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Interevent-time statistics for shot-noise-driven self-exciting
point processes in photon detection
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Probability densities for interevent time are obtained for a doubly stochastic Poisson point process (DSPP) in the
presence of self-excitation. The DSPP is assumed to have a stochastic rate that is a filtered Poisson point process
(shot noise). The model of a Poisson process driving another Poisson process produces a pulse-bunching effect.
Self-excitation (relative refractoriness) results in a deficit of short time intervals. Both effects are observed in
many applications of optical detection. The model is applicable to the detection of fluorescence or scintillation
generated by ionizing radiation in a photomultiplier tube. It is also used successfully to fit the maintained dis-
charge interspike-interval histograms recorded by Barlow, Levick, and Yoon [Vision Res. 11, Suppl. 3, 87-101
(1971)] for a cat's on-center retinal ganglion cell in darkness.

1. INTRODUCTION

The Poisson point process and its variations are useful tools
for studying discrete phenomena in many scientific fields.
One generalization of the simplest case (the homogeneous
Poisson point process, HPP) that has been studied extensively
is the doubly stochastic Poisson point process (DSPP).' This
was first examined by Cox,2 and the designation DSPP was
introduced to emphasize that two kinds of randomness take
place: randomness associated with the Poisson point process
itself and an independent randomness associated with its rate.
Much of the recent development of the properties of the
DSPP has been in the context of optics.1"3

A special case of the DSPP obtains when the stochastic rate
is shot noise,4' 5 and this is designated as a shot-noise-driven
doubly stochastic Poisson point process (SNDP). Bartlett
has shown that this latter process is a particular Neyman-
Scott cluster process.4 We have recently studied this process
in detail, obtaining the single and multifold counting and time
statistics.6 The results have been applied to problems in
several areas, including scintillation detection, cathodolum-
inescence, and radiation-induced noise in photomultiplier
tubes. 6

Another useful modification of the HPP is the self-exciting
Poisson point process, which permits aftereffects that are
triggered by past events.",7 In their most general form, the
future evolution of self-exciting point processes depends on
the occurrence times of all past events as well as on their total
number. A special but useful case occurs when the process
has limited memory; in particular, the interevent times of a
homogeneous self-exciting Poisson point process with a
memory that reaches back exactly one pulse form a sequence
of statistically independent random variables (renewal pro-
cess).' An extensive body of literature exists on dead-time-
modified counters as examples of self-exciting and renewal
point processes." 8' 3 In particular, the interevent-time sta-
tistics for a homogeneous one-memory renewal process with

gradual recovery have been obtained for a number of cases of
interest in visual information processing.'3

In this paper we combine the above-described modifications
of the HPP in one mathematical model and obtain the in-
terevent-time statistics for a doubly stochastic self-exciting
Poisson point process. More specifically, we treat the SNDP
with one-memory recovery; this is a generalized renewal
process. In Section 2 we present an expression for the prob-
ability density of the time interval between two consecutive
events. This is specialized in Section 3 to the case of expo-
nentially decaying shot-noise pulses and sudden recovery, and
the results are related to the detection of ionizing radiation
by a scintillation detector affected by fixed dead time. The
case of gradual exponential recovery is treated in Section 4,
in which we also provide a parametric study of the interev-
ent-time probability density. In Section 5, the theoretical
results of Section 4 are applied to the experimental data of
Barlow, Levick, amd Yoon'4 for the interspike time-interval
histogram recorded from the cat's on-center retinal ganglion
cell in darkness.

2. INTEREVENT-TIME STATISTICS

As indicated above, the SNDP is a doubly stochastic Poisson
point process whose stochastic rate is shot noise. Self-exci-
tation may be viewed as a feedback process that, whenever an
event occurs, modifies the rate of events by a specified time
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Fig. 1. Schematic representation of the shot-noise-driven doubly
stochastic Poisson point process (SNDP) with self-excitation.
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function (e.g., recovery) following the occurrence of that event.
The process studied here is assumed to be one-memory, so
that the occurrence of an event always resets this function. A
schematic representation is provided in Fig. 1.

A shot-noise process M(t), obtained by passing an HPP of
rate A through a linear filter with a nonnegative impulse-
response function h(t), provides the stochastic rate that drives
a second Poisson point process. This second process is one-
memory self-exciting, so that, whenever an event occurs at
time ti, the rate of the process is multiplied by a function /(t
- to) for all t > ti. If the function :(t) increases from 0 to 1
in a time that is short in comparison with the average intere-
vent time, the effect of a pulse occurrence on subsequent oc-
currences is not long lasting, and the one-memory restriction
is not critical. An important special case is that in which

fl(t) =0 t < Td

=1 t >Td (1)

It corresponds to a nonparalyzable dead time Td that follows
every event and during which no other event can occur.

In the following we shall determine the probability density
for the time between two consecutive events, P(r), for the
SNDP with self-excitation.

For a DSPP of stochastic rate X(t) (in the absence of self-
excitation), P(r) is given by'5' 3

P(T) = M(O( T)expf -S X(t)dtl)/ (X(O)). (2)

The numerator represents the joint probability density of the
occurrence of an event at t = 0, an event at t = r, and no events
between. The denominator represents the probability den-
sity of an event occurring at t = 0. The operation ( -) indi-
cates an ensemble average over the stochastic rate X(t).

In the presence of self-excitation described by the function
1(t), Eq. (2) must be modified by replacing X(t) by X(t)3(t)
(see Fig. 1). Thus

P(r) = (X(0)X(T)0(r)exp- f X(t)(t)dt])/ (X(O)),

(3)

where the numerator and the denominator have the same
meaning as in Eq. (2). Now it remains to evaluate Eq. (3)
when X(t) is a shot-noise process.

Let us define two additional shot-noise processes,

MO(t) = X(t)1(t) (4)

and

= t
X2(0 = fo X(09)(t')dt'. (5)

The three shot-noise processes X(t), Xl(t), and X2 (t) are ob-
tained from the same HPP of rate A by the use of different
filters; these are, respectively, a time-invariant linear filter
h(t), a time-variant linear filter of impulse response

hl(t,t') = 1(t)h(t - t'), (6)

and a time-variant linear filter of impulse response

h2 (t,t') = f 3 O(x)h(x - t')dx. (7)

We can now write Eq. (3) in the form

P(r) = (X(O)X\(r)exp[-X 2 (r)])/(X(O))-

By introducing the moment-generating function (mfg)

Q(S,S1,S2) = (exp[-sX(O) - sX,(r) -2X2(T)]),

we can see that

P('r) = (X(O)) baa -8 Q(S,S1,S21 O2l

But the mgf of shot noise is known to be"6

Q(s,s1,s2) = exp(S f exp[-sh(-t) - slhl,(,t)

-s 2h2(r,t)] -1dt)

(8)

(9)

(10)

(11)

so that it remains to take the derivatives in Eq. (10) and obtain
an expression for P(r). By the use of Eqs. (6), (7), (10), and
(11) and the fact that

(XO)) = Aa, (12)

where the multiplication parameter a is represented by the
area under the impulse function response

a = I h(t)dt,

we obtain

P(r) = 1(r)[if h(t)h(r + t)q(r,t)dt
a o

+ tt 3' h(t)k(rt)dt So h(r + t)4(rt)dtJ

X exp t J [k(r,t) - 1]dtlI

with

(13)

(14)

0(r,t) = exp[-h 2(r,-t)] = exp f- 3 (x)h(x + t)dx} -

(15)

This is an explicit formula for P(r) as a function of a, h (t), and
B(t).

We note that P(T) contains a multiplicative factor :(r), so
that, in the region in which 1(r) is zero, P(r) must also be zero.
This is, of course, to be expected. We note also that, for 13(r)
- 1, the expression for P(r) reduces to that previously derived
for the (non-self-exciting) SNDP.6

3. INTEREVENT-TIME STATISTICS FOR
EXPONENTIAL SHOT-NOISE PULSES AND
FIXED-DEAD-TIME RECOVERY

We consider an example in which the primary Poisson pulses
are converted to exponentially decaying shot-noise pulses,
which in turn drive the second Poisson generator (see Fig. 1).
In this case, the linear-filter impulse-response function h(t)
is described by

h(t) = (a/TP)exp(-t/rp) t > 0
=0 t <0, (16)
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so that rp is the lifetime of the primary shot-noise pulses.
The system is assumed to recovery instantaneously after a
fixed dead-time period Td so that Eq. (1) for /3(t) is satis-
fied.

This model can be used to describe the interevent-time
density function for optical fluorescence or scintillation'7

generated by ionizing radiation in a photomultiplier tube (in
conjunction with its associated electronics and overall system
dead time Td). Conditions for the validity of the model are
that the incident primary ionizing particles (e.g., gamma rays)
be represented as an HPP, that each event produce an expo-
nentially decaying impulse-response function'8 that governs
the rate of production of Poisson optical photons, and that the
system have a rectangular recovery with fixed dead time.

In certain applications in which we observe the interevent
statistics of an optical signal by using a photomultiplier tube,
e.g., in high-altitude astronomy or in space, the distributions
discussed above may be characteristic of the noise rather than
of the signal. Viehmann and Eubanks19,20 have discussed
sources of noise in photomultiplier tubes in the radiation
environment of space. Pulse-counting distributions when
dead time is negligible have been discussed previously.6 ,21

The above-described self-exciting point process is charac-
terized completely by four parameters: y, the rate of the
primary point process; a, the multiplication parameter; Td,
the dead time; and rp, the lifetime of the primary shot-noise
pulses. In order to understand the dependence of the density
P(r) on these parameters, we introduce the parameter

(-r) = 1/,a,

4. INTEREVENT-TIME STATISTICS FOR
EXPONENTIAL SHOT-NOISE PULSES AND
GRADUAL EXPONENTIAL RECOVERY

We again consider an example in which the shot-noise pulses
are time-decaying exponentials as described by Eq. (16), but
we now choose the recovery function /(t) to be exponentially
increasing in accordance with

/3(t) = 1-exp(-t/Td) t > 0
=0 t<0. (27)

The resulting interevent-time probability density is again
completely characterized by the four parameters Td, rp, (T),

and a, but rd now represents the recovery (or sick) time rather
than the dead time as in the previous section. Substituting
Eqs. (16), (17), and (27) into Eqs. (14) and (15) leads again to
an expression of the form

P(r) = /(r)[C(r) + D(r)E(r)Iexp[F(r)I,

but where now

/3(r) = 1-exp(-r/Td),

and

C(Tr) = -e-71/Tp E(1 AT
TP k=O k!(k + 2)

D(T) = [1 - eA(T)]IA(T),

E(r) = D(r)erT/Tp + -e.T/1p exp -+ G(t)Idt,
Tp O ITp

(28)

(29)

(30)

(31)

(17)

which represents the mean interevent time in the absence of
self-excitation. There is also no loss of generality in assuming
that

(r) = 1, (18)

(32)

F ((r)-=-Zr ( E --+ --- exp[G(t)]dt,
a k=1 k!k a a O

(33)

in which case Td, rp, and T are measured in units of (T). We
now obtain the dependence of P(r) on Td, Tp, and a. Sub-
stituting Eqs. (1), (16), and (17) into Eqs. (14) and (15) leads
to an expression of the form

P(r) = /3(T)[C(T) + D(r)E(r)]exp[F(T)], (1'

where

/(r) = 0
= 1

r < Id
T > Td,

C(T) = -t-re-' j (-l)k+lakrk(l - e-7')k/k!(k + 2),
Tp k=O

(2:

D(T) = exp[ar(1 - e-r')]1[ar(1 - eT')], (2'

E(T) = -exp(-aeT') - exp[a(1 - e-r')]/[a(1 -e-T)],a
(2:

F(r) = [(1 - e-)T' + (1 + e-a) klk (1 -e - )],

(2,

T' = (T - d)/Tp, (2Z

r = exp(-Td/Tp). (21

a' p -e/Td + f a P- A(),t/pG(t) - Td 7 A +
rTP + -rd I + A+ ]et/rI

(34)

A-) = a Td [e-T(7p+Td)/rpTd - 1] + 1 - e-/P} (35)
Tp + Td

In Fig. 2 we provide a graphical parametric study of the
normalized probability density (r)P(r) versus the normalized
interevent time ri(T). Three curves are presented in each
of Figs. 2(a)-(c) with a fixed at values 0.1, 2, and 10, respec-

) tively, and rp fixed at 1 in all cases; the normalized recovery
time T

d varies in each figure between 0.01 and 0.25. By ex-
amining Figs. 2(a), 2(b), and 2(c), it is evident that increasing
T d decreases the initial slope and the peak height of the den-

1) sity function, thereby providing for a slower decay of the tail.
The effect of an increase in the multiplication parameter a
is evident in the progression of the shape of the densities from
Fig. 2(a) to Fig. 2(c). The initial slope and peak height in-
crease with increasing a, and the deviation from exponential
form (which is a straight line on this logarithmic plot) becomes

!3) more pronounced. (For sufficiently large T, however, all the
probability densities have an exponential tail.)

The effect of the lifetime of the primary shot-noise pulses,
Tp, is illustrated in Fig. 2(d), in which a and T d are fixed at 2

'4) and 0.1, respectively, and the normalized lifetime Tp varies
between 0.1 and 1. An increase in rT results in a decrease of
the peak height. With other parameters fixed, a smaller value

!6) of rp corresponds to a sharper deviation from exponential,
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Fig. 2. (a) Interevent-time (pulse-interval) probability density functions for an SNDP with self-excitation. The impulse response of the
shot-noise filter is exponential with time constant p = 1 and the multiplication parameter a = 0.1. The self-excitation recovery function is
exponential with time constants Td = 0.01, 0.1, and 0.25, as indicated. The mean interevent time in the absence of self-excitation is (r) = 1.
(b) As in (a) with a = 2. (c) As in (a) and (b) with a = 10. (d) As in (a)-(c) with a = 2, rd = 0.1, and p = 0.1, 0.5, and 1.0, as indicated.

representing enhanced clustering or bunching of events.
It is evident that there is substantial interplay of the various

parameters in forging the ultimate shape of the interevent-
time density function. (It must be kept in mind that all the
curves presented in Fig. 2 have a mean interevent time in the
absence of self-excitation that is fixed at ('T) = 1 SO that, e.g.,
an increase of a means a decrease of p.) Nevertheless, the
parametric study presented here can provide guidance in
choosing parameters to fit a particular set of data; one example
is provided in the following section, in which we fit an exper-
imental interspike time-interval histogram for the neural
discharge in a cat's retinal ganglion cell.

5. APPLICATION OF INTEREVENT-TIME
STATISTICS TO THE MAINTAINED
DISCHARGE IN THE CAT RETINAL
GANGLION CELL

In 1971, Barlow, Levick, and Yoon14 carried out a fascinating
series of experiments in which they obtained the pulse-num-
ber distributions for several dark-adapted on-center cat ret-
inal ganglion cells. For one on-center brisk-sustained unit

(BLF-1), a histogram for the time between successive spikes
was also recorded in darkness. They concluded from their
study that single absorbed quanta can cause multiple impulses
at the ganglion cell, and that dark-light events behave like
quantal absorptions in this respect. Indeed, they point out
that the statistical properties of the maintained discharge are
similar in darkness and for light-evoked responses, and they
indicate that the discharge behaves as though it results from
random unitary events in the receptors, each causing several
impulses. They also observe that the deficit of short time
intervals near r = 0 may be the result of relative refractori-
ness.

Based on this work, we have constructed a model for the
generation of the point-process neural discharge in an on-
center retinal ganglion cell (see Fig. 3). Poisson photons, or
dark light (rate g), excite a complex network of rods, bipolars,
and other cells, which we brashly represent in terms of a lin-
ear-filter impulse-response function h(t).2 2 This produces
a shot-noise process denoted by A(t) that, after a modification
to be discussed below, provides the time-varying driving rate
for the ganglion cell. Our model presupposes that the gan-
glion cell would, in the absence of all fluctuations of X1 (t),
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Fig. 3. Model for the generation of the point-process neural dis-
charge in the on-center retinal ganglion cell. Observe the relation
to Fig. 1, which is the mathematical model studied here.

INTEREVENT TIME T/T

Fig. 4. Maintained discharge interspike-interval histogram recorded
by Barlow, Levick, and Yoon14 for dark-adapted on-center cat retinal
ganglion cell in darkness (unit BLF-1). The mean time interval is
54.25 msec. Scales are normalized such thatF = 1. Theoretical fit
(solid curve) is based on an exponential shot-noise filter impulse-
response function with normalized time constant rp/r = 0.5 (i-p - 27
msec), an exponential recovery function with normalized time con-
stant rd /i = 0.1 (Td - 5.4 msec), and a multiplication parameter a
= 2.

produce a pure Poisson discharge. The modification alluded
to above is relative refractoriness that, when a neural spike
is generated, depresses the excitability of the cell. The re-
covery of the neuron is, again, represented in terms of a lin-
ear-filter impulse-response function $l(t) that multiplies the
rate X(t) produced by the network before the ganglion cell.
The output of the system represents the neural-discharge
point process.

If we compare Figs. 1 and 3, we see immediately that there
is an identity between them, and this is, of course, no accident.
We posit that the ganglion-cell discharge point process be
modeled as a self-exciting one-memory SNDP. We now
proceed to relate theory and experiment as well as we can with
the limited data available. The interevent-time histogram
is used as the point of contact.

The maintained-discharge interspike-interval histogram
for unit BLF-1 is presented in Fig. 4 with a bin width of 1
msec. Figure 4 differs slightly from Fig. 5(A) in the paper by
Barlow, Levick, and Yoon,14 in which pairs of adjacent
channels were combined before plotting, so that the bin width
there is 2 msec.2 3 The two presentations also differ (insub-
stantially) in that the histogram in Fig. 4 has been normalized
to the experimental mean time interval T = 54.25 msec. This
value will differ only slightly from the mean interevent time
in the absence of self-excitation.

The theoretical interevent-time density function for ex-
ponential shot-noise pulses and gradual exponential recovery
expressed in Eqs. (28)-(35) is graphed as the solid curve in Fig.
4. With the benefit of the parametric study conducted in
Section 4, we were able to obtain a good fit with relative ease.
This has enabled us to extract values for the three normalized
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parameters: lrd/T = 0.1, rp/F = 0.5, and a = 2. Removing the
normalization, we determine that, for unit BLF-1 in darkness,
the recovery time 'rd is -5.4 msec, the shot-noise decay time
,rp is -27 msec, and the multiplication parameter a is -2. All
these values are reasonable. (It is, perhaps, worth mentioning
that the maintained discharge recorded from the lobula
complex of the blowfly exhibits very similar behavior. 24 )

There is a point of connection with the pulse-number dis-
tributions analyzed by Barlow, Levick, and Yoon14 We have
previously shown that, when the counting time is much greater
than the decay time of the shot-noise filter, the pulse-number
distribution for an SNDP without self-excitation (refracto-
riness) reduces to the Neyman Type-A distribution6'21 for
arbitrary h(t). The form of the mean and variance for the
Neyman Type-A is precisely that used by Barlow, Levick, and
Yoon14 in one of their analyses of the pulse-number data.
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