
/y \ FIG. 6. The solid angle sub-
tended by an infinite truncated
cone.

the point of observation moves, but the ellipse moves and
changes in size and shape. Clearly the directions of J derived
from such a source could not coincide with those from the
semi-infinite line, since all points along the projection of the
line are equally weighted, whereas this is not the case for
points along the line of symmetry in Fig. 6.

Thus, the lines of flow of J for a truncated cone will not
coincide with the usual mirror shapes for a 3D compound
parabolic concentrator; this is one reason why this system
cannot be ideal, since we know that the parabolic shape is
essential to control the meridian rays properly.

Furthermore, we can see that the outline in Fig. 6 does not
have a second plane of symmetry at right angles to that shown.
This means that, even if we were to determine the lines of flow
for the truncated cone, the condition of detailed balance of the
rays (Sec. III) at a mirror along the flow lines could not be
fulfilled. Thus, the flow at other regions would be perturbed,
and the concentrators would not be ideal.

We conclude from this argument that a rotationally sym-
metric concentrator of compound parabolic concentrator type
cannot have maximum theoretical concentration ratio.

FIG. 7. The light cone as a sur-
B face lying in the lines of flow from

a sphere.

w/A

VI. THE LIGHT CONE

As a final example we show how the light cone can be de-
rived from the lines of flow of the vector flux. We take as
starting point a spherical Lambertian radiator, as in Fig. 7.
From symmetry, the lines of flow are straight lines passing
through the center of the sphere and, also from symmetry, the
rays are in detailed balance for any surface element with flow
lines lying in it. Thus any conical surface with the center of
the sphere as vertex forms an ideal concentrator; however, the
source here is virtual and it is bounded by the sphere. Thus
the concentrator takes all rays through points in the entry
aperture AA' which are aimed at points on the sphere and
reflects them to points inside the exit aperture BB'. The right
circular cone is a special case among all these possible
cones.
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Statistical properties of counting distributions for intensity-
modulated sources
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Statistical properties such as the cumulants, and the central, factorial, and ordinary moments are
obtained for photocounting distributions when the incident radiation is intensity-modulated with
arbitrary statistics. The results are applied in some detail to the cases of triangular, sinusoidal, and
square-wave modulation of multimode superposed coherent and chaotic radiation. The coefficient of
variation, skewness, and kurtosis are obtained as a function of modulation depth. Comparison is made
with experimental data in the cases of triangular and sinusoidal modulation of a laser source.

INTRODUCTION

The great variety of photocounting distributions that can
be generated with intensity-modulated radiation is by now
well known.'1-5 It is evident that modulation broadens these
distributions; this can be interpreted as an accentuation of
photon bunching since both low- and high-count probabilities
are increased at the expense of counts near the mean. Indeed,

the extent of the broadening appears to depend strongly on
the intensity distribution of the underlying radiation.6
However, the counting distributions for intensity-modulated
radiation can be characterized by a number of widely recog-
nized and accepted statistical parameters, which have thus
far received little attention.

Such modulation is sometimes deliberate, but more often
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is unavoidable. It may be imparted to the underlying radia-
tion by mechanisms as diverse as transmission through a
stochastic channel (e.g., the turbulent atmosphere7'9 ) and
power-supply ripple. 6 It is also important when the source
is pulsed (e.g., exponentially decaying14 ) rather than contin-
uous. The analysis presented here applies also to nuclear
counting5 and neural counting.'6 It will generally not be
applicable in the presence of dead time.17

In this paper detailed statistical properties such as the cu-
mulants, and the central, factorial, and ordinary moments are
obtained for counting distributions when the incident radia-
tion is intensity modulated with arbitrary statistics. Our
calculations are valid for the case where the integrated in-
tensity is separable into a product of modulation-dependent
and modulation-independent components. The results are
applied to the cases of triangular, sinusoidal, and square-wave
modulation of superposed coherent and chaotic radiation.
The coefficient of variation, skewness, and kurtosis are ob-
tained as a function of modulation depth. Comparison is
made with experimental data in the cases of triangular and
sinusoidal modulation of a laser source.

THEORY

The intensity is assumed to be expressible as the product
of two independent, stationary, ergodic random processes

I(t) = m(t)Io(t), (1)

where m (t) represents the modulation (with correlation time
Tm) and Io(t) represents the intensity of the underlying ra-
diation (with coherence time To). The integrated intensity

W = f 1m(t')Io(t') dt' (2)

is independent of t for the stationary, ergodic processes con-
sidered here. The observation interval is from t to t + T.
The factor n is the quantum efficiency of the detector, in-
cluding any dependence on the photosensitive area, which is
assumed to be small compared to the coherence area.

We will consider cases where the integrated intensity is
separable into a product of modulation-dependent and
modulation-independent components

W= WmWO. (3)

This occurs provided the observation interval does not have
the same order of magnitude as both rm and To.3- 7

"3-1
5 Since

Wm and WO are statistically independent,

P(W) = P(Wm)P(W0), (4)

so that the kth-order moment of W is'5

(Wk) = (W,) (WI). (5)

Using Eqs. (2)-(4) and the well-known Mandel-formula,18

the probability of emission of n photoelectrons by a plane
photocathode illuminated by normally incident, quasimo-
nochromatic, linearly-polarized, intensity-modulated light,
isi-15

p(n,T) = S -W ((WmWo)f
° O n!

X e-WmWOP(Wo)P(Wm)dWodWm). (6)
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Employing Eq. (6), the moment generating function of n is

(e tAg) = J' f e W. wo( t-l)P(W o)P(Wm) dWodWm,

(7)

from which we obtain the kth-order moment of n,

(n) )It= = E cj,k(WO)(Wo), (8)

where c1i, = 1, cj,k = 0 forj = 0 orj > k, and cjk = cj-lk-1 +

Icik-1. The kth-order central moment of n can be expressed
in terms of the ordinary moments of n as

VA = I ~((-)k ,(h) (Wm)k-i(WO)k-i(ni)) (9)

or in terms of the ordinary and central moments of W as

VP) = v£W) + E ((-l)k-i ()(Wm)k-i(WO)k-i
i=2 1

i-1
X E cj i (W. ) ( WO) (10)

In particular,

vn)= 0,

vn) = ((An)2 ) (n) + v&W),

VP) = (n) ± vNW) + 3v&w),

V -) = (n) + v\w) + 7(W2) + 6(W3)
+ 6(W)3 - 4(W)2 - 12(W) (W2). (11)

Note that the variance ((An)2 ) is just the sum of the variance
of the underlying Poisson distribution and the variance of the
modulated intensity. The factorial moments of n are given
by

(n!/(n - k)!) = (Wk ) (WI). (12)

Using Eq. (6), we obtain the cumulant generating function of
n

r 0

ln(etn) = In f f (ewmwo(et-l)

X P(Wo)P(Wm)dWodWm) (13)

from which the kth-order cumulant of n is

q atk In (etn) ,= (14)

which can be easily evaluated to obtain qP) in terms of qjw),
Vi) or (nk) .19 In particular

qjf)= (n),

q3 l) =v ),
qPf) =V,

qP ) = vi) - 3(vin))2, (15)

where vi7) is given in Eq. (11). The third-order cumulant
exhibits the asymmetry of p(n,T).15 The "broadness" of
p(n,T) is indicated by the coefficient of variation ct. =
(qPfl))1/2/(q1fn)). The "length of the tail" of p(n,T) is displayed
by the coefficient of skewness c, = qrf)/(q~f))3/2, whereas the
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"peakedness" of p(n,T) is displayed by the kurtosis ck =

qfll)/(q~f))2. Both cs and ck are dimensionless quantities
which usually serve as measures of deviation from normality.2 0

The skewness and kurtosis of the normal density are c, = ck

= 0, of the uniform density are c, = 0 and ck = -1.2, and of
the exponential density are c, = 2 and ck = 6.20 Under the
conditions T >> Tn and T >> To, p(n,T) is simply Poisson and
we find c, = (n) - 1/2 and Ck = (n) -1, which approaches the
Gaussian result for large n as expected.

ANALYTICAL RESULTS

We use the general results derived above to calculate sta-
tistical properties of the photocounting distributions for
several radiation sources modulated by various periodic
waveforms with uniformly distributed random phase. Since
the modulation period Tm is known, it (rather than Tm) is used
to characterize the time scale of fluctuations. Assuming T
<< Tm, then Wm = m(t) and Wo SnIo(t') dt', where the inte-
gration is over the observation interval. Although we use
periodic modulation waveforms (with random phase) for
simplicity of illustration, it is evident from the previous section
that our results are applicable to stochastic modulation as
well.

The three modulation waveforms considered are the fol-
lowing: (i) Square wave: abrupt transitions between two
levels, ml and M2 , sustained for equal periods, yielding

P(Wm) = (1/2)[6(Wm - ml) + 6(Wm -M 2)], (16)

and

(W',) = (1/2) (mi + mi). (17)

(ii) Triangular: linear sweeping between two levels, ml and
M 2 , yielding

P(Wm) = (M2 - Ml)-', M1 < Wm S M2, (18)
and

(Wk) = (Mk+l - in+')/(k + l)(M2-Ml).(19)

(iii) Sinusoidal: the minimum is ml and the maximum is M 2 ,

yielding

P(Wm) = 7r-l[(M2 - Wm)(Wm - Ml)]- 1/2,

m1 < Wm < M2, (20)

(Wm) = (Ml + M2 )/2,

and

(Wk) = (2-)(Wm) (Wk-1)

k > 2. (21)

The radiation source is assumed to be multimode super-
posed (interfering) coherent and chaotic radiation (e.g., an
amplitude-stabilized laser somewhat above threshold), for
which p (n, T) is, to very good approximation, the noncentral
negative binomial distribution. 6' 2'l In this case

(Wo) = (nch) + (nc), (22)

and

(Wk+l) = ((W0 ) + k(rch)) (Wk) + (nch)(nc) ( W')

where (nch) and (n,) represent the mean number of photo-
electrons arising from the chaotic and coherent components
respectively.21 The parameter M is the number of modes (M
is real, continuous, and > 1); it contains information relative
to the spatio-temporal coherence and polarization properties
of the light, and the detector integration time and
area. 1,16 "18"19'21 If M = - or (nch) = 0, p(n,T) reduces to the
Poisson distribution, corresponding to a coherent radiation
source (e.g., an ideal amplitude-stabilized laser well above
threshold). If M = 1 and (n,) = 0, p(n,T) reduces to the
Bose-Einstein distribution, corresponding to a single-mode
chaotic source (e.g., a single-mode laser below threshold, or
a narrow spectral line source such as Hg198).

Substituting Eq. (22) and Eq. (17), (19), or (21) into Eq. (8),
we obtain the first four ordinary moments of the photo-
counting distributions for square, sinusoidal, and triangu-
lar-wave modulated superposed coherent and chaotic radia-
tion:

(n) = (1/2)(ml + M2)((nCh) + (n.)),

(n2) = (n) + f 2g2 (n) 2 ,

(n3) = (n) + 3f2g2(n)2 + f3g3(n) 3 ,

(n4) = (n) + 7/ 292(n) 2 + 6f3g3(n) 3+/fg 4(n) 4, (23)

where

f2 = 1 + anh2,

f3= 1 + 3arm2,

f4 = 1 + 6ar 2 + bm4

92 = 1 + 2r/M -r2M,

93 = 1 + 6r/M- 3r2/M + 6r 2/M 2 - 4r3/M2 ,

94 = 1 + 12r/M - 6r2/M + 36r2/M2 - 28r3/M2

+ 24r3/M 3 - 18r4/M3 + 3r4 /M2,

and where a = b = 1 for square-wave modulation, a = 1/2 and
b = % for sinusoidal-wave modulation, and a = 1/3 and b = 1/5

for triangular-wave modulation. The parameter m - (M2 -

Ml)/(m 2 + Ml) is the modulation depth and the parameter
r-= (nch) /(WO) -

Using Eqs. (23) and (9), we calculate the first four central
moments:

Vin) = 0,

vP) = (n) + (f2 g2 -1)(n) 2,

(n) =((n) + 3(f2g2 - 1)(n)2 + ( 3g3 - 3f2g2 + 2)(n)3,

V) = (n) + 7(f2g2 - 4/7)(n)2 + 6(f3g3 - 2f22 + 1)(n)3

+ (fVg4 - 4f3g3 + 6f 2 g2 - 3)(n) 4 , (24)

where f2, f3, /A, g2 , g3, and g4 are defined following Eq. (23).

Using Eqs. (23) and (24), we plot as a function rm the coef-
ficient of variation (Fig. 1), the skewness (Fig. 2), and the
kurtosis (Fig. 3) of the photocounting distributions for square
(solid curves), sinusoidal (dotted curves), and triangular-wave
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FIG. 1. Plotted as a function of the modulation depth is the logarithm of the
theoretical coefficient of variation of the photocounting distributions for
square (solid curves), sinusoidal (dotted curves) and triangular-wave (dashed
curves) modulated superposed multimode coherent and chaotic radiation
with mean count (n) = 16. The lower set of curves represents the co-
herent case, for which r = 0 and M = c. The middle set of curves repre-
sents the superposed coherent and chaotic case with r = 1/2 and M = 5.
The upper set of curves represents the single-mode chaotic case, for which
r = 1 and M = 1. Experimental data points for the triangular (indicated by
V) and sinusoidal-wave (indicated by 0) modulated laser source are shown,
for which Tm = Is, T = 1 ms, and N = 105, with exceptions as noted below.
In the triangular case, the modulation depth takes on the values mh = 0, rn
= 0.74 (N = 2 X 105), and mf = 0.99 (N = 2 X 105). In the sinusoidal case,
the modulation depth takes on the values mh = 0, rf, = 0.75 ( Tm = 5s, T =
10 ms, N = 5 X 104), and mf 1 = (Tm = 5s, T = 10 ms, N = 5 X 104).

(dashed curves) modulated superposed coherent and chaotic
radiation with (n) = 16. The lower-most set of curves in Figs.
1-3 represents the coherent case, for which r = 0 or M = a.
The middle set of curves in Figs. 1-3 represents the super-
posed coherent and chaotic case with r = 1/2 and M = 5. The
upper-most set of curves in Figs. 1-3 represents the single-
mode chaotic case, for which r = 1 and M = 1.

EXPERIMENT

A series of experiments was performed to verify the statis-
tical properties of the theoretical photocounting distributions

0.5
MODULATION DEPTH(m)

FIG. 2. Logarithm of the skewness vs modulation depth. The parameters
of all theoretical curves and experimental data shown are identical to Fig.

0

---

__ Z:-=-o - -
==-

0.5 1
MODULATION DEPTH (A)

.0

FIG. 3. Kurtosis vs modulation depth. The parameters of all theoretical
curves and experimental data shown are identical to Fig. 1.

computed above for a triangular and sinusoidal-wave modu-
lated laser source. The source was a Spectra-Physics Model
162 Ar+ ion laser operated at 514.5 nm.22 The radiation was
fed into an acousto-optic modulator that modulated the in-
tensity of the beam with a triangular wave or a sinusoid. The
modulated radiation was attenuated sufficiently for the
photocounting statistics to be observable and was polarized
and detected by an RCA Type 8575 photomultiplier tube.
The output pulses from the anode of the photomultiplier tube
were registered by a pulse counter.

Data were taken for triangular and sinusoidal-wave mod-
ulation for various values of the modulation depth rm. Other
experimental parameters were the period of the wave Tm =
1 s, the sampling interval T = 1 ins, and the number of ob-
servation samples N = 105. These parameters were the same
for all sets of data, except where explicitly indicated in the
figure captions.

The experimental photocounting data (data points indi-
cated by o, A, X) as well as the theoretical counting distri-
butions for the same parameters (solid curves) are presented
in Figs. 4 and 5 (after Teich and Vannucci, Ref. 13) for trian-

NUMBER OF COUNTS (n1

FIG. 4. Theoretical counting distributions (solid curves) and experimental
data for triangular-wave modulated coherent radiation. The modulation
depth in takes on three values: an = 0 (A), en = 0.74 (0, N = 2 X 106),
and On = 0.99 (X N = 2 X 105). The mean count is approximately the same
for all three distributions ((n) = 15). Note the flat counting distribution [see
Refs. 4, 5, and 6] obtained when if, 1. (After Teich and Vannucci, Ref.
13.)
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NUMBER OF COUNTS (.I

FIG. 5. Theoretical counting distributions (solid curves) and experimental
data for sinusoidal-wave modulated coherent radiation. The modulation
depth rh takes on three values: mh = 0 (X), mh = 0.75 (A, Tm = 5s, T =
10ms,N=5X 104), and rh = 1.0(0, Tm= 5s, T= 10ms,N=5X 104).
The mean count is approximately the same for all three distributions ((n)

17). (After Teich and Vannucci, Ref. 13.)

gular and sinusoidal-wave modulation respectively [see Eqs.
(28) and (37), Ref. 6]. The modulation depth is varied para-
metrically. The means of the three photocounting distribu-
tions for triangular-wave modulation are approximately the
same ((n) n 15), as are the means of the three photocounting
distributions for sinusoidal-wave modulation ((n) c 17).

The experimental coefficient of variation, skewness, and
kurtosis (data points indicated by 0, v) obtained from each
of the above six experimental photocounting distributions,
are presented in Figs. 1-3, as a function of tn. The mean
corresponding to the theoretical curves in Figs. 1-3 ((n) = 16)
has been chosen to be intermediate between the mean corre-
sponding to the triangular-wave data points (v, (n) 15),
and the mean corresponding to the sinusoidal-wave data
points (0, (n) 17).

DISCUSSION

In examining Figs. 1-3, it is clear that the theory is in good
agreement with the experimental data. Where the data does
not fall exactly on the theoretical curve, it is primarily because
the means of the data and the theoretical curves are slightly
different.

We note that the nature of the modulation waveform (i.e.,
square, sinusoidal, triangular) enters the theoretical equations
for the ordinary and central moments [Eqs. (23) and (24)] only
through the constants a and b which multiply ,i 2 and 1m4 re-
spectively. Also, the parameters (nch) and M appear only
as ratios in these equations.

In Fig. 1 we see that increased modulation broadens p(n,T)
as expected. Furthermore, c0 is identical for the unmodulated
(7i = 0) Bose-Einstein and the fully (mi = 1) square-wave
modulated Poisson. As noted earlier, the extent of the
broadening (magnitude of c,) depends strongly on the sta-
tistics of the underlying radiation. For example, in Fig. 1
c, (mi = 1)/c, (m = 0) is much larger for the Poisson than the
Bose-Einstein.

The skewness is positive for all cases in Fig. 2, indicating
that p(n,T) is skewed to the right in these cases. However,
modulation does not affect c, [i.e., the length of the tail of

p(n,T)] in a simple manner, as exhibited by the intersections
of the curves. The upper set of curves, representing the
Bose-Einstein case, shows that the tail is usually extended by
increased modulation. In contrast, the lower set of curves,
representing the Poisson case, shows that as m approaches
unity, the tail decreases in length, reflecting the bimodal shape
of p(n,T) [c.f., (A) and (o), Fig. 5, this paper, and Fig. 2, Ref.
6]. The "tapering-off" of c, in all square-wave cases as mh
approaches unity exhibits the effect of the Dirac-delta com-
ponent of p(n,T) introduced by full square-wave modulation
(see Figs. 1 and 2 of Ref. 6). Furthermore, c, is relatively
constant for the triangular-wave modulated Poisson case,
since in this case (see Fig. 4) when nr = 0, p(n,T) is nearly
Gaussian in shape (for which c, = 0), and when m = 1, p (n, T)
is nearly uniform in shape (for which c, also = 0).

The kurtosis of the modulated Poisson is usually negative
in Fig. 3, indicating that p(n,T) is flattened by modulation.
Whereas ck = -1.2 for the uniform density, ck -0.7 for the
fully triangular-wave modulated Poisson, which exhibits ex-
treme flatness (see Fig. 4, this paper, and Refs. 4 and 5). In
contrast, ck for the modulated Bose-Einstein is positive, and
generally increases with m, indicating that modulation causes
p (nT) to become more sharply peaked (see Figs. 1 and 4 of
Ref. 6). We note that Ck = 6 for both the unmodulated
Bose-Einstein and the exponential distribution, emphasizing
their similarity in shape.
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The pupil function of an optical system is taken to have correlated random amplitudes and phases
arising from an external cause, such as optical propagation through turbulence. For the general case,
where the restriction of isotropy need not apply, the unnormalized random optical transfer function
is derived and its first two moments evaluated. Normalization issues are also treated. It is shown
that when the cross correlation of random amplitude and random phase is not an even function, a
phase shift term is induced. The impact of this shift is discussed in terms of the image of an edge.
While isotropy eliminates dependence on the cross correlation of amplitude and phase for the first
moment of the transfer function, it does not similarly affect all second-moment behavior.

INTRODUCTION

The influence of random wave front and random amplitude
on the optical transfer function is a continuing problem in
optical imagery. The mean value of the optical transfer
function has been evaluated by several investigators'- 5 for a
variety of conditions. The second moments and Monte Carlo
simulations have been considered in6 for the random wave-
front case.

The purpose of the present paper is to study the behavior
of the optical transfer function, through its first two moments,
when the random wave front and random amplitude of the
pupil function are correlated. It is shown that the effect of
the cross correlation of amplitude and phase is to include a
phase-shift term in the transfer function.

In order to simplify typography, we limit ourselves to the
one-dimensional (slit aperture) situation. The extension to
two dimensions is purely formal.

FIRST MOMENT

The unnormalized transfer function R(a) for a slit aperture
is equal to the convolution of the pupil function A(p)

R(a) = b A(p + a A* (P a)dp,
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(1)

where b =_ (1- Ia1/2) and I aI < 2. The pupil function is given
by

A(p) = Ao(p) exp[ikW(p)], (2)

where Ao(p) and W(p) are real.

W(p) is the aberration function (Hamilton's mixed char-
acteristic function), and is taken to consist of the sum of a
deterministic term due to the intrinsic aberrations of the op-
tical system WD (p) and a term due to the random atmosphere
Z(p); thus W(p) = WD(p) + Z(p). Z(p) is taken to be a zero
mean, spatially stationary, real Gaussian random process

E[Z(p)] = 0, (3)

E[Z(pl)Z(p 2 )] = r.(pl - P2), (4)

where r, is the correlation function and oz is the variance.

Without actually specifying the probability density function
(PDF) of Ao(p), we take the mean of Ao(p) to be given by

mA - E[Ao(p)] = AO(-0.6-0.8). (5)

Furthermore, Ao(p) is taken to have a small variance Ad so
that the PDF of Ao(p) is peaked around Ao. Given these
considerations, we set Ao(p) = exp[4 (p)], where &6(p) is a real,
stationary, Gaussian random process [i.e., Ao(p) is lognormally
distributed]. Consequently,

EWPO M = 4rO(pl - P2)- (6)
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