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In this paper a generalised result for the N-fold joint photoelectron counting
distribution for independently modulated radiation is given. We extend the recent
results of Diament and Teich, for the one-fold photoelectron counting distribution for
light propagated through an atmosphere characterised by log-normal irradiance
fluctuations, to the N-fold joint photoelectron counting distribution. An approximate
solution for this N-fold distribution is obtained, for detection intervals {T:} < 74
where . is the characteristic time of the atmospheric turbulence. We present
specifically the two-fold joint photocounting distribution for amplitude-stabilised laser
radiation passing through such an atmosphere for several levels of turbulence and
degrees of correlation. Cases including additive, independent, non-interfering Poisson
noise are considered. Computer generated plots of the photocounting distribution are
presented. For noise-free detection, the otherwise narrow-peaked photocounting
distribution is seen to broaden markedly and shift its peak to lower counts as the
turbulence level increases. Furthermore, a non-singular counting distribution is
obtained for fully correlated detection. In the presence of additive noise and varying
only the signal-to-noise ratio y, the probability surface is intermediate between that
of the Poisson and that of the noise-free log-normal fading counting distribution. The
peak, however, is observed to decrease and then again increase in magnitude as

y — o, for correlated detection only. These results are expected to be of use in the
study of atmospheric turbulence, as well as in the evaluation of certain stochastic
functionals that occur in optical communication theory for the turbulent atmospheric
channel.

1. Introduction

Optical communication through the turbulent atmosphere has recently received considerable
attention in the literature. However, most of the investigations to date have considered detector
configurations which yield a continuous current as the observable [ 1-7]. In much of the work,
the statistics of the atmospheric turbulence are assumed to be log-normal since the pre-
dominance of recent experimental work supports this model. That is to say, the logarithm of
both the field amplitude and intensity are normally distributed [4-7]. Diament and Teich [8-10]
have recently considered the photodetection of laser radiation passing through the turbulent
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atmosphere at low intensity levels and for short detection time intervals, for which case the
detector output consists of discrete random pulses rather than a continuous current. They
evaluated the one-fold photocounting distribution for signal noise limited detection of co-
herent as well as coherent plus chaotic radiation for several levels of turbulence. In that work,
the effect of the turbulence was interpreted as equivalent to modulation of the mean of the
undisturbed counting distribution. The detection regime considered there, i.e. low radiation
levels and short intervals, is of great importance in the evaluation of high data rate optical
communications and radar systems. In this regime, then, over a detection interval (¢, t+7), n
photoelectrons are counted. The distribution of these counts translate into statistics which can
reveal properties of both the source and of the intervening medium.

For a single detector, the photocounting distribution p(n, #, T), is defined as the probability
of counting n photoelectrons in the time interval (¢, £+ 7). If we consider N-time interval
detection at a single detector, the N-fold joint-time photocounting distribution, p(n,, t,, Ty;
Ha, Iy, Tp5 .. 5 1y, ty, Ty), is defined as the probability of observing n; counts over the time
interval (7, #; +T), and n, counts over (t,, t,+7T3), . . ., and ny counts over (ty, ty+Ty).
Similarly for N simultaneously illuminated detectors the N-fold space-time joint photocounting
distribution, p(ny, ¥y, Ty; 1y, ¥y, Tys . . . 5 By, Ty, Ty), is defined as the probability of observing
n; counts at a detector at the space point r; over the time interval (¢, t+ 7)), and n, counts
at r, over (4, t+7T5), . . ., and ny counts at ry over (¢, £+ Ty). These joint photocounting
distributions have been evaluated for various mixtures of coherent and chaotic radiation
[11-14]; however, none have presented the effects of modulation (or of the atmosphere).

In this paper we consider the N-fold joint photocounting distribution for optical radiation
passing through a turbulent atmosphere inducing log-normal scintillation, and detected either
with or without additive, independent, non-interfering noise. We present an approximate
general solution of the N-fold joint photocounting distribution for light of arbitrary statistics
provided only that weak conditions are obeyed by the undisturbed counting distribution. In
addition, we investigate specifically the two-fold joint distribution for laser radiation when
detection time intervals are short compared to both the fluctuation time of the atmosphere
7,, usually of the order of 1 msec, and the coherence time of the radiation source 7. These
distributions are obtained for a receiver consisting of an array of detectors, for the general
case of correlated detection. This is in contrast to the single detector receiver considered
previously [8, 9]. Computer generated plots of the two-fold counting distribution for an
amplitude-stabilised source are given for several levels of turbulence, degrees of correlation
of the detected field, and for several signal-to-noise ratios.

2. Theory

If a quasi-monochromatic, linearly polarised beam of light falls perpendicularly on a single
photodetector, then the photocount distribution is given by the Mandel formula [15, 16],

p(n, 1, T) = <3V°—W> , (1)

n!

where the brackets < > indicate an ensemble average over the statistics of W, which is the
integrated intensity and is defined as

t+T
W EJV oI(tHdt’ . (2)
t

Here, the quantum efficiency « includes the detector area. The instantaneous intensity (or
irradiance), I(¢'), may be expressed as the product V*(r, t) V(r, t), where V(r, t) is the complex
analytic field [16]. In quantum-mechanical terms, I(¢’) = |£(r, t)|* where &(r, t) is the eigenvalue
of the photon annihilation operator of the quantised field [17]. Since the source of radiation
is fluctuating, I(¢") will be stochastic with a density function p(/). Moreover, W is a time integral
of I(1'), and one cannot generally relate the statistics of W to those of I(¢"). However, for short
counting intervals, i.e. when the counting time 7" is much smaller than the coherence time of
the light, 7., then
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W = al(t)T (3)

and the statistics of W are directly related to those of I(¢). Thus, assuming () is stationary,
and that T < t,, the one-fold counting distribution may be written as

o] Wn C_W OO(O(ITne—aIT
mmNa=f : pwﬂ=f I ™ pnar @)
0 n- 0 n-

where No = a {I> T.

When the radiation is itself modulated either deterministically or stochastically, the
integrated intensity W is reinterpreted as reflecting the variation of both the source fluctuation
and the modulation. In many cases both effects can be accounted for while leaving equation 2
intact, if Iis interpreted as the source intensity and « is taken to include not merely the quantum
efficiency of the detector but also the overall transfer function from source to photosensitive
surface. This can include the effects of various optical components, as well as the characteristics
of the media through which the light is passed. The factor « can hence be time varying and
must remain under the integral in equation 2. This model is valid when the modulation
medium between the source and the detector acts as a linear irradiance filter.

We now consider both « and I to be randomly fluctuating, independently, with both
processes stationary, i.e. independent of ¢ in equation 2. We emphasise that the effects of the
modulation are attributed to «, rather than I. For detection intervals short compared to the
characteristics times of both the modulation, 7, and the source, 7., such variations imposed
on the instantaneous irradiance are clearly equivalent to modulation of its mean [10].

Thus, the ensemble average in equations 1 and 4 is seen to be over the statistics of both
the source and the modulation. Since « and [ are independent, the counting distribution is then

p(n, No) = f Po(n, No)p(a)der (5)

where the counting distribution in the absence of modulation is given by equation 4.

The N-fold counting distribution in the presence of modulation is similarly obtained. For
every detector in a multidetector array, the Mandel formula applies independently. That is,
given the integrated intensity W, for the ith detector, we may write

N e W
p(ny, Nysngy, Nps oo sy, Ny !Wh Was ooy Wy) = HT (6)
i=1 i
1t then follows that the joint photoelectron counting distribution is [11]

N n; w;

Wie 7!
P(n1,N1§n2aN2§--~QnN’NN)=<H——,—“‘> s @)

i=1 i W

where the ensemble average is over the joint statistics of {W;}. For counting intervals {T}} < .,
T, the integrated intensity is given by W; = o, [;T;.

If we express the undisturbed joint photocounting distribution in the absence of independent
modulation as

N W;‘ie—wi
Po(nl,N1§n2»N2§---;nN,NN):<H'_‘,““> s 8
i=1 N 8

then the doubly fluctuating counting distribution, in the presence of independent modulation,
is found from the averaging integral

p@LWDiﬁuLMMJMM®Mm~dm, ©

where [x] is defined as the ordered set {x,, x,, ..., Xy}
As in the single dimensional case, we interpret the effect of the modulation, for the short
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counting intervals, as equivalent to modulating the mean of each of the W, The N-fold
counting distribution can then be written as

PO N ) = [ [ oo KD KD NG XK 0K 10

where each K; is the randomly distributed mean count of po([#]; [K]), the undisturbed count-
ing distribution; {N,} are the overall mean counts for the individual photodetectors contained
in p([n]; [N]1; A4), and A is a parameter containing the modulation level and irradiance
correlations. This result applies to an arbitrary form of modulation.

3. Statistics of the Turbulent Atmosphere

In this section we consider, in particular, modulation induced by a turbulent atmosphere
characterised by log-normal statistics.

The basic phenomenon responsible for atmospherically induced irradiance scintillation is
the random fluctuation of the refractive index produced by turbulent mixing of globules of air
at different temperatures. Tatarski [1] and others [18-20] have evaluated the statistical
properties of radiation propagating through a turbulent atmosphere with the result that the
logarithm of the field ¥(r, ¢) is normally distributed. That is, In V(r, t) = In A|z(r, £)| +jO(x, t)
is a complex Gaussian process, completely specified by the mean and covariance functions of
its real and imaginary parts. The received field is assumed to be spatially homogencous and
isotropic, when the field in the absence of turbulence is a plane-wave. Letting V(r, ) = 4 z(r, t)
= Alzle’®, where 4 is a constant amplitude and z(r, ¢) is the varying part, the probability
density of z is given by

p([z],@) = 1 __1 p[_(ln[zl——m)z] , iz]>0 . (1

i—7—5\/27zo"2 [z[ X 20"?

The variance of the phase angle 8 is observed to be quite large and 6 is thus taken to be
uniformly distributed [3]. The quantity ¢'? is the log-amplitude variance and for the plane
wave case considered here, m = —¢’? [18]. Although we have specifically considered N-space
points over the intervals {¢, 4+ T;}, and thus z(r;, #) — z(r;) over these intervals, the results
are valid for the more general N-space-time points with time intervals {¢,, t;,+T;}. In the latter
case, of course, the appropriate space-time covariance function is required.

Of the several models for the atmosphere, none has proven to be entirely satisfactory.
However, as long as log-normal statistics are assumed, the counting distributions given here
are valid regardless of the detailed form of the log-amplitude covariance function C(p), where
p = [r;—r,|. This covariance function is dependent on several variables such as path length,
the scale of turbulence, altitude, and the type of wave propagated. As an example, Ochs,
Bergman, and Snyder [5] give experimental normalised covariance functions for laser radiation
propagated over path lengths from 5.5 to 145 km. For 1 = 6328 A and a path length of
5.5 km, the normalised covariance falls to its 3 dB point for a detector spacing of 2 cm, and
falls off to zero for p > 9.5 cm. For a path length of 15 km, the 3 dB and zero points correspond
top = 3cmand p > 16 cm respectively.

Likewise, the log-intensity is also normal [18, 20] since I/{I> = |z|?, and thus log (I/{I}) =
2 log |z]. Carrying this over to the present case where « is considered as the parameter that
contains the effect of the atmosphere, then a/{a><>|z[?, and thus

(g5 )
—{ln— + —
! -—exp[ L :l, >0 . (12)

7o’ o 2¢°

pla) = NG

Here, o is the log-intensity variance and is given by ¢ = 40’2, where ¢’ has been defined
as the log-amplitude variance, and is given by C,(0). Similarly the log-intensity covariance is
given by Cy;(p) = 4Cy(p) [21, 22].
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As already noted in section 2, this model for attributing the modulation to a multiplicative
process « is valid only when the medium between the source and the detector acts as a linear
irradiance filter or, as in the present case, when an effective multiplicative function, which may
result from interference of the field due to the turbulence, can be found. The joint log-normal
density for (a,, o,, . . . oy) is then written [23]

1
COY A" ayy ..

p([a]; [{e>]; 4) = —exp (—3XT[4]7'X) , >0 (13)

where 4 is the log-intensity covariance matrix
Culp1) Culpi) - Cu({’uv)

4= <{108 a—log °‘>}{10g a—log °‘>}f> = CzI(P'21) Czl(P.zz) e (14)
Cilpyy) = =rreeeeee Culpnn)
= P = _ .2 : _ Culpsy)
and p;; = |r;—r;| . Thus, for i = j, p; = 0, and C;(p;) = o;* . Letting R;; —-—G_——be the
i
correlation coefficient, then
0'% 610,R ;- 6.05R 1y
4 = |0;0,Ry; a3 (15)
ox0;Ry; e o3 J
The column vector X' is defined as
- 6%1
In (oty [<ay )+ 5
, | -
X' = |In (ay/<azp) + > (16)

2
ln(aN/<aN>)+-%;U

Recalling the interpretation that the atmospheric turbulence modulates the mean irradiance,
and thus the corresponding mean count, we define {K;} as the mean counts of the undisturbed
counting distribution. These {K;} are now log-normally distributed with covariance A4 and
expected values {V,}. The distribution of the mean counts is then, following equation 13,

1

K];[N]; 4) = —-1XI[4]7 X 17
P([ ],[ ]’ ) (27Z)N/2’A|1/2K1K2...KNexp( 2 [ ] ) ( )
where Ky = o IDT; 3 Ny = <) T,
and
K, ot
X;=In— 4+ — . 18
=l +5 (18)

The overall counting distribution from equation 10 is then given by
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. RPN b © ] exp {—4Xt[4]7' X}
p([n]; [N]; 4) = L L polln]; [K]) Qo2 [A[PK K, - . . Ky

The above general integral is valid for short detection intervals and for any undisturbed
counting distribution py([n]; [K]).

dK,...dKy . (19)

4. Approximate Solution of the N-Fold Integral
In the previous section the N-fold counting distribution for the atmospherically modulated
irradiance was shown to take the general form given in equation 19.

Following the method used by Diament and Teich [8, 9] we express the undisturbed
counting distribution py([#]; [K]) as an exponential of its own logarithm and we make a
change of variable from K to In K. The integral then becomes

i = exp {In po([n]; [KD} exp {—34XT[4] "' X}
M (ZH)N/ZIAII/Z
We proceed to obtain the point where this quantity is a maximum, i.e. the stationary point,

and obtain a Taylor series expansion of the exponent about this point.
Defining the combined exponent as H([K]), thatis H([K]) = {In po([n]; [K])} —1XT[4]™'X,

and defining Y; = In K, we obtain
oH |t 0 (oH\t
H(Y] = H(Y, — Y-Y)+HY-Y ) | —=<{— Y-Y 21
@YD = HLYoD+ 53| (V=Y +H(¥=Vy) (aY {aY} )( ) (21)
plus terms of the order of |[Y—Y,|>.
The stationary point Y, is then obtained implicitly from the stationary condition for the
combined exponent,

dInK,)...dnKy) .  (20)

- — o0

d -
v {In po([n]; [KD—3XT[4]7'X} =0, (22)
which takes the form
[ 6In p,, |
o(ln K,)
dln p, .
— X=0.
oln p,
d(In Ky)
Defining the quantities Q"([n]; [K]) as
a™{In po([n]; [KD}
M([n]; [KD = 24
Qz ([I’l], [ ]) a(h‘l Kl)m ’ ( )
equation 23 can be expressed compactly as
QW([n]; [KD-[4]'X =0 . (25)

The solution to these N simultaneous equations is the stationary point [Ky] = {Ky, Koz - - -
Kon); similarly [ Y] = [In K,]. Defining the matrix B as

A 1
B= {‘TH}
oY | oY

/

(26)

Yo
and with

o*{In po([n]; [KD}
o(In K;) é(In K ;)

0P(In]; [K]) = 27
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it can be shown that

0P - ‘i’~| 0 + ‘”’IT O+ ”—‘IT
A A A
_ oo, 9291 R oy 03 .
(2) ono Ry, ) _0;1_2\,
- Ni T IA[ ................. ONN IA| |

where |4] is the determinant of the covariance matrix A.

. K; ;2 . Ko 01'2 . .
Recalling that X; = In ~) 1 5 . we define Xo; = In N + - at the stationary point
Ky; and thus l l

H(Y]) = In{po([n]; [KoD} —3XoT[4] " Xo+3(Y = Yo)B(Y-Yo)+Ry , (29)

where Ry contains terms of the order |[Y—Y,|>.
Since, at the stationary point [K,], Q" )([n]; [Ko]) = [4] 'X, , then

H([Y]) = In{po([n]; [Ko D} —4X," Q(l)([n] s [KoD)+3HY—Yo) B(Y=Yo)+Ry . (30)
If we make the approximation of neglecting all terms higher than second order, the averaging
integral becomes

jw' o JLOO %eXP{*%XOTQ(D(["L [KoD)}exp {(3(Y=Yo)B(Y-Yo)} dY; ... dYy

-

(31

which gives rise to the counting distribution
po(ln]; [Kol) . - :
p([n]; [N1; 1) :W exp { —1X,FQW([n]; [Ko])} - (32)

This expression is valid provided that the matrix B is negative definite. For the amplitude-
stabilised radiation source considered in section 5, this condition is satisfied.

Recall again that [K,] is a function of [#] and [N], and thus equation 32 must be evaluated
for every set [n]. It should be noted that equation 32 is a general approximate solution valid
for arbitrary light statistics and for detection intervals {T,} < 7., 7,. If, on the other hand,
7. € {T;} < 7, then the fluctuations of the source are averaged out and the undisturbed count-
ing distribution py([n]; [N]) reverts to the N-fold Poisson distribution. However, for 1, <
{T;} < 1. the atmospheric modulation need not be considered, as only fluctuations due to
the source will be observed. The counting distribution in that case is merely the undisturbed
counting distribution py([#]; [N]). Similarly for {T} » 1., 7, both fluctuations are averaged out
and an N-fold Poisson distribution is observed.

5. Two-Fold Counting Distribution for a Stable Source

In this section we present the two-fold photocounting distribution for a single-mode amplitude
stabilised laser source. We consider the case where the log-intensity variances are identically
distributed, i.e. o, = ¢, and for detector separations corresponding to several degrees of
correlation of the log-normally distributed mean counts.
For an ideal amplitude-stabilised laser, the undisturbed joint counting distribution for
N=2is
ny n—Ki prna o— Ko
Polng, ny; Ky Kp) = 2o T EEC (33)
ng! n,!
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In the absence of turbulence, and for identical detectors, counting intervals, and a uniform
illumination, K; would equal K,. However, in the presence of turbulence, K; and K, are
stochastic. The stationary condition for this case is

X,—RX,]
Qﬁl)(”n nys Ky, Kyp) - I:O'—ZE_I——R% =
(34)
. X,—RX ]
Q(zl)(nn ny; Ky, Ky) — %‘E‘I_—Rzlj =0

where we have taken R = R,, = R,; and where
Q" (ny, ny; Ky, Ky) = ny—Ky5 Q59(ny, ny3 Ky, Kp) = ny— K,
These equations have the general form G(Y) = 0, where
G(Y) = QO(Y)~[4]'X =0 . (35)

The solution to this N-dimensional implicit equation may be solved by several methods.
For the two-dimensional case considered here, the Newton-Raphson [24] algorithm was
utilised. This is an iteration method that converges rapidly near the true solution, and is given
by

oG |1 ,
Y(+1) = YO) - BJ ., GYOD (36)

Since G(Y) = 0 is a function of n,, n,, the solution requires solving such an iteration
formula for every value of n,, n, desired. The solution thus obtained, the remaining quantities
in the counting distribution can be evaluated:

2 . - 2 .
Q(11)(”1a ny; Koy, Koz) = — Koy Q(zz)(np na; Koy, Koz) = — Ko,

Q(xzz)(np ny; Koy, Koy) = Q(zzi)("p ny; Koi, Kop) =0 37
and
iA] =¢*[1-R?].
Additionally,
1 R
[ R e S R
= | s (38)
R 1
l 2 2 —Ky, — 311 __p2y
[1—R?] *[1—R"]
and therefore
[B = TII—R_[] [{JZ[I—RZ]K01+1} {02[1—R2]K02+1}—R2] . (39)
The counting distribution is then
p(ny, ny; Ny, Nys A) = po(ny, ny; Koy, Ko,) exp —%{XO}Q(ll)(KOd_"XOZ UK o2)} (40)

For the particular case of amplitude-stabilised radiation,
311 e~ Kot Kr(l)zz e Koz

ny! n,!

1 2 2
[1—=R*}*exp — —{<111K01 InN, + %)(nl—Km) + (InKoz—lnN2+ %)(nz—K(,Z)} .

[{o*(L=R)Ko1 +1} {o*(1-R)K,, +1} —R*J* (41)

p(ng, ny; Ny, Nys o3 R) =

X
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Figure 1 Two-fold joint photocounting distribution for a turbulence level corresponding to o = 0.01, and cor-
relation coefficients R = 0.0, 0.499 and 0.998. Slight asymmetry in the level contours is due to the plotting field
of the computer plotter. N, = N, = 50. Peak occurs at n, = 50, n, = 50 and p(50, 50) = 3.15 X 10~2, Ap = 3.15
x 104, for adjacent contour levels 1 through 10.

6. Discussion of the Two-Fold Photocounting Distribution

In fig. 1, we present the counting distribution for a negligibly low level of turbulence, corre-
sponding to ¢ = 0.01, and for correlation coefficient values R = 0.0, 0.499, and 0.998. The
value R = 0 corresponds to completely uncorrelated detection (large distance or time separa-
tions), while R = 1 corresponds to completely correlated detection (small distances or time
separations). As can be seen from the surface plot and the level contour plot, the distribution
is singly peaked about the mean count N, = N, = 50, and falls off rapidly in all directions
from this point. The distribution is independent of the correlation coefficient, as expected in
the absence of turbulence, and reduces essentially to a two-fold Poisson distribution. The
flattening evident in the contour plots is due to the particular characteristics of the plotting
field of the computer plotting program. (If both the n, and 1, axes were of equal length, the
contours would not appear flattened.) The accuracy of the method is found to be better than
19, for the case considered here, as discussed in the appendix.

For a moderately turbulent atmosphere (¢ = 0.5), the counting distribution for R = 0.499
is presented graphically in fig. 2. By comparison with fig. 1, the peak is seen to occur at lower
count numbers, (31, 31), and a marked broadening of the counting distribution occurs.

Figs 3, 4, 5 show the counting distribution for ¢ = 1.0 and correlation coefficients of
R = 0.0,0.499, and 0.998. As in the previous case, the peak is seen to shift to even lower count

< 0.0007 |-

I

o=0.5
R =0.499

0.0003
1

DISTRIBUTION AP{n
NUMBER OF COUNTS n
g
T

0.0002

©
0.0001

COUNTINI

i L ! H ! L !
o 10 20 30 40 50 60 70 80 90 100
NUMBER OF COUNTS n,

1

Figure 2 Photocounting distribution for o = 0.5 and R = 0.499, N, = N, = 50. Peak is at n, = 31, n, = 31 and
p(31,31) = 4.67 x 10~%. Adp = 4.67 X 10-%, for adjacent contour levels 1 through 10.
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Figure 3 Photocounting distribution for ¢ = 1.0 and R = 0.0. N; = N, = 50. Peak is at n; = 11, n, = 11 and
p(11,11) = 4.28 X 10~%, Ap = 4.28 x 10-5, for adjacent contour levels 1 through 10.
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Figure 4 Photocounting distribution for ¢ = 1.0 and R = 0.499. N, = N, = 50. Peak is at n, = 7, n, = 7 and
p(71,7) = 7.48 X 1074, 4dp = 7.48 x 1075, for adjacent contour levels 1 through 10.

numbers, now occurring at (n,, n,) = (11, 11), (7, 7), and (6, 6) for the three values of cor-
relation indicated, while the peak value increases as R — 1. For R identically equal to unity,
the photocounting distribution concentrates almost entirely on the n, = n, line. This is to be
expected since the mean counts K; and K, are then equal with probability one. However, the
counting distribution remains nonsingular because two physical detectors are involved. That
is, two independent Poisson transformations take place at detection and thus the distribution
has width about the n, = n, line. The occurrence of a nonsingular counting distribution is also
evident from the stationary condition for the case R = 1.0:

2
1y 4ny—2K— [InK—lan +%}/02=0. (42)

For a given value of K, and n; +n, = constant, there are many values of n, and n, that satisfy
n,+n, = constant. For the equal mean case considered here (i.e. N; = N,) and R = 1.0,
the maximum occurs along the line n; = n,. With this particular value of N, and o, the
counting distribution for R = 0.998 peaks to a value more than twice that for R = 0.499, and
almost five times the value for R = 0.0.

As is evident from the photocounting distributions presented, the overall effect of the
atmospheric turbulence is to markedly broaden the probability surface and shift the peak
toward lower counts. The probability of observing small count numbers becomes larger as the
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Figure 5 Photocounting distribution for ¢ = 1.0 and R = 0.998. N; = N, = 50. Peak is at n; = 6, n, = 6 and
p(6,6) = 1.99 X 1073, 4p = 1.99 x 10~%, for adjacent contour levels 1 through 10.

turbulence increases, while the probabilities of observing extremely high counts, that were
previously unlikely to occur, is also increased. The otherwise narrow-peaked two-fold Poisson
counting distribution is thus altered considerably, as it is in the single dimensional case [8, 9].
The effect of the atmosphere, then, is to cluster the photons so that the most likely observed
count numbers are reduced while clusters of many photons arrive with greater probability
than would be the case for a quiescent atmosphere.

1. Detection with Additive Noise

In this section we develop the photoelectron counting distributions for radiation similarly
modulated, but in the presence of independent, additive, Poisson distributed noise counts. This
arises for relatively large detector bandwidths, as is the case when optical interference filters
are utilised (= 1 A), and when signal and noise radiation interference is not detected. The
characteristic time of the background radiation 7, is then <107 !2 sec. For detection intervals
1T} » t,, which is the region of present experimental capability, the noise fluctuations are
manifested in additive, independent, Poisson distributed counts. This has been shown to be
the limiting case for additive narrow-band Gaussian noise [8, 25]. In addition, detector dark
current also produces Poisson counts and may be included in this independent background.

If [n] is the detected count in the presence of noise, [s] the signal count, and [z] the Poisson
distributed noise count, then

[n] = [s]+[2] . (43)
Since [s] and [z] are independent, the overall counting distribution is given by [26]
p([n]; INT; A) = p([s]; [N,]; A=p([2]; [N.]) , (44
where
N.y.
Nsi = _l'y—l'
I+ Vi
(45)
. N;
‘Nzi:— l:1729- M)
1+,
and
N;= Ng+N, , (46)

and where * indicates convolution summation.
The ratio of signal-to-noise mean counts at the ith detector, ¥;» 18 defined by

N;
L= 47
h= 47)

zi
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The overall counting distribution is then

N = - mi: _1v to) . -
p([n];[N];A>=Z Z...EM *HKd)exp‘i l;i;o%Q ([m]: KD}

my =0

M
O

i=1 (ni—mi) !

The counting distribution given in equation 48 was evaluated numerically, and graphically
displayed by digital computer for the case of an ideal amplitude-stabilised source, for M = 2,
6, =0, =10,N; = N, = 12, R = 0.0, 0.499, 0.998, and several values of y. The distribution
for R = 0 is analogous to the one-fold distribution given in [8]. For partially correlated
detection, R = 0.499, the effect of increasing signal-to-noise ratio is to markedly broaden the
probability surface from the sharply peaked Poisson distribution (y = 0), to the limiting case
of pure log-normal fading (y = o). As discussed in section 6, the most prominent effect is the
shifting of the peak to lower count numbers as well as the broadening of the probability surface.
However, unlike the one-fold distribution, and the case R = 0.0, the peak first decreases and
then again increases as y increases. Even at moderate values of y, e.g. y = 4, the surface is not
too different from that in the noise-free case. As R — 1, the surface behaves in a similar
manner except that the magnitude of the peak does not decrease measurably while shifting to
lower count numbers. Exemplary plots of the counting distributions are given in figs 6 and 7.
It was observed that the effect of decreasing y is similar to decreasing ¢ in the noise-free case.
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Figure 6 Two-fold joint photocounting distribution for amplitude-stabilised radiation passed through a turbulent
atmosphere (0 = 1.0) and detected in the presence of additive independent Poisson noise. N; = N, = 12,
R = 0.499,and y = 1/4.Peakis at n, = 11, n, = 11 and p(11, 1) = 1.12 X 10~2. 4p = 1.12 x 1072 for all adjacent

contour levels.
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Figure 7 Same distribution as in fig. 6 except that ¥ = 1000. Peak is at n, = 2, n, = 2 and p(2, 2) = 0.911 X
1072, 4p = 0.911 X 1073 for all adjacent contour levels.
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As in the case of the one-fold distribution, this similarity may explain the observed decrease
in ¢ below its saturation value for long path lengths, and a departure from log-normal
statistics [4, 5, 8].

8. Conclusion

We have presented an approximate method of solving the N-fold juint photocounting averaging
integral for the case of optical radiation of arbitrary statistics passing through a turbulent
atmosphere characterised by log-normal statistics. Several detection time regimes have been
considered. The effect of the atmosphere on the irradiance may be interpreted as a modulation
of the mean count of the undisturbed joint photocounting distribution, under the assumption
that the source and the atmosphere are independent random processes. In evaluating these
distributions, it has been assumed that the log-normal model is a sufficiently complete
description of the statistics of the turbulent atmosphere.

In obtaining the solution to the averaging integral, an N-dimensional Taylor series involving
logarithmic derivatives and the method of steepest descent were used. The error in the
amplitude-stabilised case was found to be at worst ~ 3%, and depends on the nature of the
undisturbed counting distribution. It is quite apparent that great care must be exercised in
using this method if the undisturbed counting distribution is not singly peaked. This has been
shown to be the case when the radiation source is itself irradiance modulated [10].

We have specifically evaluated the two-fold photocounting distribution for ideal laser light
for several levels of turbulence and degrees of correlation, with and without additive inde-
pendent non-interfering Poisson noise. The most prominent effects on the undisturbed counting
distribution are the marked broadening of the probability surface, the shifting of the peak
towards the origin, and the non-singular counting distribution for fully correlated detection
(R = 1). For constant turbulence level and correlation, increasing the signal-to-noise ratio
broadens the surface in the same way as does increasing the level of turbulence. For partially
correlated detection, however, the peak decreases and then again increases as y — c0. For an
amplitude-stabilised source, the results presented are valid for all values of the detection to
coherence time ratio T/z..

The interaction of source, channel, and detector array, the three essential elements of an
optical information system, have been considered. Since the receiver structure is not specified
in this work, these results provide maximum system information and are expected to be useful
in studies of communication through the atmosphere as well as in studies of the atmosphere
itself. Specific characterisation such as likelihood detection, as recently considered in great
depth by Hoversten, Harger, and Halme [27], and channel capacity, should therefore benefit
from this work. Exact expressions for the first-, second-, and third-order cumulants have
been obtained, and will be published elsewhere [28].

Appendix

In the course of this work, we have made an approximation to the averaging integral (equation

19) by the method of steepest descent, arriving at the approximate integral (equation 31).
To obtain equation 31, we had to assume that the matrix norm ||B| was much larger than

unity. This ensured that the integrand in equation 31 was a sharply peaked Gaussian surface,

peaked at the stationary point Y,. For the two-fold case, we can write the norm as

{max{ey‘”+ 1 } 0<R<1

HB” _ { Yoi 0.2[1_R2] i = ],2
l 2e"o+ pe R=1

(49)

for the partially and fully correlated cases, respectively. For N = 50 and ¢ = 1, min | B} =
e®?! 4+ 1~ 3.5 for R = 0. The minimum value of || B|| increases as n;, 1, increase and thus the
integrand becomes more sharply peaked.. In addition the integrand is broadest for R = 0,
uncorrelated detection, and thus the errors for this case are expected to be largest, which was
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verified numerically. This is only true, however, when the undisturbed counting distribution
is independent of R, as it is in the amplitude stabilised case. For other probability surfaces,
appropriate care must be exercised in estimating the largest error. For N = 50, the worst rela-
tive was less than 19, while it was less than 1.5% for N = 12. The error is a complicated func-
tion of N,, o, n;, and R, and is greatest for small overall mean count numbers. For N; > 1
and o < 1, the greatest error is less than 3%, and within this range the method is an excel-
lent approximation. It should be noted that it is precisely over this range of parameters that
most of the data on log-intensity variance and covariance functions has been obtained.
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ERRATUM

M. C. Teich and S. Rosenberg
Opto-electronics 3 (1971) 63-76

"N~Fold Joint Photocounting Distribution for Modulated Laser
Radiation: Transmission Through the Turbulent Atmosphere"

page 69. Equation (28) should read:

[ () () (2) |
. o . )
Q1" &, QN
2) 2. . .
Q31" o . L
B = : ) : - A
(2) (2)
Q_Nl - . ° ° ° ' .QNN
- -

page 71. Lettering on Figure 1 should read: R = 0.0, 0.499, 0.998

page 76. Reference 9 should read: Applied Optics 10 (13871) 166WL4.

page 76. Reference 28 should read: J. Appl. Phys., to-be published.




