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Alerting Signals and Detection in a Sensory Network*

WiLLiaM J. McGiLt ann Mavvin C. Teici!

Columbia University

Detection theories are based on the proposition that nature designs
our sense organs to recover signals from external noise. Not much
credence is given to the idea that an essential part of the noise arises
internally in conveying information to the brain or that the detected
event may be an alert signal rathey than a literal copy of the stimulus.
Transmission is porfrayed here as a birth-and-death process. New
events are created and existing events are lost as messages pass from
the sense organ to a central decision-making area. Messages are either
alert signals or actual “images” of the stimulus formed by branching
chains. In both cases, a telltale multiplicative noise appears at the
output. We develop: {1} a branching-chain transmission mechanism,
{2) its output counting distribution, {3) characteristic properties of
branching-chain noise, and {4) examples of the effects of such noise
on the discriminability of pure-tone signals,  © 1995 Academic Press, Inc,

L INTRODUCTION

Puzzics abound in moderm sensory research.

The classical treatment ol absolute visual thresholds
devised by Hecht, Shlaer, & Pirenne (1942) continues to
enjoy wide acceptance more than 50 years alter its introduc-
tion. It depicts the visual system as essentially noiseless,
arguing that threshold variability can be traced to the
intrinsic variability of stimuli. The idea is elegantly simple
but at odds with what we know of sensory processing and
human judgment.

A huge network exists, more than 2 million neurons,
conneeting aur eyes Lo the brain ( Brown, 1965). If high-level
decision centers can aceess every photon absorbed in each
retina, the transmission system must be set up o count with
perlect accuracy, permilting no variations ol its own 1o
intrude on threshold data. Hard-line advocates of the quan-
twm theory ol Hecht ¢7 af. say this is just what happens. {See
Sakitt, 1972}

Correspondence and reprint requests should be sent to William
1. McGill, Department of Psychology, University of California at San
Dyicgo, La Jolia, CA 92093-0109.

* An earlier version of this paper was circulated as CHIP Report
No, 132, University of California. San Dicgo, January 1991,

WO M, s corrently in residence as Adjunct Professor, Departiment of

P'sychology, UCSLY, La Jolla, CA 92093-0109,

PMLCOTs work was supporied by the Olfice of Naval Rescarch under
Girant NOOHE-92-0-125F and by the Joint Scrvices Electronics Progrim
thirough the Columbia Radintion Liathoratory.

0022-2496/95 §6.00
Copyright v 1995 by Academic Press, Inc.
Al rights of reproduction in any form reserved.

Barlow’s (1956) update of visual detection introduced an
internal noise he labelled “dark light,” but the interaction
was seen as purely additive. Additive errors do not
propagate into larger errors as they pass on up through the
system. More recently, Barlow {1977) discussed evidence of
central noise in visual detection.

Ideal Detection

Consider the early treatment by Tanner and Swets (1954)
of ideal auditory detection. Their unique marriage of signal
analysis and decision theory has retained its popularity in
the front rank of auditory research for more than 49 years.

We have known from the beginning that ideal detection
fails 1o account for either the slope or the location of
auditory psychometric functions. Among other things, it
does not explain the poor performance of the car aftempting
to deteet small intensity differences in pairs of phase-tocked
pure lones, or bursis of “frozen,” i.c., repeatable, noise. Yt
these difliculties have not diminished the appeal of ideal
detection in the slightest. Here again, analysis is restricted to
the stimulus domain. The scheme simply finesses sensory
mechanisms.

Mixture distributions of signal and noise are partitioned
into decision regions that minimize error, or maximize gain
if errors are unequally weighted. The partition is made on a
mathematical representation of the input, not on -the
sensory output. This reflcets a popular belief that perceptual
sharpening and image enhancement manage to reconstruct
stimulus patterns accurately in higher brain centers. Where
pure tones are concerned, this faith in the ear’s precision is
misplaced. Delection data suggest a sizable internal noise
varying with signal intensity. Transmission mechanisms are,
or should be, parts of the representation.

Classical Sensory Analysis

A bit less radical than by-passing the entire auditory
system is the classical position of psychophysics. Carefully
chosen stimuli are used to explore receptor mechanisms.
Transmission phenomena are excluded. Decision centers in
the brain are thought to be capable of looking back through
the long neural chain to the periphery, isolating events as
they occur in the sense organ. Hence, when we analyze a
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critical band, the masking region associated with a pure
tone, it is almost a given that we ar¢ dealing with an activa-
tion pattern in the inner ear. In fact, the evidence shows that
critical bands are formed en route up the auditory neural
pathway. (See Ehret & Merzenich, 1985.)

Margolis {1987) explains why it is so difficult to give up
on these traditional paradigms despite persistent signs of
trouble. We want a formula that will translate perceptions
directly into receptor events or beyond the sense organ, into
stimulus events. Perhaps that is not a good way to proceed.

In Search of Simplicity

Theories seldom fall from favor because they fail to work
out satisfactorily. If a detection model offers a simple
standard for comparison with data, it will tend to remain
popular long after its advocates become convinced there is
something wrong. This is an application of Kuhn’s (1957)
now-famous argument on the history of astronomy. A
corollary principle is that most attempts to market com-
plexity end up with no one listening, even when skeptics
concede that the arguments are plausible.

Sometimes a theory will adopt ridiculous stances while
attempting to cope with contrary evidence. This suggests
less ignorance or obstinacy than a determined effort to
preserve simplicity. The need to understand exactly what we
are saying is so fundamental that arguments continue to be
pushed despite clear indications that they are wrong. There
is obvious benefit in assuming that brain mechanisms can
reconstruct the main features of the external environment
with high accuracy. It expresses a naive realism that
ordinarily works well in accounting for our daily experience.
What is more natural than to try to extend these ideas
(wrongly, we think) into areas related to signal detection?

One important consequence is that auditory detection
becomes centered on input signal analysis to the exclusion
of virtually everything else.

New Paradigms Needed

Most contemporary researchers agree that time has
expired on the simplest versions of auditory and visual
detection. Sensory systems are not simple. Their work
begins in the realm of stimulus energy and ends in decision
centers of the brain. Detection problems are not limited to
the stimulus domain or to receptor activity. The zones
between reception and decision are a mostly uncharted
region where messages move in ways that are only partly
understood. Some are unaccountably lost. Some are over-
come by noise. Noise increases as signals pass through the
system. In recent years, with the benefit of much new work
on summation, inhibition, and parallel-serial processing,
our grasp of sensory mechanisms has improved greatly. This
has spawned new versions of detection theory in both vision
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and audition. (See Geisler, 1989; Green and Swets,
1988/1966).

The search for new paradigms led eventually to Laming’s
book, Sersory Analysis (1986}. (Also see McGill & Teich,
1989.) Laming jettisoned much of the traditional apparatus
of receptor analysis in favor of “black boxes” representing
the network between receptor and brain.

The centerpiece is a linkage Laming calls differential
coupling. Tn effect, he argues, a sensory system neutralizes
incoming stimulation by dividing it into slightly asyn-
chronous excitatory and inhibitory streams. Constant
backgrounds thus become silent. Increments or decrements
are detected as departures from this balanced state. The
system behaves like an alert-signal generator. Laming
{1986) does not offer detail on mechanisms. Instead he gives
a battery of arguments drawn from the recent literature, all
supporting the idea of differential coupling.

A closely related approach in perception is the concept of
“adaptation level.” (See Helson, 1947.) Tn neurophysiology
it is spoken of as a “balance” of excitatory and inhibitory
effects. We usually prefer these more traditional terms, but
language should not divert us from the importance of
Laming’s idea. He puts a new face on increment detection,
masking, and intensity discrimination. He uncovers
regularitics no one else had noticed. Our starting point then
is Laming. We believe we have an elementary way to realize
his differential coupler.

Stochastic Networks

Visual and auditory psychophysics deal with stimuli and
receptor mechanisms. Visual and auditory detection
theories concentrate on stimuli and decision rules. We now
add (perhaps “insert” would be more accurate) a third level
of analysis dealing with information transmission, as
sketched in Fig. 1.

We are aware this brings us close to preaching com-
plexity. How can it be kept simple and manageable? Nearly
everyone agrees that transmission occurs prior to detection,
but no one other than Laming {1986) or, a bit earlier,
Marimont {1962) seems prepared to say what that might
mean. Even Laming’s differential coupler is a “black box”
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FIG. 1. Flow diagram of a sensory process. Stimulus and receptor
mechanisms constitute the traditional realm of psychophysics. Stimulus
and decision processes form the domain of signal detection theory.
Ordinarily the transmission network linking receptor to decision is
discounted. This network is the focus of the present paper.
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with purely functional properties, whereas we ask for
something quite specific.

Signal detection encountered consumer resistance at first
because researchers did not see the point of a decision theory
apart from studies of receptor function. What chance exists
for a new analysis taking us right into the sensory labyrinth?

Conflicts between realism and simplicity are never-end-
ing, One time-tested way to seck resolution is to invoke a
stochastic process. A network can be kept simple by
formulating it as a random walk, even when it is too
complex for tracing signals.

In sensory communication, transmission is viewed as
recurrent generation of a message at successive points or
stages along a pathway. An input signal triggers the process.
Transmission may fail, in which case the input event will be
lost. In order to invoke a stochastic process, we say that
information moves under the control of a propagation
operator, ie., a probability rule decreeing the birth and
death of progeny at each successive stage. Repetition of the
operator creates a cluster of impulses converging on the end
stage and evolving as it moves. This leads to an output
counting distribution rather than a detailed record of
passage along the pathway. Counting variability combines
with signal variability to limit detectability of incoming
signals. Detection is said to occur after these noisy
influences have come into play. Hence, decision data are
predictable from, but not the same as, signal data.

II. SIMPLE OPERATORS—COMPLEX NETWORKS

The energy in a stimulus is transferred to receptor cells
through some form of physical interaction. Activation leads
to a discharge of primary neurons close to the receptor.
Information marking the occurrence of a stimulus is
contained in this discharge, but it takes place against a
backdrop of unanalyzed, “spontaneous,” noise events.
These become incorporated into the discharge, leaving no
way 1o distingunish signal from noise.

Decisions are made by counting output events. Counts
that remain small reflect the effects of residual noise,
whereas large counts tell us something new has happened.
This formuiation is classical detection theory, most clearly
exemplified in Barlow’s (1956) amendment of the quantum
model of Hecht e: al. (1942).

Suppose, as we have been suggesting, decisions are not
made locally, but centrally. What happens when informa-
tion is conveyed to a high-level decision region via less than
perfect transmission lines?

Our first attempt to introduce such concepts inserted a
Poisson link, obtained by superposing events occurring in
separate neural pathways leading back from the periphery.
{See McGill, 1967; Teich and McGill, 1976.) Momentary
stimulus intensity was viewed as driving the Poisson rate.
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Counting distributions were then worked out (McGill,
1967) and converted to detection laws for various inputs.

Acoustic sinewaves in wideband noise produced distribu-
tions identical to those reported for photodetection of laser
energy. (See Pefina, 1967, Teich & McGilt, 1976.) The
approach also gave a good account of our acoustic signal/
noise detection data. If sinewave signals are retained and
input noise is reduced to zero, this mechanism will show
just-noticeable differences proportional to the square root
of intensity. The relation is a familiar one in visual research
at fow light levels where it is known as the deVries—Rose law
{Graham, 1965). Actually, a Poisson network driven by a
brief light flash should yield Neyman’s Type-A distribution,
but the Poisson and the Type-A are ofien difficult to tell apart.
{See Teich, Prucnal, Vannucci, Breton, & McGill, 1982.)

Square-root detection is less common in audition. For
pure tones it appears restricted to a narrow (10-15 dB)
range above absolute threshold (Rabinowitz, Lim, Braida,
& Durlach, 1976). Hence, although some of our predictions
held up, our Poisson scheme failed with pure tones at
middle intensities where the model was really aimed
{Moore & Raab, 1974; Rabinowitz ef al., 1976).

The main problem was that Poisson transmission did not
alter detectability at these mid-level intensities. We could
not find a way to put Weber’s law in the output unless it was
already there in the input. Eventually we grew skeptical of
the approach.

Suppose, as an aiternative, stimuli activate an amplifier—
transmitter network. Following transmission, progeny of
these inputs emerge at higher centers. We imagine the network
to be a chain of discrete stages, each one more-or-less like the
others, Transmission is idealized as an operator moving mes-
sages from stage to stage, creating and erasing events at each
transition. All this is more than a Poisson network can do.

The number of stages is taken to be large. It puts us into
an asymptotic domain produced by replicating a Markov
operator, for example the one depicted in Fig. 2.

A transmission chain consists of r stages. Message-events
are passed through a given stage only when they reproduce

INPUT

FIG. 2. A Markow-operator diagram of stochastic transmisston for a
single stage. Fach input event is converted to one of several possible out-
puts with the probabilities p,, p,, p,, etc. A possible outcome is that an
input may completely disappear (probability pg). Multiplication occurs
whenever the output number equals or exceeds 2. A single input event
starts the process. The network then generates a probability distribution of
progeny at the output of the final stage.
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themselves (or multiply, i.e., become two or more message-
events) at that stage. The mechanism amplifies if progeny
accumulate while passing from stage to stage. Moving
an input through the entire chain requires at least one
output at the end of the rth stage. Successful passage is
never guaranteed. A sizable probability exists that all
message-cvents will disappear, leaving no record of the
input.

We characterize such a network as a stochastic branching
chain. Not every chain displays all these properties at
the same time. Some may not amplify. Others may be
constructed so that the likelihood of erasures is small or
nonexistent. When a chain performs both multiplication
and erasure, the total event-count undergoes a random
walk along the positive integers (and zero) as inputs move
from stage to stage. It 1s then called a “birth—death” process.
{See Bharucha-Reid, 1960, pp. 86-89.)

An important baseline condition reproduces the input
message-event unchanged (on the average) at each stage.
The chain transmits but does not amplify, This is done by
balancing expected growth against expected losses.
Messages might then scem to pass through such a network
more-or-less intact, but when growth and decay are per-
fectly balanced in a chain that is sufficiently long, virtually
all inputs are lost in transit. This result is an important key
to differential coupling.

Long chains fail to transmit unless amplification,
however small, occurs. This also means that a single input
event, subjected to continuing small muitiplications, must
eventually give birth to an unbounded number of progeny.

At first thought, no room at all seems visible between
these options: complete blockage or uncontrolled growth as
the average birth rate passes from just under unity to just
above unity. There are casy ways out of the dilemima, but
the fact of its existence offers a sober warning about
branching networks. They can easily get out of control.

Transmission noise is not “added” to messages. It is a
built-in property of the network. Noise multiplies as
messages move through successive stages, varying with the
length and complexity of the branching chain. Hence, we
contend with two basically different kinds of noise: (1)
additive noise generated by events outside the transmitted
message that somehow find a way into it and (2) nmlti-
plicative noise accompanying the passage of events from
point to point in a network.

Barlow’s dark light (1956} is an excellent example of
additive noise. So are the “immigration” pulses of
birth-death immigration processes. Immigration is an
expected outcome of spontaneous activity in neural
pathways. (See Bharucha-Reid, 1960, pp. 173-174.)

Weber’s law is typical of multiplication noise. Distur-
bances early in the chain become subject to modification at
later stages. Variance increases with each such alteration.
It is evidently larger when noise sources are introduced
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sequentially than when they are laid out side by side and
added up.

Simplest Network

The device in Fig. 2 1s a Markov propagation operator.
It operates indiscriminately on every message event
appearing at the input of each stage. A Jong chain brings on
the asymptotic properties of the birth—-death process. To
characterize the chain we need to understand these
asymptotic properties. Branching chains will amplify when
propagation produces an average of slightly more than one
output event for each input at each stage.

Such transmission is more complex than a Poisson link,
but still oversimplified. Sensory mechanisms typically
involve separate foci performing distinct operations. For
example, a local amplifier might be followed by a common
carrier. The first chain boosts signals, and the second
conveys boosted data to a decision site. In combination,
however, the output of the two chains is the same as a single
branching chain with unvarying parameters (McGill &
Teich, 1992). Hence, no great loss of generality is
experienced by concentrating on single chains.

Consider first an extremely primitive network. Hecht et
al. (1942) turned to it for an account of photons lost moving
from a locus at the surface of the cornea to eventual absorp-
tion in the retina, Transmission is via a branching chain, but
it is not regenerative. It produces random losses of photons
passing through the ocular media. The retinal targets for
these photons might then create a second transmission
chain with new losses. Our argument is that the pair of
sequences can be replaced by a single chain whose transition
probabilities are the same from beginning to end. Both
mechanisms will have exactly the same output. In this
case no multiplications are permitted. An event either
reproduces itself or disappears as it moves through either
chain.

This Markov operator is diagrammed in Fig. 3.

Transition probability from state 1 at any given stage to
state | at the next stage is fixed at p. Corresponding dropout

IN ouTt

1 p >®

FIG. 3. Markov diagram of a stage in a transmission network in which
outputs are either transmitted or lost at random. A transition from state 1
to state 1 implies that an input event is {ransmitted to next stage. A trans-
ition from state 1 to state 0 means that the input is lost. No transmissions
occur out of the zero-state. Any event entering the zero-state is lost,
terminating its passage through network,
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probability (transition from state ] to state zero) is then also
fixed and labeled g, where

p+g=1

Evidently these probabilities determine the statistics of
passage through successive stages. The laiter are inde-
pendent, and the process is multiplicative. (Each stage
triggers the next.} Accordingly, the probability-generating
function at any point (see McGill & Teich, 1991b,
Appendix) is obtained by applying a propagation operator
to the generating function of the prior stage. (Also see
Feller, 1957, pp. 248-264; Bharucha-Reid, 1960, pp. 19-27,
for discussions of generating functions and their role in
analyzing branching processes. Feller’s book is a biblical
text for students of stochastic processes. It 1s now in its 3rd
edition, revised in 1970.)

Transmission through a sequence of these attenuating
stages starts with a single input event. OQur propagation
operator is a discrete probability generating function (p.g.f.)
moving the input from stage to stage. The p.gf is defined as
foliows:

o

G(sy= Y, s*plk).

k=0

Allowed transitions in stage 1 limit the p.g.f to two states:
zero (message lost) or unity (message transmitted ):

Gy(s) =g +ps. (1)

At stage 2, a fraction g of the inpul messages is expected to
drop out. Assuming homogenous operation, repeated
applications produce for the rth stage

Gr(s) = ‘1 +pGr—l(s)!
=1+p(G,_\(s)—1),
G.(s)—1

G, (-1 7

(2)

Multiplying this out over all r stages, when the initial
condition is a single input (i.e., G,4(s} = 5), we have

r

GA) =1 G, \(s)=1 Gys)—1 Gys)—1 _
G, y(8)—1 G,_os) =1 Gs)—-1 s-1

(3)

Accordingly, the generating function for the output of the
entire chain must be

G (s)=(1—p)+ps, (4)
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where the iteration in Eq. (2) is now replaced by uncondi-
tional probabilities.

Probability of successful passage through the chain (state
1 output}) is the transition probability p raised to a power set
by the length of the chain. As the latter lengthens, proba-
bility of passage moves toward zero. Nearly all inputs are
lost.

This primitive branching chain generates random dele-
tions. Driven by a Poisson input, it eliminates input events
at random but leaves the form of the distribution intact.
(See Teich & Saleh, 1982.) Hecht ef al. (1942) could then be
assured that photons incident on the cornea retained a
Poisson distribution at the retina despite losses in transit.

An easy extrapolation exists to continuous transmissions
resulting in the well-known “pure death” process. Suppose
the transition at any stage requires a brief interval of time
Ay, If the latter is very short, there is little likelihood of a
change of state during A¢. (The only change possible would
be a sudden transition to state zero.) Hence, as 4¢ decreases,
g also decreases proportionally. This stable ratio is
ordinarily expressed as a fixed loss parameter (death rate) g,

where
. q
1 =4 5
Arn}.lo <AI ) # )
The network probability then becomes
r AN\
p=t—ar=0-pa=(1-22 @)

If we define ¢ = r At as the transit time for the full network,
the limit of the passage probability is

lim {(p"y=e"*.
¥ —+ o0
4r—0

(7}

Network length is measured by its transit time ¢, regarded
here as fixed, while loss or dropout rate per increment of
iime is measured by u. Evidently, x4 is not a probability
since it may take on arbitrary values, whereas the limit of
the state ! output in Eq. (7) is a probability. As in discrete
cases, this probability moves toward zero when the network
lengthens (¢t increases) or when the dropout tendency grows
large {u increases).

1. NEUROLOGICAL AMPLIFIER NETWORKS

Birth and Death of Message-FEvents

Tterative restrictions on probability-generating functions
can also be written for branching chains with message-
events that multiply, reproduce, or drop out at each stage.
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Output is then a random mixture of these various cutcomes.
Consider, for example, the operator in Fig. 4.

Chains constructed from such stages typically amplify
their input. Message-events tend to increase in number
passing from stage to stage. A single input thus becomes a
small, fluctuating cluster, slowly increasing in size as it
moves up the chain.

There is no requirement forcing pairwise multiplication
(two message-events replacing a single one). It is an option.
We might well find a random distribution of progeny at
each stage. Pairwise multiplication offers a neat mechanism
and an easy place to start.

How the various possibilities play out will be determined
by values assigned to the transition probabilities in Fig. 4. In
pairwise multiplication, py, p,, and p, represent conditional
probabilitics governing transitions for each message-event
moving through each stage. Hence

Potp +p,=1

Whenever p, > p, the network will amplify. This means that
average output consists of more than one event for each
input event. Stage-to-stage net births are all greater than
unity.
The probability generating function representing the
operator in Fig. 4 is
G(s)=po+p5+p25°. (8)
This expression depicts a single stage and the possibility of
pairwise muitiplication. We want the counting distribution
for the full network (ie., the output at stage r). The best way

MAIN
TRANSMISSICN
CHANNEL
CONTROL N
STIMULUS IN |

{no change) O femeim

+1 mmae

o
S .
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AMPLIFIER STAGE OPERATOR DIAGRAM

FIG. 4. A simple amplifier network. To the left is a functional diagram
of a typical stage. The passage of message-events moving down the main
transmission channel is modified by the control mechanism on the far left.
Stimulus intensity sets the likelihood of multiplication, Feedback may
occur repeatedly in a single site or a number of such amplifiers may be
arrayed in sequence. The diagram to the right displays the Markov
operator characterizing this mechanism. The operator shows allowable
transitions for any event passing along the main channel and the
probabilities of these transitions.

151

to proceed is to put an iterative restriction on the generating
function at stage r:

G(s)=py+p1G,._1(5) +P26371(3)v (%)

This time, no easy way exists to multiply the process out.
There is, however, a simple way to construct a time
derivative. First, subtract G, _ (s} from both sides:

G,(S) - Gr— l(S)

=Ppo—(Po+02) Go_i(8) +0,G2_ (). (10)

Next set py=u At, as in Eq. (5); p, =4 4i, in which 1 is
a fixed amplification parameter called the birth rate.
Evidently, ¢ =r At must measure the length of the chain if
successive stages differ by 4r. The time difference between
the last two stages converges on a derivative:

. Gr(S)AGx—Ar(S)
dlrlr_l.’lo( At )

=p—(u+2) G, _4(s)+AG7_,(5). (11)
In fact, identical restrictions hold for all adjacent stages.
Accordingly,

Go(s) = Ap/d — G(s))(1 = G (s)). (12)

The generating function in Eq. (12) depicts a chain
evolving as a function of time 7. Qur parameter t denotes a
particular chain length; hence, a specific value of 1. We want
the number of events in the final stage. As we see, a time
derivative will produce the number, but the connection
between stages and time disappears in the derivative.
Equation (12} also describes a continuous chain in which all
events are last-stage outputs emerging at varying times. (See
Feller, 1957, p. 407, Bharucha-Reid, 1960, p. 87.) Hence,
output counts are identical for the limit of a discrete chain
of fixed length or a continuous chain observed for a fixed
time period . Both have the same counting distribution. In
one case the outputs are bunched together; in the other,
they form a discharge.

Equation (12) shows the quadratic factored to display its
two roots. Since the coefficients of Eq. (11) sum to zero, a
root will be found where G, (s})=1. As Ar decreases, the
probability of a shift up or down becomes vanishingly smail.
A root then appears at G (s)=1 in Eq. (12), reflecting this
resistance to change,

A second root emerges in Eq. (11) when G,(s) reaches an
asymptote as ¢ increases without limit. In that case
G'(s) — 0. This second root is the asymptotic value of G (s),
namely

lim (G(s))=p/A
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This limit of the p.g.f. depicts a birth—death transmission
process operating over infinite time. There is probability in
state zero but nothing in any other finite state {since only
the coefficient of s° survives at the limit). Hence, we have a
significant probability of a zero count, a significant
probability of an infinite count, and nothing between.

From the generating function at infinite time

,Ii"l (p.,(0}) = /2

This is the limiting probability of a state-zero output
{message lost). In branching processes it is called an extinc-
tion probabifity. When the loss parameter u exceeds the gain
parameter A, extinction probability remains fixed at unity.
Nearly all interesting cases arise when g < A.

Evidently the operator in Eq. (9) has two different
asymptotic limits. The derivative in Eq. (12) shows the
number of stages growing large while transit time ¢ remains
finite. Now a further limit is obtained by letting 1 itself go to
infinity. At this point the process breaks down. Every non-
zero output is infinite, The initial limit, on the other hand,
produces conventional distributions of output events.

Different limits explain many puzzling outcomes. For
example, when A=p in a perfectly balanced network,
extinction probability is found to be unity. This suggests
that no messages can pass the chain. Yet when the differen-
tial equation, Eq. (12), is integrated in these circumstances,
a conventional probability distribution results. Evidently
we are at the intermediate limit (r infinite, ¢ finite).
Extinction is approached only as ¢ becomes infinite. The
probability of a zero count rises systematically with ¢ up to
the final extinction probability.

Adaptation Level

The chain’s output is found by integrating Eq. (12} and
then extracting a counting distribution from the probability
generating function. A single input event triggers the first
stage. Output spreads ultimately to many counts because
multiplications and dropouts add variance continuously.
This noise is a signature, stamping the propagation
mechanism on all data passing through.

At adaptation level expected gains just balance losses, L.e.,
i = A Equation (12) becomes

G,

Integration of both sides with respect to time produces

1 G)(s)
1—G,(s)} =

&
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Since the chain is triggered by a single input pulse, the limits
on the left-hand side must be G,(s) = s when 7 =0 and G,(s)
when 7=+ We have

L
—G) iy i~
(s—1)
Gy =1+ gy

This is the probability-generating function of a process with
balanced gains and losses. The chain branches up and down
continuously. To exiract a counting distribution, we expand
the right-hand side of Eq. (13) in powers of 5. The coeflicient
of s* will then be the probability, p,(k), that the chain’s out-
put consists of exactly & message-events. Expansion is easy.
The general term of the probability distribution is

At
20 =(737)

(Ar)F !
(14 )+

pdk)= k=1,2,3, .., co.

There is a detached “spike” of probability at zero count
produced by message-events lost in transit. Non-zero
counts have a geometric distribution, reflecting difficulty in
achieving runs of multiplications as progeny pass from stage
to stage in Fig. 4.

We are describing a normally quiet alerting-network in
which any small change sets off an alarm. If the background
level is even modestly high, near-silence prevails. A transient
triggers the alarm, Hence, alerting-networks do not make
comparisons. They react to changes. This was the idea that
led Laming (1986) to differential coupling in increment
detection.

A steady background sets up opposed processes, one
attempting to amplify the nput, the other trying to knock
it out. At adaptation level, each cancels the other, creating
a balance that persists until a transient occurs. The
stochastic process defined by such a mechanism is called a
“birth-and-death” process. (See Bharucha-Reid, 1960,
pp. 86-89; Feller, 1957, pp. 407-411)) Outputs show a
detached spike of probability at zero response and a shifted
geometric distribution above zero; ie., the distribution
starts out at a count of unity. Variance increases with
intensity, making transients of fixed size harder to detect as
the background level increases. Thus, Weber’s law is built
into an alerting network if it is constructed in the form of a
branching chain.

Output Counting Distribution

A sharp transient triggers the alarm. The balance between
A and u 15 suddenly altered at the input. The birth rate
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parameter escalates while the death rate remains unaffected.
A secondary process rapidly comes into play aiming to
restore equilibrium. As the parameters diverge, the chain
shifts into a new counting mode in which mean output
increases exponentially with the size of the momentary gap
between birth and death rates.

What is this new distribution? The differential equation
for its probability-generating function as the latter evolves
with the length of the chain (i.e., with time} is given by

Giks) _,
W= G N1 = G "

(12b)

where 7 is the (time) variable of integration. Integration
runs between limits =0 and 7=1. When t=0, Gy(s) =35,
1.e., the process begins with a single event at the input. The
solution of Eq. (12b) can be found in any standard table of
integrals; for example, see Hodgman, Selby, & Weast (1954,
p- 250). Our notation produces

i — (,u__{fi — S) e~ G-t
G.(s)= .

1_<u/i_s>e—(i—;4)r l
l—s

This generating function describes the transmission
mechanism depicted in Fig. 4 when birth and death
parameters 2, g, and ¢ are arbitrary. It reduces to Eq. (13) as
A= p

The counting distribution corresponding to Eq. (13) is
well-known in stochastic processes. (See, for example,
Bharucha-Reid, 1960, p. 88; McGill & Teich, 1992, p. 26.)
We do not reproduce it here because our goal is a relation
between signal intensity and detectability. Parameters such
as A, 4, and f are not observable in psychophysics. Neither
are impulse counts for that matter, but detections are
closely tied to them. Birth and death rates must be estimated
to get at counting distributions. Thus, we need a way to
relate A, x, and ¢ to intensity.

(13)

Log Transform

When the difference (4 — ) is linear with intensity, out-
put increases exponentially. This is important for detecting
weak signals, but it can be a serious problem as intensity
increases. large bursts of activity flood the system,
paralyzing it. Ideally, outputs ought to grow the way a
loudness function grows—as a fractional power of intensity.
Adaptation in an alerting network makes even linear
growth a feasible option for weak inputs. Alert signals need
never be large to reach threshold if the baseline is virtual
silence. Whatever form a transform takes, evidently its chief
role is to curb output at high intensities.
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The average output of the branching chain characterized
by Eq. {15) can be calculated without elaborate ritual. The
mean gain through any stage is

m=(1+p,—py).

Each input rides through, is increased to two with proba-
bility p,, or is wiped out with probability p,. After r stages,
the gain through the entire network will be

m,={1+p,—pg)-

Now apply the limiting process as r — o0 and 47 — 0:

m,= lim (m,)= (1 +M)r

r—m [
Adr=0
=e(if.u)r.

{16)
This is the exponential growth we find worrisome. A
propagation operator enforces such growth whenever A
exceeds g, unless intensity sets parameters via a transform
rather than directly.

Earlier we spoke of energy exchanges in the sense organ
as if they were the primal events of the stimulus message.
This is the prevailing view in sensory psychology and
neurophysiology. Among vision researchers, for example,
the principle that light energy carries critical stimulus infor-
mation is widely accepted. The same is true in audition
although disagreements must be recorded. For instance,
Jeffress {1964, 1968) showed that his ¢lectronic model of an
amplitude detector yielded results very close to human per-
formance. Green and Swets (1988/1966), following a similar
line, proved that when a sinewave masked by Gaussian
noise is known exactly, an amplitude ratio will measure the
signal’s detectability in the noise. Laming (1986) too
asserfed that amplitudes provide the crucial intensity
information in auditory signal processing.

Readers encountering these arguments for the first time
may be forgiven expressions of bafflement. Energy and
amplitude are functions of each other. If we know how
information flows in one, it is easy to calculate how it flows
in the other. What can the argument be about?

Generally it is about an underlying mechanism, For
example, if negative masking is presumed to occur just
above absolute threshold, amplitude measurements become
appropriate. They produce the desired outcome whereas
encrgy measurements typically do not. Arguments such as
this can never be settled. Each measurement translates
readily into any of its counterparts. The measurement we
use depends on the mechanism assumed to be operating.

These issues are brought into sharp focus by the need to
relate branching-chain parameters A, 4, and ¢ to intensity
and to estimate them from intensity measurements. Which
measurements?
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We are guided by a proposal of Rushton (1961} in a study
of visual coding. He worked with the optic nerve of Limudus,
the horseshoe crab, using data provided by Fuortes (1959).
Rushton showed that neural firing rates are proportional to
the logarithm of stimulus intensity over a wide range of
intensities and backgrounds. The relation he settled on was
log(1 +ax), in which x is the intensity variable and & is
constant, Rushton speculated that this transform would
bring linearity to other modalities as well. Indeed, we now
know that primary auditory neurons in mammals behave
similarly (Sachs & Abbas, 1974; Teich & Khanna, 1985).

Sense organs are required “at the lower end of their inten-
sity range to detect signals ... approach(ing) the prevailing
noise level,” whereas in the upper ranges the “task is not
merely to detect” but to “make fine discriminations with
regard to the time course, spatial location, and quality”
(Rushton, 1961, p. 177). To achieve these objectives in the
present application, Rushton’s prescription s applied as

fIn{l+ax)={A—u)t, (17)
where f is a proportionality constant expressing the
arbitrary base of the logarithm. In Eq. (17), @ and # are con-
stants chosen to match intensity units on the left-hand side
with the branching parameters on the right. The difference
{4 — ) is the net birth rate of neural events stage-by-stage,
and ¢ measures the length of the chain.

When this log transform is introduced into Eq. {16), it
creates a power-law relation between stimulus intensity and
the chain’s output:

m, = =1

=eﬁ']n(1+ax)

=(1+ax)”. (18)

Mean output of the branching chain increases as a power
function of intensity. The process has two stages: (1) a log
transform from intensity to the net birth-rate of the chain as
set forth in Eq. (17), and (2) exponential growth of message-
events within the chain. The combination produces Eq. (18).
It behaves more-or-less as a loudness function for pure
tones or other narrowband stimuli. Given the low-level
intensities characterizing barely detectable increments, we
can generally take f=1 over the narrow range of a
psychometric function. Full impact of the exponent is
encountered only when measurements are attempted on a
wide range of intensitics. (See Teich & Lachs, 1983.)

Our argument leading to Eqgs. (17) and (18) is based
chiefly on Rushton’s work, but it is similar in content to
proposals by Marimont (1962) and MacKay (1963) seeking
to explain the discrepancy between nerve impulse data and
magnitude estimates when both are viewed as functions of
intensity.
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Marimont’s idea was that a log transform at receptor
level can be counterbalanced by an “exponentiating” device
higher up, vielding a power law in the output. MacKay
approved this approach but noted that no solid basis was
known in neurophysiology for the required second-stage
exponential transform. He suggested it might be part of an
evaluative mechanism underlying magnitude estimates.
Here, we claim that a branching process provides an ideal
rationale for the missing exponential link.

Ryan, Braverman, Woolf, & Axelsson (1989) used an
imaging technique, 2-deoxyglucose (2-DG) autoradio-
graphy, to show that cellular activity spreads as pure-tone
stimuli ascend through the auditory tract. The data offer
strong indications of branching. Moreover, a recent study
by Zeng & Shannon (1994) analyzed loudness matches
made by hearing-impaired patients with implants at
different locations in the auditory tract. The data show
intensity coding to be a two-stage process similar to the one
envisioned for the visual system by Marimont in 1962.
Loudness balances reported by Zeng & Shannon suggest
logarithmic compression in the periphery followed by an
exponential expansion higher up. The two stages combine
to produce a power function. This is just what Eqs. (17) and
{18) say.

In Eq. {18), the product (1 — )¢ is the log of the mean
count ¢ seconds after stimulation. This transform may well
be propagated along the entire length of a neural transmis-
sion chain, preserving its form at every stage, as suggested
by Rushton. A configuration such as that would be designed
to maintain a constant balance between excitation and
inhibition through 4 and # at every point. At the output,
progeny would not all emerge at the same instant. An
alerting signal embodies a brief discharge varying in size
with stimulus magnitude. If an energy exchange occurs in
the sense organ, the counting record will preserve it. So at
least for the restricted range of the psychometric function,
the mean output count in Eq. (18) is proportional to
stimulus energy.

Power Function Output

Apply the transform in Eq. (17) to the branching-chain
generating function in Eq. (15) so that mean output is a
power function of stimulus energy. We find

n(x) (n(lx: S)(l +1 ax)p‘
= ves)

Here 7(x}=pu/A is the extinction probability corresponding
to an incremental intensity x above adaptation level
Extinction probability is at or very near unity in the vicinity

Gos)=

(19)
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of adaptation level, dropping off to zero as incremental
intensity increases. Without difficulty we obtain

(1+ax)f(s—1)

G.(s)=1+ o

(20)

Introduced into Eq. (20) is a new intensity variable

(1 +ax)?—1

Hx)="—— )

combining the power function and extinction. This new
measure simplifies the argument materially. We analyze its
significance in the next section on ultra-linear output.

The p.gf. in Eq. (20) resembles an earlier expression for a
balanced network given in Eq. {13). Here, the generating
function extends to increments above adaptation level and
embodies the log transform in Eq. {17). A subscript x in the
p.gf. shows that it is now intensity-based. As with Eq. (14)
for a balanced line, we sce a spike of probability covering
lost inputs in the zero state, as well as a geometric distri-
bution of output counts reflecting the consequences of
multiplication noise in fransmission.

These points are readily verified in the counting distribu-
tion extracted from Eq. (20),

» (0)_n(x) #x)

S l+px)] e
7(x)

1 o
Py =[1-p,(0)] (1 +y<x))(1 + r(x)> ’

wherek=1,2,3, ., oo;m(x) =g /i v(x)=[(1 +ax)¥— 1]/
[l—=(x)].

Output probability p,(k) is geometric. Zero output
indicates failure to survive. The non-zero portion of Eq. (21)
is a Bose-Einstein (BE) distribution shifted up by one count.
A separate spike of probability is added at the zero count.
The BE paramecter [ in this case y(x)] measures an expected
number of events.

Branching generates larger variances than we encounter
in transmission devices passing information without multi-
plication. These eflects are not subtle. They modify the
output away from Poisson form and toward Bose—Einstein
(geometric) form. Signal detectability is thus altered in the
direction of Weber’s law.

If branching chains mediate messages passing between
sense organ and brain, transmission can be expected to
behave in the manner just described. It is not clear in any
given case whether the message passed is an alert-signal or
a portion of a literal copy of the input. The distinction is
important because the two types of transmission follow

480/39:2-3
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different detection laws. This point is expanded in our
section on alarm signals vs representations.

Ultra-linear Qutput

Rushton’s log transform leads to Eq. (20), an intensity-
based generating function for a branching chain. It happens
that ax and § are usually small in increment detection.
Accordingly, a linear approximation of (14-ax)? is
generally suitable for threshold work. Psychometric func-
tions are handled by letting S=1 and absorbing the
exponent into the units constant a:

_ (1+ax)(s—1)
e T

Now let x, the incremental intensity, go to zero. This moves
the generating function to adaptation level. We need

lim y(x) = lim (1_"—;){)) = 7,.

x—=0 x=0

With suitable restrictions on | —#z(x), a limit develops
because extinction probability approaches unity as
x approaches zero. We let y, symbolize this limit.
Accordingly, at x =0 we obtain

(s=1)
G.(s)=14+———,
L —yyls =1}
which, except for notation, is Eq. (13).

Intensities are expressed as increments above adaptation
level. With f =1 we have

yx)=ax/[1 —n{x)],

=yq+ax, (22)
where ¥, represents an equivalent background intensity,
and x is an increment above it. Extinction, incremental
intensity, and adaptation level are then governed by a
simple relation

{23)

These expressions lead to an intensity-based solution for the
branching-chain differential equation, Eq. {12},

{(1+ax)(s—1)

RS T v Ly

(24)
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Extraction of the output counting distribution is simple:

Yo

0)=———,
p:{0) 14y, + ax

(25)
Yo+ ax

1 k—1
po(k)=[1-p.(0)] (1 + Yo +ax><1 + %o +ax> '

here k=1, 2, 3, ..., co; @ is a units constant; x is an incremen-
tal intensity above adaptation level, y, is an intensity
parameter corresponding to adaptation level. Equation (25)
is Eq. (21) with p(x) =y, +axand f=1.

The counting distribution in Eq. (235) represents the
response of a branching chain (see Fig. 4) when a transient
stimulus adds an intensity increment to a steady back-
ground and when intensities are subject to the log transform
in Eg. (17).

At adaptation level (x = 0), this chain will emit a variable
discharge averaging one output event for each input. The
most probable output at adaptation level is silence, since
pA0)»p, (k>0) unless y, is very small. Any transient
generates a burst of activity whose mean count varies with
increment intensity, We argued earlier that over the narrow
range of a psychometric function, mean output count grows
in rough linear agreement with increment energy. This
conclusion is built into Eq. {25), where the mean is 1 + ax.

Our expression in Eq. (25) centers on an adaptation level
¥o. fixed by the background level. Evidently the magnitude
of y, cannot be linear with intensity if Eq. (18) is correct, but
the near-silence of a balanced line means that we need not
specify an exact relation. We may take y, as having
whatever value emerges from experiment. Since increments
are generally quite small in detection experiments, output
will remain linear with increment energy no matter what
value is chosen for y,. Thus, our ultra-linear restriction
seems fairly realistic. In effect, adaptation levels create
conditions that resemble absolute threshold wherever
adaptation occurs.

Alarm Signals vs Representations

The branching chains described thus far can be charac-
terized as “alert” or “alarm” signals activated whenever a
sudden tramsient perturbs a continuous background. In
increment detection the alert is set off by any marked
change in level. Comparisons are not involved. Alert signals
are thus not representations, ¢ la Hecht et al (1942) in
which a random number of photons are detected at the
retina. An alarm is triggered by the arrival of any number of
photons. Alarms are defined by their warning role. They
indicate only that something new has happened.

Branching chains may also operate in a representational
mode to boost a weak signal. If the input is a cluster of
events, a mechanism of this type will produce an amplified
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version of the process envisioned by Hecht et af. (1942). The
number of photons at the retina obeys a Poisson distribu-
tion. These peripheral events serve as input to a birth-and-
death transmission chain with A®» g#. Unlike the alerting
mode, birth and death rates remain fixed. They are system
constants reflecting losses in transmission and the amplifica-
tion needed to detect very weak signals despite such losses.
These opposed influences combine to produce an output
fluctnation equivalent to a low-level masking noise, plus a
boost in the average size of the output cluster. Square-root-
law detectability persists because output means and
variances remain proportional, Both are governed by the
number of input events.

Closely related results are found when the restriction to a
Poisson number of inputs is lifted and a Neyman Type-A
distribution of inputs is substituted. The latter characterizes
nerve impulses propagating in peripheral optic nerve fibers
{Saleh & Teich, 1985). Representational transmission in this
instance is similar to the visual threshold mechanism
suggested by McGill (1967} and studied by Teich et al
(1982). Here, however, we have a cascade of amplification
stages rather than a single stage.

Since birth and death rates remain fixed in representa-
tional transmission, auditory representations also code
intensity into a number of input events. Each will then give
birth to a separate branching process, even when alt are
propagating within a single physiclogical chain. Hence, out-
put distributions are equivalent to a sum: the convolution of
separate branching processes making up the representation,
Each is defined by an expression resembling Eq. (20).
Intensity alters the number of components.

These convolution distributions are not simple. Although
each zero-state is reduced in size compared with chains in
which birth and death rates are equal, zero-states are still
detached from the rest of the distribution. However, if the
number of chains is large, the central limit theorem will take
over, driving aggregate cutput toward a compound Poisson
distribution (McGill & Teich, 1992} or toward a non-
central negative binomial when transmission is a birth—
death-immigration process {Li & Teich 1991, 1992).

The important distinction when a representation is
detected rather than an alert signal is that separate chains
connect each input event to its respective central counter-
part. Intensity is coded into the number of input events. The
count monitored at the decision area is then the aggregaie
output of all individual chains making up the representa-
tion. A square-root detection law results.

Both mechanisms, alarm signals and representations,
probably operate side by side. The one actually at work in
detection would depend on conditions. Increment detection
of pure tones at high or moderate intensity levels is readily
mediated by an alert signal, whereas at absolute threshold
stimuli appear to be detected as representations. The func-
tion governing increment detection would then shift from
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deVries—Rose form to Weber’s law at some mid-level inten-
sity. The data indicate that this is indeed what happens
{Rabinowitz et al. 1976).

IV. DISCUSSION

Probable Structure of a Sensory Network

Branching chains transmit either (1) alarm signais or (2)
representations of the initial neural response developed in
the sense organ, A threshold pure tone or a small spot of
light would normally activate only one or a very few chains
in its representation. 1f this number stays small as the back-
ground increases, output will still appear to come from a
single chain. The branching structure in Fig. S illustrates
how this single-chain impression develops if the signal
spreads over only a few chains. Hence, there ought to be an
intensity region just above zero where thresholds remain
nearly fixed. Negative masking does not occur.

In the alerting mode, outputs are dominated by the spike
of probability in the zero-state. When more than one
branching chain becomes activated, aggregate output is
biased away from the negative binomial distribution. There
is a bulge at the low end of the distribution attributable to
the zero-state of each component. If the number of chains
proves to be large, as when intense signals or wideband
backgrounds are studied, the central limit theorem wall
eventually drive aggregate output toward Gaussian form,
ironing out such anomalies. Besides, a detection criterion
set in the upper tail of the convolution distribution will
generally show little alteration traceable to the zero-state.
Means and variances of aggregates are easy to calculate, but
the distributions themselves are difficult because of the
detached zero-states.

RECEPTOR

STIMULUS - BRANCHING
ENERGY NETWORK
—
. L \ \ i ; )
STAGES OF PROCESSING
FIG. 5. Interactions among nearby chains leading back from a

sensory organ and forming a branching network. If there is room to spread
out and the number of separate chains is not too large, they may be treated
as a single chain with altered parameters. At successive stages the volume
of activity increases but spreads out over an increasingly larger region.
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When inputs are stochastic, the statistics of the stimulus
are overlaid on the variability of the branching chain (or
chains) involved in transmission. Output variation is then a
compound of the signal intensity distribution and the
chain’s multiplicative noise (Diament & Teich, 1992). In
earlier papers we attempted to study such compounding,
assuming that the stimulus created a Poisson-like message
flow. Results were unsatisfactory for pure tone stimuli at
moderate and high intensities (McGill, 1967). In order to
correct the deficiencies of the Poisson approach, we turned
next to branching chains in which each start-up event is said
to produce a variable cluster of output pulses. As we see, a
branching chain adapts to continuous pure-tone back-
grounds and displays meodified Bose-Einstein (ie.,
geometric, not Poisson) outputs in responding to brief
increments. The robustness of this mechanism reflects the
simple structure of Markov-process noise. Despite our
skepticism of Laming’s (1986) arguments in McGill & Teich
(1989), an intimate relation between differential coupling
and these branching chains is now evident.

Importance of Pure Tones

A psychophysical transform converting intensity changes
in input signals to just-noticeable differences in perception,
remains as elusive today as when first conjectured in the
19th century. An adequate formulation requires much more
than the stimulus. We need mechanisms for altering the
input into what is in fact perceived and at least several
transmission stages appear to be involved.

If we were certain that transmission is mediated by
branching chains, the next steps would be clear. We would
work out counting probabilities for the mixture of acoustic-
stimulus fluctuations and internal noise generated in a
branching chain. These calculations are not child’s play but
they can be done. Unfortunately, we are insecure about vir-
tually all our premises. Consequently, we try to keep stimuli
and experimental conditions as simple as possible in order
to follow what is going on.

Visual data present special challenges for detection
because classical light is stochastic. (See Teich & Saleh,
1988, 1990.) There is a real problem about separating
Poisson photon-number fluctuations from multiplicative
noise generated in transmission. This inherent confounding
has helped to assure the longevity of the approach of Hecht
et al. (1942). Pure stimulus models of detection are always
simpler and more attractive to argue than those with
transmission noise.

Aunditory research offers better control and somewhat
simpler tests because an analytically simple stimulus, the
so-called “pure tone,” is relatively easy to deliver to the ear
intact if signal durations are not too short. Admittedly we
do not know what the ear considers analytically simple, but
would be well-advised to avoid getting too cute. Pure tones
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can be fixed in frequency, phase-locked, and precisely timed.
Variability is thus confined to the tone gencrator’s error
level which, with today’s equipment, can be made negligible.
Fluctuations in perception must then be attributable to
noise contributed by the auditory system itself.

Essentially for these reasons, in recent years we have
witnessed a revived interest in one of the traditional
problems of auditory psychophysics: pure-tone intensity
discrimination.

Narrowband Intensity Discrimination and Increment
Detection

The experimental relation between intensity of a pure-
tone masker and the size of a just-detectable increment (or
decrement) is shown in Fig. 6. Data are from McGill &
Goldberg (1968b). They were obtained with pure tones at
1000 Hz and signal durations of 15 or 20 ms. Also plotted
are closely related resuits obtained by Campbell & Lasky
(1967). A masking function is developed over eight log units
of background intensity (80 dB). For the first 20-30 dB
above absolute threshold, the slope is unity: Weber’s law.
Figure 6 shows little evidence of square-root detection near
absolute "threshold as in the paper of Rabinowitz er al
(1976), which compiled results from as many as 14 different
studies. If square-root detection is in the McGill-Goldberg
data, the range must be very small. Above 30 dB, slope is 0.9
in log coordinates: a “near miss” to Weber’s law. Short
bursts of wideband Gaussian noise do not show any of these
departures. Slope is unity over virtually the entire range
{Miller, 1947).

What accounts for the difference? McGill & Goldberg
(1968b) sought an explanation in a power function, ie., a
“loudness” function relating masker intensity to the Poisson
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FIG. 6. Pure-tone intensity discrimination. Abscissa is sensation level
(dB above threshold) of a 1000-Hz test tone. Ordinate is sensation level of
a tone just detectably weaker than the test tone. {McGill & Goldberg,
1968a, b). Unit slope depicts Weber's law. Slope fitted by least-squares is
0.905. Data are for three listeners: (closed squares) 15-ms tones, (closed
circles) 15-ms tones, and (closed triangles) 20-ms tones. Open circles
represent data on 20-ms pure tones obtained by Campbell & Lasky (1967).
The Campbell-Lasky function is moved horizontally for the best match to
the McGill-Goldberg data.
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process they assumed to intervene between receptor and
higher centers. They argued that such indirect loudness
measurements  supported their Poisson transmission
hypothesis. Others were skeptical. The idea attracted few
adherents, and a conviction grew that something else was
involved in the near miss. Teich & Lachs (1979) attributed
Weber’s law to neural refractoriness and the near miss to
spread of excitation in the cochlea. Subsequent neuro-
physiological measurements in primary auditory-nerve
fibers (Teich & Khanna, 1985) revealed that refractoriness
was too weak to convert the ascending spike train to one in
which Weber’s law might be found. Furthermore, aggrega-
tion of point processes in a collection of ascending fibers
tends to wash out the effects of refractoriness in individual
units. We now believe that the likely origin of Weber’s law
is multiplicative noise generated within branching chains,
Spread of excitation across these chains appears to be
responsible for the near miss.

Viemeister (1972} discovered that when pure tones are
centered in a slot or notch of low-level, wideband masking
noise, Weber's law 1s restored in increment detection,
Masking slope remains at unity over nearly the full range of
background intensities. Moore & Raab (1974) repeated
Viemeister’s experiment and concluded that the notch
effectively blocks listening off center frequency as a way to
improve detection. If it could be shown that a given network
displays Weber’s law in individual chains stretching back
from the ear, and also the near-miss phenomenon when
excitation spreads uncontrolled as intensity increases, to
adjacent chains serving nearby frequencies, it might explain
Viemeister’s result.

In a recent chapter, McGill & Teich (1991a) made such a
demonstration using branching chains operating in the
alerting mode and an output counting distribution equiv-
alent to Eq. (25). Pure-tone detection follows Weber’s law in
individual branching chains because of the proportionality
between means and standard deviations in geometric
distributions. If increasing intensity caused alert signals to
spread out, activating more and more remote transmission
chains, a near miss should develop. Pure tones embedded in
notched noise would encounter the edges of the notch as
excitation spreads, preventing activation of more remote
chains and limiting bandwidth to the region of the notch.
This should effectively fix the degrees of freedom in the
aggregate alert signal, restoring Weber’s law.

McGill & Teich {1991a) did not incorporate an adapta-
tion level into their treatment. Their demonstration was
carried out for y, =1, since in that special case the zero-state
1s not detached. Hence, the argument was appropriate for
pairs of comparison tones with a brief (nearly} blank inter-
val between each member of the pair, i.e., classical intensity
discrimination.

A superior format for making the same experimental
comparisons would be a run of just-detectable increments in



ALERTING SIGNALS

a steady tonal background. The adaptation level is then set
by the steady background. Increment detection would be
mediated directly by an alert signal. No explicit stimulus
comparisons would ever be required. If excitation spread,
more than one branching chain would be set up, and if
spread were uncontrolled, we should encounter the near-
miss phenomenon.

What happens when the two formats are compared in a
narrowband case involving single chains? Is there a
measurable difference between intensity discrimination and
increment detection when the same pairs of pure tones are
used to generate comparisons? Laming (1986) posed the
issue originally, formulating it as a general question in
sensory analysis.

The output counting distribution of a single branching
chain operating in alert-signal mode is given in Eq. (25). An
observer making paired comparisons on the basis of such
counts will generate correct choices in accord with the rule

Plc)=P(j>k)+3 P(j=k), (26)
where P(c) is the probability of a correct response in two-
alternative forced choice, j is the count generated by the
incrementally stronger pure tone, and k& is the count
generated by the weaker pure tone.

The probability of a correct response in two-alternative
forced-choice (2ZAFC) is the probability that the strong
signal count exceeds the weak count added to the proba-
bility of guessing correctly when they coincide,

If Eq. (25) is inserfed (see McGill & Teich, 1991b), we

find
P(c)=< Yo )(2+)’0+2aE5>
l+yo+aEg/\2+2y,+ 2aE,
+( 1 +ak, )( l +ak, )
14+ yo+al,/\14+y+ak,
x( 1+ 2y, + 2aFE, )
24+4y,+ 2aE,+ 2aE,

(27)

The choice probability is developed from a chain adapted
to a pure-tone background whose intensity fixes the size of
o and incremented by two different pure-tone signals. Here
the incremental energies are set at x = E,, or alternatively
x = E, slightly larger.

The detection format is a steady background or pedestal
tone with a pair of superimposed increments differing
slightly in intensity. All components are at the same
frequency. When P(c) is plotted against E,, we have a
psychometric function describing the detectability of E,
against E;, where each lies above an adaptation level, y,.
Counting distributions are based on Eq. (25).

With everything simple, why should the psychometric
function be so formidable? There are two reasons. First,
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there is a problem with the spike of probability corre-
sponding to a count of zero. The first term of Eq. (27) is
generated when the count & attributable to the weaker
tone is zero. The second term appears when £>0. A
second reason is that we are computing a three-parameter
(Eo, E,, yo) expression in order to encompass several
different experimental comparisons. For example, when
adaptation level is set for background silence (y,=0), the
psychometric function in Eq. (27) reduces to

1+24E, _ E,
24+ 2aE,+2aE, Eo+E,

P(c)= (28)

This is essentially the result reported carlier by McGill &
Teich (1991a). A slight difference arises because McGill &
Teich set y,=1, whereas here we take y,=0. If E, is of
modest size, the difference is negligible. Equation (28) is the
performance of an energy observer detecting two different
levels of narrowband noise by making comparisons between
them (see Green & McGill, 1970, Eq. (9a); McGill & Teich,
1991a, Eq. 27). We find noise here because an ultra-linear
chain is a proportional counter, and the stochastic process
defining the chain is a narrowband noise generator. At the
terminus, a listener would not be able to decide whether the
noise came from the auditory pathway or from a narrow-
band noise input. Branching converts deterministic inputs
into stochastic outputs by infusing them with multiplicative
noise generated in transmission.

If a pure tone spreads out over a frequency region encom-
passing a number of independent alarm generators, the
narrowband noise in Eq. (28) will not always appear to
widen, although its average level will change. This reflects
the influence of the zero-state on the aggregate response of
a small group of chains. Weber’s law continues to charac-
terize auditory alarm signals until inputs are intense enough
to spread excitation over a wider region. Then the near miss
appears. We should not assume that these same things
happen in all experimental formats. Different formats
activate different mechanisms.

Let E,=0 in Eq. (27), eliminating one comparison tone.
The format is now a steady-state background and a transient
of fixed intensity detected against it: pure-tone increment
detection. Both are at the same frequency. In that event,

Yo 2+?0+20Es>
P =
©) (1+y0>(2+2y0+2aEs
+( 1 )( 1+aE, )(1+2y0+2aEs>
14+ y,/\1 +yo+aE,/\2+4y,+2aE, )’

P(c)~1 +yo/2 +akE,
= ]+}’0+0E5 ’

~y0/2+aEs

Plc .
( ) y0+aEs
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The second term of Eq. (29} should be negligible com-
pared to the first whenever the background level y, is
modestly high. Since the second term develops when back-
ground contributions are greater than zero, it follows that a
branching chain must be virtually silent at adaptation level,
a fact now established in several different ways.

Equation (29) again portrays an observer discriminating
two levels of narrowband noise, one of them created by an
alarm signal. To compare this result for increment detection
against Eq. (28) involving intensity discrimination, we necd
to plot P{c) against E, in both cases, but E, does not signify
a background intensity in Eq. (29). Accordingly, let

yo=aky,.

This shifts the origin in Eq. (29) from adaptation level down
to zero intensity. The same shift applied to incremental
intensity produces

E.=Eq,+ AE.

The new background level E, and increment AE can now
be substituted back into Eqs. (28) and (29). When back-
ground intensity is modestly greater than zero (i.e,, silence},
these notional changes alter the appearance of the choice
probability 1n Eq. (29} to a form that is much easier to
recognize:

(30)

Both intensities are measured against a zero origin, and
Eq. (30) is comparable to its counterpart in Eq. (28). Both
exhibit Weber’s law: detectability is determined by the
intensity ratio. When the two detection curves are plotted
against log E;, we find that increment detection {Eq. 30) is
about 3 dB more sensitive than intensity discrimination
{Eq. 28). A narrowband comparison such as this would be
appropriate near threshold or at low background levels.

Since branching chains are nearly silent at adaptation
level, an unconventional strategy for increment detection
emerges from Eq. (30). The observer listens at the output. If
anything comes through, anything at all, even a single
count, an increment is claimed for the interval in which it
appears. If nothing comes through, the observer guesses.
Counts rarely occur in both intervals. If it should ever
happen, the observer guesses again or discards such trials
from the data. This strategy is essentially the one described
by Sakitt (1972) for absolute visual threshold. It vields
results quite close to Eq. (30).

We see that detection strategies involving an adaptation
level are likely to be different from pure intensity dis-
crimination where explicit comparisons are required.

MCGILL AND TEICH

Experimenters generally prefer increment detection. They
regard it as more sensitive than other threshold methods.
Our analysis suggests that a basis for this preference exists
in the information at the output end of a branching chain,
[ Compare Eqs. (28) and (30).]

Multiple Chaing

Suppose we consider the same calculation assuming a
number of independent chains, as might happen when a
moderately intense pure tone serves as a background in the
alerting mode. Exact solutions for the psychometric func-
tion are difficult in such cases, but a normal approximation
can be constructed provided the number of chains is
sufficiently large. Earlier, McGill & Teich (1991a) showed
that in pure-tone intensity discrimination, ie., y,=1,
detectability is fixed whenever the signal-to-background
level and v, the number of chains, remain constant.

What happens in increment detection? To learn the
answer we need a wideband generalization of Eq. (30).
Begin with the mean and variance of Eq. (25), now modified
so that all intensities are referred to the same zero origin:

mean count =1 + a AE, 3D
variance =2aE,+a AE - (1 + 2aE, + a 4E).

These parameters describe a single-chain alerting dis-
tribution when an increment AE is added to the tonal
background. Unmodified backgrounds are given by
Eq. (31) with AE=0.

If the same energies are spread out uniformly across v
independent transmission channels, the counting distribu-
tion is driven toward Gaussian form and the parameters
become

mean count =v+a AE,
variance = v[ 2aFy /v + (aAE/v) (31a)
A1 +2aFE,/v+aAE/v)].

The standard normal deviate describing a paired
comparison is then

adE

~d.
[d4aEy+ (a AE)1 +2aE, /v +a AE/v)]'?

Constant terms divided by the background intensity
become small and can be neglected. Hence,

v AE[E, .,
2+ AEJE,
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Thus for v, the number of independent sensory channels,
sufficiently large, and AE/E, sufficiently small, the standard
normal deviate characterizing increment detection in an
ultra-linear network may be approximated by

(vAERE)? ~d. (32)

Recall that the process was initiated by an energy
exchange in the receptor. When this increment spreads out
over a large number of channels responding to a steady-
state background or pedestal, the aggregate action
resembles amplitude detection. It would not be correct to
define the stimulus in such cases as an amplitude. We say
instead that amplitude-like detection oceurs when an energy
increment activates many independent branching chains. A
near miss to Weber's law will also develop if v increases in
an uncontrolled way as energy spreads to nearby receptor
sites.

The sensitivity advantage of increment detection is
preserved with wideband alarm signals.

V., SUMMARY

We have shown that stochastic models of sensory trans-
mission are fairly easy to construct. The systems installed by
nature behind the major senses almost certainly include
mechanisms to amplify weak signals. As the principle
governing amplification we offer a repetitive Markov
operator that multiplies message-events according to a fixed
probability rule as data pass from point to point in trans-
mission. Continuous repetition of the operator moves
information through successive “stages” of transmission,
increasing the average message-size and adding an internal
noise to the amplified record. We attribute Weber's law in
large part to this internal noise.

There are, of course, many alternative views (cf.
Treisman, 1964). Researchers have identified Weber’s law
with neural refractoriness {Teich & Lachs, 1979} and with
receptor saturation {Lachs, Al-Shaikh, Bi, Saia, & Teich,
1984). Once sensory systems are addressed in their full
complexity, explanations of Weber's law can be constructed
from a variety of principles. All these need to be sorted
out.

As noted, the auditory system probably amplifies the data
it moves to higher centers. The machinery should then
involve at least two processes: amplification and trans-
mission. Here we formulate branching chains as unitary
mechanisms with the same properties everywhere. Despite
the apparent conflict, this single-chain approach is not a
serious problem. Multi-step processes, in which one chain
amplifies and a second transmits, are also equivalent to a
single branching chain. The two systems differ in structure,
but their outputs are identical. See McGill & Teich
{1992).
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Introducing a log transform early in transmission, as
nature seems to do, counteracts the effects of amplification.
The transform first compresses intensity, and then the
network promptly undoes it. Such counterbalancing leads
to a power function in the output.

The log transform is not introduced as a mathematical
convenience to make calculations easy. A solid body of
evidence establishes that log conversions similar to Eq. {17)
actually occur early in transmission. Rushton (1961,
pp. 171-181) and Zeng & Shannon (1994) found the trans-
form in unrelated studies of sensory coding. Rushton based
his conclusions on impulse data recorded from the visual
receptor of the horseshoe crab, whereas Zeng & Shannon
analyzed loudness judgments in hearing-impaired humans
implanted with electronic transducers in the cochlea or
brain stem. The formulation by Zeng & Shannon of inten-
sity coding at “high” frequency is very close to the one
presented in this paper. In the cat, primary eighth-nerve
fibers synapsing directly with hair-cell receptors in the inner
ear show similar effects. A log transform is found across the
junction. (See Teich & Khanna, 1985.)

A unique property of birth-and-death transmission is its
adaptation level. Branching chains with perfectly balanced
birth and death rates quickly drift into a state of adaptation
to steady-state backgrounds. Output is largely (but not
entirely} suppressed in the adapted condition. Hence,
changes are detected in nearly the same way at all back-
ground levels. A log relation between increment intensity
and the net birth rate of a branching chain will rarely
generate large data counts in detection experiments. Within
the rough 10 dB range of a psychometric function, there is
little difference between log and linear scales. The log
transform has its principal impact on the location of the
adaptation level.

The perspective contributed by transmission is spectacular.
Intensity is not necessarily coded into the neural image of an
input signal. Instead, it can regulate the buildup of events
inside an alarm mechanism. Steady-state backgrounds cause
the latter to come into equilibrium so that multiplications and
losses are nearly equal. Responding then virtually ceases until
a change of some sort occurs. Detection involves an alert
signal instead of a copy or image of the input.

Our results suggest that if background level is sufficiently
high, the onset of an increment will trigger the alert signal.
Listeners seem to be reporting on the properties of this
alarm rather than the increment itself.
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