and 240◦ is blue); radial distance; and height; respectively. Saturation
stretches from zero at the hexcone axis to unity at its surface. Value,
representing brightness or relative luminance, extends along the
hexcone axis, from zero at the apex to unity at the base.

HSL Color Model. HSL (hue, saturation, and lightness) is closely related to HSV,
with lightness replacing brightness. A perfectly light color in HSL is pure white whereas
a perfectly bright color in HSV results from shining a white light on a colored object.
HSL serves as another alternative to RGB. Its color solid is cast in the form of a double
hexcone or a right circular cylinder.

9.6 CHROMATICITY DIAGRAMS

The color spaces considered in Sec. 9.5 are 3D configurations that portray the collection
of supported colors representing the tristimulus values of their coordinates. However,
visualizing these colors is challenging. One strategy for improving the visualization and
interpretation of colorimetric data is to make use of chromaticity diagrams that reduce
the 3D data to 2D planar images by removing luminance information. In this section,
we describe the chromaticity diagrams associated with the color spaces discussed in
Sec. 9.5.

We begin by displaying early 2D chromaticity diagrams constructed by Newton
(p. 1) in 1730, Maxwell (p. 24) in 1860, and Helmholtz (p. 234) in 1855. Following
the introduction of these early constructs, we proceed to describe the CIE 1931 xy
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chromaticity diagram that is ubiquitous today, as well as the CIE 1976 u′v′ diagram.
Finally, we present a number of RGC diagrams, which are customarily portrayed on the
xy-diagram template.

Early Chromaticity Diagrams. Chromaticity diagrams dating from 1730 (Newton’s
color circle), 1860 (Maxwell’s color triangle), and 1855 (Helmholtz’ color horseshoe)
are schematized in Fig. 9.6-1.

Figure 9.6-1 Early chromaticity diagrams. Left: Newton’s color circle (1730). The circumference
of the circle is divided into arcs labeled with the spectral colors, whose centers are designated p, q, r,
s, t, v, and x. Indigo is now seldom used as a color name and blew is now blue. The center of the circle
at o is presumed to be white. Nonspectral colors, such as the one designated at point z, are described
by their distance from o and from the corresponding spectral color labeled Y. Center: Maxwell’s
color triangle (1860). Red, green, and blue primary lights associated with Maxwell’s trichromatic
theory are located at the corners of the triangle, and white is at the center. Mixing the primaries
in various proportions yields the colors represented along the edges of the triangle as well as in
its interior. Right: Helmholtz’ chromaticity diagram (1855) constructed using his measurements
of complementary colors. In modern German, roth is written as rot. Helmholtz’ diagram closely
resembles modern chromaticity diagrams in shape, and even includes a line of purples, as will become
apparent in the next section.

CIE 1931 xy Chromaticity Diagram
As discussed in Sec. 9.5, the CIE 1931 XYZ color space, together with its close cousin,
the xyY color space, serve as the linguae francae of color spaces because of their
convenience and widespread use. The tristimulus values XY Z, normalized to their
relative values xy via (9.5-6), carry the chromaticity information (hue and saturation),
while Y represents the luminance, which is principally governed by the external level
of illumination.

The representation of chromaticity in this color space is therefore reduced from three
dimensions to two; the collection of all perceptual colors is represented in a 2D plane.
The xy chromaticity diagram, where x and y are the (dimensionless) chromaticity
coordinates, is displayed in Fig. 9.6-2, and its properties are delineated below. Inasmuch
as Grassmann’s empirical laws (Sec. 9.2) played a central role in the development of
the CIE 1931 XYZ color space, they are de facto incorporated into the fabric of the xy
chromaticity diagram.

Properties. The xy chromaticity diagram has the following properties:
It encompasses the full gamut of color vision, comprising some 4000 gradations
that consist of 200 hues, each with 20 saturation levels. Light of a particular color
is specified in terms of its (x, y) chromaticity coordinates.
The outer curved boundary represents the fully saturated locus of spectral colors,
whose associated wavelengths (in nm) are indicated at the periphery.
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Figure 9.6-2 The xy chromaticity diagram as-
sociated with the CIE 1931 xyY color space for
a standard observer, under specified conditions
of illumination. The chromaticity coordinates are
denoted x and y. In rough analogy with a polar
coordinate system, hue (color) and saturation (col-
orfulness) are represented in the polar and radial
directions, respectively, with the origin at the white
center. The luminance (brightness) information
associated with Y is not represented in the diagram.
The unusual horseshoe shape of the image derives
from the form of the XYZ color matching func-
tions. Were we to extend the thin white line tangent
to the diagram beyond the boundaries of the figure,
it would intersect the abscissa at x = 1.0 and the
ordinate at y = 1.0.

The straight edge at the bottom of the figure is called the line of purples. Its colors
are fully saturated but nonspectral, i.e., they have no counterparts in monochro-
matic light and can be generated only by mixing red and blue.
Any color, including white, that lies on a straight line between any two points in
the diagram can be generated by mixing the colors at the endpoints of that line. The
relative weights of the two endpoint contributions required to generate a particular
color depend on factors beyond the geometrical distance of the desired color along
the line (Example 9.6-1).
All colors lying within a triangle in the diagram can be generated by mixing the
three colors represented by the vertices of that triangle (Example 9.6-2). Similarly,
all colors within any simple polygon can be generated by mixing the colors at its
vertices.
White light with a uniform wavelength-based spectral density (equal-energy
white) has the chromaticity coordinates (x, y) = (1/3 , 1/3) (Example 9.6-3).
Less saturated colors appear in the interior of the diagram, with white toward the
center. Mixing a spectrally pure color with white leads to a color with the same
hue but different saturation. For example, pure red (100% saturated) mixed with
white leads to pink (< 100% saturated), and ultimately to white (0% saturated).
Complementary colors lie on opposite sides of white, and along every line that
passes through white.
The dominant wavelength for a color in the interior of the diagram is established
by drawing a straight line through the white point and that color, and then deter-
mining where on the boundary the extension of that line intersects the locus of
spectral colors. The color purity is defined as the distance from the white point
to the color divided by the distance from the white point to the boundary. Spectral
colors, which lie on the boundary, have a color purity of unity.
A nonspectral color that lies within a triangle whose vertices are at the white point
and at the two bottom angular corners of the diagram are conventionally identified
by the dominant wavelength of its complement.
Spectral colors such as orange can be converted to brown by reducing the lumi-
nance of the red and green components, which is tantamount to mixing it with
black.

EXAMPLE 9.6-1. Chromaticity Coordinates for a Mixture of Two Colors. We consider
the mixing of two sources of light with peak wavelengths λ1 and λ2; power spectral densities S1(λO)
and S2(λO); and chromaticity coordinates (x1, y1) and (x2, y2), respectively. We assume that the
spectral widths of the two components are much narrower than the XYZ color matching functions
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x̄(λO), ȳ(λO), and z̄(λO), so that their spectral densities can be approximated by delta functions. The
overall power spectral density can then be written as

Sλ(λO) ≈ P1δ(λ− λ1) + P2δ(λ− λ2), (9.6-1)

where P1 and P2 represent the optical powers (radiant flux) emitted by the two sources, respectively.
Inserting this expression into (9.5-1) then yields, with the help of the sifting property of the delta
functions in the integrands,

X ≈ k [P1x̄(λ1) + P2x̄(λ2)] (9.6-2a)

Y ≈ k [P1ȳ(λ1) + P2ȳ(λ2)] (9.6-2b)

Z ≈ k [P1z̄(λ1) + P2z̄(λ2)] . (9.6-2c)

Using (9.5-6a) and (9.5-6b), along with the definitions

K 1 = P1 [x̄(λ1) + ȳ(λ1) + z̄(λ1)] (9.6-3a)

K 2 = P2 [x̄(λ2) + ȳ(λ2) + z̄(λ2)] (9.6-3b)

then provides

x =
x1K 1 + x2K 2

K 1 + K 2

and y =
y1K 1 + y2K 2

K 1 + K 2

. (9.6-4)

We conclude that the chromaticity coordinates for the combined light are linear combinations of the
chromaticity coordinates for the individual sources, suitably weighted by K 1 and K 2, which in turn are
governed by the relative radiant flux and values of the color matching functions at the peak wavelengths
of the individual sources. The two sources can be located anywhere within the chromaticity diagram;
they need not be on its boundary nor does the line connecting them need to transect the white point.

It follows from (9.6-4) that the chromaticity coordinates of the mixture fall along the straight
line connecting the chromaticity coordinates of the individual sources. This approach is used, for
example, in determining the chromaticity coordinates for a white phosphor-conversion (PC) LED
(Example 10.5-3). It is also invaluable for establishing the chromaticity coordinates for sources of
finite linewidth (Sec. 9.6).

EXAMPLE 9.6-2. Chromaticity Coordinates for a Mixture of Three Colors. A gener-
alization of Example 9.6-1 considers the mixing of three light sources that have peak wavelengths
λ1, λ2, and λ3; power spectral densities S1(λO), S2(λO), and S3(λO); and chromaticity coordinates
(x1, y1), (x2, y2), (x3, y3), respectively. When the widths of the individual spectral components are
much narrower than the XYZ color matching functions x̄(λO), ȳ(λO), and z̄(λO), the spectral densities
can be approximated by delta functions. The overall spectral density can then be written as

Sλ(λO) ≈ P1δ(λ− λ1) + P2δ(λ− λ2) + P3δ(λ− λ3), (9.6-5)

where the quantities P1,2,3 represent the radiant flux of the three sources. With the help of the sifting
property of the delta function, inserting (9.6-5) for Sλ(λO) into (9.5-1) then provides

X ≈ k [P1x̄(λ1) + P2x̄(λ2) + P3x̄(λ3)] (9.6-6a)

Y ≈ k [P1ȳ(λ1) + P2ȳ(λ2) + P3ȳ(λ3)] (9.6-6b)

Z ≈ k [P1z̄(λ1) + P2z̄(λ2) + P3z̄(λ3)] . (9.6-6c)

Now, using (9.5-6a) and (9.5-6b), together with the definitions

K 1 = P1x̄(λ1) + P1ȳ(λ1) + P1z̄(λ1) (9.6-7a)

K 2 = P2x̄(λ2) + P2ȳ(λ2) + P2z̄(λ2) (9.6-7b)

K 3 = P3x̄(λ3) + P3ȳ(λ3) + P3z̄(λ3), (9.6-7c)

leads to

x =
x1K 1 + x2K 2 + x3K 3

K 1 + K 2 + K 3

and y =
y1K 1 + y2K 2 + y3K 3

K 1 + K 2 + K 3

. (9.6-8)
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Again, the chromaticity coordinates of the mixed light are linear combinations of the chromaticity
coordinates of the individual sources, suitably weighted by factors that depend on the values of the
color matching functions at the three peak wavelengths, and on their relative radiant flux. It follows
from (9.6-8) that the chromaticity coordinates of the mixture lie within a triangle on the diagram whose
vertices are located at the coordinates associated with the three constituent sources. Equation (9.6-8)
reduces to (9.6-4) when only two colors are mixed. A generalization of this example leads to the result
that the chromaticity coordinates of a mixture of multiple colors lies within the simple polygon on the
chromaticity diagram whose vertices are located at the coordinates associated with the constituent
sources.

EXAMPLE 9.6-3. Chromaticity Coordinates for Spectrally Uniform White Light.
Light with a uniform wavelength-based power spectral density Sλ(λO), often called equal-energy
white and referred to as the standard CIE colorimetric illuminant E, appears white to the eye.
Because the color matching functions x̄(λO), ȳ(λO), and z̄(λO) have equal areas, the three integrals
represented in (9.5-1) are identical, whereupon X = Y = Z. In accordance with (9.5-6), this leads
to x = y = z = 1/3 . We conclude that uniform-spectral-density white light is represented by the
chromaticity coordinates (x, y) = (1/3 , 1/3), which is known as the white point of the chromaticity
diagram.

CIE 1976 u′v′ Chromaticity Diagram
An examination of the xy chromaticity diagram presented in Fig. 9.6-2 reveals that
an unexpectedly large portion of its area is occupied by green. In an attempt to re-
dress this anomaly, which is a manifestation of the extensive nonuniformity throughout
the diagram, in 1976 the CIE introduced the CIELUV (or CIE L*u*v*) color space
(Sec. 9.5). The goal was to create a uniform color space (UCS) in which the Euclidian
distance between any two points in the associated u′v′ chromaticity diagram would
approximately represent their perceived color difference in terms of hue, chroma, and
lightness.

The u′v′ chromaticity diagram associated with the CIELUV color space is displayed
in Fig. 9.6-3. Its chromaticity coordinates (u′, v′) are readily obtained from the coordi-
nates (x, y) associated with CIE 1931 xyY via the mapping specified in Example 9.6-4.
Although 1976 CIELUV replaced the earlier CIE 1960 UCS by virtue of its generally
superior perceptual uniformity, the uv chromaticity diagram associated with the latter
is nevertheless considered to be more suitable for determining correlated color temper-
ature (Sec. 9.8).

Figure 9.6-3 The u′v′ chromaticity di-
agram associated with the 1976 CIELUV
(CIE 1976 UCS) color space for a stan-
dard observer. Although designated as a
uniform color space (UCS), CIELUV is
only moderately more perceptually uni-
form than CIE 1931 XYZ. Nevertheless,
comparing the 1976 u′v′ diagram dis-
played here with the 1931 xy chromaticity
diagram portrayed in Fig. 9.6-2 reveals that
the proportions of blue and red are suitably
enlarged in 1976 u′v′.
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EXAMPLE 9.6-4. Mapping (x,y) to (u′,v ′) Chromaticity Coordinates. The mapping of
(x, y) to (u′, v′) chromaticity coordinates takes the following form:

u′ =
4x

−2x+ 12y + 3
, v′ =

9y

−2x+ 12y + 3
. (9.6-9)

RGB Chromaticity Diagrams
Chromaticity diagrams that illustrate the ranges of reproducible colors for several RGB
color spaces are traced out on the CIE 1931 xy diagram presented in Fig. 9.6-4. The
ranges of perceptible colors are represented by their gamuts, i.e, by the colors enclosed
within their 2D triangles. We portray three chromaticity diagrams commonly used for
color displays. The standard RGB (sRGB) diagram, introduced by Hewlett-Packard and
Microsoft in 1996 for use with digital devices, along with the Apple RGB diagram used
for Apple devices, are seen to have gamuts that are somewhat limited, particularly in
the blue and green. Adobe RGB has a larger gamut and is designed to accommodate
most colors available with CMYK color printers. Adobe wide-gamut RGB (not plotted
in Fig. 9.6-4) makes use of pure spectral primaries with wavelengths 700, 525, and
450 nm, and offers a substantially enhanced gamut.

Figure 9.6-4 RGB chromaticity diagrams
traced out on the CIE 1931 xy diagram. Diagrams
for three device-dependent RGB color spaces are
presented: sRGB, Apple RGB, and Adobe RGB. A
universal set of RGB primaries does not exist so
each of the color spaces defined in the figure has its
own set, which are identified by the chromaticity
coordinates of the vertices of their triangles. The
gamut of reproducible colors associated with each
triangle is a subset of the gamut of the xy diagram,
the properties of which were considered in the
discussion surrounding Fig. 9.6-2. Color-mixing
LEDs with individually addressable red, green,
and blue dies define triangles that designate the
available gamut for LED lighting with tunable hue
and saturation (Sec. 11.3).

Although all three of these RGB diagrams offer a substantial range of colors, they are
clearly subsets of the xy chromaticity diagram, which accommodates the full range of
human color perception. Enveloping the full gamut using three primaries entails using
a triangle whose vertices lie outside the region of real colors, thereby corresponding to
imaginary primaries. ProPhoto RGB is one such example.

RGB color spaces are widely used in connection with LED lighting. As will be
elucidated in Chapter 10, individual red, green, and blue LEDs enable the creation
of RGB color systems that accommodate the generation of light with tunable hue,
saturation, and luminance. Discrete LEDs of many different colors are commercially
available, as are additive color-mixing LEDs that contain individually addressable red,
green, blue, and white dies within a single LED package (Secs. 11.2 and 11.3).

Chromaticity Coordinates for Sources of Finite Linewidth. Although the emis-
sion spectrum associated with an individual LED is relatively narrow, it is not van-
ishingly small. Thermal broadening results in a spectral width ∆λ ≈ 1.45λ2p kT , as
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provided in (6.4-14) and (6.4-17), and as illustrated in Example 7.2-1. Other mech-
anisms, such as alloy and various forms of inhomogeneous broadening, also play a
role when present. The XY Z tristimulus values for LED light, which are established
by making use of (9.5-1), depend on the overall power spectral density Sλ(λO) of the
light entering the eye. For a red LED, the tristimulus values typically give rise to xy
chromaticity coordinates that lie at a point along the red boundary of the chromaticity
diagram, while for a blue LED the coordinates usually lie at a point interior, but quite
close to, the boundary. For a green LED, on the other hand, the coordinates typically
lie in the interior of the diagram.

These distinct outcomes can be understood on the basis of the local curvature of
the chromaticity diagram. Figure 9.6-2 and Example 9.6-1 reveal that mixing colors
corresponding to any two points on the diagram results in a color that lies on the straight
line connecting those two points. Since the boundary of the chromaticity diagram in
the red region is essentially a straight line, the assembly of red spectral components
that comprise the broadened spectrum of a red LED all lie along this same straight
boundary, and therefore so too do the chromaticity coordinates of mixtures of all pairs
of spectral components. The same reasoning applies to the yellow photoluminescence
generated in a white phosphor-conversion (PC) LED, as discussed in Example 10.5-3.

In contrast, the assembly of green spectral components comprising the broadened
spectrum of a green LED lie along the sharply curved green boundary of the chromatic-
ity diagram. If a subset of three green spectral components drawn from the broadened
spectrum are considered as the vertices of a triangle, the chromaticity coordinates for
their mixture lie within that triangle, as explained in Example 9.6-2. By induction, the
chromaticity coordinates for the full collection of spectral components that comprise
the broadened spectrum of a green LED lie in the interior of the xy diagram. The results
for a blue LED are intermediate between those for red and green LEDs.

9.7 COLOR TEMPERATURE

The color of the light emitted by a source in thermal equilibrium depends solely on
its thermodynamic temperature T . This temperature therefore serves as a convenient
shorthand for defining its color, which is referred to as the color temperature (CT)
and is specified in kelvins. Color temperature is defined only for thermal light.

Color temperature endures as a measure in illumination engineering because humans
prefer thermal-light illumination. This preference likely arose because the principal
source of light at the surface of the earth, sunlight, has a spectrum that closely follows
the blackbody radiation law with T ≈ 5800 K (Sec. 4.7). Indeed, with the help of
Wien’s law (4.7-14), it is readily shown that this temperature corresponds to a peak
wavelength λp ≈ 500 nm, which is close to the peak wavelengths of the trichromatic
scotopic and photopic luminous efficiency functions, V ′(λO) and V (λO), respectively
(Sec. 8.5). It can be plausibly argued that the comfort of thermal light, such as that from
an incandescent lamp, is linked to the blackbody spectrum.

We begin by describing the spectral characteristics of thermal light and then explain
how color temperature is represented on the chromaticity diagram. We proceed by
considering color temperature in the context of other temperature measures, namely
thermodynamic, thermographic, and biological temperature. We conclude with a few
words regarding the significance of the terms warm white light and cool white light.

Spectral Radiance, Irradiance, and Density for Thermal Light
The wavelength-based spectral radianceLλ(λ, T ) of a blackbody source of temperature
T , which represents its power per unit wavelength per unit projected area per unit solid
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angle, takes the form

Lλ(λ, T ) =
2hc2

λ5
1

exp(hc/λkT )− 1
. (9.7-1)

Spectral Radiance
(Blackbody Source)

Blackbody radiation is isotropic and its spectral radiance Lλ (W·nm−1·m−2·sr−1)
is related to its wavelength-based spectral energy density ϱλ specified in (4.7-10)
(J·nm−1 ·m−3) via Lλ(λ, T ) = (c/4π) ϱλ(λ, T ), where c is the speed of light and
T is the thermodynamic temperature of the source. Also closely related are the
spectral irradiance Iλ(λ, T ) and the wavelength-based power spectral density Sλ(λ, T )
illustrated in Fig. 2.7-5.

These four measures are interrelated by the following expressions:
■ Spectral Radiance: Lλ(λ, T ) = (c/4π) ϱλ(λ, T ) (W·nm−1·m−2·sr−1) (9.7-2a)
■ Spectral Irradiance: Iλ(λ, T ) = (c/4) ϱλ(λ, T ) (W·nm−1·m−2) (9.7-2b)
■ Spectral Density: Sλ(λ, T ) = (cAeff/4) ϱλ(λ, T ) (W·nm−1) , (9.7-2c)

where Aeff represents the effective projected area. Since the four measures tabulated in
(9.7-2) are mutually proportional, i.e., Sλ(λ, T ) ∝ Iλ(λ, T ) ∝ Lλ(λ, T ) ∝ ϱλ(λ, T ),
their spectral dependencies are identical. It is customary to plot the spectral radiance
Lλ(λ, T ), as displayed in Fig. 9.7-1(a), but the curves represent all four quantities, with
a simple change of scale on the ordinate. Each curve in this figure, corresponding to a
specified thermodynamic temperature T (K), is a smooth, single-peaked function of the
free-space wavelength λO that extends from the ultraviolet (UV) to the mid-infrared.

Figure 9.7-1 (a) The spectral ra-
diance Lλ(λ, T ) of a blackbody (or
graybody) radiator is the power ra-
diated per unit wavelength per unit
projected area per unit solid angle
(kW·nm−1·m−2·sr−1). The curves are
parameterized by T (K) and plotted
against λO. The spectral behavior, and
therefore the shapes, of Sλ ∝ Iλ ∝
Lλ ∝ ϱλ are the same; only their
scales differ. (b) Objects whose color
temperatures stretch from low (red) to
high (blue) values.

Chromaticity Coordinates and the Planckian Locus
Although some sense of the color of thermal light at various temperatures can be
gleaned from Fig. 9.7-1(a), a reliable assessment of the color involves coupling the
spectral density to the visual system’s color matching functions. This is achieved by
generating the Planckian locus, a curve on the chromaticity diagram that comprises the
collection of chromaticity coordinates that correspond to thermal radiation at different
thermodynamic temperatures. The procedure for calculating the Planckian locus is as
follows:
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1. Begin with the power spectral density of thermal light Sλ(λ, T ) provided in (9.7-
2c), which is proportional to the spectral energy density ϱλ(λ, T ) set forth in
(4.7-10).

2. Use (9.5-1) to form inner products of the spectral density Sλ(λ, T ) with the
color matching functions x̄(λ, T ), ȳ(λ, T ), z̄(λ, T ), which lead to the tristumulus
values X(T ), Y (T ), Z(T ).

3. Use (9.5-6) to normalize the tristimulus values, which provides x(T ) and y(T )
as functions of temperature.

4. Plot x(T ) and y(T ) on the chromaticity diagram for a collection of values of T ,
labeling them with the temperature. This is the Planckian locus.

The Planckian locus, which tracks the path of the color temperature for the radia-
tion emitted by blackbodies and graybodies at thermodynamic temperature T (K), is
represented by the black curve imposed on the xy chromaticity diagram in Fig. 9.7-
2, which is based on the one in Fig. 9.6-2. The color temperature transitions from
deep red at a low thermodynamic temperature (T ≈ 1000 K), to orange, to yellow, to
yellowish-white, then to white, and ultimately to bluish-white and blue at a sufficiently
high thermodynamic temperature (T ≈ 10000 K). While the shift in color with increas-
ing thermodynamic temperature can be qualitatively understood by observing that the
spectral radiance curves in Fig. 9.7-1(a) broaden with increasing temperature, thereby
increasing the relative proportions of yellow and blue, the Planckian locus provides a
quantitative accounting.

Figure 9.7-2 The xy chromaticity diagram as-
sociated with the CIE 1931 xyY color space, as
displayed in Fig. 9.6-2. The black curve plotted on
the figure is the Planckian locus, which traces the
path of colors associated with the radiation emitted
by a blackbody or graybody as the temperature
T (K) changes. The straight lines that transect the
Planckian locus are representative loci of constant
correlated color temperature Tc (K), as explained
in Sec. 9.8. These loci are more clearly portrayed
in Fig. 9.8-1, which displays them on the uv
chromaticity diagram associated with the CIE 1960
color space.

The exemplars of color exhibited in Fig. 9.7-1(b) represent a collection of objects
whose color temperatures stretch from low (red) to high (blue). Colors such as green
and violet, which are well away from the Planckian locus, are never elicited by thermal
radiation, regardless of how high or how low their temperature.

Incandescent Light
From the late 1800s until the early 2000s, artificial lighting was principally provided
by sources of incandescent thermal light, the generation and properties of which have
been detailed in Sec. 4.8 The quintessential incandescent thermal source is the old-
fashioned glass light bulb containing a thin tungsten filament that is ohmically heated
by an electric current. Tungsten is used for such lamps because, of all metals, it has the
lowest vapor pressure (1 Pa at 3477 K) and highest melting point (3695 K). In some
devices, thermal losses and material evaporation are limited by filling the bulb with
a protective noble gas and winding the filament into a compact coil. The emissivity
of a heated tungsten filament has a value ε ≈ 0.44 across the visible region of the



294 CHAPTER 9 COLORIMETRY

spectrum (Table 4.8-1), so it radiates as a graybody and is well-characterized by the
Planck radiation formula (4.7-10).

Tungsten lamps are typically operated at temperatures between 2600 and 3300 K;
below 2600 K the light is overly reddish in color with barely a hint of white, and above
3300 K the filament is liable to melt. As is evident from the curve in Fig. 9.7-1(a)
labeled 3000 K, as well as from Fig. 9.7-1(b) and from the Planckian locus on Fig. 9.7-
2, incandescent emission from tungsten is limited to the reddish end of the visible
spectrum. Tungsten incandescent sources therefore cannot produce bright white light.
They have lifespans of some 1500 hours and emit only about 5% of the energy they
consume as visible light (with a corresponding wall-plug luminous efficiency ηWPC ≈
2%), the remainder being dissipated as heat in the form of infrared radiation. Halogen
lamps have lifespans of about 4000 hours and emit about 7% of the energy they consume
as visible light. In spite of their drawbacks, tungsten lamps have nevertheless continued
to serve as a point of reference in illumination engineering because of their long history,
ease of construction, low cost, and ideal color rendering quality.

While incandescent artificial lighting is appealing to the eye, its color is limited
to shades of reddish-white and its generation is hampered by low efficiency.

Temperature: Color, Thermodynamic, Thermographic, and Biological
The concept of color temperature is clarified by juxtaposing it with three other temper-
ature measures, all of which represent energy in one form or another:

Temperature Measures: Energy Forms and Measurement Modalities

Color Temperature. Spectral density of thermal radiant energy in the visible
region, measured by retinal cones and interpreted by the visual system.
Thermodynamic Temperature. Average internal energy of a system, measured
by a thermometer.
Thermographic Temperature. Power per unit area of thermal radiant energy
in the infrared region, measured by an infrared photodetector array.
Biological Temperature. Average thermal energy of ambient air molecules,
measured by skin thermoreceptors.

We consider each of these temperature measures in turn.

Color Temperature. A source of thermal light of color temperature T emits visible
light with the color of a blackbody (or graybody) radiator in thermal equilibrium at
the thermodynamic temperature T . Color temperature is readily visualized along the
Planckian locus on the chromaticity diagram (Fig. 9.7-2).

Thermodynamic Temperature. As described in Sec. 4.1, the kinetic theory of
gases, in conjunction with Newton’s laws of motion and the ideal gas law, allow a
relation to be forged between thermodynamic temperature and the average internal
energy of the system in which it is measured. Thermodynamic temperature is the most
fundamental, and the common denominator, of all temperature measures.

Thermographic Temperature. As discussed in Sec. 4.8, thermography relies on an
infrared photodetector array to register the power per unit area emitted by the elements
of a thermal image. The thermographic temperature of these elements usually lies some-
where in the range 10 K ⩽ T ⩽ 4000 K, roughly corresponding to emission in the



9.7 COLOR TEMPERATURE 295

wavelength range 300 µm ⩾ λO ⩾ 0.7 µm. The principal distinctions between color
temperature and thermographic temperature are as follows:

The notion of color temperature, which involves the human visual system, is re-
stricted to the visual region of the spectrum whereas thermographic temperatures
are typically centered in the infrared.
The visual system establishes the color temperature of an object by resolving the
spectrum of the incoming thermal light while ignoring its luminance; the infrared
photodetector array determines the thermographic temperature of an object by
resolving the irradiance of the arriving thermal radiation while ignoring its spec-
trum.
The determination of the color temperature of a source relies principally on its
spectral radiance (9.7-1) and on the spectral response characteristics of the human
visual system. The color temperature is represented on the chromaticity diagram.
The accuracy with which the color temperature of a thermal source can be de-
termined depends on how closely its spectrum adheres to the ideal blackbody or
graybody form specified in (9.7-1).
The determination of the thermographic temperatures of the pixels in a speci-
men relies on the radiated infrared power per unit area (4.8-1) and on the power-
resolving capabilities of the pixels in the array detector. The calculations rely
principally on the Stefan–Boltzmann law. The accuracy with which the effective
thermographic temperature can be determined depends on the degree to which the
local emissivity (4.8-2) is known.
Wien’s law (4.7-14), which provides the peak emission wavelength as a function of
temperature, provides qualitative guidance for determining both color temperature
and thermographic temperature.
The false-color palette used to display thermodynamic temperature in thermogra-
phy is chosen arbitrarily and bears no relation to color temperature. The coldest
portions of the image are usually, but not always, portrayed as black or violet and
the warmest portions as red or white. This is the mapping used in Fig. 4.8-2(a),(b),
for example, but the opposite color convention is used in Fig. 4.8-2(c).

Biological Temperature. Over a limited range of thermodynamic temperatures (15–
45 ◦C = 288–318 K), ambient skin temperature T is gauged by thermoreceptors that
are sensitive to thermal energy. The percepts of increased and reduced temperature at
the skin, relative to its nominal value, are engendered by two distinct sensory modali-
ties mediated by thermoreceptors with different properties. Increased and reduced skin
temperature are assigned the semantic labels “warm” and “cold,” respectively.

In contradistinction to photoreceptors, which are all localized in the eye, both forms
of somatosensory receptors are distributed in a punctate configuration over the entire
surface of the skin. Discrete skin zones, each ≈ 1 mm in diameter, contain one or the
other type of thermoreceptor that registers an increase or a decrease of temperature
relative to normal skin temperature (Ts ≈ 34 ◦C). Both warmth and cold thermore-
ceptors comprise the bare nerve endings of dorsal-root-ganglion primary afferent fibers
endowed with temperature-sensitive ion channels that give rise to nerve-fiber action po-
tentials. Different versions of these ion channels, which are responsive to various ranges
of temperature, result in action potentials that transmit the temperature information to
the central nervous system via the anterolateral system.

Cutaneous warmth receptors are activated at temperatures above normal skin tem-
perature, in the range 34 ⩽ T ⩽ 45 ◦C. The afferent nerve-fiber discharge rate λw in
this temperature region is expressible as λw ≈ λs+kw (T−Ts), where λs is the receptor
spontaneous discharge rate in the absence of a thermal stimulus and kw is a constant.
The psychophysical magnitude estimate of warmth tracks the afferent discharge rate and
behaves as W ∝ (T − Ts). Cutaneous cold receptors, whose behavior mirrors that of
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warmth receptors, are activated at temperatures below normal skin temperature, in the
range 34 ⩾ T ⩾ 15 ◦C. The afferent nerve-fiber discharge rate λc in this temperature
region is expressible as λc ≈ λs + kc(Ts − T ), where kc is a constant. Again, the
psychophysical magnitude estimation of cold follows the afferent discharge rate, and
behaves as C ∝ (Ts − T ).

Warm White Light and Cool White Light. The adjectives warm and cool are un-
defined for concepts that do not rely on thermodynamic temperature. In social dis-
course, for example, a “warm reception” indicates an amicable greeting, whereas a “cool
reception” signifies a less-than-hospitable greeting. In contemporary conversation, in
contrast, a “heated discussion” is an unwelcome event whereas a “cool encounter” is a
welcome event. These countervailing examples illustrate the arbitrariness of the terms
warm and cool in settings unrelated to thermodynamic temperature.

A more salient example, in the context of illumination, relates to the use of the
adjectives warm and cool for characterizing the white light emanating from a thermal
light source. The light emitted by a heated tungsten filament at a (relatively cool) ther-
modynamic temperature of 2700 K, which is reddish-yellow in color, is termed warm
white light, while that emitted by a cloudy sky at a (relatively warm) thermodynamic
temperature of 6500 K, which is bluish-white in color, is referred to as cool white light.
The use of these assignations appears to date from the late eighteenth century. It is
worthy of mention, perhaps, that the former is conducive to relaxation and inclination
toward sleep (especially when it is also dim), while the latter is said to promote alertness
and high performance (especially when it is also bright).

warm (cool) white light is emitted by a thermal source at a cool (warm)
thermodynamic temperature. However, this apparent contradiction has no sig-
nificance because the use of the terms warm and cool in connection with the
character of light is a semantic choice that bears no relation to the use of these
same terms in connection with thermodynamic temperature.

9.8 CORRELATED COLOR TEMPERATURE

In the early 2000s, an accumulation of advances in LED technology revealed that the
advantages of LED lighting were incontrovertible and incandescent lighting finally
yielded its preeminent position. LED lighting has the capability of generating light of
any color, including the full range of whites at all color temperatures, and it does so
with high efficiency. One of the principal topics considered in Chapter 10 is the design
of metameric-white LEDs with output characteristics that mimic those of thermal light.

The question arises as to whether the notion of color temperature, which is useful for
describing the color of thermal light, has an analog for nonthermal light. The answer
turns out to be in the affirmative — but only for nonthermal emissions whose colors
closely resemble those of thermal sources, i.e., for ources whose chromaticity coordi-
nates lie sufficiently close to the Planckian locus on the chromaticity diagram (Fig. 9.7-
2). This measure is called the correlated color temperature (CCT) and is denoted
Tc (K). The CCT is the color temperature of the thermal source whose perceived color
most closely matches that of the nonthermal source under consideration, under the
same illumination and viewing conditions. This one-dimensional metric is often used
as a proxy for the color of a nonthermal source of light because of its simplicity and
convenience. Only light sources that are approximately white, such as metameric-white
LEDs, metal halide lamps, and fluorescent lamps, are properly characterized by a CCT.
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Color temperature and correlated color temperature provide simple character-
izations of the color of the light emitted by thermal and nonthermal radiators,
respectively. If a source of nonthermal light has chromaticity coordinates that
lie near the Planckian locus, its correlated color temperature is taken to be the
color temperature of the closest point on the Planckian locus.

CIE 1960 UCS
The CIE 1960 UCS (uniform color space) was expressly introduced to enable the CCT
to be quantified. This color space has been largely superseded by CIE 1976 CIELUV,
which in general has superior uniformity (Secs. 9.5 and 9.6). However, CIE 1960 UCS
remains the preferred color space for calculating the CCT because it is more uniform
for nominally white chromaticities. A simple matrix encodes the transformation from
CIE 1931 XYZ to CIE 1960 UCS.

The associated uv chromaticity diagram, a portion of which is portrayed in Fig. 9.8-
1, resembles the CIE 1976 u′v′ diagram shown in Fig. 9.6-3 more closely than it does
the CIE 1931 xy version presented in Fig. 9.7-2, but it is distinct from both. Also called
the MacAdam chromaticity diagram, it exhibits CCT isotherms that perpendicularly
transect its Planckian locus over the range 1000 ⩽ Tc ⩽ 10000 K. Following the
steps used to calculate the color temperature for a thermal source (Sec. 9.7), the CCT
of a source of light is established by using its power spectral density to determine the
tristimulus values in the CIE 1960 UCS space, converting these to uv chromaticity
coordinates, and then identifying the closest isotherm. While the minimum-distance
calculation to determine the CCT is carried out within CIE 1960 UCS, CCTs can be
displayed on any chromaticity diagram, such as CIE 1931 XYZ (Fig. 9.7-2). Repre-
sentative values of the CCT for various sources used in LED lighting are displayed in
Table 11.9-1.

Figure 9.8-1 Expanded view of the uv chromaticity diagram for the CIE 1960 UCS (uniform
color space), also called the MacAdam chromaticity diagram, in the vicinity of the Planckian locus
(curved line). The straight lines that perpendicularly transect the Planckian locus, labeled in kelvins
(K), represent correlated color temperature (CCT) isotherms. The (u, v) chromaticity coordinates for a
number of CIE standard illuminants are indicated: A (incandescent light with Tc ≈ 2856K), E (equal-
energy with Tc ≈ 5460 K), and several variations on daylight (D50, D55, and D65). The CCT for an
arbitrary light source is determined by finding the isotherm closest to its chromaticity coordinates via
interpolation.
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Properties. The portion of the uv chromaticity diagram in the vicinity of the Planck-
ian locus, displayed in Fig. 9.8-1, has the following properties:

The loci of constant correlated color temperature Tc(K) are represented by straight
lines that perpendicularly transect the Planckian locus. However, these loci are not
perpendicular to the Planckian locus in the xy chromaticity diagram (Fig. 9.7-2).
The chromaticity coordinates for several standard illuminants codified by the CIE
are displayed: Illuminant series A, D, and E represent average incandescent light
(Tc ≈ 2856 K), variations on daylight, and equal-energy illumination (Tc ≈
5460 K), respectively. In 2018. the CIE introduced standard illuminants repre-
senting different types of LEDs with 2700 ⩽ Tc ⩽ 6600.
The illuminant D65, which roughly corresponds to average midday light with Tc =
6500 K (the origin of the subscript 65), is represented by the chromaticity coordi-
nates (u, v) = (0.198, 0.312) .
The (u, v) coordinates (Fig. 9.8-1) differ from the (x, y) coordinates (Fig. 9.7-2)
because their color matching functions are different. For the illuminant D65, for
example, (u, v) = (0.198, 0.312) while (x, y) = (0.31271, 0.32902).

Following the convention used with thermal light, nonthermal sources with
color temperatures 2700≲ Tc ≲ 3500 K (yellowish) are usually considered to be
warm white or soft white, those with 3500≲ Tc ≲ 5000 K (yellowish-white) are
said to be neutral white or bright white, and those with 5000 ≲ Tc ≲ 7500 K
(bluish-white) are considered to be cool white or daylight, although there is
considerable latitude in the way these ranges are defined.

EXAMPLE 9.8-1. Mapping (x,y) and (u′,v ′) to (u,v) Chromaticity Coordinates. The
mapping of (x, y) to (u, v) chromaticity coordinates takes the following form:

u =
4x

−2x+ 12y + 3
, v =

6y

−2x+ 12y + 3
. (9.8-1)

A comparison with the mapping of (x, y) to (u′, v′) chromaticity coordinates provided in Example 9.6-
4 leads to

u = u′, v = 2v′/3. (9.8-2)

EXAMPLE 9.8-2. Determination of the CCT from the xy Chromaticity Coordinates.
A concise polynomial expression is available for estimating the correlated color temperature Tc of a
source from its CIE 1931 xyY chromaticity coordinates (x, y). The relationship results from the fact
that the CCT isotherms converge toward the bottom of the xy chromaticity diagram (Fig. 9.7-2). The
most commonly used version of this approximation, which is suitable for daylight and incandescent
sources with CCTs in the range 2000 ≲ Tc ≲ 12500 K, takes the form†

Tc ≈ −449 ζ3 + 3525 ζ2 − 6823.3 ζ + 5520.33 (9.8-3a)
where

ζ = (x− 0.3320) / (y − 0.1858) . (9.8-3b)

The typical error associated with this procedure, ⩽ 2 K, is remarkably small. We provide two numer-
ical examples:

(a) Equal-energy (spectrally uniform) white light: The chromaticity coordinates for the standard
CIE colorimetric illuminant E are (x, y) = (1/3 , 1/3), as established in Example 9.6-3. In-
serting these coordinates into (9.8-3b) yields ζ = 0.0088136, which, when used in (9.8-3a)

† C. S. McCamy, Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates, Color
Research and Application, vol. 17, pp. 142–144, 1992; Erratum: vol. 18, p. 150, 1993.
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returns Tc ≈ 5460 K. An approximation to equal-energy white light can be generated by
a phosphor-conversion LED that makes use of a specially blended collection of phosphors
(Example 10.4-3).

(b) The standard CIE colorimetric illuminant D65: As indicated earlier, the chromaticity coordi-
nates for this illuminant are (x, y) = (0.3127, 0.3290). Inserting these coordinates into (9.8-
3b) yields ζ = −0.13469, which, when used in (9.8-3a) returns Tc ≈ 6504 K.

The McCamy method can be used to estimate the correlated color temperature for a white phosphor-
conversion LED (Example 10.5-4). Formulas that are applicable over broader ranges of the CCT are
also available, but their use entails increased complexity.

9.9 COLOR RENDERING INDEX

The color rendering index (CRI) is a widely used measure designed to represent how
well a light source illuminating an object renders its color. The CRI is to be contrasted
with the correlated color temperature (CCT), which characterizes the perceived color
of the light source itself (Sec. 9.8). The CRI, like the CCT, is used principally for light
sources that are approximately white, and both are often used together for assessing the
quality of color rendering.

It was the advent of fluorescent lamps that led the CIE to consider color rendering
and to recommend the CRI as a metric in 1965. The CRI is determined by comparing
the colors of the light emitted by the test source with those emitted from a blackbody
source of the same CCT, upon reflection from a set of Munsell color samples. Ideally,
the luminous flux of the two sources is the same when carrying out the comparison. The
eight standard Munsell samples, which are considered to be representative of everyday
colors such as foliage and sky blue, are labeled R1–R8. Subsequently added to the mix
are seven special Munsell samples that include saturated red, green, and blue and are
labeled R9–R15; these are more challenging for most light sources to render accurately.
The 15 standard and special Munsell samples attendant to the determination of the CRI
are presented in Fig. 9.9-1.

Figure 9.9-1 Munsell color samples R1–R15 involved in determining the CRI.

Specifically, the CRI is computed by shifting and averaging the Euclidian distances
between the test and blackbody colors reflected from the samples, using the 1964
CIEUVW color space, which continues to be used for this purpose but is otherwise ob-
solete. A source that allows objects to be seen as they would appear under illumination
by daylight, or by an incandescent source of the same CCT, is assigned the maximum
value: CRI = 100.

Representative values of the CRI for various sources used in LED lighting are pro-
vided in Table 11.9-1. Roughly speaking, a value CRI < 75 signifies that the colors
of the illuminated objects appear unnatural and the use of such sources is not recom-
mended for indoor lighting. By virtue of its definition, the CRI has also been used as a
measure for metamerism (Sec. 9.3).

Despite its widespread use, a substantial body of evidence reveals that the CRI often
misassesses human judgments of naturalness and overall color preference, particularly
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for LED lighting. As a result, a number of other color-rendering measures have been
suggested as alternates over the years. Nevertheless, no single metric developed so
far has proved capable of adequately capturing the multidimensional features of color
rendering, although efforts continue to develop such a metric. In the meantime, despite
its deficiencies, the CRI continues to be widely used for assessing the suitability of light
sources for particular color applications, as do any number of ad hoc combinations of
nonstandard measures.

EXAMPLE 9.9-1. LER, CCT, and CRI for Uniform-Spectral-Density White Light. As
discussed in Example 9.6-3, equal-energy white light has a uniform wavelength-based power spectral
density Sλ(λO). It is represented by the white point on the chromaticity diagram, (x, y) = (1/3 , 1/3),
and appears white to the eye. Making use of (8.8-1) and (8.9-1), the LER defined in Sec. 8.9 can be
written as

ηLER =
PV

PO

= 683

∫ λMAX

λMIN

[
Sλ(λO)

PO

]
V (λO) dλO , (9.9-1)

where the integration extends from the lower cutoff of the spectral density λMIN to its upper cutoff λMAX,
and the optical power PO represents the integrated spectral density.

In practice, the integration is usually approximated by employing the sampled photopic luminous
efficiency function {V (λi)}. This is a set of real numbers that represents the sampled values of V (λO)
at discrete, consecutive, free-space wavelengths λi, spaced 1 nm apart, that range from 380 to 780 nm.
These data are available on the web (as detailed in footnote a of Table 9.9-1); the values are readily
imported into a spreadsheet such as excel. Equation (9.9-1) can be written in discretized form as

ηLER ≈
683∑λMAX

λMIN
S(λi)

λMAX∑
λi=λMIN

V (λi) =
683

(λMAX − λMIN + 1)

λMAX∑
λi=λMIN

V (λi) , (9.9-2)

where the summations extend over the selected values of λMIN and λMAX. The denominator in the pre-
factor, (λMAX − λMIN + 1), represents the number of data samples and provides the normalization that
insures that the optical power is the same, whatever the values chosen for λMIN and λMAX. Representative
values for the LER are posted in Table 9.9-1 for selected bandwidths of the uniform spectral density.
In the particular case when λMIN = 380 nm and λMAX = 780 nm, (9.9-2) sums to ηLER ≈ 182 lm/W.

Examining the entries in Table 9.9-1, it is apparent that as the uniform-spectral-density bandwidth
λMAX − λMIN decreases, the LER increases monotonically. This behavior emerges because narrower
bandwidths are localized toward the center of the photopic luminous efficiency function, where its
values are largest. Indeed, in the limit when the spectral band is narrowed to straddle 555 nm and
allow only 1 nm width to either side, the LER approaches 683 lm/W (bottom row of Table 9.9-1); this
is its maximum possible value, as specified in (8.9-3). LER values for truncated Planckian spectral
densities behave similarly, returning CCT and CRI values close to those displayed in rows 2–5 of
Table 9.9-1 for matching bandwidths, a conclusion that is applicable for color temperatures ranging
from 2500 to 8000 K.

Numerical studies also confirm that the color rendering index (CRI) becomes unacceptably small
(⩽ 70) when the uniform-spectral-density source is truncated such that λMIN > 453 lm and λMAX <
663 nm, corresponding to λMAX − λMIN < 210 nm (Table 9.9-1). The elimination of segments of the
short- and long-wavelength spectral components carries over to the light reflected from an illuminated
object, which is then deficient in blue and red and thus exhibits impaired color rendering. In the limit
when the spectral band straddles 555 nm with a mere 1 nm of spectral width on either side, the light
is essentially monochromatic and yellowish-green in color. Since it is then far from white, a CCT is
not defined and the CRI = 0.

EXAMPLE 9.9-2. LER and CRI for Spectrally Matched Light. As a final example in
this section, consider a source of light whose spectral density Sλ(λO) is chosen to precisely match
the photopic luminous efficiency function V (λO). This stimulus choice is expected to maximize the
luminous efficacy of radiation since the light entering the eye then has a wavelength distribution that
corresponds identically to the superposed wavelength spectral sensitivities of the S-, M-, and L-cones
in the retina (Sec. 8.5).



9.9 COLOR RENDERING INDEX 301

Table 9.9-1 Representative values of the luminous efficacy of radiation (LER) for
selected values of the uniform spectral-density bandwidth. Successive columns in the table
represent, respectively: the lower spectral-density cutoff λMIN (nm), the upper spectral-
density cutoff λMAX (nm), the uniform-spectral-density bandwidth (λMAX − λMIN) (nm), the
calculated LER (lm/W), the calculated correlated color temperature (CCT) (K), and the
calculated color-rendering index (CRI).

λMIN λMAX λMAX − λMIN LERa CCTb CRIb,c

380 780 400 182 5460
406 697 291 250 5440 96
413 687 274 265 5415 97
422 677 255 284 5324 98
453 663 210 341 4418 72
475 650 175 399 – ↓
505 605 100 559 – |
530 580 50 652 – ↓
554 556 2 683 – 0

aThe LER was calculated using the CIE 1924 2◦ data for V (λi) in conjunction with (9.9-2). These
data have been tabulated by G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods,
Quantitative Data and Formulae, Wiley, 2nd ed. 1982, Table I(3.3.1), and can be downloaded from
http://www.cvrl.org/database/text/lum/vl.htm. Though the 1924 photometric data is used
extensively, it is widely understood that it underestimate visual-system photopic sensitivity at short
wavelengths. As discussed in Sec. 8.5, an updated version for daylight adaptation, denoted V ∗(λO),
was set forth in 2005 (see footnote on p. 246).
bThe CCT and CRI are generally used for light that is approximately white. The CCT and CRI data
displayed in rows 2–5 are drawn from T. W. Murphy, Maximum Spectral Luminous Efficacy of
White Light, Journal of Applied Physics, vol. 111, 104909, 2012.
cThe slight local increase in the CRI as the largest bandwidths are narrowed results from the trimming
of the blue and red spectral components in the uniform spectral density that exceed those in the
Planckian density.

The calculation is carried out by forging a discretized version of (9.9-1), and making use of the
sampled spectrum S(λi) introduced in Example 9.5-1 and the sampled photopic luminous efficiency
function V (λi) employed in Example 9.9-1. Spectrally matched light means that S(λi) ≡ V (λi), so
that (9.9-1) can be approximated as

ηLER ≈
683∑λMAX

λMIN
S(λi)

λMAX∑
λi=λMIN

S(λi)V (λi) =
683∑λMAX

λMIN
V (λi)

λMAX∑
λi=λMIN

V 2(λi) , (9.9-3)

where the summation extends over the desired range of λMAX − λMIN. Representative values for the
spectrally matched LER are reported in Table 9.9-2 for bandwidth values that are the same as those
displayed in Table 9.9-1 for the uniform spectral density, to facilitate comparison.

As is apparent in Table 9.9-2, we have ηLER ≈ 493 lm/W, as determined via (9.9-3), which cor-
responds to the largest bandwidth λMAX − λMIN = 400 nm. This value of the luminous efficacy of
radiation is substantially larger than that for the uniform spectral density, ηLER ≈ 182 lm/W, which was
determined using (9.9-2) and is displayed in Table 9.9-1. Spectral matching of the incident light to the
spectral sensitivity of the retinal cones provides an evident advantage in the LER. Further examination
of the entries in Table 9.9-2 reveals that the LER remains essentially constant at a value ≈ 493 lm/W
as the bandwidth decreases over a substantial range. However, as the selected bandwidth (λMAX −λMIN)
falls below ≈ 210 nm, the LER exhibits a sharper rate of increase. Ultimately, as with uniform-
spectral-density light, a very narrow bandwidth straddling 555 nm yields an LER that approaches the
maximum allowed value of 683 lm/W.

The color rendering index tells another story, however. Even for the broadest bandwidths, there
is a serious disadvantage in using spectrally matched light for illumination. In short, the light is not
white, but rather appears yellowish-green to the eye. The spectrum of the light, it turns out, is similar
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Table 9.9-2 Representative values of the luminous efficacy of radiation (LER) for a
source whose spectral density S(λi) matches the photopic luminous efficiency function
V (λi). Successive columns in the table represent: lower spectral-density cutoff λMIN (nm),
upper spectral-density cutoff λMAX (nm), resulting bandwidth (λMAX − λMIN) (nm), calculated
LER (lm/W), and estimated color-rendering index (CRI).

λMIN λMAX λMAX − λMIN LERa CRIb

380 780 400 493 25
406 697 291 494 ↓
413 687 274 494 |
422 677 255 495 |
453 663 210 500 ↓
475 650 175 511 |
505 605 100 581 |
530 580 50 653 ↓
554 556 2 683 0

aThe LER was calculated using the CIE 1924 2◦ data for V (λi) in conjunction with (9.9-3). The data
were downloaded from http://www.cvrl.org/database/text/lum/vl.htm.
bEstimated values. The CRI is generally used for light that is approximately white.

to that emitted by a yellow-green LED [Fig. 7.2-3(a)], although somewhat broader. It is therefore
not surprising that the CRI is unacceptably low, clocking in at 25 even when the selected bandwidth
λMAX − λMIN covers the entire 400 nm bandwidth of the visible spectrum (Table 9.9-2). Once again, the
diminution of blue and red spectral components in the source carries over to the light reflected from an
illuminated object, but in this case the deficiencies are far more severe than those for uniform-spectrum
white light and the CRI is correspondingly reduced. In the limit when the spectral band straddles
555 nm with only a 1 nm shoulder on either side, the spectrally matched light is indistinguishable
from the uniform-spectrum light of the same bandwidth, as expected. In both cases, the light is then
yellowish-green in color and essentially monochromatic, so that a CCT is not defined and the CRI
= 0.
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Commission Internationale de l’Éclairage (International Commission on Illumination), Vienna,
Austria, ISBN:9783901906466, 2006.

N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications, Wiley, 2005.
A. Stockman, Colorimetry, in T. G. Brown, K. Creath, H. Kogelnik, M. A. Kriss, J. Schmit, and

M. J. Weber, eds., The Optics Encyclopedia: Basic Foundations and Practical Applications,
Wiley–VCH, pp. 207–226, 2004.

S. K. Shevell, ed., The Science of Color, Optical Society of America/Elsevier, 2nd ed. 2003.
D. L. MacAdam, Color Measurement: Theme and Variations, Springer, 2nd ed. 1985.
S. J. Williamson and H. Z. Cummins, Light and Color in Nature and Art, Wiley, 1983.
G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formu-

lae, Wiley, 2nd ed. 1982.
W. D. Wright, The Measurement of Colour, Hilger, 1st ed. 1944, 4th ed. 1969.
W. S. Stiles and J. M. Burch, N.P.L. Colour-Matching Investigation: Final Report (1958), Optica Acta:

International Journal of Optics, vol. 6, pp. 1–26, DOI:10.1080/713826267, 1959.
D. L. MacAdam, Visual Sensitivities to Color Differences in Daylight, Journal of the Optical Society

of America, vol. 32, pp. 247–274, 1942.

Color Appearance Models
M. R. Luo, Q. Xu, M. Pointer, M. Melgosa, G. Cui, C. Li, K. Xiao, and M. Huang, A Comprehensive

Test of Colour-Difference Formulae and Uniform Colour Spaces Using Available Visual Datasets,
Color Research and Application, vol. 67, p. 020405, DOI:10.1002/col.22844, 2023.

C. Gao, M. R. Luo, M. R. Pointer, and C. Li, Evaluation of Color Difference Prediction with
CIECAM16 using CIE 2- and 10-degree Observers, Journal of Imaging Science and Technology,
DOI:10.2352/J.ImagingSci.Technol.2023.67.2.020405, p. 020405, 2023.

M. Bertalmı́o, Vision Models for High Dynamic Range and Wide Colour Gamut Imaging: Techniques
and Applications, Academic/Elsevier, 2020.

A. K. R. Choudhury, Principles of Colour Appearance and Measurement. Volume 1: Object Appear-
ance, Colour Perception and Instrumental Measurement, Woodhead/Elsevier, 2014.

M. D. Fairchild, Color Appearance Models, Wiley, 3rd ed. 2013.
G. Wyszecki, Color Appearance, in Handbook of Perception and Human Performance, Vol. 1, Sensory

Processes and Perception, Wiley, Chap. 9, pp. 9-1–9-57 (pp. 447–504), 1986.
J. Pokorny and V. C. Smith, Colorimetry and Color Discrimination, in Handbook of Perception and

Human Performance, Vol. 1, Sensory Processes and Perception, Wiley, Chap. 8, pp. 8-1–8-51
(pp. 395–446), 1986.

G. Wyszecki, Current Developments in Colorimetry, in COLOUR73: Survey Lectures and Abstracts
of the Papers Presented at the Second Congress of the International Colour Association Held at
the University of York 2–6 July 1973, Hilger (London), pp. 21–51, 1973.

E. H. Land and J. J. McCann, Lightness and Retinex Theory, Journal of the Optical Society of America,
vol. 61, pp. 1–11, 1971.



304 CHAPTER 9 COLORIMETRY

J. von Kries, Theoretische Studien ueber die Umstimmung des Sehorgans (Theoretical Studies on
the Retuning of the Visual Organ), in Festschrift der Albrecht-Ludwigs-Universität in Freiburg
zum fünfzigjärigen Regierungs-Jubiläum Seiner Königlichen Hoheit des Grossherzogs Friedrich,
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The development of white LED lighting has been a cardinal technological achieve-
ment since illumination applications most often make use of white light. The princi-
pal method for generating metameric white light relies on phosphor-conversion (PC)
LEDs, which are both practical and economical, largely because of their simplicity.
PCLEDs operate on the basis of photoluminescence and, in their simplest form, require
only a single LED and a single phosphor. This chapter relies extensively on the develop-
ments provided in Chapter 7, which recounts the operation and characteristics of LEDs,
and on Chapters 8 and 9, which are dedicated to the fundamental principles underlying
human color vision and colorimetry, respectively. This chapter should be viewed as a
precursor to Chapter 11, which is devoted to LED lighting.

The combination of royal blue and yellow, when blended in suitable proportions,
appears white to the eye, as may be understood from Example 9.3-1. This superposition,
which produces metameric white light as described in Sec. 9.3, can be conveniently
created by directing a portion of the light generated by a blue LED to a phosphor that
emits yellow light. In principle, other complementary-color pairs, such as red and cyan
(Example 9.3-2) or green and magenta, could also be used to produce metameric white
light. However, blue/yellow is a judicious choice for several reasons:

Blue LEDs fabricated from InGaN are highly efficient.
The energy of blue photons is sufficient to excite phosphors of all colors.
The yellow-phosphor emission wavelength has high photopic luminous efficiency.

The implementation of white LED lighting therefore relied heavily on the develop-
ment of the blue LED. While it was understood early on that InGaN would generate blue
light if it could be cast in the form of a forward-biased p–n junction diode, implementing
this solution proved unexpectedly difficult from a technical point-of-view. It demanded
not only the ability to grow high-quality InGaN in the form of heterojunctions and
quantum wells, but also the capability of converting n–type InGaN, the default, into
p–type material. The fabrication of an efficient blue InGaN LED, which was ultimately
perfected in the early 1990s, relied on numerous advances in crystal growth and mate-
rials science that were the product of the dogged persistence of Isamu Akasaki, Hiroshi
Amano, and Shuji Nakamura, over a period of many years.† Their achievements led the
way to the efficient white phosphor-conversion LED and earned them the Nobel Prize
in Physics in 2014 “for the invention of efficient blue light-emitting diodes which has
enabled bright and energy-saving white light sources” (p. 306).

We begin the chapter by reviewing the salient features of monochromatic and
metameric-white LED light in the context of human trichromatic vision (Sec. 10.1).
A description of photoluminescence and the measures used to quantify it follows
(Sec. 10.2). The physics and characteristics of a number of commonly used broadband
and narrowband phosphors are examined in Sec. 10.3, and the properties of several
salient phosphor blends are detailed in Sec. 10.4. The classic example of the generation
of metameric cool-white light using a discrete phosphor-conversion LED that relies on
the illumination of a yellow phosphor by light from a blue LED is related in Sec. 10.5.
The use of a judiciously chosen phosphor blend leads to the generation of metameric
warm-white light instead, as described in Sec. 10.6. Finally, Sec. 10.7 is dedicated to
describing the operation of phosphor-conversion LED filaments, such as those used
in white retrofit lamps, while Sec. 10.8 is devoted to reviewing chip-on-board (COB)
phosphor-conversion LEDs, which generate high luminous flux and are ubiquitous.

† K. Itoh, T. Kawamoto, H. Amano, K. Hiramatsu, and I. Akasaki, Metalorganic Vapor Phase Epitaxial Growth
and Properties of GaN/Al0.1Ga0.9N Layered Structures, Japanese Journal of Applied Physics, vol. 30, no. 9R,
p. 1924, 1991; S. Nakamura, T. Mukai, and M. Senoh, Candela-Class High-Brightness InGaN/AlGaN Double-
Heterostructure Blue-Light-Emitting Diodes, Applied Physics Letters, vol. 64, pp. 1687–1689, 1994.
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10.1 MONOCHROMATIC AND WHITE LED LIGHT

The structures and operating principles of electroluminescent LEDs with active regions
comprising different type of semiconductor materials were reviewed in Chapters 5–7.
In particular, the features and properties of the most prominent types of LEDs were
discussed in the following sections:

Multiquantum-Well LEDs (LEDs or MQWLEDs): Secs. 5.7, 6.5, 7.3, and 7.4.
Quantum-Dot & White Quantum-Dot LEDs (QLEDs & WQLEDs): Secs. 5.8, 6.6, and 7.5.
MicroLEDs (µLEDs): Sec. 7.3.
Organic & White Organic LEDs (SMOLEDs, PLEDs, & WOLEDs): Secs. 5.9, 7.6, and 11.7.
Perovskite & White Perovskite LEDs (PeLEDs & PeWLEDs): Secs. 5.9 and 7.7.

Tables 7.4-1 and 7.6-1 reveal that multiquantum-well LEDs (which we refer to as either
MQWLEDs or simply as LEDs) generate far more light than do the other categories of
light-emitting diodes of comparable area itemized above, at least in the current state of
their technological development. Specifically, RGB MQWLEDs reliably exhibit supe-
rior external quantum efficiency, power-conversion efficiency, radiant flux, luminous
flux, wall-plug luminous efficacy, and wall-plug luminous efficiency. Moreover, the
performance of MQWLEDs scales with device area so that high luminous flux and
efficacy are the norm — these devices are no longer characterized as low-, medium-, or
high-power, as they were in the early days.

MQWLEDs are therefore the preferred choice for use in LED lighting today, and
this chapter and the next are devoted to exploring their use in this capacity. Some of the
other classes of LEDs listed above are currently undergoing extensive development,
however, and hold substantial promise for the LED lighting technologies of tomorrow.
In this connection, it is important to note that the use of multiple chips operating at low
current, in place of a single chip that operates at high current, can mitigate efficiency
droop, increase device lifespan, and simplify thermal management.

Monochromatic LED Light
An individual electroluminescent light-emitting diode (ELLED) emits narrowband
light over a limited range of wavelengths that is principally established by the bandgap
wavelength λg of the material from which it is fashioned (Sec. 6.4 and Fig. 7.2-3).
Stand-alone, single-die devices that are not integrated into a larger system, commonly
called discrete LEDs, are available with an endless array of central wavelengths. The
light generated by these devices is termed quasi-monochromatic, signifying that its
spectral width is sufficiently narrow, relative to its central wavelength, that its behavior
is effectively monochromatic in the context at hand. Indeed, the prefix quasi is often
omitted as a shorthand and ELLED light is simply referred to as monochromatic.
Stated differently, LED electroluminescence is partially coherent but, in the context of
LED lighting, it can be considered to be coherent (Sec. 2.7).

Human Color Gamut
By virtue of its monochromaticity, LED light emitted at a particular visible wavelength
maps to a specific location along the outer curved boundary of the CIE 1931 chromatic-
ity diagram portrayed in Fig. 9.6-2. Such light is perceived by the visual system as a
spectral color, of which the eye can distinguish about 200. Hence, a collection of some
200 LEDs can in theory be used to evoke the perception of any hue along the locus
of fully saturated spectral colors. As explained in Sec. 9.6, adding the light emitted
from a properly chosen auxiliary source of adjustable luminance can then be used to
create a broad range of desaturated colors, including white. Indeed, human trichromats
are estimated to be able to discern 2 million color gradations, comprising 200 hue, 20
saturation, and 500 luminance gradations (Example 8.7-3). In principle, therefore, a
collection of LEDs operating at different visible wavelengths, together with associated
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desaturating auxiliary sources, can evoke any perceptible color within the gamut of
human color vision.

Fortunately, the trichromatic nature of the human visual system offers a dramatic
shortcut for accessing the color gamut. Mixing the light from only three monochromatic
sources, each with fixed coordinates on the chromaticity diagram and with adjustable
luminance, provides access to the full palette of colors enclosed by the triangle whose
vertices are located at those chromaticity coordinates (Sec. 9.6). This feature of human
color vision is repeatedly invoked in this and the following chapter.

The trichromatic character of the human visual system makes it possible for a
suitably chosen triad of monochromatic LED lights of fixed hues and adjustable
luminances to dial up a color of arbitrary hue, saturation, and luminance.

White LED Light
White is by far the most important color for general-purpose illumination, as well as
for numerous applications such as high-quality projection. Yet, white is essentially the
antithesis of the spectral colors generated by electroluminescent LEDs: as opposed to
a fully saturated spectral color located on the outer rim of the chromaticity diagram
(Fig. 9.6-2), white is a fully desaturated achromatic color found near the center of the
diagram. True white light has a uniform power-spectral density, as elucidated in Sec. 9.3
and Example 9.6-3, whereas metameric white light is perceived as white by the visual
system despite the fact that its power-spectral density is nonuniform.

Light-emitting diodes do not generate true white light, which has a uniform
power-spectral density. Nonetheless, monochromatic LEDs are widely used for
generating metameric white light, which is perceived as white despite its
nonuniform power-spectral density. When we speak of white LED light, it is
understood that what we really mean is metameric-white LED light.

Three general methods exist by means of which monochromatic LED light can be
converted into metameric white light:

Phosphor-Conversion Devices. The first method, which is nearly universally used
because of its simplicity, effectiveness, and low cost, employs phosphor-conversion
devices that contain one or more discrete PCLEDs. In its simplest implementation,
as is understood from Example 9.3-1, a PCLED comprising a royal blue LED and a
yellow phosphor can generate metameric cool-white light via photoluminescence. A red
phosphor can be added to the blend to create a PCLED that generates warmer metameric
white light with a reduced correlated color temperature (CCT, Sec. 9.8) and an increased
color rendering index (CRI, Sec. 9.9). Narrowband red phosphors offer higher luminous
flux and efficacy than broadband ones since their photoluminescence spectra do not
extend into the (invisible) near-infrared region, which allows their radiant flux to be
fully utilized (Secs. 10.3 and 10.4).

This chapter is devoted to elucidating the operation and use of phosphor-conversion
LEDs. In particular, we examine:

Discrete PCLEDs (Secs. 10.5 and 10.6). These stand-alone devices can be con-
ceptualized as 0D (zero-dimensional) sources.
PCLED filaments (Sec. 10.7). These chains of discrete PCLEDs can be conceptu-
alized as 1D sources.
Chip-on-board (COB) PCLEDs (Sec. 10.8). These arrays of discrete PCLEDs can
be conceptualized as 2D sources.

The correlated color temperature of the metameric white light emitted by PCLED de-
vices can range from cool-white to warm-white, depending on the choice of phosphor:
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Metameric cool-white light can be generated by making use of a broadband-yellow
phosphor (Sec. 10.5).
Metameric warm-white light can be generated by using a phosphor blend that
incorporates a broadband-red phosphor (Sec. 10.6).
Metameric warm-white light can be more efficiently generated by employing a
phosphor blend that incorporates a narrowband-red phosphor (Sec. 10.6).

Hundreds (if not thousands) of commercially available LEDs are available for gener-
ating monochromatic light of arbitrary wavelengths. Also available in the marketplace
are hundreds of PCLEDs that emit colored light and metameric white light of arbitrary
correlated color temperature (Sec. 11.2).

Two other methods exist for converting monochromatic LED light into metameric
white light, as will be discussed in Chapter 11, but they are not often used:

Additive Color Mixing. The second method for generating metameric white light,
known as additive color mixing, relies on superposing the light generated by several
LEDs of different colors. This approach has the merit of being able to generate white
light more efficiently, in principle, and it offers color-tunable LED lighting, but it is also
subject to a number of difficulties, as described in Sec. 11.3.

Hybrid Approach. The third method for generating metameric white light, often
referred to as the hybrid approach, makes use of two or more LEDs of different
colors (e.g., blue and red), in conjunction with one or more phosphors, as explained
in Sec. 11.5. Although the hybrid method was successfully used for the efficient gen-
eration of metameric white light early on, its complexity and cost resulted in its being
abandoned soon thereafter in favor of the phosphor-conversion approach. Today, the
hybrid approach is widely used for the generation of light of tunable color.

10.2 PHOTOLUMINESCENCE

We begin with an examination of photoluminescence, the process that underlies the
operation of PCLEDs.

Luminescence
Thermal excitation, studied in Chapter 4, and current injection, considered in Chapter 6,
are but two examples of how a material system can be excited to a higher energy level
and then emit light as it subsequently decays to the ground state. Light can also be
emitted as a consequence of excitation by other forms of energy, including beams of
photons, electrons, ionizing particles, and sound; as well as by the release of energy by
chemical and biological reactions. The resulting radiation process is then described by
the umbrella term luminescence, and the atomic or molecular entity that emits such
light is known as a luminophore. Luminescence generated with a time lag of ps to µs
following excitation is also called fluorescence, whereas luminescence delayed by ms
or longer after excitation is also referred to as phosphorescence.

The molecular entity responsible for fluorescence is termed a fluorophore,
whereas the entity underlying phosphorescence is referred to as a phosphor.

From a photon statistics point-of-view, luminescence is generally well-described by
the Neyman Type-A photon-counting distribution rather than by the negative-binomial
photon-counting distribution that characterizes thermal light, as specified in (4.2-16).
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Photoluminescence
The particular form of luminescence known as photoluminescence refers to a process
whereby a system excited to a higher energy level by the absorption of a photon sub-
sequently decays to a lower energy level, usually via a combination of radiative and
nonradiative transitions. Conservation of energy requires that the emitted photon have
energy less than (or equal to) that of the exciting photon, so the luminophore can be
said to act as a downconversion medium. (Photoluminescence downconversion is to
be distinguished from parametric downconversion, an energy-conserving process in
which a photon splits into two lower energy photons in a nonlinear medium.) Photolu-
minescence occurs naturally in many substances, including inorganic materials such as
diamond and ruby; semiconductors such as CdSe and metal-halide perovskites; noble
gases; simple inorganic molecules such as N2 and CO2; and aromatic compounds such
as dyes. A commonly encountered example of photoluminescence is the phosphores-
cent glow emitted by certain materials following exposure to ultraviolet (black) light.
The photoluminescence emitted by chalcogenide and perovskite colloidal quantum dots
of different sizes is illustrated in Figs. 5.8-1(a) and (b), respectively.

Figure 10.2-1 displays a number of idealized schemes by means of which ionic,
atomic, and molecular transitions can lead to photoluminescence. The individual energy
levels are depicted as horizontal sharp lines, separated by the energy of the pump
photon, but in practice they can be energy bands. The solid vertical lines represent
radiative transitions and the wiggly lines represent the absorption and emission of pho-
tons. Nonradiative downward transitions, depicted by dashed vertical lines, participate
in photoluminescence, as sketched in Figs. 10.2-1(a)–(c).

Figure 10.2-1 Generation of photoluminescence from ionic, atomic, or molecular transitions for
several idealized energy-level schemes. The upper energy levels are illustrated as sharp horizontal
lines, but they can instead be bands. The solid and dashed vertical lines represent radiative and
nonradiative transitions, respectively, while the wiggly lines represent absorbed and emitted photons.
(a)–(c) Photoluminescence accompanied by various forms of nonradiative decay. In each panel, the
photoluminescence quantum yield ηPLQY is the probability that a photon entering at left yields a photon
exiting at right. The complementary photoluminescence quantum defect ηPLQD in each panel is the ratio
of the length of the vertical solid line at right to that at left. (d) The Rayleigh scattering diagram is
shown for comparison; in this case, the photon energy is conserved but its direction of travel is altered.

Photoluminescence Quantum Yield (PLQY)
An oft-used measure for characterizing phosphor-conversion LEDs, as well as organic
and perovskite semiconductor materials (Sec. 5.9), is the photoluminescence quantum
yield (PLQY). This quantity represents the probability that a photon incident on a
photoluminescent material results in the emission of another, lower frequency, photon
[Fig. 10.2-1(a)–(c)]. Since a photoluminescent material can relax via both radiative
and nonradiative decay following excitation, the PLQY can be expressed as the ratio
of the radiative decay rate κr to the overall (radiative plus nonradiative) decay rate



312 CHAPTER 10 PHOSPHOR-CONVERSION LEDS

κ = κr + κnr ,

ηPLQY =
κr

κ
=

κr

κr + κnr
. (10.2-1)

Photoluminescence
Quantum Yield

The PLQY characterizes the efficiency of photoluminescence emission. It can be maxi-
mized by simultaneously making the radiative and nonradiative decay rates as large and
as small as possible, respectively. The PLQY is analogous to the internal quantum effi-
ciency (IQE) in a semiconductor, reported in (7.1-5), which is the ratio of the radiative
electron–hole recombination coefficient for electroluminescence to the total (radiative
plus nonradiative) recombination coefficient, as provided in (5.5-10). Phenomena such
as self-absorption and Auger-like effects reduce the PLQY.

Photoluminescence Quantum Defect (PLQD)
Moreover, a photon incident on a photoluminescent material that is successfully con-
verted to a lower-energy photon loses a portion of its energy via nonradiative decay in
the course of the conversion [Figs. 10.2-1(a)–(c)]. Sometimes referred to as Stokes en-
ergy loss, this process lowers the frequency of the converted photon by virtue of (3.2-1).
The photoluminescence quantum defect ηPLQD is defined as the fraction of the energy
of the incident photon that is, on average, lost in the process of photoluminescence, i.e.,

ηPLQD = 1− hν2/hν1 = 1− λ1/λ2 , (10.2-2)

where ν2 (λ2) and ν1 (λ1) represent the peak frequency (wavelength) of the photolumi-
nescence and incident light, respectively (Sec. 3.2). The complementary photolumi-
nescence quantum defect ηPLQD, defined as the fraction of the incident photon’s energy
that is effective in generating the lower-energy luminescence photon, is therefore given
by

ηPLQD ≡ 1− ηPLQD =
hν2
hν1

=
λ1
λ2
. (10.2-3)

Complementary
Photoluminescence

Quantum Defect

10.3 BROADBAND AND NARROWBAND PHOSPHORS

The phosphors that generate photoluminescence for use in LED lighting are usu-
ally dielectric hosts doped with ions called activators that are uniformly dispersed
throughout the material with a specified atom concentration (often of the order of 1%).
Inorganic phosphors, both broadband and narrowband, are widely used for fabricating
PCLEDs that emit white light as well as light of various colors (Sec. 11.2).These
phosphors are usually ground into a fine powder before being directly coated on the
die of a pump LED, which is typically a blue InGaN device. The photoluminescence
results from downward transitions of the valence electrons between particular upper
and lower energy levels, as schematized in Fig. 10.2-1(a)–(c).

Desirable features for phosphors include the following:
High photoluminescence quantum yield.
Highly saturated photoluminescence.
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Chemical stability.
Thermal stability.
High operating temperature stability.
High humidity stability.
Stability in the presence of irradiation with high-flux blue light.
Long lifespan.
Capability of being directly coated onto a an LED die.
Narrowband red photoluminescence to minimize unutilized near-infrared light.
Narrowband photoluminescence in the green and amber to mitigate the electrolu-
minescence green gap and to attain a wide color gamut (WCG).

Atomic Physics of Activator Optical Transitions
We begin by reviewing the principles of atomic physics that underlie the emission of
photoluminescence from LED phosphors. This is followed by brief descriptions of a
number of widely used broadband and narrowband phosphors. Frequently encountered
activators include lanthanide-metal ions (e.g., Ce3+, Eu3+, Eu2+) and transition-metal
ions (e.g., Mn4+). Common host materials include garnets, nitrides, fluorometallates,
oxynitrides, oxides, halides, sulfides, and uranium-containing compounds, among oth-
ers, as attested to the entries in the bibliography.

The properties of several salient photoluminescent phosphors that make use of these
activators and hosts are presented in Table 10.3-1. The photoluminescence generated
by some phosphors is broadband (BB), while that generated by others is narrowband
(NB); the boundary between BB and NB is arbitrarily set at ∆λFWHM = 60 nm. The
excited and ground states of the activator ions displayed in Table 10.3-1 are identified by
their electron configurations and term symbols. These quantities, which are elucidated
below, contain information about the energy levels, transitions, and efficiencies that
characterize the generation of light of a particular color in the phosphor.

Table 10.3-1 Selected properties of representative photoluminescent phosphors incorporated in
blue LEDs to generate metameric white light. Consecutive columns in the table represent: chemical
formulas; designations of the photoluminescence as broadband (BB) or narrowband (NB), along with
the colors of the emitted light; electron configurations (and atomic term symbols 2S+1LJ or, for Mn4+,
molecular term symbols 2S+1MJ) for excited states (left) and ground states (right); average emission
wavelengths λ (nm); photoluminescence bandwidths ∆λFWHM (nm); photoluminescence quantum
yields ηPLQY; and complementary photoluminescence quantum defects ηPLQD.

phosphor Color Configuration (Term) λ ∆λFWHM ηPLQY ηPLQD

Y3Al5O12:Ce3+ BB Yellow 5d1 (2D) → 4f1 (2F5/2) 570 120 0.90 0.78
Y3Al5O12:Eu3+ BB Red-Orange 4f6 (5D0) → 4f6 (7F0) 615 110 0.90 0.72
CaAlSiN3:Eu2+ BB Red 4f6 5d1 (6P7/2) → 4f7 (8S7/2) 650 80 0.90 0.68
K2SiF6:Mn4+ NB Red 3d3 (2E) → 3d3 (4A2) 631 23 0.90 0.71
Na2SiF6:Mn4+ NB Red 3d3 (2E) → 3d3 (4A2) 628 16 0.90 0.71
β-SiAlON:Eu2+ NB Green 4f6 5d1 (6P7/2) → 4f7 (8S7/2) 540 55 0.90 0.82

Electron Configuration. As is understood from the structure of the periodic table
of the elements, the electrons of multielectron atoms reside in shells designated by the
principal quantum number n; each shell can accommodate only a specified number of
electrons before being filled. Within each shell are subshells, also called orbitals, that
are designated by the orbital angular-momentum quantum number of its resident elec-
trons, ℓ = 0, 1, 2, 3, . . ., or equivalently by lowercase letters that represent the vestigial
notation bequeathed to us from the early days of observational atomic spectroscopy:
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s, p, d, f, . . . (sharp, principal, diffuse, f undamental) ⇔ ℓ = 0, 1, 2, 3, . . .. The
electron configuration, which represents the arrangement of electrons in the shells and
subshells, is expressed as a sequence of orbitals of the form nℓu, where the superscript
u designates the number of electrons associated with each orbital ℓ.

In accordance with the Aufbau principle, electrons fill the orbitals in order of in-
creasing energy. Convention dictates that the electron configurations for filled shells and
subshells be omitted from the recitation. An an example, the full electron configuration
for the ground state of the Ce3+ ion, 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 4f1,
is written as [Xe] 4f1, as indicated in Table 10.3-1. This shorthand notation specifies
that the electron configuration is that of the configuration for the noble gas xenon [Xe],
supplemented by the single valence electron 4f1 in the outermost orbital of Ce3+.

Atomic Term Symbol. For the lighter elements, the various angular momenta of the
ion (or atom) as a whole obey LS (or Russell-Saunders) coupling and are described by
an atomic term symbol of the form 2S+1LJ. The symbol S, which represents half the
number of unpaired electrons, is the total spin angular-momentum quantum number.
The quantity 2S + 1, the spin multiplicity discussed in Sec. 7.6, indicates the spin
degeneracy: for the singlet state S = 0 and 2S + 1 = 1 whereas for the triplet
state S = 1 and 2S + 1 = 3. The symbol L represents the total orbital angular-
momentum quantum number, expressed in uppercase spectroscopic notation as L =
0, 1, 2, 3, . . . ⇔ S, P, D, F, . . .. The symbol J represents the total overall angular-
momentum quantum number.

As an example, the term symbol for the ground state of Ce3+ is determined from the
electron configuration outside the core of closed shells as follows: The configuration
4f1 specifies that n = 4, ℓ = 3, and u = 1. The value of u reveals that there is only a
single valence electron, so that S = 1/2, 2S+1 = 2 (a doublet); and L = ℓ = 3 (denoted
F ). Finally, LS coupling declares that J stretches from L+ S = 7/2 to |L− S| = 5/2,
in intervals of unity. In accordance with Hund’s rule (which is usually obeyed), if the
orbital is less than half-filled the ground state corresponds to the smallest value of J.
We conclude that the term symbol for the ground state of Ce3+ is 2S+1LJ =

2F5/2 , as
specified in Table 10.3-1. The heavier elements have stronger spin-orbit interactions
and generally follow JJ, rather than LS, coupling.

Lanthanide-Metal Activators. The lanthanide-series elements reside in row 6 of
the periodic table and comprise the elements from 57La through 71Lu. These fifteen
elements, plus 21Sc and 39Y, are often called the rare-earth elements because they
were long ago thought to be rare (they are in fact rarely rare). Starting with La, the
lanthanide-series elements are constructed by successively adding one electron at a time
to the (nℓ =) 4f orbital, which, by the vagaries of atomic physics, lies between the
filled 5s2 5p6 and the 5d1 6s2 subshells. The electron configuration for these elements
therefore extends from [Xe] 4f1 5d1 6s2 for the ground state of the neutral 58Ce atom
to [Xe] 4f14 5d1 6s2 for the ground state of the neutral 71Lu atom.

A characteristic feature of the lanthanides is that they readily form triply ionized
states by losing one electron from the 5d orbital and two from the 6s orbital. The
electron configurations for the corresponding ions thus stretch from [Xe] 4f1 for the
ground state of Ce3+ to [Xe] 4f14 for the ground state of Lu3+; the configurations
for the core electrons remain the same as those of the parent atoms. As indicated in
Table 10.3-1, an optical transition from the ground state to an excited state via the
absorption of a blue photon can involve a change in orbitals and term symbols, as
exemplified by Ce3+ (4f1 → 5d1 and 2F5/2 → 2D, respectively), or a reorganization
among the energy states within an orbital and a change in term symbols, as for Eu3+
(4f6 → 4f6 and 7F0 → 5D0, respectively).

The energy levels and transition cross sections of a phosphor depend on both the
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activator and on its interaction with the host. The extent to which the activator energy
levels are affected by the host medium is principally established by the degree to which
the ion’s valence electrons are exposed to the host’s neighboring lattice atoms. The en-
ergy levels of the trivalent lanthanide ion Eu3+, for example, are only weakly influenced
by the local fields of the host lattice.

Transition-Metal Activators. In transition-metal ions, in contrast, the valence elec-
trons are not shielded from the host’s neighboring lattice atoms so that their energy
levels are strongly influenced by the host. The energy levels of the 3d electrons of the
transition-metal ion Mn4+, for example, are determined in large part by the surround-
ing electric fields of the host. In particular, each manganese ion in K2SiF6:Mn4+ is
surrounded by an atomic configuration in which the spatially varying potential of the
KSF host is significant. Best represented in terms of ligand-field theory, this potential,
along with that of the Mn4+ nucleus, jointly determine the molecular energy levels of
the phosphor via the Schrödinger equation.

Molecular Term Symbol. The combined effects of host ligand fields and activator
d-orbital electrons are described by a molecular term symbol of the form 2S+1MJ,
where M is called the Mulliken symbol. Molecular term symbols follow many of the
same notational conventions as atomic term symbols, although J values are sometimes
omitted. The Mulliken symbols A, E, and T (which studiously avoid the atomic desig-
nations SPDF . . .) represent nondegenerate, doubly degenerate, and triply degenerate
electronic states, respectively. Referring to the entries for KSF and NSF in Table 10.3-1
as examples, 4A2 signifies a quartet (S = 3/2) that has a nondegenerate electronic state
while 2E represents a doublet (S = 1/2) that has a doubly degenerate electronic state.

Phosphor Broadening Mechanisms. Photoluminescence was described in consid-
erable detail in Sec. 10.2. As illustrated schematically in Fig. 10.2-1, phosphors are
subject to an array of broadening mechanisms that include:

Crystal-field splittings actualized by the crystal symmetry, crystal-field strength,
atom coordination, and polarizability of the host medium.
Inhomogeneous broadening associated with variations in the local environment
experienced by the activator (Sec. 4.6).
Homogeneous broadening associated with excited-state nonradiative vibrational-
mode relaxation via multiphonon transitions.
Defects and impurities in the host.
Enhanced phonon interactions brought about by higher operating temperatures.

Phosphors emit photoluminescence with a broadband or narrowband spec-
tral density, depending on the atomic structure of the activator, the nature of the
host, and the interaction between the activator’s electrons and the host’s lattice.

Yellow phosphors are usually used for fabricating discrete cool-white PCLEDs
(Sec. 10.5), while phosphor blends that incorporate red, and sometimes also green,
phosphors are used to fashion discrete warm-white PCLEDs (Sec. 10.6). Similar
phosphors are used in the fabrication of PCLED filaments (Sec. 10.7) and for chip-on-
board PCLEDs (Sec. 10.8). Phosphors are also used for creating discrete PCLEDs that
emit light of various colors (Sec. 11.2).

Broadband Phosphors
We begin by offering brief descriptions of the properties of selected yellow, red-
orange, and red broadband phosphors that are commonly used in the fabrication of
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white PCLEDs (Table 10.3-1).

Cerium-Doped Yttrium Aluminum Garnet (Broadband Yellow). As a conse-
quence of its high thermal stability, long lifespan, and other desirable features itemized
in the introduction to this section, cerium-doped YAG (Y3Al5O12:Ce3+) has long
been used as a yellow photoluminescent phosphor for discrete cool-white PCLEDs
(Sec. 10.5). As reported in Table 10.3-1, when stimulated in the blue, YAG:Ce3+
emits at an average wavelength λ ≈ 570 nm, has a photoluminescence bandwidth of
∆λFWHM ≈ 120 nm, and a typical photoluminescence quantum yield ηPLQY ≈ 0.9.
The broadband nature of the photoluminescence is principally a result of nonradiative
relaxation involving multiphonon transitions associated with the vibrational modes
of the YAG lattice. Since each individual phonon transition carries a random energy,
whose average is ≈ 0.05 eV, the emission of a single photoluminescence photon
involves tens of phonons of random energies, which results in broadband emission, as
illustrated in Fig. 10.2-1(b).

Europium-Doped Yttrium Aluminum Garnet (Broadband Red-Orange). The
most commonly used broadband red phosphor in warm-white PCLEDs is europium-
doped YAG (Y3Al5O12:Eu3+), whose properties are reported in Table 10.3-1. This
material, which has many of the salutary features itemized at the beginning of this
section, efficiently emits red-orange light atλ ≈ 615 nm with∆λFWHM ≈ 110 nm, when
stimulated in the blue. Some warm-white PCLEDs also incorporate a green phosphor,
such as europium-doped β-silicon aluminum oxynitride (β-SiAlON:Eu2+), or a similar
compound, to provide spectral broadening and thereby enhance color rendering quality,
as will be discussed in Sec. 10.4.

Europium-Doped Calcium Aluminum Silicon Nitride (Broadband Red). Diva-
lent Eu2+ activators have many pathways for 5d → 4f transitions, and there is no
shortage of hosts within which such transitions can take place. Since the 5d electrons are
exposed to the crystal lattice of the host medium, Eu2+-doped phosphors can exhibit
photoluminescence at many wavelengths in the visible. An important example is the
material CaAlSiN3:Eu2+, typically doped at an atom-percent level of ≈ 2%, which has
a broad absorption band centered on the blue. When stimulated by the light from a blue
LED, this phosphor efficiently generates red light at λ ≈ 650 nm with ∆λFWHM ≈
80 nm, as shown in Table 10.3-1.

Narrowband Phosphors
We turn now to the properties of selected red and green narrowband phosphors
(Table 10.3-1) that are incorporated into phosphor blends for use in warm-white
phosphor-conversion devices. The advantages provided by utilizing narrowband phos-
phors in place of broadband ones are discussed in Secs. 10.4 and 10.6.

Manganese-Doped Potassium Fluorosilicate (Narrowband Red). The narrow-
band phosphor manganese-doped potassium fluorosilicate (KSF or PFS, K2SiF6:Mn4+)
is widely used as a red phosphor in PCLEDs because of its many salutary features.
In particular, the formulation of KSF introduced by the General Electric Company in
2014, and trademarked GE TriGainTM, exhibits superior thermal and chemical stability,
and longer lifespan, than earlier versions of this phosphor. When pumped by light
from a blue InGaN LED, KSF generates five strong vibronic sidebands surrounding
the 2E → 4A2 zero-phonon line (ZPL) at 623 nm (Table 10.3-1), each with a width
of ≈ 2 nm. These vibronic molecular transitions have large transition rates because
of the odd (ungerade) parity of the (bend and stretch) modes of the MnF6 octahedral
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moiety (quantum-mechanically speaking, the transitions are said to be electric-dipole
allowed). However, the ZPL at 623 nm, known as the R line, is barely discernable in
KSF because of the octahedral inversion symmetry at the activator site, which results
in a small transition rate (the transition is electric-dipole forbidden).

Specifically, the Stokes vibronic sidebands are located at λ ≈ 631, 635, and 648 nm,
while the anti-Stokes sidebands are at 613 and 609 nm; the envelope of these sidebands
has a bandwidth ∆λFWHM ≈ 23 nm, as recorded in Table 10.3-1. These sidebands are
readily identifiable as the five spikes in the vicinity of 623 nm in Figs. 10.4-2 and 10.4-
3. The two curves in Fig. 10.4-2 represent the spectral densities for Cree (green) and
Philips (purple) phosphor blends that incorporate KSF and generate metameric white
light at Tc = 3000 K. The green curve in Fig. 10.4-3 offers an unobstructed view of
the KSF spectrum since the green GE phosphor used in that particular blend is also
narrowband.

Other Narrowband Red Phosphors. A compound closely related to KSF that is of
particular interest is Na2SiF6:Mn4+ (NSF), which, by virtue of its strong R line (ZPL)
emission and narrow bandwidth, provides slightly greater wall-plug luminous efficacy
than K2SiF6:Mn4+ (KSF). This phosphor is currently being commercialized.

Numerous other alkali and alkaline-earth hexafluorometallate, red-emitting KSF
congeners have also been investigated for use as narrowband red phosphors. These
include materials in the following classes:

1. Compounds of the form A2[SF6]:Mn4+, where A represents NH4 or an alkali
metal in group I of the periodic table, such as Li, Na, K, Rb, Cs, or combinations
thereof; and S represents group IV and other elements such as Si, Ge, Sn, Ti, Zr,
Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or combinations thereof.

2. Compounds of the form E[SF6]:Mn4+, where E represents an alkaline-earth ele-
ment in group II of the periodic table, such as Mg, Ca, Sr, Ba, Zn, or combinations
thereof,

3. Compounds that rely on F5, F6, or F7, and other compounds that have been pub-
lished, disclosed in patents, or proposed.

Europium-Doped Beta-Silicon Aluminum Oxynitride (Narrowband Green).
Much as with the phosphor CaAlSiN3:Eu2+, which generates broadband red light
as discussed earlier, the divalent Eu2+ activator can undergo 5d → 4f transitions
in a β-SiAlON host. When pumped by a blue LED, the phosphor β-SiAlON:Eu2+,
which was developed in 2005 at the National Institute for Materials Science (NIMS)
in Tsukuba, Japan, generates narrowband green photoluminescence at λ ≈ 540 nm
with ∆λFWHM ≈ 55 nm (Table 10.3-1). This green phosphor, or one of its congeners, is
often blended with a narrowband red phosphor such as KSF (Example 10.4-2). When
ground into fine particles and dispersed in a silicone binder, and then directly deposited
on a blue InGaN chip, this phosphor blend serves as a wide-color-gamut source of light
with RGB primaries (Sec. 9.5).

Other Narrowband Green Phosphors. In recent years, General Electric has de-
veloped a number of narrowband green phosphors for on-chip and remote use that are
said to offer wider color gamut and greater humidity resistance than β-SiAlON:Eu2+.
These proprietary phosphors are currently in the process of commercialization.

Many other narrowband green phosphors are also available, including lanthanum-
and transition-ion activated alkali silicates, uranium-based compounds, sulfides, and
garnets, examples of which are the following:

1. Lithium-silicate based NavKxRbyLizCsw (Li3SiO4)4:L with 0 < v < 4, 0 <
x < 4, 0 < y < 4, 0 < z < 4, 0 < w < 4, and v + x+ y + z + w = 4, where
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L represents an activator such as Eu3+, Ce3+, Yb3+, or Mn4+, or combinations
thereof.

2. Uranium-based [Ba1−a−bSraCab]x [Mg,Zn]y (UO2)z ([P,V]O4)2(x+y+z)/3:Eu3+
with 0 ⩽ a ⩽ 1, 0 ⩽ b ⩽ 1, 0.75 ⩽ x ⩽ 1.25, 0.75 ⩽ y ⩽ 1.25, and
0.75 ⩽ z ⩽ 1.25.

3. Uranium-based [Ba1−a−bSraCab]p (UO2)q [P,V]r O(2p+2q+5r)/2:Eu3+ with 0 <
a ⩽ 1, 0 < b ⩽ 1, 2.5 ⩽ p < 3.5, 1.75 < q ⩽ 2.25, and 3.5 < r ⩽ 4.5.

4. Sulfides such as strontium gallium sulfide (SrGa2S4:Eu) and garnets such as
lutetium aluminum garnet (LAG or Lu3Al5O12:Ce3+), and its congeners.

10.4 BLENDED PHOSPHORS

As mentioned in the introduction to this Chapter, the simplest implementation of a
discrete phosphor-conversion LED makes use of a single yellow phosphor (usually
YAG:Ce3+) in conjunction with a royal-blue LED die. This combination is suitable for
generating cool (daylight) white light (5000 ≲ Tc ≲ 7500 K), as will be demonstrated
in Example 10.5-1. For many applications, however, it is desired to generate neutral
white light (3500 ≲ Tc ≲ 5000 K) or warm (soft) white light (2700 ≲ Tc ≲ 3500 K).
(The manner in which white light sources are categorized in illumination engineering
has been spelled out in Secs. 9.7 and 9.8.) The latter range of CCTs mimics the color
temperature of classic tungsten incandescent lamps and is thus often favored for home
illumination at eventide, at least in chillier climes. A practical, and widely used, method
for generating neutral- and warm-white light, while concomitantly attaining a high value
of the CRI, relies on the use of blended phosphors, which we consider in this section.
The phosphor thickness can be adjusted across the lateral extent of the device to achieve
the desired spatial light distribution.

Use of Narrowband vs. Broadband Phosphors in Blends. It will be demon-
strated in Sec. 10.6 for discrete warm-white PCLEDs, and in Sec. 10.8 for warm-white
COB PCLEDs, that incorporating a narrowband red phosphor in the blend, rather than
a broadband one, provides an enhancement in device performance. Specifically, it will
be shown in Tables 10.6-1 and 10.8-1 that the use of KSF, rather than YAG:Eu3+, leads
to enhanced values of the luminous flux PV, wall-plug luminous efficacy ηWPE, and wall-
plug luminous efficiency ηWPC.

The origin of this advantage may be understood by examining Fig. 10.4-1, which
displays the spectral densities for blue-excited, 3000-K Cree blends that incorporate
red phosphors that are broadband (red curve) and narrowband (green curve). Also
illustrated is the photopic luminous efficiency function first presented in Fig. 8.5-3.
Denoted V (λO) and plotted as the gray curve in Fig. 10.4-1, this function specifies the
overall photopic sensitivity of the human visual system as a function of the free-space
wavelength λO. All three curves are normalized to their maximum values.

The performance enhancement stems from the smaller photoluminescence band-
width of narrowband KSF (K2SiF6:Mn4+) relative to that of broadband YAG:Eu3+
(Y3Al5O12:Eu3+): ∆λFWHM ≈ 23 nm for KSF:Mn4+ as opposed to ≈ 110 nm for
YAG:Eu3+ (Table 10.3-1). It is evident in Fig. 10.4-1 that the preponderance of the
KSF contribution to the spectral density (the five narrow spikes of the green curve)
falls in a wavelength region where V (λO) (the gray curve) is appreciable. In contrast, a
sizable portion of the YAG:Eu3+ contribution to the spectral density (the right-hand tail
of the red curve) extends over a wavelength region where V (λO) is smaller, indicating
that the eye is less sensitive, so that the radiant flux in that region is largely squandered.
Since the narrowband phosphor does not generate light at these longer wavelengths to
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Figure 10.4-1 Spectral densities for Cree
metameric white phosphor blends that in-
corporate broadband and narrowband red
phosphors are indicated by the red and green
curves, respectively. The photopic luminous
efficiency function V (λO) is plotted in gray.
The three curves are normalized to their peak
values. (Broadband data adapted from Cree
data sheet CLD-DS199-REV7 for XLamp®

XHP35.2, 2023; narrowband data adapted
from Cree data sheet CLD-DS334-REV1 for
XLamp® XHP35.2 Pro9TM, 2023.)

begin with, its provides superior performance.

Phosphor Blends Incorporating KSF. Manganese-doped potassium fluorosilicate
(KSF), the narrowband red phosphor examined in detail in Sec. 10.3, is a prime choice
for the red component in many blended phosphors because it possesses almost all of
the desirable features for phosphors itemized in the introduction to Sec. 10.3 and has a
number of special merits in addition:

Strong absorption in the vicinity of 450 nm, where blue InGaN LEDs emit, along
with high photoluminescence quantum yield.
Saturated, narrowband photoluminescence centered at 631 nm, which is near the
He–Ne 633-nm red laser line, where the sensitivity of the eye is appreciable.
Negligible emission for wavelengths beyond 650 nm, where the light energy is
squandered because those wavelengths are invisible to the eye.
Ability to be consolidated as a transparent ceramic phosphor (as with YAG:Ce3+).

It has long been common practice to blend KSF with the classic yellow phosphor
YAG:Ce3+ to enable the generation of metameric warm-white light with favorable
properties, such as a CRI> 90 for the Munsell saturated-red-color sample R9 (Fig. 9.9-
1). However, the recent emergence of various proprietary phosphor blends that incor-
porate KSF offers an updated palette with outstanding properties.

Specific phosphor blends are usually developed for particular purposes; the con-
stituents and relative proportions of the blend are adjusted to tune the CCT and CRI.
We provide three examples for illustration: 1) optimization of the PCLED luminous
flux and efficacy for illumination applications (Example 10.4-1); 2) enhancement of
the color gamut for display applications (Example 10.4-2); and 3) generation of equal-
energy white light for measurement applications (Example 10.4-3). Although the spec-
tral densities for these three examples differ dramatically (Figs. 10.4-2–10.4-4), all
appear white to the eye.

EXAMPLE 10.4-1. Proprietary Phosphor Blends That Incorporate Narrowband KSF.
Different manufacturers employ different phosphor formulations, preparation techniques, and blend-
ing methods, which are largely proprietary. Nevertheless, when a red phosphor is called for in a blend,
manganese-doped potassium fluorosilicate (KSF) is often chosen because of its favorable properties.
In this example, we compare the spectral densities for Cree and Philips KSF-containing phosphor
blends used to generate metameric warm-white light at 3000 K.

When pumped by blue LED light, the 2023 Cree XHP35.2 Pro9TM 3000-K phosphor blend gener-
ates the spectral density portrayed as the green curve in Fig. 10.4-2. The peak near 450 nm derives from
the blue InGaN LED pump while the quintet of spectral spikes in the vicinity of 623 nm is a hallmark
of the KSF spectrum, as explained in Sec. 10.3. (This curve was also displayed in Fig. 10.4-1, again
in green, where it was juxtaposed with the spectral density for Cree’s 2023 XHP35.2 conventional
3000-K phosphor blend (red curve) that incorporates the broadband red phosphor YAG:Eu3+.)
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The spectral density for the 2023 Philips 3000-K phosphor blend, when pumped by blue LED light,
is plotted as the purple curve in Fig. 10.4-2. This blend is used in Philips’ line of ultra-efficient white
LED-filament retrofit lamps, such as that displayed in Fig. 11.4-1(d) and discussed in Example 11.4-
3. The Philips and Cree spectral densities are quite similar: they are anchored by solitary peaks near
450 nm, associated with the blue InGaN LED, and are essentially congruent in the vicinity of 623 nm,
where they mimic the spectrum of GE’s TriGainTM formulation of KSF. The curves differ only in some
details in the yellow and green spectral regions.

Figure 10.4-2 Spectral densities for 3000
K white light generated by KSF-containing
phosphor blends (Cree: green curve; Philips:
purple curve; Congruent: lime). These spec-
tra differ substantially from those of conven-
tional phosphors, providing enhanced lumi-
nous flux and wall-plug luminous efficacy.
The peaks near 450 nm derive from the blue
InGaN LED light. (Data adapted from Cree
data sheet CLD-DS334-REV1 for XLamp®

XHP35.2 Pro9TM, 2023; and Philips data
sheet MAS LEDBulbND4-60W E27 830
A60 CL G EELA, 2023.)

As detailed in Table 10.6-1 and Sec. 10.6, the use of KSF rather than YAG:Eu3+ as the red
component in the phosphor blend endows PCLEDs with larger values of the luminous flux PV, wall-
plug luminous efficacy ηWPE, and wall-plug luminous efficiency ηWPC.

EXAMPLE 10.4-2. Blends Incorporating KSF and Narrowband Green Phosphors.
Phosphor blends that combine narrowband K2SiF6:Mn4+ with a narrowband green phosphor, such as
β-SiAlON:Eu2+ or one of GE’s proprietary narrowband green phosphors, serve to increase the color
rendering index and color gamut.† The increased CRI provides a more accurate, richer, and more
intense rendering of the natural colors of illuminated objects, and the wider color gamut is useful for
fashioning improved LED backlighting for liquid-crystal displays (LCDs).

The advantage in the display domain arises from the smaller photoluminescence bandwidths as-
sociated with the narrowband phosphors, which reduce deleterious crosstalk between the red and
green subpixels and thereby improve image quality. As an example, the GE green phosphor illustrated
in Fig. 10.4-3 (green curve) generates photoluminescence of shorter wavelength, narrower spectral
width, and a more symmetric spectral profile, than does β-SiAlON:Eu2+ (purple curve). As a result,
blending KSF with this green phosphor, rather than with β-SiAlON:Eu2+, yields a color gamut that
is enlarged by > 5%, as well as higher screen brightness.

EXAMPLE 10.4-3. Blends That Generate Approximately Equal-Energy White Light.
The properties of equal-energy white light, with its uniform wavelength-based spectral density (as
opposed to metameric white light), are well-understood (Secs. 9.3 and 9.6; Examples 9.6-3 and 9.9-
1). Such light has a correlated color temperature Tc ≈ 5460 K, as established in Example 9.8-2(a).
A source whose spectral density more-or-less approximates that of equal-energy white light from the
NUV to the NIR can be fabricated by making use of a single NUV GaN LED die whose encapsulant
is infused with a blend of phosphors of different colors, and making use of a UV-blocking filter to
attenuate the residual spectral spike from the GaN pump at λ ≈ λg ≈ 366 nm. The spectral density
from one such device is illustrated in Fig. 10.4-4. Light sources with equal-energy spectra find use in
colorimetry, materials characterization, and spectroscopy.

† L. Wang, X. Wang, T. Kohsei, K. i. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, Highly Efficient Narrow-
Band Green and Red Phosphors Enabling Wider Color-Gamut LED Backlight for More Brilliant Displays, Optics
Express, vol. 23, pp. 28707–28717, 2015; S. J. Camardello, M. D. Butts, R. Cassidy, J. E. Murphy, G. Parthasarathy,
A. A. Setlur, O. P. Siclovan, J. Welch, and A. Yakimov, Development of New Green Phosphors for Liquid Crystal
Display Backlights, Society for Information Display (SID) Digest, vol. 52, no. 1, book 2, paper 62-11, pp. 917–919,
2021.
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Figure 10.4-3 KSF+β-SiAlON (purple)
and KSF+GE green (green) narrowband
phosphor blends that generate metameric
white light with Tc ≈ 6500 K. Individual
spectral peaks appear at red, green, and blue
wavelengths (the latter from the LED). Nar-
rowband phosphors lead to an enlarged color
gamut. (Data adapted from S. J. Camardello,
et al., Development of New Green Phosphors
for Liquid Crystal Display Backlights, So-
ciety for Information Display (SID) Digest,
vol. 52, paper 62-11, pp. 917–919, 2021.)

Figure 10.4-4 Spectrum for a PCLED
that generates a very rough approximation to
equal-energy white light. The device com-
prises a single NUV GaN LED die under an
encapsulant infused with a blend of multiple
phosphors, and the light is passed through
a Schott GG395 UV-blocking filter. Spec-
tral peaks of the constituent phosphors are
evident at several wavelengths; the peak at
366 nm is the residual GaN LED pump light.
(Data adapted from Lumedel specification
sheet for NewDELTM Model X3312 Fiber-
Coupled Broadband LED Source, 2023.)

Quantum-Dot Photoluminescence. Just as inorganic phosphors generate photolu-
minescence, so too do chalcogenide and perovskite quantum dots (Fig. 5.8-1). [Quan-
tum dots that emit photoluminescence (Sec. 5.8) are to be distinguished from quantum-
dot light-emitting diodes (QLEDs) that emit electroluminescence (Secs. 7.5–7.7).] Al-
though the use of quantum dots to generate photoluminescence has several advantages
relative to the use of narrowband inorganic phosphors, in the current state of our tech-
nology the disadvantages of using quantum dots outweigh the advantages:

Advantages of Quantum Dots over Narrowband Phosphors.

Ideal absorption in the blue and a photoluminescence quantum yield ηPLQY ≈ 1.
Finely controllable photoluminescence wavelength, tunable by quantum-dot size.
Range of quantum-dot sizes determines concomitant emission-wavelength range.

Advantages of Narrowband Phosphors over Quantum Dots.

Narrower spectra, wider color gamuts, and brighter operation.
Smaller self-absorption.
Superior chemical, thermal, high-flux, and humidity stability.
Longer lifespan and greater reliability; no degradation under on-chip conditions.
Less complex manufacturing and lower fabrication costs.
Compatibility with existing LED designs.
Superior environmental friendliness.

Examples of Quantum-Dot/Phosphor Hybrids.

A narrowband KSF red phosphor and green quantum dots can be combined in
a photoluminescent film that exhibits behavior similar to that of a film of KSF
and narrowband inorganic green phosphor. Here, the tunability of quantum dots is
joined with the stability of inorganic phosphors.
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A KSF phosphor can be coated on an InGaN blue LED die to create a magenta
source that is then used in conjunction with a green-emitting perovskite quantum-
dot film. Green perovskite quantum dots have bandwidths ∆λFWHM < 25 nm,
which are narrower than those of green chalcogenide (CdSe) quantum dots.

Despite the wide range of existing photoluminescent materials, the search for, and
development of, phosphors with superior properties continues apace.

10.5 DISCRETE COOL-WHITE PCLEDS

As discussed in the introduction to this Chapter, a blue-emitting InGaN LED chip can
be used in conjunction with a yellow phosphor to generate metameric white light in
a discrete phosphor-conversion LED (PCLED) (also called a phosphor-conversion
package). The mixture of blue and yellow can give rise to white because yellow is
itself a combination of red and green (see Sec. 9.3 and particularly Example 9.3-1). The
phosphor may be directly coated on the LED die or can take the form of a sheet that
overlays the chip. Alternatively, the phosphor can be dispersed within the transparent
material that encapsulates the die or it can be remotely located at some distance from the
chip — each configuration has its own advantages and uses. A fraction of the blue LED
photons that impinge on the phosphor generate yellow photons via photoluminescence.
As a result of its salutary properties, cerium-doped yttrium aluminum garnet (Sec.10.3
and Table 10.3-1) is often the phosphor of choice for fabricating discrete cool-white
PCLEDs, as well as cool-white PCLED filaments (Sec. 10.7) and cool-white COB
PCLEDs (Sec. 10.8).

Evolution of the Discrete White PCLED
The evolution of the discrete white PCLED over the twenty-year period from 2004 to
2024 is illustrated in Fig. 10.5-1. Early devices, such as that portrayed in Fig. 10.5-1(a),
made use of InGaN LED chips with a peak wavelength λp ≈ 465 nm and ∆λFWHM ≈
35 nm. A fraction of the blue LED photons that impinged on the YAG:Ce3+ phosphor
generated yellow photoluminescence with a broad spectral bandwidth (∆λFWHM ≈
200 nm). The result was metameric white light with a wall-plug luminous efficacy
ηWPE ≈ 20 lm/W. Devices in dual in-line (DIP) packages such as this are designed
to be soldered onto a printed-circuit board through holes in the board. DIP LEDs are
therefore a type of through-hole LED.

Figure 10.5-1 Evolution of the discrete white phosphor-
conversion LED. (a) White-light emission from an early
device (ca. 2004) consisting of an InGaN LED die and a
yellow phosphor in a 5-mm-diameter, dual in-line package
(DIP). This device generated metameric cool-white light with
a wall-plug luminous efficacy ηWPE ≈ 20 lm/W. (b) Con-
temporary device (ca. 2024) comprising a single InGaN LED
die overlaid with a thin yellow phosphor sheet and a 3-mm-
diameter hemispherical lens in a surface-mounted device
(SMD) package. Devices such as these provide metameric
cool-white light that in practice can attain PV > 1000 lm
and ηWPE > 200 lm/W, a factor of 10 larger than that of early
devices such as the one portrayed in (a).

A contemporary discrete white PCLED, such as that portrayed in Fig. 10.5-1(b),
operates on the same principle, but is packaged as a surface-mounted device (SMD),
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with electrical contacts lateral to the housing; this offers improved heat-sinking and
efficiency along with reduced size. The single LED die in this illustration is supported
by a ceramic base and is overlaid with a thin yellow phosphor sheet. The entire device is
encapsulated in a hemispherical silicone lens. The viewing angle and operating temper-
ature are similar to those for the single-color MQWLEDs characterized in Table 7.4-1.

The InGaN LED chips used in modern devices generally have shorter peak wave-
length (λp ≈ 450–460 nm) and narrower spectral width (∆λFWHM ≈ 20 nm) than
those employed in first-generation devices. The yellow photoluminescence typically
has an average wavelength λ ≈ 570 nm and a spectral band that stretches from ≈ 510
to 630 nm, corresponding to ∆λFWHM ≈ 120 nm. This is narrower than that of first-
generation devices but is still broadband. Discrete cool-white PCLEDs such as these
are widely used in outdoor, roadway, spot, and high-bay lighting applications.

The border between blue and violet is usually defined at λO = 445 nm (Fig. 2.4-
1), but wavelengths in this range are usually referred to as blue or royal blue
in the LED literature, and we adhere to this convention.

Behavior and Characteristics of a Discrete Cool-White PCLED
We now proceed to examine the behavior of InGaN-based discrete cool-white PCLEDs
by focusing on the operating parameters for a representative device with the specifica-
tions detailed in Table 10.5-1. We do so via a sequence of five examples:

Example 10.5-1: Spectrum and chromaticity diagram.
Example 10.5-2: Wavelength conversion efficiency.
Example 10.5-3: Chromaticity coordinates.
Example 10.5-4: Correlated color temperature.
Example 10.5-5: Wall-plug luminous efficacy.

Table 10.5-1 Specifications for a representative discrete (single-die), cool-white, 3× 3 mm2 InGaN
PCLED, packaged as a ceramic surface-mounted device (SMD) with a 3.45 mm × 3.45 mm footprint.
Data are presented for operation at a typical current (top row) and at the maximum operating current
(bottom row). Successive columns display: current i, forward voltageV , electrical power consumption
PEL, luminous flux PV, wall-plug luminous efficacy (WPE), wall-plug luminous efficiency (WPC),
chromaticity coordinates (x, y), correlated color temperature Tc, and color rendering index (CRI).
The data displayed were collected at an operating temperature of 85 ◦C and at a viewing (50%-power)
angle 2θ1/2 ≈ 125◦. (Data adapted from Cree data sheet CLD-DS149-REV6 for XLamp® XP-L2,
https://downloads.cree-led.com/files/ds/x/XLamp-XPL2.pdf, 2023.)

cool-whitea ib(A) V b(V) Pb,c
EL (W) Pc

V (lm) ηc,dWPE(
lm
W
) ηdWPC xe ye T f

c (K) CRIg

typical 1.05 2.79 2.93 490 167 0.24 0.34 0.36 5000 80
maximum 3.00 3.04 9.12 1150 126 0.18 0.34 0.35 5000 80

aTable entry values are rounded.
bThe electrical drive power is related to the device current and voltage via PEL = iV , as specified in (7.1-13).
cThe wall-plug luminous efficacy ηWPE, luminous flux PV, and electrical drive power PEL are related by (8.9-4).
dThe wall-plug luminous efficiency and efficacy are related by ηWPC = ηWPE/683, in accordance with (8.9-9).
eThe chromaticity coordinates x and y, which are perceptual measures of color, are defined in Sec. 9.6.
fThe correlated color temperature Tc, a measure of the color of a source of light, is defined in Sec. 9.8.
gThe color rendering index is a measure of the faithfulness with which the color of an object is rendered (Sec. 9.9).

EXAMPLE 10.5-1. Spectrum and Chromaticity Diagram for a Cool-White PCLED.
The spectrum and chromaticity diagram associated with the metameric cool-white light emitted by a
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single-die, discrete device such as the one characterized in Table 10.5-1 are displayed in Figs. 10.5-
2(a) and (b), respectively. The spectral density presented in Fig. 10.5-2(a) comprises two peaks: a
narrow peak (∆λFWHM ≈ 20 nm) associated with the blue LED light centered at λ1 = 445 nm
and a broad peak (∆λFWHM ≈ 120 nm) associated with the yellow photoluminescence with average
wavelength λ2 = 570 nm. This spectrum is distinctly different from that for a white incandescent
source: the spectral density traced in Fig. 9.7-1(a) for a blackbody radiator is a smooth curve that
stretches from ultraviolet to infrared wavelengths, and has a single peak.

The rationale underlying the generation of metameric cool-white light by this spectral combination
is provided by the chromaticity diagram displayed in Fig. 10.5-2(b). As discussed in connection with
Figs. 9.6-2 and 9.7-2, the wavelengths (specified in nm) at the outer curved boundary of these diagrams
represent the collection of fully saturated spectral colors. Also, as explained in Example 9.6-1, all
colors that lie on a straight line connecting any two points in the diagram can be generated by mixing
the colors at the endpoints of that line. Since a straight line can be drawn connecting the blue (445
nm) and yellow (570 nm) endpoints, and since that line transects the Planckian locus in the vicinity
of 5000–7000 K, it follows that metameric cool-white light can be generated by combining blue LED
light and yellow photoluminescence. The proportion of blue and yellow light required to do so will
be considered in Example 10.5-3.

Figure 10.5-2 (a) Spectrum emitted by a discrete cool-white phosphor-conversion LED compris-
ing an InGaN die overlaid with a thin yellow phosphor layer, such as the one specified in Table 10.5-1.
The average wavelengths emitted by the die and the phosphor are, respectively, λ1 = 445 nm (blue)
and λ2 = 570 nm (yellow). (b) The blue and yellow points on the outer boundary of the chromaticity
diagram can be connected by a straight line that transects the Planckian locus in the vicinity of 5000–
7000 K, corresponding to metameric cool-white light.

EXAMPLE 10.5-2. Wavelength Conversion Efficiency for a Cool-White PCLED. The
operation of the PCLED described in Example 10.5-1 is based upon a process in which a fraction
of the photons emitted by a blue LED die are converted into yellow photoluminescence photons in a
phosphor. This process involves several steps:

Phosphor-Absorption Fraction. The fraction of the blue photons emitted by the die that are
absorbed by the yellow phosphor is denoted f , while the unabsorbed fraction that exits the device is
(1 − f ). The value of f depends on a number of variables, including the nature of the phosphor, its
density, and its location relative to the LED die, all of which make it tricky to estimate.

Photoluminescence Quantum Yield (PLQY). Not every blue photon absorbed by the phos-
phor succeeds in eliciting a yellow photoluminescence photon; some blue photons are lost via non-
radiative transitions following absorption. The fraction of absorbed photons that effectively generate
yellow photons is specified by the PLQY (Sec. 10.2), which, for the particular YAG:Ce3+ yellow
phosphor used in the suite of examples considered in this section is ηPLQY ≈ 0.80. More typically, the
photoluminescence quantum yield for YAG:Ce3+ is ηPLQY ≈ 0.90, as reported in Table 10.3-1.
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Complementary Photoluminescence Quantum Defect. Also, as discussed in Sec. 10.2,
every blue photon that is successfully converted into a yellow photon loses a portion of its energy in
the course of frequency downconversion. The fraction of the energy hν1 of a blue photon effective in
generating a lower-energy yellow photon of average energy hν2 is quantified by the complementary
quantum defect ηPLQD = hν2/hν1 = λ1/λ2 defined in (10.2-3). Hence, for a blue photon of average
wavelength λ1 = 445 nm that gives rise to a yellow photoluminescence photon of average wavelength
λ2 = 570 nm, the complementary quantum defect is ηPLQD ≈ λ1/λ2 = 445/570 ≈ 0.78.

The considerations outlined above lead us to conclude that, in the presence of a yellow phosphor,
the initial blue LED light of radiant flux PO is converted into a combination of both blue and yellow
radiant flux, with optical powers given by (1 − f )PO and f ηPLQYηPLQDPO, respectively. This outcome
can be cast in the form of an idealized spectral density of the emitted light written as

Sλ(λO) ≈ PO

[
(1− f ) δ(λ− λ1) + f ηPLQYηPLQD δ(λ− λ2)

]
, (10.5-1)

where it is assumed that the optical power associated with each color is concentrated in a delta function
at its respective average wavelength.

In practice, the yellow component has a substantial linewidth, as is understood from the discussion
provided in Sec. 10.3. The power spectral density displayed in Fig. 10.5-2(a) demonstrates that the
yellow peak is of lower height, but of greater width, than the blue peak. Numerical estimation of the
areas under these two peaks, which represent their respective external optical powers, reveals that
the area under the yellow peak is a factor A ≈ 2.5 greater than that under the blue peak, which
indicates that the majority of the optical power generated by the blue LED is transferred to yellow
light via photoluminescence. Having established the emitted yellow-to-blue optical-power ratio A, it
is straightforward to compute the phosphor-absorption fraction f specified in (10.5-1):

A ≈
f ηPLQYηPLQDPO

(1− f )PO

which yields f ≈ A

A+ ηPLQYηPLQD
. (10.5-2)

Inserting the numerical estimates obtained above into (10.5-2), namely A ≈ 2.5, ηPLQY ≈ 0.80, and
ηPLQD ≈ 0.78, yields f ≈ 0.80, whereupon (10.5-1) can be written as

Sλ(λO) ≈ 0.20PO δ(λ− λ1) + 0.50PO δ(λ− λ2) . (10.5-3)

EXAMPLE 10.5-3. Chromaticity Coordinates for a Cool-White PCLED. The determi-
nation of the chromaticity coordinates for a mixture of light of two colors whose individual chromatic-
ity coordinates are known was described in Example 9.6-1. This technique can be used to estimate
the chromaticity coordinates for the white PCLED under consideration. This device contains a blue
LED die and a yellow phosphor, which are complementary colors (Example 9.3-1), thereby allowing
metameric white light to be generated when the two components are mixed in suitable proportions. The
idealized spectral densities set forth in (10.5-1) and (10.5-3) mimic the form of the spectral density
displayed in (9.6-1), with the equivalences P1 ≡ (1 − f )PO ≈ 0.20PO and P2 ≡ f ηPLQYηPLQDPO ≈
0.50PO. Employing the idealized spectral density set forth in (10.5-3) accommodates the requirement
set forth in Example 9.6-1 that the spectral widths of the blue and yellow light be small in comparison
with the bandwidths of the color-matching functions. (The use of this idealization will be justified at
the end of this example.)

As established in Example 9.6-1 and specified in (9.6-4), the chromaticity coordinates of the
combined light (x, y), are linear combinations of the individual chromaticity coordinates for the
blue and yellow components, (x1, y1) and (x2, y2), respectively, suitably weighted by the functions
K 1 and K 2. These weight functions, which are provided in (9.6-3), are in turn determined by the
relative optical powers and values of the color matching functions x̄(λ1,2), ȳ(λ1,2), and z̄(λ1,2). The
parameters required for computing (x, y) are presented in Table 10.5-2.

Using (9.6-3), in conjunction with (10.5-1), and the values of x̄, ȳ, and z̄ set forth in Table 10.5-2,
leads to K 1 = 2.1605P1 = 0.4315PO and K 2 = 1.7162P2 = 0.8570PO. Inserting these weights into
(9.6-4), together with the individual chromaticity coordinates for the blue and yellow light provided
in Table 10.5-2, yields the chromaticity coordinates for the combined light: x = 0.3493 and y =
0.3735. These values are close to those of their experimental counterparts, which are provided in
Table 10.5-1: x = 0.34 and y = 0.36. The theoretical values depend strongly on A (and therefore on
f ), which reflects the important role played by the relative contributions of the values of the yellow and
blue optical powers; yet they depend only weakly on ηPLQY and ηPLQD. In accordance with (9.6-4), the
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Table 10.5-2 Parameters employed in the course of estimating the chromaticity coordinates (x, y)
for the light emitted by a discrete cool-white PCLED that makes use of a blue die (source 1) in
conjunction with a yellow phosphor (source 2). Successive columns of the table display: the average
wavelengths of the blue (λ1) and yellow (λ2) sources (in nm); the individual chromaticity coordinates
for the two sources, (x1,2, y1,2), under the assumption that they are spectrally pure; and the CIE 1931
color matching functions x̄ȳz̄, evaluated at the average wavelengths of the two sources. The values of
the photopic luminous efficiency function at the average wavelengths of the two sources, V (λ1,2), will
be used in estimating the wall-plug luminous efficacy in Example 10.5-5. All of the values provided
here are publicly available by consulting tables or online conversion calculators for: 1) converting a
specified wavelength to chromaticity coordinates, 2) determining the values of the CIE 1931 color
matching functions at a specified wavelength, and 3) determining the value of the photopic luminous
efficiency function at a specified wavelength.

source λ1,2 x1,2 y1,2 x̄(λ1,2) ȳ(λ1,2) z̄(λ1,2) V (λ1,2)

blue (1) 445 0.1611 0.0138 0.3481 0.0298 1.7826 0.0574
yellow (2) 570 0.4441 0.5547 0.7621 0.9520 0.0021 0.9733

chromaticity coordinates for the combined light (x, y) must fall along the straight line that connects
the coordinates of the individual sources; examination of Fig. 10.5-2(b) confirms that indeed they do.

A more accurate determination of the chromaticity coordinates can be carried out by replacing
the idealized spectral density presented in (10.5-3) with the experimental one, then using (9.5-1)
to calculate the XY Z tristimulus values, and finally using (9.5-6a) and (9.5-6b) to compute the
chromaticity coordinates. This additional effort may not be necessary, however, since the boundary
of the chromaticity diagram in the yellow spectral region, portrayed in Fig. 10.5-2(b), is essentially
a straight line. Hence, as explained in Sec. 9.6, the assembly of yellow spectral components that
comprise the broadband photoluminescence spectrum all lie along this same straight boundary, and
therefore so too do the chromaticity coordinates of mixtures of all pairs of these spectral components.
This indicates that the simplified approach of representing the yellow photoluminescence power as a
delta function localized at its average wavelength, as posited in (10.5-3), will not lead us far astray.

EXAMPLE 10.5-4. Correlated Color Temperature for a Cool-White PCLED. As dis-
cussed in Example 9.8-2, a straightforward procedure exists for calculating the correlated color temper-
ature (CCT) of a source of white light from its xy chromaticity coordinates. For the discrete cool-white
PCLED considered in the foregoing examples, inserting the coordinates (x, y) = (0.3493, 0.3735)
established in Example 10.5-3 into (9.8-3b) yields McCamy’s intermediate parameter ζ = 0.0923,
which, when entered into (9.8-3a), returns Tc ≈ 4920 K. This value is in good agreement with the
experimental value reported in Table 10.5-1, which is Tc ≈ 5000 K.

This value is not far from that for equal-energy (spectrally uniform) white light considered in
Example 9.8-2(a), which is Tc ≈ 5460 K. It is worth reemphasizing that the quality of the white light
generated by a cool-white phosphor-conversion LED, such as the one at hand, and that generated by
a spectrally uniform source of white light, such as that considered in Example 9.8-2(a), are nearly
indistinguishable perceptually, despite the dramatic differences in their spectral densities.

EXAMPLE 10.5-5. Wall-Plug Luminous Efficacy for a Cool-White PCLED. The wall-
plug luminous efficacy ηWPE for the cool-white phosphor-conversion LED considered in this suite of
examples is determined by making use of (8.9-7), which specifies that ηWPE ≈ 683 ηPCEV (λO) for a
monochromatic source of light, where ηPCE is the LED power-conversion efficiency and V (λO) is the
photopic luminous efficiency function at the wavelength λO. The value of ηWPE may be approximated by
assuming that the individual blue and yellow contributions, from the LED and from the phosphor, re-
spectively, are monochromatic, and by making use of the wavelength conversion efficiency parameters
established in Example 10.5-2. The requisite generalization of (8.9-7) then takes the form

ηWPE ≈ 683 ηPCE
[
(1− f )V (λ1) + f ηPLQYηPLQDV (λ2)

]
. (10.5-4)

We now make use of the parameter values set forth in Example 10.5-2, namely, (1 − f ) ≈ 0.20
and f ηPLQYηPLQD ≈ 0.50, and assume further that the power-conversion efficiency for the blue LED
assumes the plausible value ηPCE ≈ 1/2 , as inferred from (7.1-15). Inserting these values, together
with those for the photopic luminous efficiency functions drawn from Table 10.5-2 [V (λ1) = 0.0574
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and V (λ2) = 0.9733] into (10.5-4) provides ηWPE ≈ 1/2 · 683 [0.20 · 0.0574 + 0.50 · 0.9733] ≈
170 lm/W. This value is close to the experimental result reported in Table 10.5-1, which is 167 lm/W.
The conversion from wall-plug luminous efficacy to wall-plug luminous efficiency, via (8.9-9), yields
ηWPC ≈ 170/683 ≈ 0.25, which is close to 0.24, the experimental value provided in Table 10.5-1.

The value for the wall-plug luminous efficacy depends strongly on ηPLQY and ηPLQD, and only weakly
on f , whereas the reverse is true for the chromaticity coordinates (Example 10.5-3). The underlying
reason for this dichotomy is inherent in the form of (10.5-4): ηPLQY and ηPLQD govern the yellow con-
tribution to the luminous efficacy, which is far more potent than the blue contribution since V (λ2) ≫
V (λ1).

Consistency of Model and Experimental Parameters for a Cool-White PCLED.
The unique, common set of model parameters associated with the discrete cool-white
PCLED examined in Examples 10.5-1–10.5-5 are displayed in Table 10.5-3 (top row).
The model values for the chromaticity coordinates, correlated color temperature, wall-
plug luminous efficacy, and wall-plug luminous efficiency are all in good agreement
with the experimental values reported in Table 10.5-1. This indicates that the modeling
is internal consistent and confirms that our understanding of the relevant aspects of LED
operation (Chapter 7), color vision (Chapter 8), colorimetry (Chapter 9), and phosphor
photoluminescence (Secs. 10.2–10.4) are in accord with the operation of these devices.

Table 10.5-3 The top row of the table provides a summary of the model parameters used in,
and obtained from, the calculations pertinent to the discrete cool-white PCLED considered in
Examples 10.5-1–10.5-5. Successive columns of the table display: the ratio of yellow-to-blue optical
power (radiant flux) A; photoluminescence quantum yield ηPLQY; complementary photoluminescence
quantum defect ηPLQD; phosphor-absorption fraction f ; chromaticity-coordinate weight functionsK 1,2;
chromaticity coordinates (x, y); correlated color temperature Tc (K); estimated power-conversion
efficiency ηPCE; wall-plug luminous efficacy ηWPE (lm/W); and wall-plug luminous efficiency ηWPC. The
model parameters are in good accord with the experimental parameters reported in Table 10.5-1. The
bottom row of the table displays the model parameters when the ratio of yellow-to-blue optical power
is increased to A = 10.

A ηPLQY ηPLQD f K 1 K 2 x y Tc ηPCE ηWPE ηWPC

2.5 0.80 0.78 0.80 0.4315 0.8570 0.3493 0.3735 4920 0.5 170 0.25
10 0.80 0.78 0.94 0.1269 1.0080 0.4125 0.4942 3972 0.5 197 0.29

Impediments Attendant to Reducing the CCT of a Cool-White PCLED. The
CCT of the light emitted from a cool-white PCLED can be reduced by increasing
the yellow-to-blue optical-power ratio A; this can be implemented, for example, by
increasing the density of yellow phosphor in the device. The bottom row of Table 10.5-
3 reveals, for example, that increasingA from 2.5 to 10 results in a reduction of the CCT
by about 1000 K (from 4920 to 3972 K). The calculations were carried out by fixing
the blue and yellow wavelengths (so that all entries in Table 10.5-2 remain the same),
the power-conversion efficiency ηPCE, and the phosphor photoluminescence parameters
ηPLQY and ηPLQD. As expected, the increase in the value of A is accompanied by an
increase in the phosphor-absorption fraction f (from 0.80 to 0.94), as provided by (10.5-
2), and by an increase in the wall-plug luminous efficacy ηWPE (from 170 to 197 lm/W),
as specified in (10.5-4).

Although increasing A reduces Tc, it also moves the chromaticity coordinates (x, y)
away from the Planckian locus, which renders the light increasingly yellowish and
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degrades the CRI. This is a consequence of the fact that the chromaticity coordinates of
the generated light are constrained to lie along the line connecting the yellow and blue
terminals on the diagram portrayed in Fig. 10.5-2(b). Indeed, since a value for the CCT
can be calculated even when the chromaticity coordinates are somewhat remote from
the Planckian locus, some illumination engineers decline to use it as a metric and rely
instead on the CRI, even though the CRI has its own limitations (Sec. 9.9).

A practical and widely used method for reducing the CCT while enforcing a high
value of the CRI relies on the introduction of a red phosphor, as described in the
Sec. 10.6.

10.6 DISCRETE WARM-WHITE PCLEDS

In this section we demonstrate that blended phosphors, such as those introduced in
Sec. 10.4, can be used to generate warm-white light with high values of the CRI. In
particular, we show that introducing a red phosphor into the blend allows the CCT of
the emitted light to be decreased and its CRI to be increased, thereby making the light
warmer and improving its color rendering qualities. When a conventional (broadband)
red phosphor is used, these benefits are accompanied by a reduction in the luminous flux
and wall-plug luminous efficacy but the use of a narrowband red phosphor mitigates this
degradation. We compare the performance of discrete warm-white PCLEDs that rely on
these two classes of phosphors, and explicitly demonstrate the benefits and limitations
of each version. Devices such as these are widely used for general indoor and outdoor
lighting.

Characteristics of a Warm-White PCLED (Broadband-Red Phosphor)
We first consider discrete warm-white PCLEDs that make use of conventional (broad-
band) phosphor technology. The specifications for a device with a CCT of 3000 K and
a CRI of 90 are presented in the upper portion of Table 10.6-1; the associated spectrum
and chromaticity diagram are displayed in Example 10.6-1. Devices based on phosphor
blends that incorporate narrowband-red will be discussed subsequently.

EXAMPLE 10.6-1. Spectrum and Chromaticity Diagram for a Warm-White PCLED.
A discrete white PCLED that is pumped by the light from a blue LED die and uses a phosphor blend
that incorporates a broadband-red phosphor exhibits the spectrum and chromaticity diagram displayed
in Fig. 10.6-1. The specifications for this device are displayed in the upper portion of Table 10.6-1.
The spectral density for Tc = 3000 K, illustrated as the red curve in Fig. 10.6-1(a), has three principal
features: a peak at 445 nm associated with the blue LED light, a point of inflection near 570 nm
representing the presence of broadband yellow photoluminescence, and another peak in the vicinity
of 615 nm corresponding to the red photoluminescence. This curve is identical to the one displayed in
Fig. 10.4-1. The photoluminescence spectra of conventional phosphors have considerable bandwidths,
as is understood from the discussion provided in Sec. 10.3.

As discussed in the text surrounding Fig. 9.6-2, and in Example 9.6-2, all colors lying within an
arbitrary triangle traced out on the xy chromaticity diagram can be generated by mixing the three
colors at the vertices of that triangle in appropriate proportions. Consider the triangle in Fig. 10.6-
1(b) formed from the designated blue, yellow, and red vertices (associated with the LED light, the
yellow photoluminescence, and the red photoluminescence, respectively). Since the triangle includes
the region of the Planckian locus that encompasses 2700–3500 K, metameric warm-white light can
be generated by using a blue LED die in conjunction with this yellow–red phosphor blend.
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Table 10.6-1 Specifications for representative single-die, warm-white, 3.2 mm × 3.2 mm,
high-density InGaN PCLEDs packaged as ceramic surface-mounted devices (SMDs) with a
3.45 mm × 3.45 mm footprint. The upper and lower tables correspond to devices fabricated using
phosphor blends that incorporate broadband-red (YAG:Eu3+) and narrowband-red (KSF:Mn4+)
phosphors, respectively. Data are presented for operation at several values of the forward current.
Successive columns display: forward current i, forward voltage V , electrical power consumption
PEL, luminous flux PV, wall-plug luminous efficacy (WPE) ηWPE(lmW ), wall-plug luminous efficiency
(WPC) ηWPC, chromaticity coordinates (x, y), correlated color temperature Tc, and color rendering
index (CRI). The data displayed were collected at an operating temperature of 85 ◦C and with
a viewing (50%-power) angle of 2θ1/2 ≈ 130–135◦. (Data adapted from Cree data sheets CLD-
DS199-REV7 and CLD-DS334-REV1 for XLamp® XHP35.2 and XLamp® XHP35.2 Pro9TM,
respectively, at https://downloads.cree-led.com/files/ds/x/XLamp-XHP35.2.pdf, 2023
and https://downloads.cree-led.com/files/ds/x/XLamp-XHP35.2-Pro9.pdf, 2023.)

warm-whitea ib(A) V b(V) Pb,c
EL (W) Pc

V (lm) ηc,dWPE(
lm
W
) ηdWPC xe ye T f

c (K) CRIg

broadband- 0.35 11.2 3.92 460 117 0.17 0.43 0.40 3000 90
red blend 0.70 11.9 8.33 820 98 0.14 0.43 0.40 3000 90

1.50 13.1 19.7 1400 71 0.10 0.43 0.39 3000 90

narrowband- 0.35 11.2 3.92 490 125 0.18 0.43 0.40 3000 90
red blend 0.70 11.9 8.33 880 106 0.16 0.43 0.40 3000 90

aTable entry values are rounded.
bThe electrical drive power is related to the device current and voltage via PEL = iV , as specified in (7.1-13).
cThe wall-plug luminous efficacy ηWPE, luminous flux PV, and electrical drive power PEL are related by (8.9-4).
dThe wall-plug luminous efficiency and efficacy are related by ηWPC = ηWPE/683, in accordance with (8.9-9).
eThe chromaticity coordinates x and y, which are perceptual measures of color, are defined in Sec. 9.6.
fThe correlated color temperature Tc, a measure of the color of a source of light, is defined in Sec. 9.8.
gThe color rendering index is a measure of the faithfulness with which the color of an object is rendered (Sec. 9.9).

Figure 10.6-1 (a) Spectral density of the 3000-K warm-white emission from a discrete phosphor-
conversion LED comprising an InGaN die in a package incorporating a phosphor blend that contains
both yellow and red conventional phosphors (red curve). The specifications for the warm-white
PCLED that generates this spectrum are displayed in the upper portion of Table 10.6-1. The peak
wavelengths of the light emitted by the die and blended phosphor are, respectively, 445 nm (blue),
570 nm (yellow), and 615 nm (red). The 5000-K (blue) and 6000-K (black) curves, which represent
cool-white light, are generated by yellow phosphors rather than by blends. (Data adapted from Cree
data sheet CLD-DS199-REV7 for XLamp® XHP35.2, 2023.) (b) The blue, yellow, and red locations
designated on the outer boundary of the chromaticity diagram form the vertices of a triangle that
encompasses the Planckian locus over the range 2700–3500 K, which corresponds to warm white
light.
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Establishing the CCT. The CCTs and CRIs for PCLEDs that employ phosphor
blends may be modified by adjusting the compositions and relative proportions of the
various constituents that comprise the blend. The spectral densities represented by the
5000-K (blue) and 6000-K (black) curves in Fig. 10.6-1, both representing metameric
cool-white light, result from the characteristics of the particular yellow phosphors used
in the Cree XLamp® XHP35.2 family of PCLEDs. In particular, the 5000-K yellow
phosphor is similar to, but distinct from, the 5000-K yellow phosphor that gives rise to
the spectral density portrayed by the blue curve in Fig. 10.5-2.

Merits and Limitations of Incorporating a Red Phosphor. The principal merit of
generating warm white light by incorporating a red phosphor in the blend is the ability to
maintain a large value of the CRI, which endows illuminated objects with a more natural
appearance by virtue of the increased spectral reach of the incident light. However, this
salutary increase in the CRI is usually accompanied by an unwelcome decrease in the
luminous flux PV, wall-plug luminous efficacy ηWPE, and wall-plug luminous efficiency
ηWPC, by virtue of both the reduced complementary photoluminescence quantum defect
ηPLQD (Sec. 10.2) and the reduced photopic luminous efficiency function V (λO) in the
red (Sec. 8.5). A hint of these tradeoffs emerges when the entries in the upper portion of
Table 10.6-1 are compared with those in Table 10.5-1: the values of PV, ηWPE, and ηWPC
for a warm-white PCLED (CCT = 3000 K, CRI = 90) are noticeably smaller than those
for a cool-white PCLED (CCT = 5000 K, CRI = 80). The comparison must be viewed
with a note of caution, however, since the devices are from different PCLED families.

Modeling the Behavior of Blended-Phosphor Devices. In modeling the oper-
ation of devices that contain a blend of phosphors, the wavelength conversion effi-
ciencies from both blue-to-yellow light and blue-to-red light can be accommodated by
introducing a red-phosphor absorption fraction g alongside the yellow-phosphor ab-
sorption fraction f introduced in Example 10.5-2. This approach can then be employed
to obtain an expression for the wall-plug luminous efficacy that is more general than,
but analogous to, that considered in Example 10.5-5. The chromaticity coordinates
can be established by applying the technique set forth in Example 9.6-2, which is a
generalization of the method used in Examples 9.6-1 and 10.5-3. The correlated color
temperature follows from the chromaticity coordinates, as explained in Example 10.5-4.

Characteristics of a Warm-White PCLED (Narrowband-Red Phosphor)
Having considered discrete warm-white PCLEDs that rely on broadband phosphor tech-
nology in the previous section, we turn now to comparing them with discrete warm-
white PCLEDs that make use of narrowband phosphor technology. As discussed in
Sec. 10.6, broadband-red phosphor blends offer high CRI, but simultaneously lead to a
diminution of the device parameters PV, ηWPE, and ηWPC, relative to the values for cool-
white PCLEDs. As described in Sec. 10.4, the operation of narrowband red phosphors
is expected to be more favorable in this respect, as a result of their smaller photolumi-
nescence bandwidths.

The specifications for discrete warm-white PCLEDs that rely on narrowband- and
broadband-red phosphor blends, but are otherwise identical, are presented in the lower
and upper portions of Table 10.6-1, respectively. Both devices emit metameric white
light with a CCT of 3000 K and a CRI of 90, and the light emitted by both is in-
distinguishable to the human eye. Furthermore, the current, voltage, electrical power
consumption, and xy chromaticity coordinates of the two devices match exactly. Yet,
their spectral densities, displayed as the green and red curves in Fig. 10.4-1, respec-
tively, differ significantly, as do several other key measures. The relative performance
advantages of these two types of warm-white PCLED are summarized below:
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Performance Advantages of Discrete Narrowband-Red PCLEDs.
Because of its smaller photoluminescence bandwidth, the luminous flux PV, wall-
plug luminous efficacy ηWPE, and wall-plug luminous efficiency ηWPC are 7–8%
greater than values for the broadband-red warm-white PCLED, for the reasons
explained in Sec. 10.4.
The color gamut is enhanced relative to that of the broadband-red device (Sec. 9.5).

Performance Advantages of Discrete Broadband-Red PCLEDs.
The heat retention in the broadband-red warm-white PCLED is lower than that in
the narrowband-KSF device, for which the maximum allowed forward current is
limited because of the relatively long (8-ms) decay time of the parity- and spin-
forbidden 2E → 4A2 emission transition.
The lower heat retention in the broadband-red device supports a maximum lumi-
nous flux PV = 1400 lm, whereas PV is limited to 880 lm for the narrowband-KSF
device.

Incorporating a narrowband, rather than broadband, red phosphor in the blend
for a discrete warm-white PCLED improves the luminous flux and wall-plug
luminous efficacy but it can also limit the maximum attainable luminous flux.

Variations on the Theme of Discrete Phosphor-Conversion Devices
Discrete warm- and cool-white PCLEDs exist in many configurations and can be used
in many systems, as illustrated by the following examples:

Designer-Phosphor Devices. Various versions of multiple-phosphor PCLEDs can
be implemented by coupling blue, violet, or ultraviolet LEDs with designer col-
lections of phosphors that exhibit photoluminescence at diverse wavelengths.
Lamps with Adjustable Color Temperature. Retrofit lamps that make use of multi-
ple cool-white (6200 K) and multiple warm-white (2200 K) discrete PCLEDs of
adjustable intensities can be manually tuned to emit white light with a correlated
color temperature that ranges over 2200–6200 K (Example 11.4-4).

10.7 PCLED FILAMENTS

An LED filament is a 1D chain of tens (or hundreds) of discrete, unpackaged, blue LED
chips mounted to a transparent glass or sapphire filament, a construction commonly
referred to as chip-on-glass (COG). Encapsulating the LED filament in a silicone
resin that contains a yellow phosphor such as YAG:Ce3+ enables cool-white light to
be generated via photoluminescence, as displayed in Fig. 10.7-1(a). A broadband- or
narrowband-red phosphor can be incorporated into the phosphor blend to allow warm-
white light to be emitted, as described in Secs. 10.4–10.6.

The white light emitted by a PCLED filament is portrayed in Fig. 10.7-1(b), where
the drive current has been reduced to a small fraction of its normal operating value
to enable the light emitted by the individual LED chips to be resolved; operation at
the normal drive current is illustrated in Fig. 10.7-1(c). While the CCT is ordinarily
determined by the characteristics of the phosphor, it can alternatively be controlled by
replacing some of the blue chips with red ones and relying on additive color mixing
(Sec. 11.3).
Phosphor-conversion LED filaments such as the one displayed in Fig. 10.7-1 are used
in white LED-filament retrofit lamps, such as that displayed in Fig. 11.4-1(d) and dis-
cussed in Example 11.4-3.
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Figure 10.7-1 (a) Sketch of a PCLED filament comprising a chain of blue LEDs mounted to a
glass filament and embedded in a phosphor that is designed to emit metameric cool- or warm-white
light. Alternatively, a small proportion of red LEDs can be substituted for blue ones to reduce the CCT
of the light via additive color mixing. (b) White-light emission from an LED filament comprising 28
individual LEDs; the drive current has been reduced to 5% of its normal operating value so that the
light emitted by the individual LED chips can be resolved. (c) Metameric white light at Tc ≈ 3000 K
generated by a PCLED filament of diameter 1.5 mm and length 25 cm.

10.8 CHIP-ON-BOARD PCLEDS

The exposition provided thus far in this chapter has been principally directed toward
exploring the behavior and characteristics of discrete, single-die, phosphor-conversion
LEDs that serve as sources of cool- and warm-white light. However, many lighting
applications call for sources whose luminous flux is greater than that available from
single-die devices. A chip-on-board (COB) PCLED, which is a module consisting of
a large number of closely-spaced, individual LED dies mounted on a substrate (board)
and enveloped in phosphor, offers substantially increased luminous flux. This 2D de-
vice can be viewed as a generalized version of the 1D multiple-die, PCLED filament
discussed in Sec. 10.7. COB PCLEDs are widely used in a broad variety of indoor and
outdoor venues for track, spot, task, downlight, automotive, industrial, horticultural,
and stadium lighting.

Evolution of the White Chip-on-Board PCLED
The simple 2D array portrayed in Fig. 10.8-1(a), which contains four dies, can be
thought of as a rudimentary COB PCLED. Each die is similar to the one illustrated
in Fig. 10.5-1(b), and has a comparable viewing angle (2θ1/2 ≈ 120◦). From the per-
spective of optics, arrays such as this typically approximate a point source and rely on
optical components to configure the light beam into the desired spatial pattern.

Figure 10.8-1 (a) A 2D PCLED array comprising four InGaN
dies overlaid with thin phosphor sheets. This surface-mounted array,
which is encapsulated in a 5-mm-diameter hemispherical lens, can be
thought of as a rudimentary COB device. Drawing 18 W of electrical
power, it emits metameric cool-white light with a luminous flux PV ≈
2250 lm at a wall-plug luminous efficacy ηWPE ≈ 125 lm/W. (b) An
illuminated chip-on-board (COB) PCLED containing tens of InGaN
LED dies embedded in a 2.2-cm-diameter, 1.5-mm-thick layer of
phosphor. A device such as this, reported in Table 10.8-1, draws 235 W
of electrical power at its maximum operating current and delivers
metameric warm-white light with a luminous flux ofPV ≈ 28700 lm at
a wall-plug luminous efficacy ηWPE ≈ 122 lm/W. The spectral density
of the emitted light is displayed as the green curve in Fig. 10.8-2.

A chip-on-board (COB) PCLED, sometimes called an LED integrated array,
comprises a 2D array of tens (or hundreds) of densely packed, discrete, unpackaged,
blue LED chips (the maximum number of chips is limited principally by thermal-
management considerations). The array is encapsulated in a phosphor-containing resin
and configured as a single circuit. As depicted in Fig. 10.8-1(b), it is mounted on a
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printed-circuit board of phenolic or aluminum, or on a substrate such as sapphire or
glass. COB PCLEDs offer good thermal performance and provide diffuse sources of
lighting of high uniformity. They are suitable for a wide variety of directional and
non-directional single-color lighting applications. Viewing angles and operating tem-
peratures are comparable with those for discrete PCLEDs: 2θ1/2 ≈ 115◦ and 85 ◦C,
respectively. Chip-on-board devices are commercially available in a broad range of
sizes, die densities, operating voltages, operating currents, luminous fluxes, luminous
efficacies, correlated color temperatures, and color rendering indices. Two or more COB
PCLEDs connected in series form a multiple COB (MCOB) device.

Behavior and Characteristics of White COB PCLEDs
We proceed to discuss the characteristics of the InGaN-based COB PCLEDs exem-
plified in Table 10.8-1, under typical and maximum-current operating conditions. We
consider in turn the behavior of: 1) a 5000-K cool-white COB PCLED based on a
broadband yellow phosphor (upper table); 2) a 3000-K warm-white COB PCLED based
on a broadband-red phosphor blend (middle table); and 3) a 3000-K warm-white COB
PCLED based on a narrowband-red phosphor blend (lower table). Examination of the
entries in the table reveals that these three COB devices are electrically identical and
have the same values of the CRI.

The luminous flux and luminous efficacy values differ, however, since the devices
utilize different phosphors. The COB PCLED with the narrowband-red phosphor blend
exhibits higher values of these parameters than those offered by the COB PCLED with
the broadband-red phosphor blend, as is the case with discrete PCLEDs, and for the
same reasons (Sec. 10.6). However, the values for the narrowband-red phosphor blend
also exceed those for the cool-white phosphor, which was not the case for the discrete
PCLEDs (Sec. 10.6).

The spectral densities of the metameric white light emitted by the three COB
PCLEDs compared in Table 10.8-1 are considered in Example 10.8-1, while the
enhancement in luminous flux offered by COB PCLEDs relative to discrete PCLEDs
that make use of comparable phosphors is detailed in Example 10.8-2.

EXAMPLE 10.8-1. Spectra for COB PCLEDs That Emit Metameric White Light. The
spectral densities for the metameric white light emitted by the three COB PCLEDs characterized in
Table 10.8-1 are displayed in Fig. 10.8-2. The narrow peaks in the vicinity of 450 nm arise from
the InGaN pump while the peaks in the yellow and red regions are associated with the different
phosphor blends. These three spectral densities closely resemble those displayed earlier for Cree
discrete phosphor-conversion LEDs (Secs. 10.5 and 10.6), revealing that the two types of device make
use of similar phosphor blends. In particular, the blue curve in Fig. 10.8-2 is similar to the blue curve
in Fig. 10.5-2(a) for the Cree XLamp® XP-L2 PCLED; the red curve in Fig. 10.8-2 resembles the red
curve in Fig. 10.6-1(a) for the Cree XLamp® XHP35.2 PCLED; and the green curve in Fig. 10.8-2
is closely related to the green curve in Fig. 10.4-2 for the Cree XLamp® XHP35.2 Pro9TM PCLED
(both green curves display the unmistakable fingerprint of the spectral-spike quintet in the vicinity of
623 nm that is the hallmark of the manganese-doped potassium fluorosilicate spectrum, as explained
in Sec. 10.3).

EXAMPLE 10.8-2. Luminous-Flux Comparison for COB and Discrete PCLEDs. The
raison d’être of the chip-on-board device is to provide a luminous flux greater than that available
from single-die devices; this is achieved by densely packing tens (or hundreds) of individual dies into
a single integrated module. Table 10.8-2 reiterates the maximum-current operating characteristics of
the three COB PCLEDs examined in Table 10.8-1 and compares them with those of the three discrete
PCLEDs that make use of similar phosphor blends, as described in Example 10.8-1. The metric used
for the comparison is the ratio of the COB PCLED luminous flux to the discrete PCLED luminous
flux, PV(COB)/PV(DISCRETE), which is provided in the rightmost column of Table 10.8-2. For the
particular examples considered, the values for the COB PCLED luminous flux are tens of times greater
than those for the discrete PCLEDs.
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Table 10.8-1 Specifications for three representative white, 2.2-cm-diameter, InGaN chip-on-board
(COB) PCLEDs with a 2.8 cm × 2.8 cm footprint. The three devices are identical except for their
phosphors. Data are provided for operation at a typical value of the forward current (upper row of
each table) and at the maximum permissible operating current (lower row of each table).

UPPER TABLE (COOL-WHITE): Data in the upper table correspond to a device fabricated using
a broadband-yellow phosphor (YAG:Ce3+) that generates cool-white light with a CCT of 5000 K.
(Data in the upper and middle tables adapted from Cree data sheet CLD-DS260-REV5 for XLamp®

CMU2287, https://downloads.cree-led.com/files/ds/x/XLamp-CMU2287.pdf, 2023.)
MIDDLE AND LOWER TABLES (WARM-WHITE): Data in the middle and lower tables

correspond to devices that generate warm-white light with a CCT of 3000 K using phosphor blends that
incorporate broadband-red (YAG:Eu3+) and narrowband-red (KSF:Mn4+) phosphors, respectively.
(Data in the lower table adapted from Cree data sheet CLD-DS333-REV2 for XLamp® CMU2287
Pro9TM, https://downloads.cree-led.com/files/ds/x/XLamp-CMU2287-Pro9.pdf, 2023.)

UNITS: Successive columns display: forward current i, forward voltage V , electrical power
consumption PEL, luminous flux PV, wall-plug luminous efficacy (WPE) ηWPE(lmW ), wall-plug luminous
efficiency (WPC) ηWPC, chromaticity coordinates (x, y), correlated color temperature Tc, and color
rendering index (CRI). The data were collected at an operating temperature of 85 ◦C and with a
viewing (50%-power) angle of 2θ1/2 ≈ 115◦.

coba ib(A) V b(V) Pb,c
EL (W) Pc

V (lm) ηc,dWPE(
lm
W
) ηdWPC xe ye T f

c (K) CRIg

cool-white 1.62 50.5 81.8 12100 148 0.22 0.34 0.36 5000 90
4.20 56.0 235 26000 110 0.16 0.34 0.36 5000 90

warm-white 1.62 50.5 81.8 11600 142 0.21 0.43 0.40 3000 90
(bb-red blend) 4.20 56.0 235 25000 106 0.15 0.43 0.40 3000 90

warm-white 1.62 50.5 81.8 13350 163 0.24 0.43 0.40 3000 90
(nb-red blend) 4.20 56.0 235 28700 122 0.18 0.43 0.40 3000 90

aTable entry values are rounded.
bThe electrical drive power is related to the device current and voltage via PEL = iV , as specified in (7.1-13).
cThe wall-plug luminous efficacy ηWPE, luminous flux PV, and electrical drive power PEL are related by (8.9-4).
dThe wall-plug luminous efficiency and efficacy are related by ηWPC = ηWPE/683, in accordance with (8.9-9).
eThe chromaticity coordinates x and y, which are perceptual measures of color, are defined in Sec. 9.6.
fThe correlated color temperature Tc, a measure of the color of a source of light, is defined in Sec. 9.8.
gThe color rendering index is a measure of the faithfulness with which the color of an object is rendered (Sec. 9.9).

Figure 10.8-2 COB PCLED spectral
densities under InGaN LED pumping. Blue
Curve: 5000-K cool-white light from a
broadband YAG:Ce3+ yellow phosphor.
Red Curve: 3000-K warm-white light from
a phosphor blend using the broadband
YAG:Eu3+ red phosphor. Green Curve:
3000-K warm-white light from a phosphor
blend using the narrowband KSF:Mn4+

red phosphor. (Data adapted from Cree
data sheets CLD-DS260-REV5 and CLD-
DS333-REV2 for XLamp® CMU2287 and
CMU2287 Pro9TM, respectively, 2023.)
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Table 10.8-2 Comparison of parameter values for three white, 2.2-cm-diameter, InGaN COB
PCLEDs that employ three distinct phosphors with three white, 3.2 mm × 3.2 mm, InGaN discrete
PCLEDs that employ similar phosphors. The upper table represents devices that generate cool-white
light whereas the middle and lower tables represent devices that generate warm-white light. The three
COB devices are identical except for their phosphors. The data provided represent operation at the
maximum permissible operating current for each device.

UPPER TABLE (COOL-WHITE): Data in the upper table correspond to devices fabricated using
a broadband-yellow phosphor that generates cool-white light with a CCT of 5000 K. (Data adapted
from Cree data sheets CLD-DS260-REV5 and CLD-DS149-REV6 for XLamp® CMU2287 and XP-
L2, respectively, at https://downloads.cree-led.com/files/ds/x/XLamp-CMU2287.pdf,
2023 and https://downloads.cree-led.com/files/ds/x/XLamp-XPL2.pdf, 2023.)

MIDDLE TABLE (WARM-WHITE): Data for devices that generate warm-white light with a CCT
of 3000 K using phosphor blends that incorporate a broadband-red phosphor. (Data adapted from
Cree data sheets CLD-DS260-REV5 and CLD-DS199-REV7 for XLamp® CMU2287 and XHP35.2,
respectively, at https://downloads.cree-led.com/files/ds/x/XLamp-CMU2287.pdf, 2023
and https://downloads.cree-led.com/files/ds/x/XLamp-XHP35.2.pdf, 2023.)

LOWER TABLE (WARM-WHITE): Data in the lower table correspond to devices that generate
warm-white light with a CCT of 3000 K using phosphor blends that incorporate the narrowband-
red phosphor manganese-doped potassium fluorosilicate. (Data adapted from Cree data sheets CLD-
DS333-REV2 and CLD-DS334-REV1 for XLamp® CMU2287 Pro9TM and XHP35.2 Pro9TM, respec-
tively, at https://downloads.cree-led.com/files/ds/x/XLamp-CMU2287-Pro9.pdf, 2023
and https://downloads.cree-led.com/files/ds/x/XLamp-XHP35.2-Pro9.pdf, 2023.)

UNITS: Successive columns display: forward current i, forward voltage V , electrical power
consumption PEL, luminous flux PV, wall-plug luminous efficacy (WPE) ηWPE(lmW ), wall-plug luminous
efficiency (WPC) ηWPC, correlated color temperature Tc, color rendering index (CRI), and ratio of COB
PCLED luminous flux to discrete PCLED luminous flux PV(COB)/PV(DISCRETE).

device (table no.)a i(A) V (V) PEL(W) PV(lm) ηWPE(
lm
W
) ηWPC Tc(K) CRI PV(COB)

PV(DISCRETE)

cw cob (10.8-1)b 4.20 56.0 235 26000 110 0.16 5000 90 22.6
cw discrete (10.5-1)b 3.00 3.04 9.12 1150 126 0.18 5000 80

ww bb cob (10.8-1)b 4.20 56.0 235 25000 106 0.15 3000 90 17.9
ww bb discrete (10.6-1)b 1.50 13.1 19.7 1400 71 0.10 3000 90

ww nb cob (10.8-1)b 4.20 56.0 235 28700 122 0.18 3000 90 32.6
ww nb discrete (10.6-1)b 0.70 11.9 8.33 880 106 0.16 3000 90

atable specifies the table number to which these data are posted. Table entry values are rounded.
bAbbreviations: cob = chip-on-board pcled, discrete = discrete pcled, cw = cool-white, ww = warm-white,
bb = broadband-red phosphor blend, nb = narrowband-red phosphor blend.
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LED lighting, where the observer views the light scattered from surrounding objects,
is an essential technology in an enormous number of arenas, including exhibition and
entertainment lighting; landscape lighting; aerospace and military lighting; automo-
tive lighting; and residential, architectural, and street lighting. Also called solid-state
lighting, it is nearly universally used for illumination applications. LED lighting offers
excellent color rendering quality and can be designed to provide dynamic lighting that
renders any color or any combination thereof, including white. It can also offer person-
alizing lighting throughout the day, simultaneously integrating the art of illumination
with systems that govern various sensory environments. Connected lighting systems
comprise luminaires outfitted with sensors that network with these systems and with
each other to dynamically modify the resident space. The capabilities of LED lighting
are increasingly vital for agricultural, horticultural, and germicidal applications.

This chapter can be considered to be a continuation of Chapter 10, which considers
in detail the generation of metameric white light by phosphor-conversion light-emitting
diodes (PCLEDs). These efficient lighting components are widely used in many facets
of LED lighting. This chapter also relies extensively on Chapter 7, which is devoted
to the operation and behavior of LEDs, and on Chapters 8 and 9, which narrate the
principles of human color vision and colorimetry, respectively.

From a historical perspective, the incandescent filament lamp, a predecessor to the
LED, served as the workhorse of artificial lighting from 1879, shortly after its inven-
tion by Thomas Edison and his British rival Joseph Swan, until the early 2000s. The
principal limitation of incandescent sources is that they emit graybody radiation so that
the conversion of electrical power to optical power strongly favors the infrared; only
about 5% of the optical power is emitted in the visible region while some 95% fails
to provide light since it is emitted in the infrared as heat. The fluorescent lamp, which
entered the marketplace in the late 1930s, was somewhat more efficient and replaced
the incandescent lamp in some venues but its light was widely deemed to be inferior in
quality. The use of fluorescent light accelerated with the advent of the compact fluores-
cent lamp (CFL), which became widely available about 1995, but incandescent lighting
maintained its primacy by virtue of its ideal color rendering, simple construction, low
price, and familiarity to the public.

In the early 2000s, however, incandescent lighting finally yielded its primacy to
LED lighting, which is highly efficient and offers luminous-flux levels and wall-plug
luminous efficacies that are substantially superior to those available with incandescent
and fluorescent lighting. LED sources also offer manifold advantages relative to their
traditional counterparts, as discussed above.

LED lighting is based on light-emitting diodes. By way of a historical introduction to
the development of LEDs for lighting, the first high-brightness LED in the visible region
was fabricated by Nick Holonyak (p. 338) and Saverio Bevacqua using the compound
semiconductor GaAs1−xPx. As reported in the manuscript they submitted to Applied
Physics Letters on 17 October 1962 that was published on 1 December 1962,† their
p–n junction device functioned as a red LED at room temperature and as a red laser
diode that emitted light at 710 nm when its temperature was lowered sufficiently. It was
subsequently discovered by George Craford and his colleagues that GaAs1−xPx could
be induced to emit light at wavelengths shorter than red, albeit inefficiently, by doping
with nitrogen.‡

† N. Holonyak, Jr. and S. F. Bevacqua, Coherent (Visible) Light Emission fromGaAs1−xPx Junctions, Applied
Physics Letters, vol. 1, pp. 82–83, 1 December 1962 (submitted 17 October 1962).

‡ M. G. Craford, R. W. Shaw, A. H. Herzog, and W. O. Groves, Radiative Recombination Mechanisms in GaAsP
Diodes With and Without Nitrogen Doping, Journal of Applied Physics, vol. 43, pp. 4075–4083, 1972.
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The salutary features of LED lighting, in the context of traditional lighting technolo-
gies, are presented in Sec. 11.1. Single-color LEDs and some of their uses, particularly
in architectural lighting, are discussed in Sec. 11.2. Methods for generating white light,
other than those involving PCLEDs, include the use of additive color-mixing devices
(Sec. 11.3) and hybrid devices (Sec. 11.5). These approaches make use of AlInGaP,
the material of choice for generating light in the red, orange, yellow-orange (amber),
and yellow; and InGaN, the material of choice for generating light in the green, blue,
and violet (Sec. 7.3). Retrofit lamps and variations thereof are considered in Sec. 11.4
and LED luminaires are studied in Sec. 11.6. Smart lighting and connected lighting, as
well as human-centric lighting, IoT lighting, LiFi, and the myriad implementations of
these variants, are explored in Sec. 11.8. The properties of white OLED light panels
are introduced in Sec. 11.7. Finally, a performance comparison of the figures of merit
for various sources of illumination is presented in Sec. 11.9. It will become clear in this
chapter that LEDs serve as the underlying sources for all manner of lighting devices.

As detailed in Chapter 7 and summarized in Sec. 10.1, new types of LEDs introduced
in recent decades, including quantum-dot, organic, and perovskite devices, are also
under development.

11.1 MERITS OF LED LIGHTING

Traditional Technologies
The advent of LED lighting has rendered largely obsolete many of the traditional light-
ing technologies that have been employed since the late nineteenth century, when elec-
tricity became widely available for practical use. As detailed below, the operating prin-
ciples underlying traditional technologies rely on either gas-discharge phenomena or on
incandescence. The light produced in a gas discharge is characterized as spontaneous
emission (Sec. 4.4) whereas incandescence involves an interplay among spontaneous
emission, stimulated emission, and absorption (Secs. 4.7). Incandescence results from
the transitions of free and valence electrons in hot solid materials (Sec. 4.8).

Incandescent Lamps. The quintessential example of an incandescent lamp is the old-
fashioned glass light bulb containing a thin tungsten filament that is ohmically heated
by passing an electric current through it (Secs. 4.8 and 9.7). Tungsten is the material of
choice because it has the lowest vapor pressure and highest melting point of any metal.
Incandescent lighting was widely used throughout the twentieth century because of
its convenience, appealing spectral properties, and optimal color rendering. However,
its color is limited to shades of reddish-white and it is highly inefficient, with only
about 5% of the consumed energy converted to visible light. The lifespan is limited
to approximately 1500 h, which is roughly the same as that for the mantles used in
incandescent gas lamps, which were employed for street lighting before incandescent
electric lamps became available.

Halogen Incandescent Lamps. Halogen lamps are incandescent sources whose bulbs
contain a small amount of a halogen gas such as bromine. The halogen and tungsten
atoms react chemically so that the evaporated tungsten is redeposited on the filament
when the halogen cools. This approach allows the efficiency to be increased from 5%
to about 7% and extends the lifespan from 1500 h to roughly 4000 h.

Fluorescent Lamps. Fluorescent lamps are low-pressure gas-discharge devices that
operates by passing an electric current through mercury vapor. The ensuing excitation
of the Hg atoms results in the emission of ultraviolet photons that strike a phosphor
coating deposited on the interior of the glass envelope. The color of the resulting pho-
toluminescence depends on the nature of the phosphor (Sec. 10.2). Fluorescent lamps
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are more efficient than incandescent lamps, but their color rendering is substantially
inferior. They also contain mercury, which is environmentally hazardous.

Low-Pressure Gas-Discharge Lamps. Low-pressure gas-discharge lamps operate by
passing an electric current through a gas such as neon. The atoms are excited (or ionized)
by collisions and the ensuing decay to the ground state gives rise to spontaneous emis-
sion (fluorescence) with a color that depends on the atomic species (Sec. 4.4). Buffer
gases are often added to the mix to facilitate excitation. Many monoatomic species
(and their ions) exhibit fluorescence at innumerable wavelengths. Neon signs, which
were introduced in the early 1900s, serve as an example. Although seldom used for
illumination, their eye-catching red-orange glow was ubiquitous in advertising until the
1980s when LED signage became available. A blue glow is obtained by using argon
instead of neon; white is produced by xenon and colors ranging from green to purple
are generated by mixtures of krypton and xenon. Noble gases are employed because of
their stability and lack of reactivity. Whatever the choice of gas, however, the term “neon
sign” is universally used. The introduction of a properly designed optical resonator into
a neon sign can provide optical feedback and lead to stimulated emission (Sec. 4.5),
the process underlying laser action. Indeed, the neon laser, which is usually referred to
as the helium-neon laser since helium serves as a buffer, was the first gas laser to be
operated (in 1960).

Low-Pressure Sodium Lamps. Low-pressure sodium (LPS) gas-discharge lamps, in-
troduced in the 1930s, emit monochromatic yellow light on their closely spaced Na D-
line doublet. They are often used for outdoor illumination because of their long lifespan,
ease of filtering (which minimizes light pollution for astronomical viewing), and large
wall-plug luminous efficiency ηWPC. The latter is a consequence of the proximity of
the D-line doublet wavelength (λNaD = 589 nm) to the yellowish-green peak wave-
length of the photopic luminous efficiency function (λO = 555 nm). The value of the
WPC is readily determined via (8.9-10), which provides ηWPC = ηPCE V (589 nm) ≈
0.822 ηPCE lm/W. Since empirical measurements show that ηPCE ≈ 0.27, this leads to
to ηWPC ≈ 0.22. A serious difficulty with LPS lamps is that the emitted light is totally
devoid of color-rendering capability because of its monochromaticity (CRI = 0); the
colors of illuminated objects are therefore difficult to discern and appear unnatural.

High-Pressure Sodium Lamps. High-pressure sodium (HPS) lamps operate on the
same principle as low-pressure sodium lamps and are generally used for the same pur-
poses. However, the increased pressure results in a broader spectrum (Sec. 4.6) and a
greater lifespan. The broadened spectrum in turn leads to a color rendering index CRI
= 15.

High-Pressure Mercury-Vapor Lamps. The operation of these gas-discharge lamps
is similar to that of high-pressure sodium lamps except that the generation of a plasma
requires the mercury to evaporate and a number of Hg lines at discrete visible wave-
lengths are excited. The ensuing light appears bluish-white with Tc ≈ 4000 K and a
color rendering index CRI = 50. In some devices, phosphors are coated on the interior
of the quartz envelope to introduce other colors via photoluminescence, much as with
fluorescent lamps. Most of the high-pressure mercury-vapor lamps used for lighting in
Europe were replaced by HPS lamps in the 1960s, since the latter are more efficient.

High-Pressure Xenon Lamps. Just as sodium and mercury vapor are used to generate
light in high-pressure lamps, so too is the noble gas xenon. Since the spectrum of Xe is
much broader than that of Na or Hg vapor, however, these lamps generate light with a
far higher color rendering index, i.e., CRI = 95.

Ceramic Metal-Halide Lamps. The luminous efficacy and color rendering index
of high-pressure discharge lamps such as HPS can be substantially enhanced by in-
corporating metal halide compounds in the gas mixture, which greatly expands the
number of visible spectral lines. Such compounds include various rare-earth halides
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and the halides of Sc, Na, Tl, and In. A salutary feature of these lamps is that the color
temperature may be adjusted by suitably choosing the added compounds. Metal-halide
lamps outperform high-pressure Hg and Xe lamps with respect to luminous efficacy,
and are far superior to HPS lamps with respect to color rendition. Ceramic metal-halide
lamps incorporate ceramic arctubes, which allow higher operating temperature and thus
increased luminous efficacy and color rendering.

Carbon-Arc Lamps. Carbon-arc lamps were invented by Sir Humphry Davy in the
early 1800s and gained wide use in the late 1800s as the first practical, electrically
excited sources for street lighting. They consist of a pair of carbon electrodes held at
a high potential difference and separated by a small gap. The electric field at the gap
ionizes the air between the electrodes and creates an arc (plasma) that links them via
a conductive path. The high plasma temperature in turn leads to incandescence from
the carbon electrodes and to the evaporation of some of the carbon atoms. These atoms
are then excited by collisional mechanisms and emit light on de-excitation. By virtue of
their large luminous flux, carbon-arc lamps were also used, in conjunction with mirrors
and lenses, as searchlights for military and maritime applications. In particular, they
were coupled with Fresnel lenses (Sec. 1.5) to generate the light beacons that emanated
from many lighthouses in the period from 1850 until the early 1900s.

Salutary Features of LED Lighting
At its core, LED lighting relies on spontaneous recombination radiation generated at
the junction region between two different materials (Chapter 7) and on the behavior
of photoluminescent phosphors (Chapter 10). It offers a great many salutary features
in comparison with the traditional incandescent and gas-discharge lighting technolo-
gies considered above. Indeed, it is the most efficient and versatile lighting technology
ever developed, as is evidenced by the entries provided in Table 11.9-1 that compare
representative illumination parameters for all manner of light sources. It is not an ex-
aggeration to proclaim that LEDs have revolutionized lighting worldwide.

High Efficiency. Large values of the wall-plug luminous efficacy (WPE), and the
accompanying wall-plug luminous efficiency (WPC), reveal that LEDs use far less
electrical power than incandescent and gas-discharge sources to generate a given lu-
minous flux. Indeed, solar panels (in conjunction with batteries for energy storage) can
be used to power LEDs and can therefore bring light to remote and isolated geographical
regions.

Because the spectral density of LED light is readily confined to the visible
region, LED sources offer luminous efficacies far greater than those attainable
with incandescent sources.

High-Quality Color Rendering. LED lighting offers excellent color rendering,
which indicates that colored objects appear natural under LED illumination.

Convenience. LEDs are compact, monolithic devices that are resistant to damage
from shock, vibration, external impacts, and weather. With appropriate heat-sinking,
they operate from low to high temperatures. They offer instantaneous switch-on and
continuous dimmability without flicker. They operate noiselessly and emit little ultravi-
olet radiation or infrared heat that could damage the objects they illuminate. They can be
fabricated using mature manufacturing technology and do not contain toxic materials,
thereby facilitating disposal.

Long Operational Life, Slow Failure, and Low Cost. LEDs are endowed with life-
spans that can exceed 100000 hours, far longer than the 1500 h for a typical incandescent
lamp, 4000 h for a halogen incandescent lamp, and 10000 h for a compact fluorescent
lamp. When LEDs fail, they do so in a gradual rather than in a sudden manner. These
features result in greatly reduced long-term replacement and maintenance costs.
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Broad Choice of Directionality, Hue, Saturation, and Luminance. Multi-LED ar-
rays and optics offer directional or omnidirectional emission. LED lighting provides
luminance and chromaticity ranges that span the gamut of human vision, including a
continuum of whites.

Dynamic-, Smart-, and Connected-Lighting Capabilities. The colors, temporal irra-
diance patterns, and spatial distributions of light produced by LEDs can be dynamically
programmed. Furthermore, the electronic drivers can communicate wirelessly with
each other and with collections of sensors to provide smart networks, e.g., LED traffic
signals controlled by sensors embedded in the street pavement.

11.2 SINGLE-COLOR LEDS

Single-color LEDs are usually MQWLEDs that are fabricated from semiconductor
materials with specific bandgap wavelengths and operate via electroluminescence.
ELLEDs such as these are generally designated by either their peak wavelength (PWL)
(Secs. 7.2–7.4) or dominant wavelength (DWL) (Sec. 9.6). MQWLEDs may instead
be fashioned into PCLEDs that make use of photoluminescence (Sec. 10.2) from
broadband or narrowband phosphor blends (Secs. 10.3 and 10.4), in which case they
are designated by their colors.

Single-color LEDs have applications in the display, signage, automotive, and sensing
domains, as well as consumer electronics, entertainment, and horticulture, along with
clinical medicine. Examples include:

Traffic signals (Fig. 7.4-1), automobile taillights, and emergency-vehicle alerts.
Information displays and advertising.
Fluorescence- and absorption-based sensing.
Backlighting and status indication.
Event and stage lighting.
Architectural lighting (Secs. 11.2-1 and 11.2-2).
Plant growth and aquarium maintenance.
Body fluid monitoring and photodynamic therapy.

Devices such as these are commercially available in many colors, at low, medium, and
high optical powers, and with various footprints, as exemplified by the listing provided
below (adapted from Cree color LED portfolio data sheet FS05R21 dated April 2023):

PCLED photoluminescence colors.
Blue
Cyan
Mint
Lime
Yellow
Amber
Red–Orange
Red
Magenta
Purple

ELLED electroluminescence wavelengths.
Violet: 400–420 nm PWL
Royal Blue: 450–465 nm PWL
Blue: 465–480 nm DWL
Cyan: 490–510 nm DWL
Green: 520–535 nm DWL
Amber: 585–595 nm DWL
Red–Orange: 610–620 nm DWL
Red: 620–630 nm DWL
Photo Red: 650–670 nm PWL
Far Red: 720–740 nm PWL

Architectural Lighting
Lighting expositions in the public square offer a fine venue for qualitatively illustrating
the effectiveness of single-color LEDs that offer a broad range of colors (hue, saturation,
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and luminance). By way of example, we demonstrate how LED lighting highlights
the grandeur of two iconic structures: the Eiffel Tower in Paris and the Empire State
Building in New York City.

Eiffel Tower in Paris. An engaging example that illustrates the effectiveness of LED
lighting technology is provided by the illuminated Eiffel Tower in Paris, images of which
are displayed in Fig. 11.2-1.

Figure 11.2-1 The Eiffel Tower of Paris, locally
known as la dame de fer, illuminated by LED lighting.
This 330-m high tower, erected as the entrance arch for
the 1889 World’s Fair in Paris, may well be the most
recognizable structure in the world. Over the years, the
iconic shape of the Eiffel Tower has successively been
highlighted by gas lamps, incandescent lamps, fluores-
cent lights, high-pressure sodium-vapor lamps, and now
by a programmable, dynamic LED lighting system that
is synchronizable with music and sound.

Empire State Building in New York City. Another dramatic example that illustrates
some of the capabilities of LED lighting technology is provided by the system that
illuminates the Empire State Building, as illustrated in Fig. 11.2-2.

Figure 11.2-2 The Empire State Building is a 103-
story, Art-Deco skyscraper in New York City that was
completed in 1931. The name of the building derives
from the nickname for New York State: The Empire
State. Its exterior was first illuminated by metal-halide
lamps and floodlights in 1964, which were replaced by a
computer-controlled LED lighting system in 2012. This
system provides programmable and dynamic lighting,
offering a vast array of colors and other display options
that can be synchronized with music or sound.

Drive Circuitry. The electronic drivers for the LEDs used in architectural lighting
systems typically employ drive circuitry similar to that schematized in Figs. 7.4-2 and
7.4-3. A collection of LEDs of a particular color are usually connected in series and
driven by a pulse-width-modulated (PWM) current provided by a drive transistor. The
radiant flux generated is determined by the average current passing through the LEDs,
which in turn is governed by the duty cycle of the PWM current. Banks of LEDs of
different colors (usually red, green, and blue) are used to generate light of arbitrary
hue, saturation, and luminance, including white. An addressable microprocessor sys-
tem is usually used to control the relative light levels generated by the different-color
LEDs, which enables the overall color and intensity of the light to vary with time and
position in an arbitrary prescribed manner. Collections of such lighting units are readily
concatenated into lighting networks.
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11.3 ADDITIVE COLOR-MIXING LEDS

The second method for generating metameric white light using LEDs (of the three
codified in Sec. 10.1) relies on multiple single-color dies. Light from red, green, and
blue sources can be superposed to yield a broad range of colors, including metameric
white, as may be understood from the principles of additive color mixing disclosed
in Chapter 9. Initially introduced in Sec. 9.1, this process is portrayed in Fig. 11.3-1.
Variable hue lamps that operate via color mixing are discussed in Sec. 11.5.

R + G → Y (Yellow)
G + B → C (Cyan)
B + R → M (Magenta)
R + G + B → W (White)

Figure 11.3-1 Additive color mixing. Left: A device that generates light of tunable color can
be constructed from LEDs that emit light in the Red (R), Green (G), and Blue (B), as schematically
illustrated. Center: Light produced by a wall sconce constructed from LEDs that emit, from left
to right, Violet (V), Blue, Green, and Red. (Adapted from Wandlampe by Mattes, 4 July 2018, via
Wikimedia Commons.) Right: The color-mixing rules specified in the table delineate the colors
exhibited in the images at left and center. The yellow (Y), cyan (C), and white (W) generated by the
wall sconce exhibit limited brightness because of reduced luminance, as exemplified in Examples 9.3-
1–9.3-3.

Color-Mixing LEDs (CMLEDs)
A color-mixing light-emitting diode (CMLED), also called a color-mixing package,
comprises an array of several individually addressable dies in close proximity that are
incorporated into a single LED package. Modern CMLEDs contain red, green, blue,
and white (RGBW) dies, as sketched in Fig. 11.3-2. The RGB emitters are depicted by
the colors of the light they generate. Their individual radiant power levels are electri-
cally adjustable and their properties resemble those of the discrete, small-area, III–V
MQWLEDs specified in the upper portion of Table 7.4-1.

The white phosphor-conversion element, whose radiant power is also electrically
adjustable, serves to enhance the luminous flux and wall-plug luminous efficacy of the
CMLED. This element is similar to the discrete white PCLED displayed in Fig. 10.5-
1(b). Portrayed as yellow in Fig. 11.3-2 (the color of the phosphor), its specifications
are similar to those of the cool- or warm-white PCLEDs reported in Tables 10.5-1 and
10.6-1, respectively.

CMLEDs are typically supplied in pockets on a tape that is wound on a reel to
facilitate automated assembly. They are seldom used as sources of metameric white
light; PCLEDs serve this purpose. Rather, CMLEDs are used in color-changing, stage,
architectural, and entertainment applications. RGBW COB (chip-on-board) LEDs can
be fabricated and are sometimes used for commercial and industrial applications, in-
cluding stage, architectural, and landscape lighting.

Characteristics of an Additive Color-Mixing LED. The specifications for a rep-
resentative CMLED, the Cree XLamp® XM-L Color Gen 2 High Density LED, are
presented in Table 11.3-1. The data reported are for each of the four dies operating
independently, and their peak wavelengths λp are designed to fall within the ranges
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Figure 11.3-2 Sketch of a CMLED, a multicolor color-mixing
LED comprising individually addressable red, green, and blue dies,
along with a white phosphor-conversion emitter of selectable CCT.
The dies are housed within a ceramic surface-mounted device
(SMD) capped by a 5-mm-diameter hemispherical lens. CMLEDs
such as this can be electrically tuned to emit essentially any color
within the gamut of human vision, including metameric white light.

indicated. In this particular example the phosphor-conversion element emits cool-white
light at 6000 K, but CMLEDs are also available in which the constituent PCLED emits
neutral- or warm-white light. The entries labeled array represent overall values when
all RGBW elements are fully energized.

The upper and lower portions of Table 11.3-1 represent operation at typical and
maximum permitted current levels, respectively. Comparing them makes it clear that
the luminous flux PV for each die increases dramatically as the current level increases,
but this comes at the expense of a substantial diminution of the wall-plug luminous
efficacy ηWPE as a consequence of efficiency droop (Sec. 7.4).

The associated spectral densities and chromaticity diagram are displayed and dis-
cussed in Example 11.3-1.

Table 11.3-1 Specifications for a high-density RGBW multicolor color-mixing LED (CMLED)
with individually addressable elements packaged as a 5 mm × 5 mm surface-mounted device
(SMD). Data are presented for operation at a typical current (upper table) and at the maximum
operating current (lower table), when each die is operated independently. Successive columns display
the following parameters: range of peak wavelengths λp , current i, forward voltage V , electrical
power consumption PEL, luminous flux PV, wall-plug luminous efficacy (WPE), wall-plug luminous
efficiency (WPC), chromaticity coordinates (x, y), and correlated color temperature Tc. The data
displayed were collected at an operating temperature of 25 ◦C and at a viewing (50%-power) angle
2θ1/2 ≈ 120◦. (Data adapted from Cree Data Sheet CLD-DS273-REV8 for XLamp® XM-L Color
Gen 2 LEDs, https://downloads.cree-led.com/files/ds/x/XLamp-XMLDCL.pdf, 2023.)

rgbw
cmleda λp(nm) ib(A) V b(V) Pb,c

EL (W) Pc
V (lm) ηc,dWPE(

lm
W
) ηdWPC xe ye T f

c (K)

red 620–630 0.35 2.1 0.735 80 109 0.16 – – –
green 520–535 0.35 2.6 0.910 155 170 0.25 – – –

ty
pi

ca
l

blue 450–465 0.35 2.9 1.015 23 22 0.03 – – –
white – 0.35 2.9 1.015 155 153 0.22 0.32 0.34 6000
array – – – 3.675 413 112 0.16 – – –

red 620–630 1.75 2.8 4.90 340 69 0.10 – – –
green 520–535 1.75 3.2 5.60 411 73 0.11 – – –

m
ax

im
um

blue 450–465 1.75 3.5 6.13 81 13 0.02 – – –
white – 1.75 3.6 6.30 543 86 0.13 0.32 0.34 6000
array – – – 23.0 1375 60 0.09 – – –

aTable entry values are rounded.
bThe electrical drive power is related to the device current and voltage via PEL = iV , as specified in (7.1-13).
cThe wall-plug luminous efficacy ηWPE, luminous flux PV, and electrical drive power PEL are related by (8.9-4).
dThe wall-plug luminous efficiency and efficacy are related by ηWPC = ηWPE/683, in accordance with (8.9-9).
eThe chromaticity coordinates x and y, which are perceptual measures of color, are defined in Sec. 9.6.
fThe correlated color temperature Tc, a measure of the color of a source of light, is defined in Sec. 9.8.
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EXAMPLE 11.3-1. Spectra and Chromaticity Diagram for a Color-Mixing LED. The
spectra and chromaticity diagram for a CMLED such as that illustrated in Fig. 11.3-2 are displayed in
Fig. 11.3-3. The red (R), green (G), and blue (B) spectral densities portrayed in Fig. 11.3-3(a) exhibit
peaks at λp = 625, 530, and 455 nm, respectively, which fall within the design ranges specified in
Table 11.3-1. The peaks of the black curve, which give rise to metameric cool-white (W) light at
Tc ≈ 6000 K, are associated with a blue InGaN LED die (λp ≈ 445 nm, ∆λFWHM ≈ 20 nm) and a
thin yellow phosphor overcoating (λ ≈ 570 nm, ∆λFWHM ≈ 120 nm, see Sec. 10.3). This curve is
similar to the black curve presented in Fig. 10.6-1 for a cool-white PCLED.

Figure 11.3-3 (a) Spectral densities for the light emitted by individually addressable R, G, B, and
W dies in a CMLED such as that pictured in Fig. 11.3-2 and specified in Table 11.3-1. When operated
independently at a temperature of 25 ◦C and at a current of 350 mA per die, the peak wavelengths
of the RGB LED curves lie in the wavelength regions λp = 620–630, 520–535, and 450–465 nm,
respectively. When operated at 25 ◦C and 350 mA, the phosphor-conversion (W) element emits
metameric cool-white light with a CCT ≈ 6000 K (black curve). (b) The designated wavelengths
of the red, green, and blue dies form the vertices of a triangle (white) on the chromaticity diagram that
contains nearly the entirety of the Planckian locus and a substantial portion of the human color gamut.
The yellow phosphor and its 445-nm blue die yield metameric cool-white light, much as illustrated in
Fig. 10.5-2(b).

The chromaticity coordinates associated with these four sources are displayed in Fig. 11.3-3(b). As
explained in Sec. 9.6, the coordinates for the light generated by the red die lie on the outer boundary
of the diagram, the coordinates for the light generated by the blue die lie near the boundary, and
the coordinates for the light generated by the green die lie interior to the diagram. These colors
form the vertices of the white triangle traced out on the chromaticity diagram. It follows from the
discussion surrounding Figs. 9.6-2 and 9.6-4, and Example 9.6-2, that all colors within the triangle
can be generated from mixtures of the three colors at the vertices. The phosphor-conversion element
generates metameric white light (Tc ≈ 6000K) with chromaticity coordinates that lie within the white
oval near the center of the diagram, which is located at the intersection of the Planckian locus and the
line joining the coordinates of the yellow phosphor and the 445-nm blue die.

Modeling the Behavior of Color-Mixing LEDs. The behavior of additive color-
mixing LEDs can be modeled by augmenting the RGB coordinates on the chromaticity
diagram of Fig. 11.3-3(b) with the blue and yellow coordinates associated with the
phosphor-conversion element. This process serves to convert the white triangle into an
irregular pentagon with a slightly enlarged color gamut. In principle, the chromaticity
coordinates for light consisting of an arbitrary mixture of these five colors could then be
established by generalizing the method set forth in Example 9.6-2. The correlated color
temperature follows from the chromaticity coordinates, as explained in Example 10.5-4,
and the wall-plug luminous efficacy could be estimated by making use of the approach
provided in Example 10.5-5.
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Merits and Limitations of White-Light Generation Using CMLEDs. We briefly
compare the relative advantages of CMLEDs and PCLEDs for generating metameric
white light. PCLEDs are the dominant technology for the reasons indicated below.

Advantages of CMLEDs over PCLEDs.
The individual RGB primaries are independently controlled, enabling dynamic,
adaptive CCT tuning and enhanced CRI; colors other than white can be accessed.
The future possibility of using WQLED, WOLED, and QPeWLED elements with
improved efficiencies (Secs. 7.5–7.7).
CMLEDs sidestep the reduction of luminous flux and WPE arising from the im-
perfect photoluminescence quantum yield and complementary photoluminescence
quantum defect in PCLEDs (Sec. 10.2).
The ultimate CMLED theoretical WPE is roughly estimated to be 325 lm/W, which
exceeds the estimated PCLED value of 255 lm/W, since CMLEDs are not subject
to quantum yield or complementary quantum defect losses.

Advantages of PCLEDs over CMLEDs.
Enhanced CRI using narrowband-red and narrowband-green phosphor blends.
Absence of color instability from the different temperature dependencies, current
dependencies, and degradation rates of the constituent chips in a CMLED.
Simpler drive electronics.
No multiple constituent-chip beams whose emission patterns require blending.
Avoids the relative inefficiency of green and amber MQWLEDs (“green gap”).
Simpler design; only one chip type so precise control of chip location not required.
More straightforward and mature manufacturing process.
Lower materials and production costs.

11.4 RETROFIT LED LAMPS

A retrofit lamp is a lighting device that replaces an existing traditional light source,
such as incandescent (or fluorescent) lamp, with an energy-efficient LED alternative
without having to significantly modify the existing fixture. Almost all modern white
retrofit lamps are based on phosphor-conversion light-emitting diodes (PCLEDs) such
as those described in Chapter 10.

Lamps, Modules, and Engines. Multiple discrete LEDs, LED filaments, and chip-
on-board LEDs are often incorporated into glass or plastic housings called bulbs to
create LED lamps, devices that generate artificial light. An LED module (or LED
light engine) consists of an LED lamp, along with its driver, associated optics, and
primary thermal management system, all assembled in a compact package. A white
LED lamp that is designed to be a drop-in replacement for a tungsten incandescent
lamp is called an LED retrofit lamp.

Bases. Retrofit lamps for home use typically operate at line voltage. Some are
dimmable while others are not. Most employ the metal screw base developed by Edison
in the late 1800s. The most commonly used Edison bases are designated E26 and E12
in the U.S. (120 V), and E27 and E11 in the E.U. (240 V). The number following “E”
represents the diameter of the base in mm, measured across the peaks of its thread. E26
and E27 are referred to as medium (or standard) Edison screw bases (MES) whereas
E12 and E11 are called candelabra bases. E26 and E27 are sufficiently close in size
that they are generally physically interchangeable. Other Edison screw bases are also
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used. While right-handed Edison screw bases are the norm, left-handed versions find
use for special purposes, such as avoiding theft in public spaces such as the subway.

Bulbs (Envelopes). Used since the early twentieth century, classic pear-shaped A-
series bulbs are designed to optimize the distribution of the emitted light. The most
commonly encountered versions are designated A19 in the U.S., where the number 19
represents the major bulb diameter in units of eighths of an inch; and A60 in the E.U.
and elsewhere, where the number 60 represents the major bulb diameter in mm. Since
19/8 = 2.375 in ≈ 60 mm, the diameters of the U.S. A19 and the E.U. A60 bulbs are
nearly the same. A-series bulbs with various other diameters are also available.

Operating Characteristics. The operating characteristics of an LED lamp, generally
indicated on its packaging, include its electrical drive power PEL (W or kWh/1000 h),
luminous fluxPV (lm), wall-plug luminous efficacy ηWPE (lm/W), viewing angle 2θ1/2 (◦),
correlated color temperature (CCT) Tc (K), color rendering index (CRI), lifespan (h),
and whether or not the device is dimmable and is suitable for outdoor use. Lifespans
typically range from 15000 to 50000 hours. The book locations where these parameters
are defined is provided in Table 11.4-1.

The electrical power consumed by an incandescent lamp of equivalent luminous flux
is also sometimes stated. Moreover, the parameter Ra is sometimes substituted for the
CRI; Ra is computed as the average CRI over Munsell color samples R1–R8, whereas
the CRI is the average over the full set R1–R15 (Sec. 9.9 and Fig. 9.9-1). The value
of the wall-plug luminous efficacy ηWPE (lm/W) for an LED source determines its E.U.
energy class, as specified in Table 11.4-2.

Table 11.4-1 LED lamp operating parameters and definitions.

parameter PEL (W) PV (lm) ηWPE (lm
W
) 2θ1/2 (◦) Tc (K) CRI

definition Eq. (7.1-13) Eq. (8.8-1) Eq. (8.9-4) Fig. 7.2-2 Sec. 9.8 Sec. 9.9

European Union Lighting Energy Classes. In an effort designed to help con-
sumers make informed choices when purchasing LED lights and lamps, the European
Union introduced a new energy labeling system for light sources in 2021. As indicated
in Table 11.4-2, a lighting device is assigned to one of seven energy classes that stretch
from “A” to “G,” depending on the value of its wall-plug luminous efficacy ηWPE (lm/W).
A-class and G-class devices have the highest and lowest values of WPE and are therefore
the most and least energy-efficient, respectively.

Table 11.4-2 Lighting energy classes established by the European Union in 2021.

class A B C D E F G

ηWPE (
lm
W
) ⩾ 210 185–209 160–184 135–159 110–134 85–109 ⩽ 84
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Evolution of the White LED Retrofit Lamp
The evolution of the retrofit lamp over the time period from 2005 to 2024 is illustrated
in Fig. 11.4-1. Early devices, such as the spot lamp pictured in Fig. 11.4-1(a), consisted
of collections of dual in-line (DIP) PCLEDs. The Philips L-Prize lamp depicted in
Fig. 11.4-1(b) was a landmark innovation in the world of lighting. More modern devices,
such as the one portrayed in Fig. 11.4-1(c), rely on assemblies of surface-mounted
devices (SMDs). Devices with the highest wall-plug luminous efficacies, such as that
displayed in Fig. 11.4-1(d), make use of LED filaments. These lamps are described in
further detail below.

Figure 11.4-1 Evolution of the white LED retrofit lamp from 2004 to 2024. LED lamps, including
those shown here, generally contain multiple LEDs. (a) Cool-white DIP LED retrofit spot lamp
(ca. 2005). (b) Philips warm-white L-prize LED retrofit lamp (ca. 2011). (c) Contemporary warm-
white SMD LED retrofit lamp (ca. 2020). (d) Contemporary neutral-white, ultra-efficient, LED-
filament retrofit lamp (ca. 2024).

Early DIP LED Retrofit Lamps. The early (ca. 2005) LED retrofit spot lamp por-
trayed in Fig. 11.4-1(a) comprised 38 LEDs facing in a common direction, each in a
traditional dual in-line package (DIP) [Fig. 10.5-1(a)]. This directional lamp consumed
1.4 W of electrical power and generated cool-white light with a wall-plug luminous
efficacy ηWPE ≈ 50 lm/W. It was not dimmable.

Philips L-Prize LED Retrofit Lamp. A substantial advance in retrofit lamps was
attained with the development of the Philips L-Prize lamp in 2011 [Fig. 11.4-1(b)]. Its
introduction marked a significant milestone in the evolution of home lighting technol-
ogy. The L-Prize lamp, which operates as a hybrid device and emits warm-white light,
is discussed in Sec. 11.5.

White SMD Retrofit Lamps. Warm-white LED retrofit lamps, such as the one dis-
played in Fig. 11.4-1(c) (ca. 2020), are designed to be morphologically similar to their
incandescent counterparts. Omnidirectional and directional versions of these lamps are
examined in Examples 11.4-1 and 11.4-2, respectively.

White LED-Filament Lamps. White LED-filament lamps, such as the MASTER
UltraEfficient LED bulb portrayed in Fig. 11.4-1(d) (ca. 2024), are designed to closely
resemble their incandescent counterparts while providing excellent efficiency. As re-
ported in Sec. 10.7, and displayed in Fig. 10.7-1, the light from these devices is gener-
ated by many small, unpackaged, blue LED chips mounted on transparent filaments and
embedded in phosphor. With suitable juxtaposition of the filaments, the chip-on-glass
(COG) architecture offers a uniform radiation pattern over a large solid angle.

The use of a multiple chips that operate at low current, rather than a single chip
operating at high current, mitigates the deleterious effects of efficiency droop and in-
creases the lifespan of the device. Filling the bulb with a gas such as He provides
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thermal management and eliminates the necessity for heat-sinking. Because the indi-
vidual InGaN MQWLED chips operate at low currents and low optical powers, under
some circumstances they might be able to be replaced with white quantum-dot LEDs
(WQLEDs), white organic LEDs (WOLEDs), or white perovskite LEDs (PeWLEDs);
the properties of these three classes of devices are compared in Table 7.6-1.

While the LED-filament lamp was not well-accepted when it was first introduced
in 2008, these devices offer A-class performance and are now ubiquitous. The details
relating to the operation of one such LED lamp are offered in Example 11.4-3.

Retrofit-Lamp Variants. Retrofit lamps configured in the following forms, some
with build-in optics, are also available:

Globes
Candles
Highbays
Lowbays

Spots
Corncobs
Reflectors
Post-Tops

UFOs
Decoratives
Designers
Specialties

LED retrofits are also available for fluorescent lamps; however, the sale of fluorescents is
now widely prohibited by law because they contain mercury, which is environmentally
hazardous.

EXAMPLE 11.4-1. Contemporary Omnidirectional White SMD Retrofit Lamp. The
interior of a lamp such as that displayed in Fig. 11.4-1(c) can be partitioned into four chambers
by reflective metallic dividers, each serving as a substrate for two discrete surface-mounted LEDs
such as those displayed in Fig. 10.5-1(b), so that the lamp contains eight SMD LEDs. This lamp
is both omnidirectional and dimmable, and has a plastic shroud that is vented at both the top and
bottom, enabling it to be cooled by convection. It consumes PEL = 10 W of electrical power and
generates metameric warm-white light with a luminous flux PV = 815 lm, corresponding to just over
100 lm per LED and an overall wall-plug luminous efficacy ηWPE = 82 lm/W. Since the equivalent
incandescent lamp consumes 60 W of electrical power, this lamp uses ≈ 1/6 of the energy of an
equivalent incandescent that generates the same amount of light. The emitted light has a CCT of
Tc = 2700 K and a CRI of 90. The lamp has a lifespan of 25000 h. LED retrofit lamps such as these
are available with a broad range of bulb shapes, lamp bases, luminous fluxes, CCTs, and CRIs. The
luminous flux can be enhanced by making use of chip-on-board (COB) devices (Sec. 10.8) in place
of SMDs.

EXAMPLE 11.4-2. Directional White SMD Retrofit Lamp. A warm-white LED retrofit
lamp with a different design from that considered in Example 11.4-1 is depicted in the cutaway
diagram presented in Fig. 11.4-2. This lamp consumes an electrical power PEL ≈ 10 W and produces
the same level and quality of light as an incandescent bulb that consumes an electrical power of 100 W.
It is dimmable and produces metameric warm-white light with a luminous flux PV = 1500 lm, so that
the overall wall-plug luminous efficacy is ηWPE = 150 lm/W and each of its 10 discrete LEDs produces
150 lm. The emitted light exhibits a correlated color temperature Tc ≈ 2700K, a color rendering index
CRI = 90, and the lamp has a lifespan of 25000 hours. LED lamps can be dimmed either by reducing
the applied voltage or by using a pulse-width modulated current driver, as described in Sec. 7.4.

EXAMPLE 11.4-3. Ultra-Efficient White LED-Filament Retrofit Lamp. The A-class
LED-filament retrofit lamp displayed in Fig. 11.4-1(d) (ca. 2024) closely resembles its incandescent
counterpart and has roughly the same weight. It makes use of a Philips phosphor blend whose spectral
density is displayed in Fig. 10.4-2 (green curve). This device consumes 4.0 W of electrical power
and generates metameric warm-white light with a luminous flux PV = 840 lm, near-ideal wall-plug
luminous efficacy ηWPE = 210 lm/W, correlated color temperature Tc = 3000 K, and color rendering
index CRI = 85. This lamp has the classic A60 shape, a clear-glass bulb, and a lifespan of 50000 hours.
A-class Philips white retrofit E27 lamps such as this are available with many different characteristics,
but all have ηWPE = 210 lm/W (energy class A), 50000 h lifespan, CRI = 85, and all are devoid of Hg
and other hazardous substances (https://www.lighting.philips.com/home):
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Figure 11.4-2 Cutaway view of a directional white
LED retrofit lamp (ca. 2020). The bulb contains an
array of ten SMDs along with a heat sink, a diffusing
globe, and an E26 Edison screw base. The circuitry
incorporated within the lamp serves as a built-in driver.
A collection of LEDs connected in series can be driven by
a DC current obtained by rectifying line-voltage AC with
diodes and capacitors. The LEDs can also be directly
driven by an AC current, emitting light every other half
cycle. Alternatively, they can be wired as two antiparallel
strands of series-connected LEDs, resulting in half of
them emitting light every half cycle.

PEL = 2.3, 4.0, 5.2, or 7.3 W.
PV = 485, 840, 1095, or 1535 lm.
Tc = 2700, 3000, or 4000 K.

Dimmable and nondimmable versions.
Various bulb shapes and bases.
Clear or frosted bulb finishes.

Retrofit LED Lamps of Adjustable Color Temperature
Lamps incorporating PCLEDs that employ different phosphors can generate metameric
white light with adjustable CCT and luminance. The Philips Hue White Ambiance
Smart Bulb, introduced in 2017, incorporates two types of PCLEDs, warm-white de-
vices with a CCT of 2200 K and cool-white devices with a CCT of 6200 K. As illustrated
in Example 11.4-4, this lamp delivers white light with 50000 gradations between warm-
and-cool white light. The CCT is controllable via a mechanical slider or wirelessly via
Bluetooth or Zigbee (the latter protocol is commonly used in smart home applications).

The theoretical underpinnings of why CCT tunability can be implemented in a de-
vice such as this were established in Example 9.6-1 and quantified in (9.6-4). The
chromaticity coordinates of the superposed light, which are suitably weighted linear
combinations of the individual chromaticity coordinates for the constituent warm- and
cool-white PCLEDs, fall along the straight line connecting them. Figure 9.7-2 reveals
that the Planckian locus between 2200 K and 6200 K can indeed be approximated by a
straight line.

EXAMPLE 11.4-4. Philips Hue Adjustable Color Temperature Retrofit Lamp. The
Philips Hue White Ambiance Smart Bulb contains 16 warm-white (2200 K) and 16 cool-white
(6200 K) discrete PCLEDs. It emits white light with a correlated color temperature that is adjustable
over the range 2200–6500 K, which accommodates 50000 shades of white. Figure 11.4-3 illustrates
how changing the relative proportions of the light emitted from the two classes of LEDs modifies the
color temperature. Neutral-white light at 4200 K, for example, is generated by fully energizing both
the 2200-K and 6200-K PCLEDs.

Figure 11.4-3 Images of the Philips Hue White Ambiance
Smart Bulb operating at three values of the correlated color
temperature: 2200 K, 4200 K, and 6200 K. The middle row
of the figure portrays the activated LEDs when the diffusing
bulb is removed; the bottom row displays the light emitted
from the diffusing bulb itself. Warm-, neutral-, and cool-
white light appear yellowish, whitish, and bluish, respec-
tively. The salient physical and operating characteristics of
this lamp are summarized below.
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Summary of the salient physical and operating characteristics of the Philips White Ambiance bulb:
Form factor: A19. Screw base: E26. Height: 112 mm. Diameter: 62 mm. Weight: 78 g.
Input voltage: 110–130 V. Operating temperature: −20 ◦C to +45 ◦C. Lifespan: 25000 h.
PEL = 10.5 W; Equivalent incandescent wattage: 75 W; Energy savings: 64.5/75 = 86%.
PV = 1055 lm @4000 K; PV = 806 lm @2700 K. Dimmable. CRI = 80.
ηWPE = 100 lm/W @4000 K; ηWPE = 77 lm/W @2700 K.
ηWPC = 0.15 @4000 K; ηWPC = 0.11 @2700 K.
Continuously tunable CCT from 2200 to 6500 K (50000 shades of warm-to-cool white).
Bluetooth and Zigbee communications protocols.

Tungsten Incandescents Supplanted by PCLED Retrofits
The superiority of the phosphor-conversion retrofit lamp relative to the traditional
tungsten-filament incandescent lamp is artistically highlighted in the depiction below:

The royal-blue background and yellow font used
in this illustration represent, respectively, the
colors of the LED light and the phosphor
used to generate metameric cool-white light
for LED lighting. The development of the white
phosphor-conversion LED at the turn of the
21st century upended traditional incandescent
and fluorescent lighting. The X-ray image of a
tungsten-filament incandescent lamp appears
overturned at left, while that of a modern LED
retrofit lamp stands upright at right.

11.5 HYBRID LEDS

The third method for generating metameric white light (of the three codified in
Sec. 10.1) is a hybrid of the first two: It joins the phosphor-conversion approach
discussed in Secs. 10.5 and 10.6 with the additive color-mixing approach elaborated in
Sec. 11.3. Hybrid LEDs comprise two or more dies of different colors (e.g., blue and
red) together with one or more phosphors. They can be implemented in a wide variety
of configurations and are suitable for the generation of light with a broad palette of
colors.
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In this section, we consider two hybrid devices. The first is the Philips L-Prize LED
Retrofit Lamp developed in 2011 (and retired in 2013), which is often thought of as
the “poster child” and progenitor of the hybrid approach. The second is the Philips Hue
White and Color Ambiance Smart Bulb, which generates light whose color can be tuned
over the full gamut of human vision (and remains in service as of 2024). This lamp was
introduced in 2012, reissued in 2015 with an enhanced color palette, and Bluetooth-
enabled in 2019.

Although hybrid devices were initially developed for the efficient generation of white
light, they were no match for PCLEDs in doing so. Hybrids instead found their place
as sources of light of variable hue. Since their introduction, Philips’ hybrid LEDs have
innovatively coupled high-efficiency LED lighting with digital control technology.

Philips L-Prize LED Retrofit Lamp
Images of the interior and exterior of the Philips L-prize white retrofit lamp are dis-
played in Figs. 11.5-1(a) and 11.4-1(b), respectively. Its development in 2011 garnered
for Philips Lighting North America (now Signify) the US$10-million L Prize estab-
lished by the U.S. Department of Energy (DOE) in 2008. More formally called the
Bright Tomorrow Lighting Prize, this award was designed to “spur lighting manufac-
turers to develop high-quality, high-efficiency LED lighting products to replace the
common incandescent light bulb.”

Specifically, the prize sought to foster the development of a lamp with multiple LEDs
that 1) consumed modest electrical power (PEL = 10 W), 2) generated warm-white
light (Tc = 2700 K) with a luminous flux equivalent to that of a traditional 60-W
incandescent lamp (PV = 800 lm), and 3) had a long lifespan (25000 h). The reduction
of electrical-power consumption from 60 W to 10 W corresponded to a power savings of
50/60 = 83%. As described in Example 11.5-1, Philips met those goals by developing
a hybrid configuration that relied on blue LEDs illuminating remote yellowish-green
phosphor panels, along with red LEDs. Over the course of > 40 000 h of testing, as
detailed in a report issued by the DOE in 2015, 31 Philips L-Prize lamps exhibited
an average luminance maintenance > 95.6% and a miniscule chromaticity change <
0.00095 on the ∆u′v′ scale. None had failed.

EXAMPLE 11.5-1. Operation and Spectrum of the 2011 Philips L-Prize Retrofit Lamp.
The 2011 Philips L-Prize Retrofit Lamp has three identical sections, one of which is pictured in
Fig. 11.5-1(a). Six individual surface-mounted LEDs are visible, three blue and three red. All were
operated below their maximum power specifications to minimize efficiency droop. Each section is
capped by a plastic cover that contains the remotely located yellow-green phosphor. An exterior view
of the intact lamp is portrayed in Fig. 11.4-1(b).

The spectral density of the light emitted by this lamp, displayed in Fig. 11.5-1(b), comprises three
peaks: a narrow peak near 450 nm associated with the blue LED light, a broad peak in the vicinity of
550 nm representing the yellow-green photoluminescence from the phosphor, and a narrow peak near
625 nm (∆λFWHM ≈ 20 nm) associated with the red AlInGaP LED light. The shape of the spectrum
is reminiscent of that of the envelope of Philips’ modern KSF-containing narrowband-red phosphor
blend displayed in Fig. 10.4-2 (purple curve), which generates warm-white light at Tc = 3000 K when
illuminated by blue LED light.

The color gamut supported by the 2011 Philips L-Prize Lamp is similar to that of the gamut triangle
presented in Fig. 10.6-1(b) for a warm-white PCLED, but in this case the triangle’s vertices are defined
by the wavelengths of the blue LED light, the yellow-green photoluminescence, and the red LED light
(rather than by a red phosphor). As always, any color within the triangle can be generated by mixing
the three colors at its vertices in appropriate proportions. Since the gamut triangle includes the region
of the Planckian locus encompassing 2700–3500 K, the Philips L-prize hybrid device was able to
generate metameric warm-white light.

After entering the marketplace in 2012, the L-Prize Lamp was discontinued in 2013 in favor of
other models that could be produced at lower cost. The performance of the warm-white PCLEDs of
today, which incorporate narrowband-red phosphor blends, is superior to that of the more complex,
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Figure 11.5-1 (a) Interior view of a compartment of the Philips L-prize Retrofit Lamp. Each of the
three compartments contains three blue and three red LEDs, and is enclosed by a plastic cap containing
yellow-green phosphor; the lamp as a whole contains 18 LEDs. An exterior view of the intact lamp is
displayed in Fig. 11.4-1(b). Drawing 10 W of electrical power, this lamp generates metameric warm-
white light (Tc = 2700 K) with a luminous flux PV = 940 lm, which corresponds to 52 lm per LED
and an overall wall-plug luminous efficacy ηWPE = 940/10 = 94 lm/W. (b) The spectral density of the
light emitted by the L-prize lamp. Three peaks are evident, with approximate wavelengths 450 nm
(blue), 550 nm (yellow-green), and 625 nm (red). These peaks represent, respectively: 1) blue light
from the InGaN LEDs, 2) yellow-green photoluminescence from the phosphor when excited by the
blue LED light, and 3) red light from the AlInGaP LEDs.

warm-white hybrid devices of yesterday. For example, the wall-plug luminous efficacy of the Philips
L-Prize lamp was ηWPE = 94 lm/W, as illustrated in Example 11.5-1, while that of a modern LED-
filament lamp containing multiple warm-white PCLEDs is ηWPE = 210 lm/W, as demonstrated in
Example 11.4-3.

Nevertheless, the Philips L-Prize Lamp has a notable place in the history of LED
lighting: it paved the way for the widespread adoption of LED technology and set new
standards in the lighting industry that fostered substantial energy savings. Indeed, it
led the U.S. Department of Energy to launch of a new L Prize initiative in 2021 that
seeks to spur innovation in solid-state lighting (SSL) systems for commercial buildings
across applications. This program, which considers luminaires and connected systems
as separate tracks, is slated to continue through 2026. The new awards are designed
not only to foster improved efficacy and light quality, but also to accommodate factors
such as 1) technical innovation (including esthetics, ease of installation, and health and
wellbeing); 2) connectivity (including standardization, energy reporting, and cyberse-
curity); 3) life cycle and sustainability (including component replaceability, labeling
and markings, and lumen/chromaticity maintenance); and 4) control (including dimma-
bility, spectral tunability, and color rendering).

Philips Hue White and Color Ambiance LED Retrofit Lamp
Lamps that make use of additive color mixing can deliver essentially any color or shade
of white. The Philips Hue White and Color Ambiance Smart Bulb, introduced in 2012,
is the progenitor of such devices and has a devoted audience. This lamp operates either
in hue/saturation or color-temperature mode, offering light of variable hue with sixteen
million possible colors, or metameric white light with a CCT that can be continuously
tuned over the range 2000–6500 K, respectively. Like the 2017 Philips Hue Adjustable
Color Temperature Retrofit Lamp analyzed in Example 11.4-4, it has wireless connec-
tivity and can be controlled via a mobile-phone app. This device is deconstructed in
Example 11.5-2.
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EXAMPLE 11.5-2. Philips Hue Adjustable-Color Retrofit Lamp Deconstructed. The
Philips Hue White and Color Ambiance Smart Bulb introduced in 2012 contains an LED board, a
power board, and a logic board:

The aluminum printed-circuit LED board, displayed in Fig. 11.5-2(a), supports the LEDs and
implements thermal management. It contains 16 discrete LEDs: two red (R1, R2); one blue (B);
one green (G); four surrounding warm-white PCLEDs (W1–W4); and eight cool-white PCLEDs
in the outer ring (C1–C8).
The power board, pictured in Fig. 11.5-2(b), rectifies the incoming AC voltage, and regulates,
surge-protects, and distributes the resulting low-voltage DC.
The logic board, depicted in Fig. 11.5-2(c), contains the LED drivers, implements power man-
agement, wireless communications/security, and firmware storage/updating.

Figure 11.5-2 Components of the Philips Hue
White and Color Ambiance Bulb. (a) The LED board
supports four centrally located colored LEDs, sur-
rounded by four warm-white PCLEDs and, in the outer
ring, by eight cool-white PCLEDs. (b) The power
board distributes electrical power to the logic and
LED boards. (c) The logic board serves as the central
processing unit. The salient physical and operating
characteristics of the lamp are summarized below.

Summary of salient physical and operating characteristics of Philips White and Color Ambiance bulb:
Form factor: A19. Screw base: E26. Height: 112 mm. Diameter: 62 mm. Weight: 70 g.
Input voltage: 110–130 V. Operating temperature: −20 ◦C to +45 ◦C. Lifespan: 25000 h.
PEL = 10.5 W; Equivalent incandescent wattage: 75 W; Energy savings: 64.5/75 = 86%.
PV = 1055 lm @4000 K; PV = 806 lm @2700 K. Dimmable. CRI = 80.
ηWPE = 100 lm/W @4000 K; ηWPE = 77 lm/W @2700 K.
ηWPC = 0.15 @4000 K; ηWPC = 0.11 @2700 K.
Dual inner and outer diffusers. Bluetooth and Zigbee communications protocols.
Sixteen million colors and white CCT that is continuously tunable from 2000 to 6500 K.

11.6 LED LUMINAIRES

As discussed in the previous chapter, and in earlier sections of this chapter, LED lamps
are devices that generally contain multiple LEDs and generate light. LED luminaires,
on the other hand, are self-contained lighting units with housings that incorporate one or
more LED lamps or LED modules, along with the ancillary components necessary for
their operation. Called a light fixture or light fitting in common parlance, a luminaire
often contains an integrated power supply and the means for controlling it. The housing
serves to hold the lamps in position and to secure the optical components that spatially
shape the emitted light and guide it to the exterior of the housing.

The design of a luminaire establishes its esthetics and plays a central role in de-
termining the distribution and directions of the light emanating from it. The wall-
sconce illustrated in the center panel of Fig. 11.3-1, for example, is a luminaire. The
lamps within a luminaire can operate on the basis of phosphor-conversion or color-
mixing processes, or both. LED-filament and chip-on-board lamps are widely used in
luminaires because of the high values of luminous flux and luminous efficacy they offer.
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Types of Luminaires. An extensive variety of LED luminaires of different types and
specifications are available. Luminaire designs vary widely and assume many configu-
rations, including:

Downlights
Wallwashers
Floodlights
Troffers
Panels
Cove lights
Projectors
Tracklights

Chandeliers
Pendants
Sconces
Lanterns
Streetlights
Roadlights
Table lamps
Floor lamps

Path Lights
Bollards
Columns
Tubes
Bars
Strips
Ropes
Strings

A number of representative luminaires are pictured in Fig. 11.6-1.
Figure 11.6-1(a) displays an indoor recessed ceiling luminaire comprising 16 white

PCLEDs, each capped with a molded-plastic optical element similar to that depicted
in Fig. 1.4-3. As exemplars of catadioptric optics, these devices make use of both
total internal reflection and refraction to guide the light from the LED chip where it
is generated to the exterior of the housing. Figure 11.6-1(b) displays a portion of an
illuminated outdoor garden using a flexible smart lightstrip that emits diffused light with
a color can be chosen at will. Figure 11.6-1(c) depicts an outdoor luminaire designed
for use in parks and other public spaces; a luminaire similar to this is discussed in
Example 11.6-1. Finally, Fig. 11.6-1(d) displays a luminaire styled as a table lamp that
incorporates a smart bulb, such as that highlighted in Example 11.5-2. Customized 3D
luminaires can also be printed.

Figure 11.6-1 Luminaires. (a) A recessed ceiling LED luminaire comprising a collection of
metameric-white PCLEDs. (b) A smart LED light strip illuminating a portion of an outdoor garden.
(c) An outdoor post-top LED luminaire used for illumination in a city park. (d) A luminaire styled as
a table lamp that incorporates a retrofit lamp of adjustable color.

As a further indication of some of the kinds of LED luminaires that are available, a
compilation of the lighting equipment required to outfit a small theater (along with the
estimated costs of the various components) is provided in Example 11.6-2.

EXAMPLE 11.6-1. Operation of an Outdoor Post-Top LED Luminaire. Post-top LED
luminaires are outdoor lighting fixtures designed to be mounted atop a post or pole. Commonly used
for illuminating streets, parks, walkways, and parking lots, post-top luminaires are known for their
functional, decorative, and aesthetic attributes. A typical post-top luminaire might draw PEL = 50 W
of electrical power and generate metameric neutral-white light with: 1) a luminous fluxPV = 5000 lm,
2) a luminaire luminous efficacy ηLUM = 100 lm/W, 3) a correlated color temperature Tc ≈ 4000 K,
4) a color rendering index CRI ≈ 70, and 5) a lifespan ≈ 100000 h. Luminaires such as these may
be customized to draw between 15 and 115 W of electrical power, generate metameric white light
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with a CCT in the range 3000–4000 K and a CRI between 70 and 80; and exhibit a luminous flux and
luminous efficacy in the range PV = 1200–9800 lm and ηLUM = 90–105 lm/W, respectively.

EXAMPLE 11.6-2. LED Lighting and Ancillary Equipment for a Small Theater. A
multipurpose theater that holds 275 people and serves a town of roughly 40000 persons requires the
following lighting equipment (approximate costs are also indicated):

LED Wash Lights for Stage Lighting (6–8 units): to create even illumination and color washes.
Approximately US$1000 per unit.
LED Fresnel Spotlights for Stage Lighting (4–6 units): to create focused light for key and back-
lighting. Approximately US$4000 per unit.
LED Ellipsoidal Spotlights for Stage Lighting (2–4 units): to create sharp beams for special
effects. Approximately US$3000 per unit.
LED Follow Spotlights for Onstage Performer Tracking (1–2 units): for precision, dynamic
lighting, especially in musical and dance performances. Approximately US$15000 per unit.
LED Cyclorama Lights for Stage Lighting: to provide even illumination across backdrops and
cycloramas. Approximately US$3000.
Lighting Console: a control system capable of handling complex cues and programming. Ap-
proximately US$12000.
Cabling, Rigging, and Trusses for Hanging Lights and Scenery: DMX cables, power cables,
connectors, safety cables, clamps, and trusses. Approximately US$20000.
LED Dimmer and Relay Rack Backstage: for control of stage lighting power levels. Approxi-
mately US$9000.
LED House Lights (25 units). Approximately US$8000.
LED Exit Signs (20 units). Approximately US$1000.

Not included in the tabulation provided above are architectural lighting for the lobby, aisles, and other
non-stage areas; emergency lighting; hazers and fog machines for creating special lighting effects;
software; and sound systems. Design and installation costs are also additional.

Luminaire Wall-Plug Luminous Efficacy (LUM) and Luminous Efficiency (LUC).
Echoing the definition of the wall-plug luminous efficacy for lamps provided in (8.9-4),
the luminaire wall-plug luminous efficacy ηLUM is defined as

ηLUM =
PV

PEL

, (11.6-1)
Luminaire Wall-Plug Luminous

Efficacy (lm/W or LPW)

where PV is now the output luminous flux of the luminaire and PEL is the electrical drive
power provided to it. The units of this quantity are again lm/W, but they are sometimes
written as LPW or luminaire-lm/W or luminaire-lm/circuit-W.

The efficacy of a luminaire can be 30% or more below that of its constituent lamp(s),
as a consequence of driver, thermal, and optical/fixture losses:

ηLUM ≲ 0.7 ηWPE. (11.6-2)

One factor that contributes to this loss is the legacy form factor of most LED bulbs,
which is suboptimal for dissipating heat as well as for generating light that can be
efficiently redirected into a desired spatial configuration. Nevertheless, optical/fixture
losses can often be reduced below 10% for well-designed luminaires.

Similarly mimicking the definition of wall-plug luminous efficiency set forth in (8.9-
9), the luminaire wall-plug luminous efficiency ηLUC is defined by normalizing the
luminaire wall-plug luminous efficacy to its maximum possible value of 683, i.e.,

ηLUC = ηLUM/683 . (11.6-3)
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This dimensionless quantity has a value that lies between zero and unity.

11.7 OLED LIGHT PANELS

OLED light panels are large-area light sources fashioned from organic light-emitting
diodes (OLEDs), which are efficient generators of electroluminescence in the blue,
green, and red. White organic light-emitting diodes (WOLEDs), fabricated in a man-
ner such as that prescribed in Fig. 7.6-1, generate white light via additive color mixing,
as depicted in Fig. 11.3-1. They have nearly unity internal quantum efficiency and
provide excellent color rendition. A white OLED light panel comprises a single, broad-
area, serially stacked OLED, such as that displayed in Fig. 7.6-1(b).

OLED light panels offer large-area diffuse lighting that is devoid of glare, without
the necessity for supplementary optics, so that they can be located in close proximity to
objects and human users. This is in contrast to most discrete LEDs, which emit as point
sources. OLED panels also emit little heat so they can be used to illuminate delicate
objects and sensitive materials, such as artwork and foodstuffs. When fabricated on
transparent plastic substrates, OLED light panels are lightweight, thin, and flexible.
They can then be fashioned into bendable or rollable sheets, and can be molded into
unique shapes that serve as 3D diffuse sources of metameric white light. Indeed, al-
though typically designed to emit white light, OLED panels can be configured to emit
light of any color, and offer dynamic color tuning. The use of luminous surfaces in
artificial lighting offers new horizons for reshaping the manner in which humans interact
with light.

White OLED light panels can be fabricated on substrates that are rigid or flexible. A
flexible white OLED light patch is sketched in Fig. 11.7-1(a). The operating luminance
of panels such as these can be adjusted by modifying the duty cycle of a pulse-width-
modulation (PWM) driver or by altering the applied DC current. As with other LED
lighting sources, increasing the luminance results in an increase in panel brightness, but
this comes at the expense of an increase in surface temperature, as well as a decrease
in luminous efficacy and lifespan. The specifications and operating properties of flex-
ible and rigid OLED light panels are considered in Example 11.7-1, while the spatial
distribution and spectral density of the emitted light are described in Examples 11.7-2
and 11.7-3, respectively.

EXAMPLE 11.7-1. Flexible and Rigid OLED Light Panels. A number of the operating
properties of flexible and rigid OLED light panels are specified and their performance is compared
with that of MQWLEDs.

Flexible OLED light panel. OLED light panels are available in a broad range of sizes, shapes,
luminances, and color temperatures. The 1.3-W flexible light panel pictured in Fig. 11.7-1(a),
manufactured by LG Chem (Model P6BA30), is fabricated on a transparent polyimide substrate.
It has a thickness of 1/4 mm and emits light over a region with dimensions 18.8 cm × 4.1 cm,
corresponding to an areaA = 0.0077m2. This particular light panel generates metameric warm-
white light with a luminous flux PV = 75 lm, luminance LV = 3000 cd/m2, and a luminous
efficacy ηWPE = 58 lm/W. The light has a correlated color temperature Tc = 3000 K and a color
rendering index CRI = 90, and the panel has a lifespan of 40000 hours.
Rigid OLED light panel. A larger 13.5-W OLED light panel by LG Chem, with dimensions 32
cm × 32 cm × 1 mm, is fabricated on glass and is therefore not flexible. This source provides
warm-white light with a luminous flux PV = 800 lm, luminance LV = 3000 cd/m2, and a wall-
plug luminous efficacy ηWPE = 59 lm/W. It too has a correlated color temperature Tc = 3000 K,
a color rendering index CRI = 90, and a lifespan of 40000 hours. OLED films are routinely
fabricated on glass panels as large as 3×3 m2, although panel size cannot be made arbitrarily
large because of the necessity of maintaining constant luminance across the panel.
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Figure 11.7-1 (a) White organic light-emitting diode (OLED) light panels can take the form of
thin, lightweight, and bendable panels when fabricated on transparent plastic substrates. They can
also take the form of rigid panels when fabricated on thin sheets of glass. Such panels offer large-area
homogeneous illumination with little glare, and find use in LED lighting. (b) Conceptualization of a
flexible transparent OLED (TOLED) light panel. (c) A captivating OLED luminaire constructed from
flexible white OLED light panels. (Projet de fin d’étude réalisé en 2010 à l’ESDMAA, Institut du
Design à Yzeure (France) par Elodie Saugues, Designer Produits Française à Stotzheim (France).
Cette Lampe propose un nouvel usage de la lumière grâce à la technologie OLED. Une lumière
qu’on manipule, qu’on emporte avec soi, grâce à ces trois feuilles autonomes et nomades que l’on
peut enrouler ou laisser à plat. Les feuilles peuvent être regrouper grâce à un socle qui permet de les
recharger par induction et de créer une lampe autoporté avec ces trois chandelles. Design by Elodie
Saugues, reproduced with permission.)

OLED light-panel performance. In the current state of their development, it is therefore clear that
OLED performance measures such as wall-plug luminous efficacy ηWPE fall well behind those of
MQWLEDs. Their cost also remains relatively high.

EXAMPLE 11.7-2. Spatial Distribution of Light Emitted by an OLED Light Panel.
The spatial light-emission pattern of an OLED panel is quite close to that of a Lambertian radiator.
In accordance with Table 8.8-1 and (8.8-3), the luminous intensity and luminance of a radiator with
a viewing angle 2θ1/2 = 120◦, are IV = PV/2π(1 − cos θ1/2 ) = PV/π and LV = PV/πA , respec-
tively. Minor deviations of the OLED spatial-emission radiation pattern from Lambertian behavior
are accommodated by incorporating a factor called the Lambertian ratio RL into the expression for
the luminance, rendering it as LV = PV/πRLA . For the light panel depicted in Fig. 11.7-1(a), the
accompanying data provides RL = 1.12, so that LV ≈ 2768 cd/m2, which is indeed close to the value
of 3000 cd/m2 specified by the manufacturer. This luminance value is within the optimal range for
visual comfort, which is generally considered to be 2500–3000 cd/m2.

EXAMPLE 11.7-3. Spectral Density of Light Emitted by an OLED Light Panel. The
spectrum of the light emitted by a white OLED panel such as that displayed in Fig. 11.7-1(a) is depicted
in Fig. 11.7-2. The spectral density comprises three peaks, at λp = 450, 550, and 610 nm, associated
with the blue-, green-, and red-emitting organic layers contained within the device, respectively. The
OLED spectrum bears a resemblance to that presented in Fig. 11.3-3(a) for a color-mixing LED,
indicating that the triangle in the OLED chromaticity diagram delineating the accessible range of
colors would be similar to that displayed in Fig. 11.3-3(b). Hence, most colors visible to humans,
including the entire range of whites, can be generated by OLED panels.

Figure 11.7-2 Spectrum associated with
the light emitted by a white OLED light
panel such as that portrayed in Fig. 11.7-
1(a). The three spectral peaks at λp = 450,
550, and 610 nm represent OLED emission
in the blue, green, and red, respectively. This
spectral density is not unlike that of the light
emitted by the color-mixing LED displayed
in Fig. 11.3-3(a).
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EXAMPLE 11.7-4. Light Cloud Panorama Exhibition at the Merck Innovation Center.
The Light Cloud exhibition at the Merck Innovation Center featured in Fig. 11.7-3 comprises four
curved and concentrically placed bent-steel supports that host OLED panels whose locations are
slightly shifted with respect to each other. The 576 light panels are controlled by 42 sensors and 12
audio channels that are distributed throughout the exhibition and respond to the movements and sounds
of visitors. The experience, which is enriched by the mirrored ceiling and walls of the exhibition hall,
is a mosaic of movement, light, and sound.

Figure 11.7-3 Light Cloud Panorama at the Merck Innovation Center in Darmstadt, Germany.
Inaugurated in 2019, this sculpture comprises 576 double-sided OLED light panels by OLEDWorks.
The exhibition was developed and realized by Tamschick Media+Space GmbH (Berlin) in collabora-
tion with the Studio for Media Architectures iart (Basel), and it garnered the German Design Award
in 2019. The installation responds to visitors’ movements by interactively generating light and sound.
An audiovisual presentation is available at https://iart.ch/en/work/light-cloud. (©Merck
KGaA, Darmstadt Germany, reproduced with permission.)

Transparent OLED (also called TOLED) light panels are also available. Transpar-
ent when not in use, these thin structures find use in LED lighting; they can be embedded
in the windows of a residence, for example, or in the sunroof of an automobile. In
the display domain, they serve as novel dynamic information and advertising displays.
While TOLEDs are typically fabricated as rigid structures, a flexible TOLED light
strip is conceptualized in Fig. 11.7-1(b). An OLED luminaire constructed of flexible
OLED panels is displayed in Fig. 11.7-1(c). Multistack OLED technology offers higher
brightness than single- or double-stack technology, which enhances its effectiveness in
daytime.

11.8 SMART AND CONNECTED LED LIGHTING

The terms smart lighting and connected lighting are often used interchangeably, but
there are subtle differences. Smart lighting refers to bulbs, fixtures, and systems that
can be controlled electronically, typically through an app or smart home ecosystem.
This includes basic features like dimming and turning lights on/off remotely, but can
also extend to scheduling, color changing, and integration with other smart devices.
Connected lighting, on the other hand, not only allows for control but also incorporates
two-way communication between the lighting system and other devices or networks.
This enables more advanced features like occupancy sensing, daylight harvesting, and
data collection for optimizing energy usage or creating personalized lighting experi-
ences. Connected lighting often plays a role in the broader Internet of Things (IoT)
ecosystem, sharing data and interacting with other connected devices in the home or
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city. In essence, smart lighting focuses on control and convenience, while connected
lighting adds the element of communication and data exchange, which opens the door
to more sophisticated automation and integration within a broader smart environment.

Both smart and connected lighting can play a role in human-centric, plant-centric,
and ecologically conscious lighting practices. Human-centric lighting prioritizes the
well-being and comfort of people, often mimicking natural daylight patterns to support
circadian rhythms and improve mood and productivity. Smart and connected lighting
offer precise control over correlated color temperature and intensity, enabling users
to create dynamic lighting schemes that adapt to different activities and times of day.
Plant-centric lighting caters to the specific needs of plants, providing the right spec-
trum and intensity of light for optimal growth and health. Smart and connected systems
can be programmed to deliver customized light schedules based on the type of plant,
ensuring they receive the necessary light for photosynthesis and overall well-being.
Ecologically conscious lighting aims to minimize environmental impact and energy
consumption. Smart and connected lighting offer features like occupancy sensing, day-
light harvesting, and automated dimming directed toward minimizing energy use. Ad-
ditionally, connected systems can collect data on usage patterns, allowing for further
optimization and resource conservation.

LED Light-Control Processes
LED lighting is compatible with, and can implement, light-control processes such as
the following:

Wireless control.
Dynamic control.
Synchronization with external inputs, including music, voice, and kinetic motion.
Synchronization with diurnal temporal, spectral, and spatial rhythyms.
Lifi internet connectivity.
Power over Ethernet (PoE) lighting system whereby a single Ethernet cable both
provides low-voltage DC power and enables network communication to each light-
ing fixture. Supported by a DC power infrastructure that eliminates losses asso-
ciated with AC-to-DC conversion, the system reduces Mouser’s carbon footprint
while improving lighting control and operational costs.
Disinfection of air, water, surfaces, and objects with UVC (Fig. 2.4-1) light.
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11.9 LED PERFORMANCE METRICS

Performance metrics for illumination have been established for all manner of light
sources. The upper and lower portions of Table 11.9-1 report parameters for traditional
and LED sources of white light, respectively (Sec. 11.1). Representative values for
the luminous flux, wall-plug luminous efficacy (WPE), wall-plug luminous efficiency
(WPC), correlated color temperature (CCT), and color rendering index (CRI) are pro-
vided. The table entries reveal that LED sources, whether PCLEDs, COBs, CMLEDs,
retrofits, or luminaires, exhibit larger values of the WPE, WPC, and CRI than traditional
sources, thereby confirming their superiority for white illumination. This advantage has
been artistically highlighted for retrofit lamps in the figure presented on page 353.

From a practical perspective, phosphor-conversion packages are expected to attain
values of the WPE as high as ≈ 255 lm/W in the near term, while color-mixing
packages may ultimately reach their estimated theoretical limit of ≈ 325 lm/W.† The
discrepancy between the WPE values for the two classes of LEDs arises principally
from the limitations imposed on phosphor-conversion devices by the photolumines-
cence quantum yield ηPLQY (⩽ 1) and the complementary photoluminescence quantum
defect ηPLQD (⩽ 1), as discussed in Sec. 10.2. Since color-mixing devices do not make
use of photoluminescence, they are not subject to these limitations.

Finally, we point out that the wall-plug luminous efficacies for both phosphor-
conversion and color-mixing devices are proportional to the underlying chip power-
conversion efficiency ηPCE. As discussed in Sec. 7.1, in the current state of development
of LED technology, the power-conversion efficiency is ηPCE ≈ 3/4 1/2 and 1/4 for blue,
red, and green devices, respectively, which leaves room for improvement.

† P. M. Pattison, M. Hansen, and J. Y. Tsao, Lighting Efficacy: Status and Directions, Comptes Rendus Physique,
vol. 19, pp. 134–145, 2018; M. Pattison, M. Hansen, N. Bardsley, G. D. Thomson, K. Gordon, A. Wilkerson,
K. Lee, V. Nubbe, and S. Donnelly, 2022 Solid-State Lighting R&D Opportunities, U.S. Department of Energy,
DOI:10.2172/1862626, Technical Report EE-2542, February 2022.
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Table 11.9-1 Representative illumination parameters for various (mostly white) traditional and
LED sources. Successive columns display: electrical drive power PEL (W), luminous flux PV (lm),
wall-plug luminous efficacy ηWPE (lm/W), wall-plug luminous efficiency ηWPC, correlated color
temperature CCT (K), and color rendering index (CRI).

traditional sourcesa Pb
EL Pb

V ηb,cWPE ηcWPC CCT CRI

Ideal blackbody radiation source at 6640 Kd – – 96 0.14 6640 100
Red laser-pointer beam (PO = 2 mW at 650 nm)e 0.04 0.15 3.7 0.01 – –
Carbon-arc lampf 1000 15000 15 0.02 4500 75
Tungsten incandescent lamp (unfiltered)f 100 1500 15 0.02 2700 100
Tungsten halogen quartz incandescent lampf 100 1700 17 0.02 3000 100
High-pressure mercury lampf 100 5000 50 0.07 4000 50
High-pressure xenon lampf 100 6000 60 0.09 6200 95
Compact fluorescent lampf 25 1750 70 0.10 3000 80
Linear fluorescent lamp (1-inch diameter – T8)f 25 2250 90 0.13 3000 85
Ceramic metal-halide lampf 250 22500 90 0.13 4200 90
High-pressure sodium lampf 100 10000 100 0.15 2100 15
Low-pressure sodium lampf 100 15000 150 0.22 1800 0

led sourcesa Pb
EL Pb

V ηb,cWPE ηcWPC CCT CRI

Cool-white single-die discrete PCLED (Cree)g 2.9 490 167 0.24 5000 80
Cool-white single-die discrete PCLED (Cree)g 9.1 1150 126 0.18 5000 80
Warm-white single-die discrete PCLED (Cree)h 3.9 460 117 0.17 3000 90
Warm-white single-die discrete PCLED (Cree)h 19.7 1400 71 0.10 3000 90
Warm-white chip-on-board (COB) device (Cree)i 81.8 13350 163 0.24 3000 90
Warm-white chip-on-board (COB) device (Cree)i 235 28700 122 0.18 3000 90
Cool-white additive color-mixing CMLED (Cree)j 3.7 413 112 0.16 6000 90
Cool-white additive color-mixing CMLED (Cree)j 23.0 1375 60 0.09 6000 90
Warm-white omnidirectional retrofit LED lamp (Cree)k 10 815 82 0.12 2700 90
Warm-white directional retrofit LED lampl 10 1500 150 0.22 2700 90
Warm-white LED-filament retrofit lamp (Philips)m 4.0 840 210 0.31 3000 85
Neutral-white LED-filament retrofit lamp (Philips)m 7.3 1535 210 0.31 4000 85
White adjustable-CCT LED lamp (Philips)n 10.5 1055 100 0.15 4000 80
Warm-white L-prize hybrid retrofit LED lamp (Philips)o 10 940 94 0.14 2700 92
Neutral-white outdoor LED luminaire (Philips)p,q 50 5000 100 0.15 4000 70
Warm-white flexible OLED light panel (LG Chem)r 1.3 75 58 0.08 3000 90
Warm-white rigid OLED light panel (LG Chem)r 13.5 800 59 0.09 3000 90

aTable entry values are rounded.
bThe wall-plug luminous efficacy ηWPE, luminous flux PV, and electrical drive power PEL are related by (8.9-4).
cThe wall-plug luminous efficiency and efficacy are related by ηWPC = ηWPE/683, in accordance with (8.9-9).
dThe electrical drive power PEL does not exist for light from a blackbody source, so in place of ηWPE and ηWPC, we
report the luminous efficacy of radiation ηLER and the luminous efficiency of radiation ηLER/η

MAX
LER = ηLER/683,

respectively. The luminous efficacy and efficiency of blackbody radiation are maximized at Tc ≈ 6640 K.
eThis source is fully characterized in Example 8.9-2. The CCT and CRI are generally used only for white light.
fThe operating principles and limitations of these traditional technologies are summarized in Sec. 11.1.
gTable 10.5-1 and Examples 10.5-1–10.5-5. hTable 10.6-1 and Example 10.6-1. iTable 10.8-1 and
Example 10.8-1. jTable 11.3-1 and Example 11.3-1. kExample 11.4-1 and Fig. 11.4-1(c). lExample 11.4-2
and Fig. 11.4-2. mExample 11.4-3 and Fig. 11.4-1(d). nExample 11.4-4 and Fig. 11.4-3. oExample 11.5-1 and
Fig. 11.4-1(b). pExample 11.6-1 and Fig. 11.6-1(c). qThe luminaire wall-plug luminous efficacy ηLUM provided
in (11.6-1), and the luminaire wall-plug luminous efficiency ηLUC = ηLUM/683 set forth in (11.6-3), are reported
in place of ηWPE and ηWPC = ηWPE/683, respectively. rExamples 11.7-1–11.7-3.
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A
FOURIER TRANSFORM
This appendix provides a review of the Fourier transform along with some of its salient
features.

A.1 DEFINITION, PROPERTIES, AND EXAMPLES
The harmonic function F exp(j2πνt), with frequency ν and complex amplitude F ,
is an important mathematical element in science and engineering. The variable t
represents time and the frequency ν has units of Hz. The real part of this function,
|F | cos(2πνt + arg{F}), is a cosine function with amplitude |F | and phase arg{F}.
The harmonic function can be viewed as a building block from which other functions
may be constructed by superposition.

Specifically, the Fourier theorem specifies that an arbitrary complex-valued function
f(t), satisfying a relatively unrestrictive set of conditions, may be decomposed into an
integral comprising a superposition of harmonic functions of different frequencies and
complex amplitudes,

f(t) =

∫ ∞

−∞
F (ν) exp(j2πνt) dν. (A.1-1)

Inverse
Fourier Transform

The component of frequency ν has a complex amplitude F (ν) given by

F (ν) =

∫ ∞

−∞
f(t) exp(−j2πνt) dt. (A.1-2)

Fourier Transform

The quantity F (ν) is called the Fourier transform of f(t), and f(t) is termed the
inverse Fourier transform of F (ν). The functions f(t) and F (ν) form a Fourier-
transform pair; knowledge of one enables the other to be unambiguously determined.

We have adopted the convention that the harmonic temporal function F exp(j2πνt)
is designated by a frequency ν that is positive. This choice is arbitrary and some authors
adopt the opposite convention, defining the Fourier transform and its inverse in (A.1-2)
and (A.1-1) with positive and negative signs in their exponents, respectively.

In statistical communication theory, the functions f(t) and F (ν) represent the time-
domain and frequency-domain representations of a signal, respectively. The absolute-
squares of these quantities, |f(t)|2 and |F (ν)|2, are referred to as the signal power
and energy spectral density, respectively. If |F (ν)|2 extends over a wide range of
frequencies, the signal is said to be of broad bandwidth.

LED Lighting: Devices and Colorimetry. Malvin Carl Teich.
Google Books. Published 2024.
©2024 Malvin Carl Teich.
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Properties of the Fourier Transform
A number of important properties of the Fourier transform are provided below. These
properties can be derived by direct application of the definitions in (A.1-1) and (A.1-2).

Linearity. The Fourier transform of the sum of two functions is the sum of their
Fourier transforms, indicating that the superposition principle of linear systems is
obeyed.
Scaling. If f(t) has a Fourier transform F (ν), and τ is a real scaling factor, then
f(t/τ) has a Fourier transform |τ |F (τν). Hence, if f(t) is scaled by a factor τ , its
Fourier transform is scaled by a factor 1/τ . It follows that if τ > 1, then f(t/τ)
is a stretched version of f(t), while F (τν) is a compressed version of F (ν). The
Fourier transform of f(−t) is F (−ν).
Time Translation. If f(t) has a Fourier transform F (ν), the Fourier transform of
f(t − τ) is exp(−j2πντ)F (ν). Hence, delay by a time τ corresponds to multi-
plying the Fourier transform by a phase factor exp(−j2πντ).
Frequency Translation. If F (ν) is the Fourier transform of f(t), the Fourier trans-
form of f(t) exp(j2πν0t) is F (ν − ν0). Hence, multiplication by a harmonic
function of frequency ν0 corresponds to shifting the Fourier transform to a higher
frequency ν0.
Symmetry. If f(t) is real, then F (ν) has Hermitian symmetry, indicating that
F (−ν) = F ∗(ν). If f(t) is real and symmetric, then so too is F (ν).
Convolution Theorem. If the Fourier transforms of f1(t) and f2(t) are F1(ν) and
F2(ν), respectively, the inverse Fourier transform of the product

F (ν) = F1(ν)F2(ν) (A.1-3)

is

f(t) =

∫ ∞

−∞
f1(τ)f2(t− τ) dτ. (A.1-4)

Convolution

The operation defined in (A.1-4) is known as the convolution of f1(t) with f2(t).
Convolution in the time domain is thus equivalent to multiplication in the fre-
quency domain.
Correlation Theorem. The correlation between two complex functions is defined
as

f(t) =

∫ ∞

−∞
f∗1 (τ)f2(t+ τ) dτ. (A.1-5)

Correlation

The Fourier transforms of f1(t), f2(t), and f(t) are related by

F (ν) = F ∗
1 (ν)F2(ν). (A.1-6)

If f2(t) = f1(t), the integral in (A.1-5) is called the autocorrelation function.
Parseval’s Theorem. The energy associated with f(t), which is the time integral of
the power |f(t)|2, is equal to the frequency integral of the energy spectral density
|F (ν)|2, i.e., ∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
|F (ν)|2 dν. (A.1-7)

Parseval’s Theorem
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Table of Fourier Transforms
The Fourier transforms of selected functions are set forth in Table A.1-1. The properties
of linearity, scaling, delay, and frequency translation enable the Fourier transforms of
other functions to be determined.

The following definitions are used in Table A.1-1:
rect(t) ≡ 1 for |t| ⩽ 1/2 , and = 0 elsewhere, indicating that it is a pulse of unit
height and unit width centered at t = 0.
δ(t) is the impulse function (also called the Dirac delta function), which is defined
as δ(t) ≡ limα→∞ α rect(αt). It is therefore the limit of a rectangular pulse of unit
area as its width approaches 0 and its height approaches ∞.
sinc(t)≡ sin(πt)/(πt) is a symmetric function with a peak value of unity at t = 0
and zeros at t = ±1,±2, . . ..

Table A.1-1 Fourier transforms of selected functions.

aThe double-sided exponential function is illustrated. The Fourier transform of the single-sided exponential
function, f(t) = exp(−t) with t ⩾ 0, is F (ν) = 1/(1 + j2πν); its magnitude is given by 1/

√
1 + (2πν)2.

bThe functions cos(πt2) and cos(πν2) are displayed.
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A.2 TEMPORAL AND SPECTRAL WIDTHS

It is often useful to specify the width of a function, e.g., the time duration of a function
of time f(t) or the spectral extent (bandwidth) of its Fourier transform F (ν). Many
different measures of width are in use.

In accordance with the scaling property of the Fourier transform, however,
all width definitions for a Fourier-transform pair share the property that the
spectral width is inversely proportional to the temporal width.

The three classes of measures defined below, the root-mean-square width, the power-
equivalent width, and the full-width at half-maximum, are widely used in photonics.

Root-Mean-Square Width
The normalized root-mean-square (RMS) temporal width σt of a nonnegative, real
function f(t) is defined as

σt =

√∫∞
−∞(t− t̄ )2f(t) dt∫∞

−∞ f(t) dt
with t̄ =

∫∞
−∞ tf(t) dt∫∞
−∞ f(t) dt

. (A.2-1)

If f(t) is a probability density function, then t̄ and σt represent its mean and standard
deviation, respectively. The Gaussian function f(t) = exp(−t2/2σ2

t ), for example, has
an RMS temporal widthσt. Its Fourier transform,F (ν) = (1/

√
2π σν) exp(−ν2/2σ2

ν),
has an RMS spectral width given by σν = 1/2πσt , so that

σtσν = 1/2π . (A.2-2)

Power-RMS Width. A measure analogous to that specified in (A.2-1), but one that
also accommodates negative and complex functions, is provided by the RMS width of
the absolute-square of |f(t)|2, i.e.,

σt =

√∫∞
−∞(t− t̄ )2|f(t)|2 dt∫∞

−∞ |f(t)|2 dt
with t̄ =

∫∞
−∞ t|f(t)|2 dt∫∞
−∞ |f(t)|2 dt

. (A.2-3)

This version of σt is sometimes referred to as the power-RMS width.
With the help of the Schwarz inequality, it can be readily shown that multiplying the

temporal power-RMS width for an arbitrary function f(t) by the width of its Fourier
transform F (ν), the spectral power-RMS width, gives rise to a duration–bandwidth
reciprocity relation expressible as

σtσν ⩾ 1/4π. (A.2-4)
Duration–Bandwidth
Reciprocity Relation

The spectral width σν specified in (A.2-4), defined in analogy with (A.2-3), is given by

σν =

√∫∞
−∞(ν − ν̄)2|F (ν)|2 dν∫∞

−∞ |F (ν)|2 dν
with ν̄ =

∫∞
−∞ ν|F (ν)|2 dν∫∞
−∞ |F (ν)|2 dν

. (A.2-5)
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Pursuant to (A.2-4), it is apparent that the time duration and bandwidth cannot si-
multaneously be made arbitrarily small. The Gaussian function f(t) = exp(−t2/4σ2

t ),
which has a power-RMS temporal width given by σt, provides an example. Its Fourier
transform is also a Gaussian function, F (ν) = (1/2

√
π σν) exp(−ν2/4σ2

ν), which has
a power-RMS spectral width given by σν = 1/4πσt. The product of the power-RMS
temporal and spectral widths for this Gaussian function therefore becomes

σtσν = 1/4π, (A.2-6)

revealing that it assumes the minimum possible value of the duration–bandwidth prod-
uct specified in (A.2-4).

Heisenberg Uncertainty Relation. Since angular frequency and frequency are re-
lated by ω = 2πν, the time–frequency reciprocity relation in (A.2-4) can be rewritten
in the form

σtσω ⩾ 1/2 . (A.2-7)

Moreover, since the energy of a photon is given by E = ℏω, (A.2-7) in turn dictates
a limit on the precision with which the time t and energy E of a photon can be
simultaneously determined, as specified by the Heisenberg time–energy uncertainty
relation set forth in (3.3-8).

In quantum mechanics, the position x of a particle is described by the wavefunction
ψ(x), while the spatial angular frequency (wavenumber) k is described by the function
ϕ(k), which is the Fourier transform ofψ(x). The uncertainties of x and k, denoted σx
and σk, respectively, are therefore the RMS widths of the probability densities |ψ(x)|2
and |ϕ(k)|2. The variables x and k (rad/m) are thus analogous to the variables t and
ω that describe time and angular frequency (rad/s) in (A.2-7), respectively. In short,
we arrive at

σxσk ⩾ 1/2 , (A.2-8)

which is analogous to (A.2-7). Moreover, the particle momentum is given by p = ℏk
(where ℏ ≡ h/2π and h is Planck’s constant), which provides σp = ℏσk, so that (A.2-8)
becomes

σxσp ⩾ ℏ/2 . (A.2-9)
Heisenberg Position–Momentum

Uncertainty Relation

Equation (A.2-9), known as the Heisenberg position–momentum uncertainty rela-
tion, is analogous to the Heisenberg time–energy uncertainty relation stated in (3.3-8).

Power-Equivalent Width
The power-equivalent temporal width of the function f(t) is its associated energy
divided by the peak power. In particular, if f(t) has its peak value at t = 0, the power-
equivalent temporal width is defined as

τ =

∫ ∞

−∞

|f(t)|2

|f(0)|2
dt. (A.2-10)

As examples, the double-sided exponential function f(t) = exp(−|t|/τ) has a power-
equivalent temporal width τ , as does the Gaussian function f(t) = exp(−πt2/2τ 2).
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This measure was used in Sec. 2.7 to define the coherence time of light τc in terms of
the complex degree of temporal coherence g(τ) via (2.7-10).

The power-equivalent spectral width is analogously defined as

B =

∫ ∞

−∞

|F (ν)|2

|F (0)|2
dν. (A.2-11)

If f(t) is real, then |F (ν)|2 is symmetric; if its peak is also located at ν = 0, it is
convenient to replace the power-equivalent spectral width B by the positive-frequency
power-equivalent spectral width B, i.e.,

B =

∫ ∞

0

|F (ν)|2

|F (0)|2
dν. (A.2-12)

As an example, if F (ν) = τ/(1+ j2πντ), as for a single-sided exponentially decaying
time function, carrying out the integration in (A.2-12) leads to

B = 1/4τ . (A.2-13)

Using Parseval’s theorem (A.1-7), together with the relation F (0) =
∫∞
−∞ f(t) dt,

allows (A.2-12) to be rewritten in the form

B = 1/2T , (A.2-14)

where

T =

[∫∞
−∞ f(t) dt

]2∫∞
−∞ f2(t) dt

(A.2-15)

is yet another definition of the temporal width, namely, the square of the area under f(t)
divided by the area under f2(t). For these particular definitions of width, Parseval’s
theorem takes the form

TB = 1/2 . (A.2-16)

Full-Width at Half-Maximum (FWHM), 3-dB, and 1/e Widths
The third class of width measures that we consider is the duration (or bandwidth) of
a function at a prescribed fraction of its maximum value, e.g., 1/2 , 1/

√
2 , 1/e , or 1/e2 .

Either the half-width or the full width on both sides of the peak may be used in the
definition. Two particularly common measures of spectral width are the full-width at
half-maximum (FWHM) and the half-width at 1/

√
2 -maximum, also called the 3-dB

width. We provide three examples:
The double-sided exponential function f(t) = exp(−|t|/τ) has a half-width at
1/e -maximum given by ∆t1/e = τ . Its Fourier transform, which is given by
F (ν) = 2τ/[1 + (2πντ)2], is known as the Lorentzian distribution and has a
full-width at half-maximum (FWHM) expressible as

∆νFWHM = 1/πτ . (A.2-17)

The Lorentzian distribution characterizes the spectrum of certain sources of light
(Sec. 4.6), and is usually cast in the form F (ν) = (∆ν/2π)/[ν2 + (∆ν/2)2],
where ∆ν = ∆νFWHM.
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The exponential function f(t) = exp(−t/τ) for t ⩾ 0, and f(t) = 0 for t < 0,
which describes the temporal response of many photonic and electronic systems,
is characterized by a width at 1/e -maximum given by ∆t1/e = τ . Its Fourier
transform,F (ν) = τ/(1 + j2πντ), has magnitude τ/[1 + (2πντ)2]

1/2 and hence
a half-width at 1/

√
2 -maximum (3-dB width) expressible as

∆ν3−dB = 1/2πτ . (A.2-18)

The Gaussian function f(t) = exp(−t2/2τ 2) has a full-width at 1/e -maximum
∆t1/e = 2

√
2 τ . Its Fourier transform F (ν) =

√
2π τ exp(−2π2τ 2ν2) has a full-

width at 1/e -maximum
∆ν1/e =

√
2 /πτ , (A.2-19)

and a full-width at half-maximum

∆νFWHM =
√
2 ln 2 /πτ, (A.2-20)

so that
∆νFWHM =

√
ln 2 ∆ν1/e ≈ 0.833∆ν1/e . (A.2-21)

The Gaussian also describes the spectrum of light emitted by certain optical
sources as well as the spatial distribution of so-called Gaussian light beams.

BIBLIOGRAPHY

J. V. Stone, The Fourier Transform: A Tutorial Introduction, Sebtel Press, 2021.
B. G. Osgood, Lectures on the Fourier Transform and its Applications, American Mathematical So-

ciety, 2019.
L. F. Chaparro and A. Akan, Signals and Systems Using matlab, Academic/Elsevier, 3rd ed. 2018.
B. P. Lathi and R. Green, Linear Systems and Signals, Oxford University Press, 3rd ed. 2017.
J. F. James, A Student’s Guide to Fourier Transforms: With Applications in Physics and Engineering,

Cambridge University Press, 3rd ed. 2011.
S. Haykin and B. Van Veen, Signals and Systems, Wiley, 2nd ed. 2003.
G. R. Cooper and C. D. McGillem, Probabilistic Methods of Signal and System Analysis, Oxford

University Press, 3rd ed. 1999.
A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, Pearson, 2nd ed. 1997.



SYMBOLS AND UNITS

Roman Symbols and Acronyms
a = Radius of an aperture or fiber [m]; also, Radius of a circle [m]; also, Distance between

locations [m]; also, Lattice constant [m]

a = Complex amplitude or magnitude of an optical wave
A = Complex envelope of a monochromatic plane wave

A(r) = Complex envelope of a monochromatic wave
A = Area [m2]

Aeff = Effective area [m2]

A = Einstein A coefficient [s−1]

A = Ratio of yellow-to-blue optical power in a white phosphor-conversion LED
A = Alkali metal such as Li, Na, K, Rb, Cs, or combination thereof

AC = Alternating current
ACS = American Chemical Society
AM = Amplitude modulation
A19 = Designator for the bulb shape of a classic incandescent lamp

b = Proportionality constant in brightness–luminance relation
b = Wien’s constant [2.90× 106 nm ·K]

B = Magnetic flux density vector [Wb ·m−2 or T]

B = Magnetic flux-density complex amplitude vector [Wb ·m−2 or T]

B = Bandwidth [Hz]; also, Bandwidth of an electrical circuit [Hz]
B = Power-equivalent spectral width [Hz]

B = Einstein B coefficient [m3 · J−1 · s−2]

BV = Psychophysical magnitude estimate of luminance
BB = Broadband

c = Speed of light [m · s−1]; also, Phase velocity [m · s−1]

cO = Speed of light in free space [2.9979× 108 m · s−1]

C = Electrical capacitance [F]
C = Psychophysical magnitude estimate of cold

CCT = Correlated color temperature
CFL = Compact fluorescent lamp
CIE = Commission Internationale de l’Éclairage

LED Lighting: Devices and Colorimetry. Malvin Carl Teich.
Google Books. Published 2024.
©2024 Malvin Carl Teich.
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CIP = Commission Internationale de Photométrie
CLE = Current luminous efficacy ηCLE (also called current efficiency) [cd/A]

CMLED = Color-mixing light-emitting diode
CMOS = Complementary metal-oxide-semiconductor

COB = Chip-on-board light-emitting diode
COG = Chip-on-glass construction for LED-filament lamps
cQD = Colloidal quantum dot
CRI = Color rendering index
CT = Color temperature

CVD = Color-vision deficiency
CW = Continuous-wave

CMY = Primaries associated with CMYK color space

dr = Incremental volume [m3]
ds = Incremental length [m]

d = Distance, Length, Thickness [m]

D = Diameter [m]

D = Electric flux density vector [C ·m−2]

D = Electric flux density complex amplitude vector [C ·m−2]

DBR = Distributed Bragg reflector
DC = Direct current
DH = Double-heterostructure
DIP = Dual-inline package

DOE = U.S. Department of Energy
DSPP = Doubly stochastic Poisson process
DUV = Deep ultraviolet, stretching from 200 to 300 nm
DWL = Dominant wavelength

0D = Zero-dimensional
1D = One-dimensional
2D = Two-dimensional
3D = Three-dimensional

e = Elementary electronic charge [1.6022× 10−19 C]

E = Electric-field vector [V ·m−1]

E = Electric-field complex amplitude vector [V ·m−1]

E = Energy [J]; also, Optical energy (or radiant energy) [J]
EA = Acceptor energy level [J]
Ec = Energy at the bottom of the conduction band [J]

ED = Donor energy level [J]
Ef = Fermi energy [J]

Efc = Quasi-Fermi energy for the conduction band [J]

Efv = Quasi-Fermi energy for the valence band [J]

Eg = Bandgap energy [J]

Ek = Kinetic energy [J]

Eq = Energy of the qth mode [J]
Ev = Energy at the top of the valence band [J]

Eν = Energy spectral density [J ·Hz−1]

EV = Luminous energy [lm · s]
E = Alkaline-earth element such as Mg, Ca, Sr, Ba, Zn, or combination thereof

ECE = Energy-conversion efficiency ηPCE (also called power-conversion efficiency, PCE)
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ELLED = Electroluminescent light-emitting diode
eQD = Epitaxial quantum dot
EQE = External quantum efficiency ηEQE
E.U. = European Union
EUV = Extreme-ultraviolet, stretching from 10 to 100 nm
E12 = (Edison) screw base designator for an incandescent candle lamp (U.S.)
E26 = (Edison) screw base designator for a classic incandescent lamp (U.S.)
E27 = (Edison) screw base designator for a classic incandescent lamp (E.U.)

f = Focal length of a lens [m]; also, Frequency [Hz]

f(E ) = Fermi function
fc(E ) = Fermi function for the conduction band
fv(E ) = Fermi function for the valence band

fa = Probability that absorption condition is satisfied
fe = Probability that emission condition is satisfied
fg = Fermi inversion factor
f = Phosphor-absorption fraction
F = Focal point of an optical system; also, Complex amplitude of a harmonic function
FP = Purcell factor
F = Force [kg ·m · s−2]

FIR = Far infrared, stretching from 20 to 300 µm
FUV = Far ultraviolet, stretching from 100 to 200 nm

FWHM = Full-width at half-maximum

g(ν) = Lineshape function of a transition [Hz−1]

g(ν) = Average lineshape function [Hz−1]

gν0(ν) = Electron–photon collisionally broadened lineshape function in a semiconductor [Hz−1]

g(τ) = Complex degree of temporal coherence
g = Degeneracy factor
g = Red phosphor absorption fraction

G(τ) = Temporal coherence function [W ·m−2]

G 0 = Rate of thermal electron–hole generation in a semiconductor [m−3 · s−1]

GE = General Electric Company
grin = Graded-index

h = Planck’s constant [6.6261× 10−34 J · s]
ℏ = Reduced Planck constant (ℏ ≡ h/2π) [1.0546× 10−34 J · s]

h(t) = Impulse response function of a linear system
h(x, y) = Impulse response function of a two-dimensional linear system

H = Magnetic-field vector [A ·m−1]

H = Magnetic-field complex amplitude vector [A ·m−1]

H(χ) = Transfer function of a linear electrical system
HCL = Human-centric lighting
HD = High definition

HOMO = Highest occupied molecular orbital
HVPE = Hydride vapor-phase epitaxy

HVS = Human visual system

i = Electric current [A]; also, Integer; also,
√
−1

I = Irradiance (also called optical intensity) [W ·m−2]
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Iν = Spectral irradiance (also called spectral intensity) [W ·m−2 ·Hz−1]

IV = Illuminance [lx]
I = Moment of inertia [kg ·m2]

I = Radiant intensity [W · sr−1]

IV = Luminous intensity [cd]

IEEE = Institute of Electrical and Electronics Engineers
INL = Inner nuclear layer
IPL = Inner plexiform layer
IQE = Internal quantum efficiency ηIQE

IR = Infrared
IRE = Institute of Radio Engineers
ITO = Indium tin oxide

j = Integer; also
√
−1

J = Electric current density [A ·m−2]
J0(u) = Bessel function of the first kind and zeroth order

J = Total atomic overall angular momentum quantum number
J = Electric current density vector [A ·m−2]

k = Wavenumber [m−1]; also, Integer; also, Spatial angular frequency [rad ·m−1]

kO = Free-space wavenumber [m−1]

kx, ky, kz = Wavevector components in x, y, and z directions [m−1]; also, Spatial angular frequency
[rad ·m−1]

k = Wavevector [m−1]

kq = Wavevector for mode q [m−1]

k = Boltzmann’s constant [1.3807× 10−23 J ·K−1]

k, k′ = Normalization constant for XY Z tristimulus values [W−1 ·m]

K 1,2,3 = Mixed-light chromaticity-coordinate weight functions
KSF = Potassium fluorosilicate doped with manganese ions (K2SiF6:Mn4+, also called PFS)

l = Thickness [m]; also, Depletion-layer thickness in a p–n junction [m]

lc = Coherence length [m]

ℓ = Orbital angular-momentum quantum number
L = Length [m]; also, Radiance [W · sr−1 ·m−2]

LV = Luminance [cd ·m−2]

L0 = Reference luminance value [cd ·m−2]

L = Total atomic orbital angular momentum quantum number
L-cone = Long-wavelength (red) retinal cone (wavelength sensitivity: 560–565 nm)

LASER = Light amplification by stimulated emission of radiation
LCD = Liquid-crystal display

LD = Laser diode
LED = Light-emitting diode
LEP = Light-emitting polymer material
LER = Luminous efficacy of radiation ηLER [lm/W]

LG = LG Chem
LGN = Lateral geniculate nucleus
LHP = Lead-halide perovskite
LMS = Color space associated with the cone fundamentals
LPE = Liquid-phase epitaxy
LPS = Low-pressure sodium lamp
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LPW = Lumens per watt (lm/W)
LUC = Luminaire wall-plug luminous efficiency ηLUC
LUM = Luminaire wall-plug luminous efficacy ηLUM [lm/W]

LUMO = Lowest unoccupied molecular orbital
LWIR = Long-wavelength infrared, stretching from 8 to 14 µm

m = Mass of a particle [kg]
mc = Effective mass of a conduction-band electron [kg]

mr = Reduced effective mass of an electron–hole pair in a semiconductor [kg]
mv = Effective mass of a valence-band hole [kg]
m0 = Free electron mass [9.1094× 10−31 kg]

m = Photon number; also, Photoelectron number
M = Magnification of an imaging system
MV = Luminous exitance (luminous emittance) [lx]
M = Magnetization density vector [A ·m−1]

M = Mass of an atom or molecule [kg]
Mr = Reduced mass of an atom or molecule [kg]

M(ν) = Density of modes in a cavity [m−3 ·Hz−1 for 3D cavity; m−1 ·Hz−1 for a 1D cavity]
M = Mulliken molecular term symbol

M-cone = Middle-wavelength (green) retinal cone (wavelength sensitivity: 530–535 nm)
MBE = Molecular-beam epitaxy

MCOB = Multiple chip-on-board
MES = Medium Edison screw
MHP = Metal-halide perovskite
MIR = Mid infrared, stretching from 2 to 20 µm
MIT = Massachusetts Institute of Technology

MMF = Multimode fiber
MOCVD = Metalorganic chemical vapor deposition (also called MOVPE)
MOVPE = Metalorganic vapor phase epitaxy (also called MOCVD)

MQD = Multiquantum dot
MQW = Multiquantum well

MQWLED = Multiquantum-well light-emitting diode
MUV = Mid ultraviolet, stretching from 200 to 300 nm

MWIR = Medium-wavelength infrared, stretching from 3 to 5 µm

n = Refractive index; also, Integer
ns = Refractive index of a medium butt-coupled to an optical fiber

n(r) = Refractive index of an inhomogeneous medium
n = Photon number
n = Mean photon number
nν = Spectral photon number [Hz−1]

n = Concentration (number density) of electrons in a semiconductor [m−3]

ni = Concentration (number density) of electrons/holes in an intrinsic semiconductor [m−3]

n0 = Equilibrium concentration (number density) of electrons in a semiconductor [m−3]

n = Principal quantum number of an atomic shell
N = Integer; also, Group index; also, Number of atoms or particles
N = Number density [m−3]; also, Number of subintervals
NA = Number density of ionized acceptor atoms in a semiconductor [m−3]

ND = Number density of ionized donor atoms in a semiconductor [m−3]

Nc = Constant associated with carrier density in the conduction band [m−3]
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Nv = Constant associated with carrier density in the valence band [m−3]

n-type = Semiconductor material doped with donor impurities
NA = Numerical aperture
NB = Narrowband
NC = Nanocrystal

NSF = Sodium fluorosilicate doped with manganese ions (Na2SiF6:Mn4+)
NIR = Near infrared, stretching from 0.760 to 2 µm
NL = Nonlinear

NUV = Near ultraviolet, stretching from 300 to 390 nm

OLED = Organic light-emitting diode
ONL = Outer nuclear layer
OSA = Optical Society of America

p = Probability; also, Momentum [kg ·m · s−1]

pab = Probability density for absorption (mode containing one photon) [s−1]

psp = Probability density for spontaneous emission (into one mode) [s−1]

pst = Probability density for stimulated emission (mode containing one photon) [s−1]

p(n) = Photon-number distribution
p = Concentration (number density) of holes in a semiconductor [m−3]

p0 = Equilibrium concentration (number density) of holes in a semiconductor [m−3]

P = Pressure [kg ·m−1 · s−2]

Pab = Probability density for absorption (mode containing many photons) [s−1]

Psp = Probability density for spontaneous emission (into any mode) [s−1]

Pst = Probability density for stimulated emission (mode containing many photons) [s−1]

P = Electric polarization density vector [C ·m−2]

P = Optical power (also radiant flux and radiant power) [W]

Pcol = Collected optical power [W]

PEL = Electrical drive power [W]

PO = Output (or emitted) optical power [W]

Pν = Spectral power [W ·Hz−1]

PV = Luminous flux [lm]

p-type = Semiconductor material doped with acceptor impurities
PC = Phosphor-conversion

PCB = Printed circuit board
PCE = Power-conversion efficiency ηPCE (also called energy-conversion efficiency, ECE)

PCLED = Phosphor-conversion light-emitting diode
PD = Photodiode

PeLED = Perovskite-based light-emitting diode
PFM = Pulse-frequency modulation
PFS = Potassium fluorosilicate doped with manganese ions (K2SiF6:Mn4+, also called KSF)

PLED = Polymer light-emitting diode
PLQD = Photoluminescence quantum defect ηPLQD
PLQY = Photoluminescence quantum yield ηPLQY

P-OLED = Polymer light-emitting diode
PPV = Poly(p-phenylene vinylene)
PWL = Peak wavelength
PWM = Pulse-width modulation

q = Integer mode index
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q = Mode index
Q = Quality factor of an optical cavity or resonant circuit

QCSE = Quantum-confined Stark effect
QD = Quantum dot

QLED = Quantum-dot light-emitting diode
QW = Quantum well

r = Radial distance [m]

r = Position vector [m]

r = Electron–hole recombination coefficient [m3 · s−1]

rnr = Nonradiative electron–hole recombination coefficient [m3 · s−1]

rr = Radiative electron–hole recombination coefficient [m3 · s−1]

rab(ν) = Rate of photon absorption in a semiconductor [s−1 ·m−3 ·Hz−1]

r sp(ν) = Rate of spontaneous emission from a semiconductor [s−1 ·m−3 ·Hz−1]

r st(ν) = Rate of stimulated emission from a semiconductor [s−1 ·m−3 ·Hz−1]

rect(·) = Pulse of unit height and unit width centered about the point 0
R = Radius of curvature [m]; also, Radius [m]; also, Distance [m]; also, Electrical resistance [Ω]
Ra = Average CRI over the Munsell color samples R1–R8
RL = Lambertian ratio
R = Intensity, power, or energy reflectance
R = Electron–hole injection rate in a semiconductor [s−1 ·m−3]

R = Responsivity of a photon source [W ·A−1]

RC = Resistor–capacitor combination
RC = Resonant-cavity

RCLED = Resonant-cavity light-emitting diode
rg = Chromaticity coordinates associated with Red/Green/Blue color space
rgb = Normalized tristimulus values associated with Red/Green/Blue color space
r̄ḡb̄ = Color matching functions associated with Red/Green/Blue color space

RGB = Basis vectors and designation for Red/Green/Blue color space
RGB = Tristimulus values associated with Red/Green/Blue color space
RGB = Primaries associated with Red/Green/Blue color space
RGC = Retinal ganglion cell
RMS = Root-mean square

RoHS = Regulation on Hazardous Substances (E.U.)
R1–R8 = Standard Munsell color samples

R9–R15 = Special Munsell color samples

s = Length or distance [m]

sinc(·) = Symmetric function with peak value of unity at 0 [sinc(t) ≡ sin(πt)/(πt)]
S = Spin angular momentum (helicity) [J · s if circularly polarized]
S = Spin angular-momentum quantum number
S = Transition strength (oscillator strength) [m2 ·Hz]
S = Poynting vector [W ·m−2]

S = Poynting vector complex amplitude [W ·m−2]

Sλ(λO) = Wavelength-based power spectral density [W ·m−1];
S(ν) = Intensity spectral density [W ·m−2 · Hz−1]; also, Frequency-based power spectral density

[W ·Hz−1]

S = Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or combination thereof
S = Singlet state

SCF = Single-core fiber
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S-cone = Short-wavelength (blue) retinal cone (wavelength sensitivity: 420–430 nm)
SFS = Sodium fluorosilicate doped with manganese ions (Na2SiF6:Mn4+)

SI = International system of units; also, Step-index
SMD = Surface-mounted device
SMF = Single-mode fiber

SMOLED = Small-molecule organic light-emitting diode
SNR = Signal-to-noise ratio

SPAD = Single-photon avalanche diode
SPE = Single-photon emitter

SPIE = The International Society for Optical Engineering
SQW = Single quantum well
sRGB = Standard Red/Green/Blue

SSL = Solid-state lighting

t = Time [s]
tsp = Spontaneous lifetime [s]; also, Effective spontaneous lifetime [s]
t = Complex amplitude transmittance
T = Temperature [K]

T = Intensity or power transmittance
T = Period of an optical wave (T = 1/ν where ν = frequency) [s]; also, Counting time [s];

also, Temporal width [s]

T2 = Electron–phonon collision time [s]
T = Triplet state

TADF = Thermally activated delayed fluorescence
TEM = Transverse electromagnetic
TIR = Total internal reflection
TM = Transverse magnetic

TMD = Transition-metal dichalcogenide
TOLED = Transparent organic light-emitting diode

TPD = Triphenyl diamine derivative

u(r, t) = Wavefunction of an optical wave
u = Number of electrons in an atomic subshell

U(r, t) = Complex wavefunction of an optical wave
U(r) = Complex amplitude of a monochromatic optical wave
UCS = Uniform color space
uv = Chromaticity coordinates associated with CIE 1960 UCS color space
u′v′ = Chromaticity coordinates associated with CIE 1976 UCS color space
U.S. = United States
UV = Ultraviolet

UVA = Ultraviolet-A band, stretching from 315 to 400 nm
UVB = Ultraviolet-B band, stretching from 280 to 315 nm
UVC = Ultraviolet-C band, stretching from 100 to 280 nm

v = Velocity of an atom or object [m · s−1]; also, Fermi velocity [m · s−1]

V = Volume [m3]; also, Modal volume [m3]; also, Voltage [V]
V0 = Built-in potential difference in a p–n junction [V]

V (r, t) = Potential energy [J]

V 0 = Rectangular barrier height [J]; also, Energy depth of a quantum well [J]
V (ν) = Fourier transform of the complex wavefunction of an optical pulse
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V (λO) = Photopic luminous efficiency function (photopic luminosity function)
VPE = Vapor-phase epitaxy
VUV = Vacuum ultraviolet, stretching from 10 to 200 nm

w = Integrated intensity in units of photon number
W = Electromagnetic energy density [J ·m−3]

Wi = Probability density for absorption and stimulated emission [s−1]

W = Psychophysical magnitude estimate of warmth
WCG = Wide color gamut
WGM = Whispering-gallery mode

WOLED = White organic light-emitting diode
WPC = Wall-plug luminous efficiency ηWPC (also called wall-plug luminous coefficient)
WPE = Wall-plug luminous efficacy ηWPE (also called luminous efficacy of the source and overall

luminous efficacy) [lm/W]

x = Position coordinate [m]; also, Displacement [m]; also, Compositional mixing ratio in a com-
pound semiconductor

x̂ = Unit vector in the x direction in Cartesian coordinates
XTE = Extraction efficiency ηXTE (also called transmission efficiency)
XUV = Extreme ultraviolet
xy = Chromaticity coordinates associated with CIE 1931 xyY color space
xyz = Normalized tristimulus values associated with CIE 1931 XYZ color space
x̄ȳz̄ = Color matching functions associated with CIE 1931 XYZ color space

XYZ = Basis vectors and designation for CIE 1931 XYZ color space
XY Z = Tristimulus values associated with CIE 1931 XYZ color space
XYZ = Imaginary primaries associated with CIE 1931 XYZ color space

y = Position coordinate [m]; also, Compositional mixing ratio in a compound semiconductor
ŷ = Unit vector in the y direction in Cartesian coordinates

YAG = Yttrium aluminum garnet

z = Position coordinate (Cartesian or cylindrical coordinates) [m]

ẑ = Unit vector in the z direction in Cartesian coordinates
Z = Atomic number; also, Electronic-circuit impedance [Ω]

ZPL = Zero-phonon line

Greek Symbols
α = Apex angle of a prism; also, Absorption or attenuation coefficient [m−1]; also, Designation

for a particular phase of a material

β = Label for homogeneously broadened subset of atoms; also, Designation for a particular phase
of a material

β = Power-law exponent in the brightness–luminance relation

γ0(ν) = Net gain coefficient for stimulated emission and absorption [m−1]

Γ = Spectral width of a uniform band of optical frequencies [Hz]

δ = Designation for a particular phase of a material
δ(·) = Delta function (impulse function)
∆ = Thickness of a thin optical component [m]; also, Fractional refractive-index change in an

optical fiber [∆ ≈ (n1 − n2)/n1]
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∆x = Width, change, spread, shift, increment, interval, or uncertainty of generic variable x
∆n = Concentration (number density) of excess electron–hole pairs [m−3]

∆λ = Wavelength spectral width or linewidth [m]

∆λFWHM = Full-width-at-half-maximum wavelength spectral width [m]

∆ν = Frequency spectral width or linewidth [Hz]

∆νc = Frequency spectral width that is inverse of coherence time (∆νc = 1/τc) [Hz]
∆νFWHM = Full-width-at-half-maximum frequency spectral width [Hz]

ϵ = Electric permittivity of a medium [F ·m−1]

ϵO = Electric permittivity of free space [8.8542× 10−12 F ·m−1]

ζ = Intermediate parameter for CCT calculation using McCamy’s method

ηA,B = Transmission efficiency along A and B ray directions
ηCLE = Current luminous efficacy (CLE) (also called current efficiency) [cd/A]
ηEQE = External quantum efficiency (EQE)
ηIQE = Internal quantum efficiency (IQE)
ηLER = Luminous efficacy of radiation (LER) [lm/W]

ηLUC = Luminaire wall-plug luminous efficiency
ηLUM = Luminaire wall-plug luminous efficacy [lm/W]

ηPCE = Power-conversion efficiency (PCE) (also called energy-conversion efficiency (ECE) and
overall efficiency)

ηPLQD = Photoluminescence quantum defect (PLQD)
ηPLQD = Complementary photoluminescence quantum defect (ηPLQD = 1− ηPLQD)
ηPLQY = Photoluminescence quantum yield (PLQY)
ηWPC = Wall-plug luminous efficiency (also called wall-plug luminous coefficient, WPC)
ηWPE = Wall-plug luminous efficacy (WPE) (also called luminous efficacy of the source and overall

luminous efficacy) [lm/W]

ηXTE = Extraction efficiency (XTE) (also called transmission efficiency)
η1,2,3 = Transmission efficiency along particular directions in an LED structure

η = Impedance of a dielectric medium [Ω]

ηO = Impedance of free space [376.73 Ω]

θ = Angle; also, Half vertex angle (half radiation angle) measured from emission-plane normal;
also, Polar angle in a spherical coordinate system

θ = Complement of angle θ (90◦ − θ)
θa = Acceptance angle
θB = Brewster angle
θc = Critical angle
θc = Complement of critical angle θc (90◦ − θc)
θd = Deflection angle of a ray or wave imparted by a prism
θq = Deflection angles associated with diffraction from a thin grating
θs = Acceptance angle of fiber butt-coupled to a medium
θ1/2 = Half-angle from emission-plane normal at which intensity decreases to half its maximum

2θ1/2 = Viewing angle (50%-power angle)

κ = Elastic constant of a molecular harmonic oscillator [J ·m−2]

κ = Overall photoluminescence decay rate [s−1]

κnr = Nonradiative portion of photoluminescence decay rate [s−1]

κr = Radiative portion of photoluminescence decay rate [s−1]
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λ = Wavelength [m]

λA = Wavelength associated with valence-band to acceptor-level transition [m]

λg = Bandgap wavelength (long-wavelength limit) of a semiconductor material [m]

λO = Free-space wavelength [m]

λp = Wavelength of maximum interband absorption in thermal equilibrium [m]

λp = Wavelength of maximum blackbody energy density [m]

λp = Peak wavelength [m]; also, Wavelength of maximum injection-electroluminescence spectral
density [m]

λ = Median (or mean) wavelength [m]

λMIN = Short-wavelength cutoff of wavelength-based spectral density [m]

λMAX = Long-wavelength cutoff of wavelength-based spectral density [m]

Λ = Spatial period of thickness variation in a thin transparent grating [m]

µ = Magnetic permeability of a medium [H ·m−1]

µO = Magnetic permeability of free space [1.2566× 10−6 H ·m−1]

µ = Carrier mobility in a medium [m2 · s−1 ·V−1]

ν = Frequency [Hz]

νF = Mode spacing (free spectral range) [Hz]
νg = Bandgap frequency [Hz]

ν0 = Central frequency [Hz]; also, Resonance frequency [Hz]; also, Frequency of a monochro-
matic wave [Hz]

νp = Frequency of maximum interband absorption in thermal equilibrium [Hz]

νp = Frequency of maximum blackbody energy density [Hz]

νp = Frequency of maximum injection-electroluminescence spectral density [Hz]

νq = Frequency of qth mode [Hz]

ξ = Optical absorbance of graphene monolayer [C2 · J−1 ·m−1]

ρ = Radial distance in spherical coordinate system [m]

ϱ(k) = Wavenumber modal density (photons and electrons) [m−2]

ϱ(ν) = Optical joint density of states [m−3 ·Hz−1]

ϱc(E ) = Density of states near conduction band edge in a bulk semiconductor [m−3 · J−1]

ϱv(E ) = Density of states near valence band edge in a bulk semiconductor [m−3 · J−1]

ϱλ(λ) = Spectral energy density (wavelength parameterization) [J ·m−3 · nm−1]

ϱν(ν) = Spectral energy density (frequency parameterization) [J ·m−3 ·Hz−1]

σ(ν) = Transition cross section [m2]

σ = Average transition cross section [m2]

σ0 = Peak transition cross section [m2]

σmax = Maximum transition cross section [m2]

σx = RMS width of a generic function of x; also, Standard deviation of random variable x
σ2
x = Variance of generic random variable x; also, Variance of random variable x
σE = Energy uncertainty [J]

σt = Time duration of a function [s]; also, RMS temporal width [s]; also, Power-RMS temporal
width [s]

σν = Spectral width of a function [Hz]; also, RMS spectral width [Hz]; also, Power-RMS spectral
width [Hz]

σSB = Stefan–Boltzmann constant [5.67× 10−8 W ·m−2 ·K−4]

σ = Conductivity of a material [Ω−1 ·m−1]
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τ = Lifetime, decay time, delay time, risetime, intraband relaxation time, electron–hole recom-
bination lifetime; also, Power-equivalent temporal width of a function [s]; also, Temporal
scaling factor [s]

τc = Coherence time [s]
τnr = Nonradiative electron–hole recombination lifetime [s]
τr = Radiative electron–hole recombination lifetime [s]

τRC = RC time constant [s]
τ21 = Lifetime of a transition between energy levels 2 and 1 [s]

ϕ = Angle; also, Azimuthal angle in spherical or cylindrical coordinate system; also, Mean
photon-flux density [m−2 · s−1]

ϕ(k) = Spatial angular-frequency wavefunction [Fourier transform of particle position wavefunc-
tion ψ(x)] [m1/2]

ϕν = Spectral photon-flux density [m−2 · s−1 ·Hz−1]

Φ = Mean photon flux [s−1]; also, Internal photon flux [s−1]

ΦO = External photon flux [s−1]

Φν = Spectral photon flux [s−1 ·Hz−1]

φ = Phase, phase shift, phase difference

χ = Angular frequency of a harmonic electrical signal [rad · s−1]

ψ = Angle
ψ(x) = Particle position wavefunction [m−1/2]

ω = Angular frequency [rad · s−1]; also, Angular velocity [rad · s−1]

Ω = Solid angle [sr]

Mathematical Symbols
x = Mean of x

⟨x⟩ = Ensemble average over x
d = Differential
∂ = Partial differential

δ{·} = Variation of a quantity (e.g., optical pathlength)
∇ = Gradient operator

∇ · = Divergence operator
∇× = Curl operator
∇2 = Laplacian operator (∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 in Cartesian coordinates)
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apex, 10
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deflection, 10
negative, 6, 12
of incidence, 3, 4, 8, 9
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of refraction, 8, 9
solid, 4, 10
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Axicon, 11

Bandgap
direct, 134
energy, 128, 130, 135
indirect, 134
wavelength, 135, 172

Bardeen, John, 125
Bawendi, Moungi

quantum dot, 162
Beam director, 11
Beamsplitter

random partitioning, 79
rays, 11
single photon, 67
waves, 67, 80

Binomial distribution

count signal-to-noise ratio, 80
mean photon number, 80
photon-number variance, 80

Blackbody radiation
Planckian locus, 292
rate equations, 112
Rayleigh–Jeans formula, 114
spectrum, 113, 115, 292
Stefan–Boltzmann law, 116
ultraviolet catastrophe, 114
Wien’s law, 116

Boltzmann, Ludwig, 84
Boltzmann distribution, 90
Boltzmann’s constant, 87

Bonding
covalent, 127, 165
ionic, 127
metallic, 127
van der Waals, 127, 165

Bose–Einstein condensate, 87, 93, 113
Bose–Einstein distribution, 79, 92–94

count signal-to-noise ratio, 94
mean photon number, 93, 94, 112
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photon-number variance, 94
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reflection, 8, 35
refraction, 8, 35

Bragg grating
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zone, 132
Brus, Louis

quantum dot, 162

Casimir effect, 65
Catadioptric system, 13
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electromagnetic optics, 63
frequencies, 100
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photon optics, 64
planar, 100
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xy, 291
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luminance, 291
Planckian locus, 291
saturation, 291

Coherence
degree of temporal, 54, 110
effective, 55
length, 55, 58
time, 54, 58

Collimator, 5, 13, 17
Color

complementary, 271
model, 285
opponent, 248, 272
shade, 285
tint, 285
tone, 285
vision, 234–264

Color spaces, 291
1976 CIELAB, 268, 275
1976 CIELUV, 268, 275, 277
CAM16, 275
CAM16-UCS, 268
chromaticity diagrams, 285, 291
Grassmann’s laws, 271
LMS, 278
LUV, 291
metameric white light, 273
saturation, 287
tristimulus values, 278, 279
UCS, 291
xyY, 281
XYZ, 279

Color temperature, 299
Planckian locus, 292

Color-matching function, 279
Color-rendering index, 299, 300, 364
Colorimetry, 265–305
Cone

fundamentals, 245
Convolution, 370
Correlated color temperature, 299

cool white, 298
daylight, 298
warm white, 298

Correlation, 370
Craford, M. George, 338
Critical angle, 9, 19, 49
Cross section, 97, 99, 103, 106, 177

peak, 109

Diffraction grating, 42
spectrum analyzer, 43

Dipole wave, 48
Distributed Bragg reflector, 205
Downconversion

in photoluminescence, 311
parametric, 311

Edison, Thomas, 85

Efficacy
current, 260
wall-plug luminous, 258

Efficiency
droop, 217, 219, 228, 354
energy-conversion, 206
external, 205
internal, 151, 201
wall-plug luminous, 259, 294

Einstein, Albert, 61
A and B coefficients, 105
emission and absorption, 85
photon, 63

Ekimov, Alexei
quantum dot, 162

Electroluminescence, 182, 185
injection, 182, 185

Electromagnetic waves, see Waves, electromagnetic
Emissivity

graybody, 117, 118
incandescent lamp, 118, 294
wavelength-dependent, 119

Energy levels, 89
bandgap energy, 128–130, 135
conduction band, 128
degeneracy, 91
forbidden band, 128
ligand-field theory, 315
occupation, 90
quantum dots, 162
valence band, 128

Energy, optical, 4
Entropy, 113
Equipartition theorem, 89

chilled-out DOFs, 114
degrees-of-freedom (DOFs), 89
failure in quantum systems, 114
frozen-out DOFs, 89

Excitons
bulk semiconductors, 171
organic semiconductors, 221
quantum dots, 163
quantum-confined, 193

Fermat, Pierre de, 1
Fermat’s principle, 2

Fermi
–Dirac distribution, 91, 143
energy, 91
function, 91, 143
inversion factor, 181
level, 143, 144
tail, 144
velocity, 140

Fermion
Dirac-, 140

Fiber, optical
acceptance angle, 20, 21
butt-coupled, 22
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graded-index, 49
meridional ray, 19
multimode, 49
numerical aperture, 20–22
silica-glass, 21
single-mode, 49
skewed ray, 20
step-index, 49
uncladded, 21

Flicker-fusion threshold, 218
Fluorescence, 221
Fourier transform, 369–375

definition, 369
inverse, 369
pair, 369
properties, 370
table, 371

Frequency
infrared, 34, 46
optical, 34, 46
ultraviolet, 34, 46
visible, 34, 46

Fresnel
approximation of spherical wave, 32
biprism, 39
equations, 49
Huygens–Fresnel principle, 24
lens, 17
reflection, 203

Füchtbauer–Ladenburg equation, 103, 177

Geim, Andre, 139
Graphene photonics, 139
Grassmann, Hermann, 265, 270
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Graybody

emissivity, 117, 118, 294
incandescent lamp, 118, 294
radiation, 117, 118

Group-IV photonics, 135, 139
2D materials, 140
allotropes, 139
graphene photonics, 139
SiC Schottky diode, 229
silicon photonics, 228
transition-metal dichalcogenides, 140

Guild, John, 265

Hero’s principle, 3
Heterostructures

organic semiconductors, 221
Holonyak, Nick, 338
Huygens, Christiaan, 24

Huygens–Fresnel principle, 24

Illuminance, 255
Imaging

aberration, 13
aberration-free, 14
equation, 7, 15
single-photon, 67

Incandescent lamp, 118, 294
carbon-filament, 118
gas-mantle, 119, 267
halogen, 119, 340
tungsten-filament, 118, 293, 340

Insulators
band structure, 128

Integrated
optics, 228
photonics, 228

Ionization
energy of a donor electron, 139
energy of H, 139

Irradiance, 26, 252, 253
Isotropic

radiator, 255

Kelvin, Lord, 84
temperature scale, 86

Kirchhoff, Gustav
blackbody, 85, 111, 116

Lambertian radiator, 208, 209, 255
Laser

silicon Raman, 229
Laser diodes (LDs), 227
LED Lighting

Color spaces, 276
phosphor-conversion LEDs, 306–337

LED lighting, 338–368
additive color mixing, 345
COB devices, 333
discrete LEDs, 308
Eiffel Tower, 344
electronic circuitry, 344
Empire-state building, 344
hybrid, 353
organic, 359
performance comparison, 364
Philips L-prize lamp, 350, 354
relative merits, 340
retrofit lamps, 348
retrofit lamps, adjustable CCT, 352
retrofit lamps, adjustable color, 355, 356
retrofit lamps, adjustable hue, 355
salutary features, 342
surface-mounted devices, 322
traditional technologies, 340
white, 309
YAG:Ce3+ phosphor, 322

Lens
aberrations, 16
aspheric, 14, 16
biconcave, 16
biconvex, 14, 16, 40
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compound, 16
concave, 16
converging, 16
convex, 16
cylindrical, 16
diverging, 16
dome, 208, 323, 346
double-convex, 14
focal length, 15, 16, 39, 40
focusing, 41
Fresnel, 17
Fresnel biprism, 17
glass, 14
graded-index, 18, 42
imaging, 16, 41
LED, 208
meniscus, 16
plano-concave, 16
plano-convex, 16, 39
simple, 16
spherical, 14, 40
thin, 15

Light, speed of, 2, 26, 45, 63
Light-emitting diodes (LEDs), 199–233

bioinspired, 204
blue, 213
characteristics, 200–210
color-mixing LED, 345
color-mixing package, 345
current modulationi format, 216
device structures, 210
die geometries, 204
DIP, 208, 322, 350
drive circuitry, 216
dual in-line, 208, 322, 350
edge-emitting, 214
energy-conversion efficiency, 206
external efficiency, 205
extraction efficiency, 202
green, 213
green gap, 213
illumination applications, 339
indication applications, 200
internal efficiency, 201, 206
light–current curve, 207
materials, 210
optics, 13
optics for, 208
orange, 209, 212, 214, 338
organic, 220
output photon flux, 205
overall efficiency, 206
perovskite, 223
phosphor-conversion LED, 322
phosphor-conversion package, 322
photonic-crystal, 205
plasmonic, 202
power-conversion efficiency, 206
quantum-dot, 218

red, 209, 212, 214, 338
resonant-cavity, 206
response time, 209
responsivity, 207
roughened-surface, 205
spatial pattern, 208
spectral distribution, 208
surface-emitting, 214
through-hole, 322
trapping of light, 10
violet, 213
wall-plug efficiency, 206
WOLED, 222
YAG:Ce3+ phosphor, 322
yellow, 209, 212, 214, 338

Line broadening
Gaussian, 375
homogeneous, 110
inhomogeneous, 110
lifetime, 108, 110
lineshape function, 99, 103
Lorentzian, 108–110, 374
spectral packet, 110

Linewidth, 57, 99
relation to coherence time, 58

Losev, Oleg V., 169
Luminance, 255, 281
Luminescence

electroluminescence, 182
fluorescence, 221
phosphorescence, 221

Luminous
efficacy, 254, 360, 364
efficiency, 254
flux, 253, 254, 360, 364
intensity, 208, 253
wall-plug efficacy, 364

Magnification
lens, 16
spherical boundary, 13
spherical mirror, 7

Maxwell, James Clerk, 24
Maxwell’s equations, 44, 46, 50

Mean, 76, 372
Medium

homogeneous, 3, 26
inhomogeneous, 2, 27, 47

Metals
band structure, 128

Metameric white light, 273
Miniband, 160, 193
Mirror

collimating, 5
elliptical, 5
focal length, 5–7
focal point, 5
focusing, 5, 7
imaging, 5, 7
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paraboloidal, 5, 6
planar, 5, 35
radius of curvature, 6
reflection, 3
spherical, 5

Multiquantum
well, 159

Nakamura, Shuji, 306
Negative-binomial distribution, 95, 121

mean photon number, 95
photon-number variance, 96

Newton, Isaac, 1
laws of motion, 87

Neyman Type-A distribution, 310
Nobel laureates, 125, 139, 162, 306, 307, 337

Nobel lectures, 167, 168, 233, 337
Novoselov, Konstantin, 139

Optical coherence tomography, 243
Optical materials

2D, 140
TMDs, 140

Optical pathlength, 2, 4, 36
Optics

aspheric, 14
classical, 25
electromagnetic, 44
electroweak theory, 62
first-order, 6
Gaussian, 6
geometrical, 2
nonclassical, 25
photon, 62
quantum, 62
ray, 2
statistical, 51
theories of, 62
wave, 26

Organic semiconductors, 164

Paraboloidal wave, 32, 48
Paraxial

approximation, 6
Helmholtz equation, 33
wave, 33, 48

Parseval’s theorem, 370, 374
Pauli exclusion principle, 91, 131
Periodic table

semiconductors, 134
Phonon, 134
Phosphorescence, 221
Photoluminescence

quantum dots, 163
Photometry

color-matching function, 279
current luminous efficacy, 260
illuminance, 253, 255
luminance, 253, 255, 281

luminous efficacy, 254, 258
luminous efficiency, 254, 259
luminous energy, 253
luminous flux, 253, 254
luminous intensity, 208, 253, 254
photopic luminous efficiency function, 245, 253

Photon, 63
antibunching, 193
at a beamsplitter, 67
energy, 63, 65, 69
frequency, 65
imaging, 67
interactions with atom, 96
mode, 64, 66, 69
momentum, 63, 69
monochromatic, 68, 69
orbital angular momentum, 63
period, 66
polarization, 69
polychromatic, 68
position, 66
position and time, 68, 69
rest mass, 63
spin angular momentum, 63, 69
time, 67
wave-particle duality, 66
wavelength, 66
wavelike character, 63
wavepacket, 68

Photon streams, 69
absorption, 103, 107
energy spectral density, 72
intensity spectral density, 72
photon flux, 71, 73
photon number, 72, 73
photon-flux density, 71, 73
photon-number statistics, 75
power spectral density, 72
randomly partitioned, 79
randomness, 73
registration locations, 74
registration times, 74
spectral photon flux, 72
spectral photon number, 72
spectral photon-flux density, 72
stimulated emission, 103, 107
time-varying light, 73

Photon-number distribution
Bernoulli, 79
binomial, 80
Bose–Einstein, 79, 93
doubly stochastic, 78
geometric, 79, 93
negative-binomial, 95, 121
Neyman Type-A, 310
Poisson, 75

Photon-number statistics, 75
chi-square integrated intensity, 121
coherent light, 75
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count signal-to-noise ratio, 77
count standard deviation, 76
counting distribution, 75
counting statistics, 76
counting time, 75
doubly stochastic, 78, 121
exponential integrated intensity, 79
luminescence, 310
mean photon number, 75, 76, 78
partially coherent light, 78, 121
photon-number distribution, 75
photon-number variance, 76, 78
Poisson, 75
Poisson transform, 78
randomly deleted, 79
randomly partitioned, 79, 80
thermal light, multimode, 95, 121
thermal light, single-mode, 92

Photonic
integrated circuits, 229

Photopic luminous efficiency function, 245, 253
Planck, Max, 61

blackbody radiation, 111, 118
Planck spectrum, 63, 85, 118
Planck’s constant, 65, 156, 373
Planckian locus, 291, 292
radiation law, 113, 118
weak illumination image, 70

Plane wave, 30, 47
Poisson distribution, 75

count signal-to-noise ratio, 77
derivation, 76
mean photon number, 77
normalization, 77
photon-number variance, 77
randomly partitioned, 81

Polarization, 49, 50
Poynting vector, 47
Prism, 10, 38

apex angle, 10
axicon, 39
biprism, 11, 39
deflection angle, 10
Fresnel biprism, 11, 39
thin, 10

Quantum dots, 162
artificial atoms, 162
core–shell, 164, 217
excitons, 163
fabrication, 162
photoluminescence, 163
self-assembly, 162
silicon photonics, 228
single-photon emitter, 193
synthesis, 162

Quantum mechanics, 89, 373
Quantum well, 156–160
Quantum wire, 160

Quantum-confined
excitons, 193
structures, 156–166

Quist, Robert J., 198
Quist, Theodore, 198

Radiance, 252
Radiometry

irradiance, 26, 253
radiance, 253
radiant energy, 253
radiant flux, 253
radiant intensity, 253

Raman
silicon laser, 229

Random waves, see Waves, random
Rays, 1–23

caustic, 6, 16
convergence, 17
divergence, 17
paraxial, 6
scattered, 17
tracing, 8

Reflectance
power, 49
role of polarization, 49

Reflection
critical angle, 9, 19
law of, 3
planar boundary, 4, 35
spherical boundary, 12
total internal, 9–11, 13, 18, 49

Refraction
dielectric boundary, 13
external, 8
internal, 8
planar boundary, 4, 8, 35
Snell’s law, 4, 9, 12
spherical boundary, 12

Refractive index, 2, 26, 45
Responsivity

LED, 207
Retina

OCT imaging, 243
Round, Henry J., 169

Scalar waves, see Waves, scalar
Sellmeier equation, 194
Semiconductors

k-selection rule, 174
p–n junction, 152
p–n junction, biased, 153
absorption, 171, 181
AlGaAs, 212
AlInGaN, 213
AlInGaP, 212
allotropes, 139
Auger recombination, 148
bandgap energy, 128, 130, 135
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bandgap wavelength, 135, 172
Brillouin zone, 132
bulk, 129, 170–182
carborundum, 135
carrier concentrations, 144, 147
carrier generation, 148
carrier injection, 149
carrier recombination, 148
carriers, 131
degenerate, 146
density of states, 141
density of states, joint, 174
depletion layer, 153
direct-bandgap, 134
dopants, 138
effective mass, 133
electroluminescence, 185–192
elemental, 135
energy bands, 128, 129
energy–momentum relations, 131
excitons, 171, 221, 222
extrinsic, 138
Fermi function, 143
Fermi inversion factor, 181
fundamentals, 125–166
GaAs, 211
GaAsP, 211
GaAsP:N, 212
gain coefficient, 180
GaN, 213
heterojunction, 155
II–VI materials, 137
III–nitride materials, 135, 213–214
III–V materials, 135–136, 210–214
indirect-bandgap, 134
InGaN, 213
internal efficiency, 151
intrinsic, 138
Kronig–Penney model, 130
law of mass action, 146
minibands, 160, 193
multiquantum-well, 159
nanocrystals, 162
nonradiative recombination, 148
occupancy probabilities, 143, 176
organic, 164
periodic table, 134
quantum dots, 162
quantum wells, 156–160
quantum wires, 160
quantum-confined, 156, 192
quasi-equilibrium, 147
recombination coefficient, 148
recombination lifetime, 149
refractive index, 194
Shockley equation, 154
SiC, 135
silicon photonics, 228
superlattice, 160, 193

thermalization, 171, 175
transition probabilities, 177

Semimetals
band structure, 128, 137, 138
graphene, 140
massless Dirac fermions, 140

Shockley, William B., 125
Silicon photonics, 228

direct-mounting integration, 229
flip-chip integration, 229
heteroepitaxy, 229
heterogeneous integration, 229
hybrid approach, 229
PIC, 229

Snell’s law, 4, 36
paraxial, 9

Solids
covalent, 127
ionic, 127
metallic, 127
molecular, 127
van der Waals, 127, 141

Spatial
LED emission pattern, 208

Spectral density, 55
Spectral width, see Linewidth
Spectrum, see Spectral density
Spherical

boundary, imaging, 12
wave, 31, 48

Spin
-allowed transitions, 221
-forbidden transitions, 221
-orbit coupling, 222
electron, 142
photon, 142
singlet state, 221
triplet state, 221

Spontaneous emission, 96
frequency distribution, 103
into a band of frequencies, 178
into a band of modes, 107
into a prescribed mode, 97, 107
into all modes, 102
into any mode, 99, 107
lifetime, 102, 103
lifetime, effective, 104
occupancy probability, 176
probability density, 97, 102
Purcell factor, 194, 202, 206
semiconductors, 173
spectral density, 179
transition rate, 179

Standard deviation, 76, 372
Stefan–Boltzmann law

blackbody radiation, 116
graybody radiation, 117
Stefan–Boltzmann constant, 116
thermal radiation, 119
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Stimulated emission, 98
broadband light, 104, 107
occupancy probability, 176
photon stream, 103, 107
polychromatic narrowband light, 107
probability density, 98, 107, 178
semiconductors, 173
semiconductors, indirect-gap, 175
transition rate, 179

Superlattice, 160, 193
Swan, Joseph, 85

Tail
band, 146
Fermi, 144
Urbach, 182

Temperature
absolute zero, 86
blackbody spectrum, 114
Celsius scale, 86
color, 291
correlated color, 296, 299
examples, 86, 87
Fahrenheit scale, 86
ideal gas law, 87
internal energy, 87, 88
Kelvin scale, 86
kinetic theory of gases, 88
thermographic images, 120

Temporal coherence function, 53
Thermal

equilibrium, 87
light, 116, 119
mode average energy, 95, 113
quasi-equilibrium, 87
radiation, 116, 119

Thermography, 119
applications, 120
hyperspectral, 120
thermal camera, 119

Transition
excitonic, 171, 193
free-carrier, 171
impurity-to-band, 170
interband, 170, 193
intersubband, 193
intraband, 171
miniband, 193
phonon, 171
strength, 99, 102

Transmittance
axicon, 39
biconvex lens, 40
biprism, 39
diffraction grating, 42
graded-index lens, 42
plano-convex lens, 39
power, 49
prism, 38

spherical lens, 40
transparent plate, 36

Transparent plate
arbitrary, 36
fixed thickness, 36
varying refractive index, 37
varying thickness, 38

Uncertainty relation
position–momentum, 69, 194, 373
position–spatial-frequency, 373
time–angular-frequency, 68, 373
time–energy, 68, 69, 373
time–frequency, 68, 372

Units, radiometric and photometric, 252
current luminous efficacy, 260
illuminance, 253, 255
irradiance, 26, 253
luminance, 253, 255, 281
luminous efficacy, 254, 258
luminous efficiency, 254, 259
luminous energy, 253
luminous flux, 253, 254
luminous intensity, 208, 253
radiance, 253
radiant energy, 253
radiant flux, 253
radiant intensity, 253

Vacuum field, see Zero-point energy
Velocity

phase, 31
von Helmholtz, Hermann, 234

Wavefunction
electron, 131

Wavelength, 31
bandgap, 135, 172
de Broglie, 156
infrared, 34, 46
optical, 34, 46
ultraviolet, 34, 46
visible, 34, 46

Waves, 24–60
Waves, electromagnetic, 44

boundary counditions, 45
cavity, 63
complex envelope, 47
dipole, 48
electric permittivity, 45
elementary, 47
energy density, 45
energy in a mode, 64
Helmholtz equation, 47
impedance, 48
intensity, 45, 47, 67, 73
magnetic permeability, 45
Maxwell’s equations, 44, 46, 50
monochromatic, 46
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paraboloidal, 48
paraxial, 48
plane, 47
power, 45, 47
power reflectance, 49
Poynting vector, 45
relation to scalar waves, 50
spherical, 48
superposition, 45
TEM, 47
wave equation, 44, 50

Waves, random, 51
aurocorrelation function, 53
coherence length, 55
coherence time, 54
degree of temporal coherence, 54
effective coherence, 55
ensemble average, 52
ergodic process, 53
instantaneous intensity, 52
intensity, 52
linewidth, 57
power spectral density, 55
random intensity, 52
spectral density, 55
spectral radiant flux, 55
spectral width, 57
spectrum, 55
stationarity, 52
temporal coherence function, 53
wavelength spectral density, 55
Wiener–Khinchin theorem, 56

Waves, scalar, 26
coherent, 28
complex amplitude, 28
complex envelope, 30
complex wavefunction, 28
deterministic, 28
elementary, 30
energy, 26, 27
Helmholtz equation, 29
intensity, 26, 29
monochromatic, 27
paraboloidal, 32
paraxial, 33
plane, 30
power, 26, 27
relation to electromagnetic waves, 50
spherical, 31
spherical-wave wavefunction, 32
superposition, 26
wave equation, 26, 28
wavefronts, 29
wavefunction, 26, 27
wavenumber, 31
wavevector, 30

Width of a function
1/e, 374
1/

√
2, 374

3-dB, 374
duration–bandwidth reciprocity, 372
FWHM, 374
measures of, 372
positive-frequency, 374
power-equivalent, 373
power-RMS, 372
RMS, 372
spectral, 372
temporal, 372

Wien’s law
blackbody radiation, 116
graybody radiation, 118
Wien’s constant, 116

Wiener–Khinchin theorem, 56
WOLED, 222
Wright, W. David, 265
Wärmestrahlung, 117

Young, Thomas, 234

Zero-point energy, 65, 93, 98
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