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We investigate the statistical properties of a special branching point process. The initial process is
assumed to be a homogeneous Poisson point process (HPP). The initiating events at each
branching stage are carried forward to the following stage. In addition, each initiating event
independently contributes a nonstationary Poisson point process (whose rate is a specified
function) located at that point. The additional contributions from all points of a given stage
constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the
initiating point process at that stage. The process studied is a generalization of a Poisson
branching process in which random time delays are permitted in the generation of events.
Particular attention is given to the limit in which the number of branching stages is infinite while
the average number of added events per event of the previous stage is infinitesimal. In the special
case when the branching is instantaneous this limit of continuous branching corresponds to the
well-known Yule-Furry process with an initial Poisson population. The Poisson branching point
process provides a useful description for many problems in various scientific disciplines, such as

the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers.

PACS numbers: 02.50. + s, 29.70. — ¢, 94.40.Pa
. INTRODUCTION

The theory of branching processes provides an impor-
tant set of mathematical tools which may be applied to many
problems in modern physics."? These range from multiple
atomic transitions to extensive air showers produced by cos-
mic rays. In many of the existing mathematical treatments of
these problems, the branching is treated as an instantaneous
effect. However, in most physical systems, a random time
delay (or spatial dispersion) is inherent in the multiplication
process.

In a recent set of papers, we examined a special general-
ized branching process in which the muitiplication of each
event is Poisson and a random time delay is introduced at
every stage. The first model that we analyzed®~ is the two-
stage cascaded Poisson, in which each event of a primary
Poisson point process produces a virtual inhomogeneous
rate function which, in turn, generates a secondary Poisson
point process. These secondary point processes are superim-
posed to form the final point process. In that model, primary
events themselves are excluded from the final point pro-
cess.>™> The description turns out to be that of a doubly sto-
chastic Poisson point process (DSPP), which we refer to as
the shot-noise-driven process (SNDP).> The SNDP is also a
special case of the Neyman-Scott cluster process.>* Because
of the great body of theoretical results available for the
DSPP, our calculations for the statistical properties of the
process turned out to be relatively straightforward. In an-
other version of this two-stage model, primary events are
carried forward to the final process.®

The second system which we analyzed’ is an m-stage
cascade of Poisson processes buffered by linear filters. Each
filtered point process forms the input to the following stage,
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acting as a rate for a DSPP. This is equivalent to a cascaded
SNDP. We obtained the counting and time statistics, as well
as the autocovariance function. The results of that study are
likely to find use in problems where a series of multiplicative
effects occur. Examples are the behavior of photon and
charged-particle detectors, the production of cosmic rays,
and the transfer of neural information.

In this paper, we consider a cascade model in which
primary events are carried forward together with secondary
events, to form the point process at the input to each succes-
sive stage. Since the primary and secondary events compris-
ing the union process at each stage are not independent,® the
solution is somewhat more difficult than for the cascaded
Poisson case considered previously.” The initial point pro-
cess is assumed to be a homogeneous Poisson process (HPP).
The final process is itself homogeneous (stationary). This
treatment should allow us to model a wide variety of phys-
ical phenomena in which particles produce more particles,
and so on, with the original particles remaining. Our process
may also be regarded as a special generalized branching pro-
cess,! in which each event of the HPP produces an age-de-
pendent point process. However, our interest is in the union
of the branching point processes rather than in the statistics
of the number of events at a certain time (or place), as is the
customary quantity of interest in age-dependent branching
processes.

Branching processes with properties such as age depen-
dence, random walk, and diffusion have been studied exten-
sively from a general theoretical point of view.' Few of the
statistical properties are obtained in a form amenable to nu-
merical solution, however. The present work examines a rel-
atively simple process that describes branching with time
delay. Thanks to the simplicity offered by the Poisson as-
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sumption, we can obtain explicit formulas for useful statisti-
cal properties that may be experimentally measured. Exam-
ples are the counting distribution, moments, and power
spectral density, as we demonstrate.

In Sec. I, we review the properties of a Poisson branch-
ing process in which the branching is instantaneous. This
establishes the properties of the limiting situation, to which
our process must converge when time delay is negligible. We
also consider the limiting case when the number of branch-
ing stages approaches infinity while the average number of
secondary events per primary event approaches zero. In the
instantaneous multiplication case, this results in the Yule-
Furry process,® driven by HPP initial events.

In Sec. II1, we introduce time delay at each stage of
branching and define the process formally. We provide ex-
pressions for the moment generating functional of the pro-
cess, from which we compute the moments, counting prob-
ability distribution, and autocorrelation function (or power
spectral density). In Sec. IV, we discuss the important limit
of the continuous branching point process with time delay,
showing how it differs from the instantaneous continuous
branching case.

1. INSTANTANEOUS POISSON BRANCHING PROCESS

This section is divided into three subsections. In Subsec.
A, we briefly discuss the well-known general Galton—-Wat-
son (GW) branching process." In Subsec. B, a special Gal-
ton-Watson branching process, in which the multiplication
is Poisson, is examined. The properties of a Poisson Galton—
Watson process, in which the initial number of events is itself
Poisson, are examined in detail in Subsec. C.

A. Galton-Watson branching process

Let Ny, N\, ¥,,... be nonnegative integers denoting the
successive random variables of a Markov chain, where N,,
denotes the size of the population of the mth generation of
the branching process. The population N, , , at the
(m 4+ 1)st generation is determined by the sum

N"I
Npyr=3 Z7 (1)

k=1
of N,, independent, identically distributed (iid) random var-
iables Z",Z 7,...,Z %, each with probability distribution

Prob(Z™ = k) = p7, k=0,1.2,... (2)
This determines the transition matrix of the Markov chain.
It is assumed that NV, = 1. The chain is known as a Galton—
Watson (GW) process.

The basic assumption is that each of the members of a
generation branches independently and identically to gener-
ate the population of the following generation. The statisti-
cal properties of the random number N,, may be determined
from its probability generating function

Gpl2) = ("), (3)
which may be calculated by use of recursive equations. These
are easily determined by using the iid assumption:

2175 J. Math. Phys., Vol. 25, No. 7, July 1984

Glz) =z,

G, 10)=G,[0,(], m=0,1,.., (4)
where

0.0= 3 mrs (5)

is the probability generating function of the random variable
zZm.

B. Poisson Galton-Watson process

We now consider a special case of the GW process by
taking

N [0, k=0,
Pe=\gk=te= /i — 1), k=12,.,
i.e., Z 7 obeys a shifted version of the Poisson distribution® of
mean «,,. This signifies that each member of the mth genera-
tion survives and remains in the (m + 1)st generation, add-
ing a cluster of offspring which is Poisson distributed with
mean a,, . We shall call this special GW process the Poisson
GW process (PGW).

By substituting (6) in (5), we obtain

m=0,1,2,.... (7)
Therefore, from (4), the probability generating function is
GO(Z ) =2z,

(6)

miz — 1)

0,.(z) = ze" ,

(8)

G, . 2)=G,[z2""*""], m=o0,1,..

C. Poisson Galton-Watson process with an initial
Poisson population

In this subsection, we define a process in which
members of an initial population of random size N, each
independently generate identical PGW processes. The final
process is the sum of these processes. Furthermore, we as-
sume that &V, is Poisson with mean a.

The properties of this process may be obtained by re-
garding it as a shifted version of a special GW process in
which N, = 1, and the p{ are given by

Plt:ake—a/k!, k=0,1,..,

(9)
=, 0 ) ey
PE et te e — 1y, k=12,.f0 M2

Thus N, = Z' is Poisson with mean g, and the branching to
generations m = 2,3,... occurs in accordance with a shifted
Poisson law (in which no deaths occur) with parameters
Q2,Q3,... . This allows us to write the probability generating
function for this special process as

Gyz) =z,

Gz} =" 1, (10)

G2 =G, [2e" "], m=1,2,..

Because (10) forms the limiting case for the process we
shall define in Sec. III, some of its important statistical prop-
erties will be provided in the following. All of these proper-
ties may be determined by using (10).
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1. Moment generating function

The moment generating function (mgf)
0., (s) = (exp( — sN,,)) may be obtained from the probabil-
ity generating function G,, (z) by the use of

Q.5)=G,.le™7). (11)
With the help of (10) we can show that for a Poisson branch-

ing process, with homogeneous branching (i.e., a; = ), and
with a Poisson initial population,

Q..(s) =expla[D,(s)— 1]}, m>1, (12)
where

D,.(s) = Dyls) exp [a mg [D,s) — 1]] ,

Ds)=e"".

For m = 1 and m = 2, we recover the mgf’s for the Poisson
and Thomas counting distributions, respectively.®®’

2. Moments

The moments of the count number ¥,, may be obtained
from (11). The mean and variance are’

m—1

(N,,)=a H 1+a,), m>2 {13)
K=1
and
m—1 m—1
Var[N,]=a ¥ C. [ (1+a), (14)
k=0 r=k+1
where
C,=1,
C1=a1,
k—1
Co=a, > (I+a,), k>2.
r=1

The count variance-to-mean ratio (Fano factor F') provides a
suitable index for the degree of deviation from a Poisson
counting process for which F = 1.° We form this ratio with
the help of (13) and (14):

VeV
& (N,.)
e [0en] [, 0]
(i vee)
where i
ay=1,

=1 for s<t.

r=t

For homogeneous branching
(N,,)=a(l+af"~",
Var[N,, ]
=a(l+a)" [R+a)fl+a)" '—1], m>1,17)
F,=[l/1+a)ll2+a)fl +a"~'=1], m>1. (18)

m>1, (16)
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The resulits for the one- and two-stage cases are clearly iden-
tical to those for the Poisson and Thomas distributions, re-
spectively.®®

When the branching is homogeneous, the nth moment
of N,, may be determined from the mgf provided in (12). The
result is the recurrence relation

Wiy =) 3 (1), me2, 9

where

=1,
lk
piern— =W peer
(l_l_a)m—l

K+ 1) k & (k (k "= s

Di*V=Dk+a 3 ()DE""Y DI,
<o =1

D=1,
PP =1, k>1,

(N,)=a(l +a"~".

3. Counting probability distribution

The probability distribution p,,(n) of N,, may be ob-
tained by differentiating the probability generating function
G.(2)°

Pl =~ G| (20)

n! dz" z=0
Using (10) and (20), we obtain the recurrence relation for the
homogeneous case,

pn0)=e"", (21)

(4 1) puln+ 1) = (N} S poln—k)JE+D,
k=0

where
way_ (=D e+ 1)
" (1+a) 'kt "
k k m—1
E(’L<+1)=__ Y',ﬁ’+a z ( )E(,:_” z E}l+”,
I=0 I i=1
yk+D o i (k) Y(k~nmilE(,1+n
" “o\! " j=1 !
m—1
Y9 =exp [a S [EY - 1]},
i=1
E¥ =0 for all m>1, all k>0, except (m,k)=(1,1),
EW= _1.

In Fig. 1(a), we present a graphical representation of the
counting distribution p,, (n) versus the count number n for
m = 2,3,4, and 10, with @ = 0.5 and (N,,) = 10. It is seen
that the distribution for » = 10 approaches a d-function at
the origin plus a relatively flat component, indicating very
strong pulse clustering. In Fig. 1(b), the case fora = 2.0 is
shown. For both cases, it is clear that the variance of the
counting distributions increases as the number of stages in-
creases. It is also apparent that the variance increases with
increasing a, when m and (N,,) are fixed. The results for
m = 2 are identical to those for the instantaneous Thomas
process.®®
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FIG. 1. Counting distribution p,, (n) vs count number n with m as a param-
eter. The mean count (N,,) = 10.0 for all cases. (a) @ = 0.5; (b) @ = 2.0.

4. Limit of continuous branching

An important special case is one in which the number of
branching stages approaches infinity, while the branching at
each stage becomes infinitesimal. Let
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(22a)

m—ow ,

a—0, (22b)
with the product

ma=x {22¢)

remaining finite. In this limit, we denote N,, and Q,, (s)as N,
and Q. (s), respectively. The limit of (12) yields

Q.(s) = exp{a[D,(s) — 1]}, (23a)
where D, (s) satisfies the differential equation

5 p,(9)=D,i5) [D,6) 1], (23b)

ox
and the initial condition is

Dys)=e~"*. (23¢)
Equation (23) has the solution

l—e™*
= —a , 24
0.1 =exp | —a =t —] (24

which is recognized as the moment generating function for
the linear birth (Yule-Furry) process with a Poisson initial
population.'®

The nth ordinary moment of N, is found to satisfy

wrry=w) 3 (0) e, e
k=0
where
IV=1,
I(k+”—(_1)k+le—2x i 1k+1
¥ l—e * & (l—e %

The mean count is

(N,) =ae*, (26)
and the variance, which is readily obtained from (25), is given
by

Var[N, ] =ae*(2e" - 1). (27a)
The Fano factor therefore takes the particularly simple form

F . =2¢ -1, (27b)

which is, of course, also obtainable from (18).
The probability (counting) distribution p, (1) of N, may
be determined from (24) or from the limit of (21). The resultis

a

p(0)=e"7,
(28)

(4 Dpn+ )= (N) S pln—k)JE+Y,
k=0

where
JUE+D ==Xk 4 1)(1 — e~ Xk,

It is of interest to show the manner in which the distri-
bution p,,(n) approaches p,(n) as m— o and a = x/m—0.
In Fig. 2, we plot the counting distributions p,, (n)form = 5,
10, and 50, with fixed ma = x = 1.0. We also plot p, (n) for
x = 1.0, which is labeled Y-F (Yule-Furry). The final count
mean of all distributions was kept constant at a value
(N,,) = 10 [this means that the initial mean a differs from
curve to curve; see (16) and (26)]. The results demonstrate
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that the limiting Yule-Furry distribution p, (rn)is essentially
attained (for this particular set of parameters) when m>50.

i11. POISSON BRANCHING POINT PROCESS
A. General branching point process

A generalization of the sequence of integers Ny, ¥, V...
discussed in Sec. IIA is the sequence of point processes Nyt ),
N,(t), N,(t),... . Events now have times associated with them.
The variable N, (¢) represents the numbers of events of the
mth generation which occur in the time interval ( — oo, ]. It
is again assumed that the sequence N,, (¢ ) is Markov, i.e.,
given the point process NV, (¢ ), the statistics of the point pro-
cess N,, , ,(¢) are completely defined. The transition from
the process NV, (¢ ) is obtained as follows. Each event of a
given generation independently generates a point process.
These point processes are statistically identical when each is
measured from the occurrence time of the event that gener-
ated it. The following generation is comprised of the union of
those point processes. For example, if the process N, (¢) has
occurrence (jump) times ¢ ', ¢5, t7,..., the k th event of the
mth generation, which occurs at time ¢ ', generates a point
process Z 7{t — t 7). The point processes Z (¢ ), Z7(t),...
are iid. The process N,, , ,(¢) is the union of the processes
Z7e—1t7), k=1.2,.;ie,

Nt

N, (t)= Y ZPe—13).

k=1
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The general branching point process Nyt ), N,(¢),... is com-
pletely defined once the point processes Z ™(¢ ) are defined
form=0,1,... .

B. Poisson branching point process

We shall call a general branching point process Poisson
if Z (¢ ) is the union of a Poisson point process of rate 4, (¢ ),
with a process u(t ) [u(t}) =0, <0; u(t) = 1, £>0] containing
only one count at ¢ = 0. The initial process N,(¢ ) also con-
tains a single event at t = 0, i.e., Ny(t) = u(z).

C. Poisson branching point process driven by an initial
Poisson point process

Here we assume that the 1st generation N (¢ ) is de-
scribed by an HPP counting process of rate . Subsequent
branching follows a Poisson branching point process as de-
scribed in Sec. ITIB. Because of the stationarity of the initial
generation /(¢ ), the point processes of subsequent genera-
tions will remain stationary. This process shall be referred to
as the Poisson-driven Poisson branching point process.

To understand the nature of the formation of this pro-
cess, and its possible applicability to physical systems, we
can think of it schematically as a cascade of systems T,
operating on random point signals. Consider an operator P
representing a Poisson point generator that operates on a
function X () to produce a sequence of impulses
dN(t)= X,6(t —t,); dN (t) represents a Poisson point pro-
cess of rate X (¢). Consider also a unit system designated
h,,(t), representing a time-invariant linear system of impulse
response 4, (t ), that operates on the signal 2, 5(r — ¢, ) to
produce the signal =, 4, (t — 1, ). The functions 4,,, () are as-
sumed nonnegative.

The Poisson branching point process with an initial
Poisson population is formed as follows. The first generation
dN,(t)is a homogeneous set of Poisson impulses of rate u as
shown in Fig. 3(a). This signal is modified by the system T, to
produce a set of random impulses dN,(t ) representing the
second generation, and so on, as indicated in the figure. The
system T,,, which is shown in Fig. 3(b), filters the stream of
impulses provided to its input with a linear time-invariant
filter of impulse response 4,,, (¢ ). The filtered signal X,,, (¢ ) isa
random continuous process, which in turn acts as the sto-
chastic rate of a DSPP, represented by the set of impulses
dM,,(t). The union of this set of impulses with the input set
dN,,(t) constitutes the final output set of impulses
dN,, , .(t). [Figure 3(c) will be discussed subsequently.]

We now proceed to determine the statistical properties
of the above-described Poisson-driven Poisson branching
point process. The quantities we derive in this section in-
clude: (i) the moment generating functional for the process
N, (¢); (i) the multifold and singlefold moment generating
functions for the numbers of counts in L intervals
[¢:t + T;], j = 1,2,..,L; (iii) the moments of the number of
counts N,, (¢)in the interval [0,7]; (iv) the counting probabil-
ity distribution for N, (T} in [0,T ]; and (v) the correlation
function and power spectral density.
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FIG. 3. (a) Schematic representation for the m-stage Poisson branching
process excited by a homogeneous Poisson process with rate u. P represents
a Poisson point process generator whereas T, represents a random point

process transformation operator. (b) Point process transformation unit cell
for each stage. The box 4,,, (¢ ) represents the impulse-response function for a
time-invariant linear filter, and P is a Poisson point process generator. (c)
Equivalent unit cell useful for calculating the count mean and variance.
W, (t) is a stationary, zero-mean, white process.

1. Moment generating functional

The moment generating functional associated with a
Poisson-driven Poisson branching point process N, (), at
the mth stage, is defined by the expectation

L,(s)= <exp ( — J_ww s(t)dN,, (¢ ))> . 29)

It can be shown®’ that L, (s) satisfies the following recur-
rence relation:

Lots)={exp | = [~ st

— by (=1l 11} aN, 1))

=L, {slt)—h, _(—t)e[e= — 1]}, (30)

where the symbol * indicates convolution. The moment gen-
erating functional for the first stage is

Ll(s)=exp{,uf [e“‘”—l]dt]. (31)
For convenience, we define the following operator:
anll= =0+ [ hlo—lexp [~} — 11do.(32)
Combining (29)-(32) then yields
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L, (s)=exp [,u f [exp {41(g2q, — 1 (s(2)))} — 1] at ] ;
m>2. (33)

For the case of identical impulse response functions at
each stage [4,,(t) = h (¢) for all m], (33) can be expressed as

L,,,(s)zexp{ujoo [D, (st} — l]dt], m>1, (34)
where ) »
D, (s,t) = Dils,t) exp {h(—t)* 2 [D;(s,t) — 1]] ,

j=1
Dst)=e ",
2. Multifold and singlefold moment generating function

The L-fold moment generating function for the
numbers of counts in the intervals [4:4 +T;],
Jj=12,..,L, can be obtained from the moment generating
functional L, (s) by the substitution

sit) =svi(e), (35)
where s and v(t ) are vectors defined by
S = (§1,825.--55. )
V(1) = (v(2 )0t ), (1))
wo=|l v
0, otherwise, j=1,2,3,..,L.
The symbol t indicates vector transposition. This results in

Q.(s) = exp {,uf_eo [exp { —sv'(z)} — 1] dt] ,
(36)

Ouist=exp {1t [ [exD (41lasaran_ (VD)

—1] dt] , m>2.
For identical branching, it follows that

Q,,,(s)=exp{,uj°c [D,,,(s,t)—l]dt], m>1, (37)
where -
D, (st) = D,(s,t) exp [h(—t)* mf [D,(s.t) — 1]],
Dy(s,t) =exp [ — i 5; vj(t)] .

Equation (37) will be used to determine the correlation func-
tion and power spectral density for the process.

The statistical properties of N, (T'), the number of
counts in an interval [0,T"] at the mth stage, may be deter-
mined from the singlefold moment generating function,
which is readily obtained from (36) by substituting L = 1:

0,(5) = exp [uf Lexp{ —solr)} ~ 11 |, (38)
0,.(s) = exp {u |7 texp tglantar-g— it}

— l]dt], m>2.
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This recurrence relation is difficult to use unless the branch-
ing stages are identical (homogeneous branching), in which
case it reduces to

Q,.ls) =exp [yf_: [Dnlsit) — 1] dt] , m»1,(39)

with

D, (s,t) = Dy(s,t) exp [h (—t)* z [Dyls,t) — ]}

=
D s,t) =e M,
1, OKKT,
)=

e {0, otherwise .
3. Moments

The nth ordinary moment of N, (T') follows directly
from the singlefold mgf by means of the relation’’

(NLTH =(— 1)" (40)

s=0
Using (39) and (40), the recurrence relation for the moments
(in the special case of homogeneous branching) becomes

(NZHHTY
Z n
=(N,(T)) ¥ (k) (NLZHTRIR™Y, m>2,(41)

where

19=1,

T 1) -7 pueyar,
+a'"_ —

D) =or) D100+ 3 (7) D510

x[h(-;).z D“*”(t)]

j=1
DOt)=1 for all ¢,
DR =yt), k>1.
This should be compared with the expression for the instan-
taneous case given in (19).

For homogeneous branching, the mean number of
counts is

(NLAT) =AN(T)) =pT (1 +a)" "', (42)
and the variance of N,,,(T') is

Var[N,,(T)] = (N (T) I3, m>2, @3)
with

It = —-———f D3ty dt,
T +a)"~’

D)= (D) +h(— 1) Z DPht),

i=1

DUt = vle) + k() S DMe),
j=1

DMt) = uft).
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In the limit of long counting times
Var[N, ] =pT(1+a)"*[2 +a)l +a)"~' —1], (44)

in accord with (17) for instantaneous branching. Though
higher statistical properties are difficult to compute for non-
homogeneous branching, the count mean and variance can
be obtained.

For this purpose, we consider the representation pro-
vided in Fig. 3(c), where W,,(t) is a stationary, zero-mean,
white random process, with a cross-correlation function giv-
en by

Ry, w, (1) = (W,(t + 1)W,(t)) = (X,(t))?8(t)5,; . (45)

6(t) and §; are the Dirac and Kronecker delta functions,
respectively. The system in Fig. 3(c) turns out to be identical-
ly equivalent to the one in Fig. 3(b) as far as computation of
the first and second moments are concerned.”'>!* A
straightforward calculation provides

(N T =pT T[ 1 +a), m>2 (46)
and
Var [N, (T)]

=p kz—:o Ce _T(T_ I71)

m—

><,=:+11 [8(r) + h,(r) + h,(— 1) +g,(7)] dr,

m>2, 47)
where
C =1,
Cc =1,

k—1

Co=a; [[ 1 +a), k32,

r=1

a, =f h(t)dt,

g1} =h,(r)*h,(—1),

i [8(r) + A dr) + A (— 1)+ g.(1)] = b(r) for j<i.

The symbol #} _, indicates n-fold convolution. The Fano
factor is therefore

=T nva)] S [ (- )

m—1

X _x [0 +hin)+h(—7)+8(7)] dr,

r=

m>2. (48)

When all o, are identical and equal to @, (46) and (47) reduce
to (42) and (43), respectively. In the limit of long counting
times, the process is effectively instantaneous and the above
expressions for the mean, variance, and Fano factor become
(13), (14), and (15), with @ = u T, respectively. In the special
case m = 2, (46)—{(48) reproduce the previously obtained re-
sults for the Thomas point process.®

Because of the importance of the Fano factor as a sim-
ple measure characterizing the departure of a process from
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the HPP, we carry out a parametric study of its dependence
in our branching process. For simplicity, we assume that the
impulse response functions 4,, (¢ ) are identical at each stage,
and have the simple exponential form

[(Za/rp Jexp( — 2t /7,), >0,

hit)=
0, t<0.

Here 7,/2 is the characteristic decay time of the filter and
is the area under the function.

In Fig. 4, we plot the Fano factor F,, (T) versus the
number of stages m, with 2T /7, and  as parameters. All of
the curves are monotonically increasing functions of m (as
are the underlying mean and variance curves). This is to be
contrasted with the results for the cascaded Poisson process
that we studied earlier,” in which the mean and variance
decay with increasing m if @ < 1. The distinction arises be-
cause of the presence of the feed-forward path [shown in Fig.
3(b)], whch distinguishes the present model as a branching
process, rather than as a simple cascade of stages. For
T /7,» 1, the curves will obey (18}, which provides essential-
ly exponential growth (straight-line behavior on a logarith-
mic ordinate). For T /7, <1, the particlelike clusters of the
points in the process are chopped apart by the small sam-
pling time, leading to the independence that is characteristic
of the HPP.® Indeed, as the curves for 27 /7, = 0.01 show,
F,.(T') remains essentially constant at unity, up to four
stages. The small residual clustering is amplified as m in-
creases above this value. Increasing values of «, of course,
correspond to increased clustering.

(49)

s a=1.1
I .

18 4

VARIANCE-TO~-MEAN RATIO F,(TD

NUMBER OF STAGES (m>

FIG. 4. Count variance-to-mean ratio (Fano factor) F, (T")

= Var(N,,(T)}/(N,,(T})} vs number of stages m, with 2T /7, and a as
parameters. The impulse response functions 4, (¢) are all assumed to be
identical, exponentially decaying functions with time constant 7,/2.
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4. Counting probability distribution

The counting probability distribution function of
N,,(T)canbe derived by using (11), (20), and (38) from which
it follows that

prO=exp{u [~ (ES-1]at), (50)
1+ 1) pln + 1) = (No(T) S puln — k) JE+T,
k=0
where
‘I(rf;+” )k+1 f E(k+l)
T(1+a)"‘—‘k'
E%+Ye) = EWY )

m—1

—t)s 3 EV+Ne),

Jj=1

Z E(I+”(t)

ji=1

+ 3 (’j)E‘:,-”(r)h(

vi= 3 (5) v -

/=0

YO9¢)=exp [h(—-t)# 2 [E ) — ]}

i=1
0, 0T,
E(O)(t)z m—1
m exp{ (=) Y [E)f) —1]}, otherwise ,
ji=1
0 ogT
E(O)t ={ 1 b
vt 1, otherwise,
—1 oikT
E“’t 2{ s &S
(¢ 0, otherwise ,

E¥(t)=0 for all ¢, k>2.

Equation (50) reduces to (21) in the limit T'/7,» 1. As T /7,
is reduced, F,,, (T") will decrease (see Fig. 4), and the counting
distributions will narrow. The transition in p,, (1) vs n will
not be unlike that demonstrated for the cascaded Poisson
process (see Ref. 7, Fig. 8).

5. Autocorrelation function and power spectral density

In this subsection, we derive the autocorrelation func-
tion and the power spectral density for the Poisson branch-
ing point process. The autocorrelation function r,, (7) is de-
fined as

r.(r= hm —— (AN, (t)AN,

(A y
where the quantity 4N, (¢ ) represents the number of counts
in the time interval [z,7 + At ], at the mth stage. The equation

for (AN, (t)AN,,(t + 7)) may be obtained from (37) by sub-

(7)), (51)

stituting
L=2,
oyft) = {1, Ogegar,
0, otherwise,
vz(t)={l’ T<IKT + 4t ,
0, otherwise.

Differentiating (37) with respect to s, and s,, substituting
§; =5, = 0, and letting Ar—0 leads to (see Appendix)
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dow

)= L+ g [ Yoo 2 (s
where
Yolo) = |1+ H@)" =" + all +af" >
Iz HE/ L ra)™! g

1-[1+H@)*/(1+a)
H (w)is the Fourier transform of 4 (¢ ). Substituting 7 = Ointo
the second term of (52a) yields the variance

Var [dN,,(t)] =p f Y, () %‘7‘71 , (53)

which represents the power fluctuations of the process
dN,,(t) in the infinitesimal duration A4r.

The power spectral density s,, (@) is defined as the Four-
ier transform of the autocorrelation function r,, (), which is
clearly

Sm(@) =27 { p(l + )"~ '}?6(0) + u Y, (@) . (54)

The first term of (54) represents the dc power of the process
dN,,(t), whereas the second term represents the frequency
distribution of the ac power, which depends on the shape of
the impulse response function 4 (¢ ) through H (w).

The autocorrelation function between the number of
counts in the interval 7, separated by a time delay 7, is de-
fined as

R, (1) = ([N, (t+T)~N,(t)]

X[Nat+T+7) =N, 4+ 7], (55)
which can be easily obtained from (52a) by means of
T pT
R, (7) =f j rat, —t, + 1) dt dt, . (56)
(4] (4]

Substituting (52a) into (56) gives rise to
R, (r)={pT(1+a)"~"}?

dw

+qu Y, @)@ 2, (579)
o 2

where
@, () =T [sinlwT /2)/ (0T /2))*. (57b)

Substituting 7 = 0 into the second term of (57a) leads to the
variance of the counting process,

Var[ V(T =47 [ Vo000 22, (s8)

which is the frequency-domain representation of (43). The
power spectral density for the counts is easily obtained by
taking the Fourier transform of (57a), which provides

Sp(@) =27 { uT(1 + )"~ '}?8(@) + uTY,, (@)Pr(w) . (59)

V. POISSON BRANCHING POINT PROCESS IN THE
LIMIT OF CONTINUOUS BRANCHING

A. Introduction

In this section we investigate properties of the Poisson
branching point process in the limit of an infinite number of
branching stages, when the branching at each stage is infini-
tesimal. Thus we allow
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m—ow , (22a)

a—0, (22b)
with the product

ma =x (22¢)

remaining finite. In this limit we replace the discrete index

m, which has been used throughout Sec. III to indicate the
branching stage number, with the continuous index x. Thus
L, Q. N,..becomeL,, Q., N, .., respectively. Fur-
thermore we define a normalized impulse response function
hy(t) such that

h(t) = aht) (60)

and

J: hoft)dt = 1.

By applying this limit to the expression derived in Sec. III,
we obtain a number of results that form a simple generaliza-
tion of the Yule-Furry process. Their application to the gen-
eration of cosmic ray showers is likely to be useful.

B. Results

We are able to obtain results for the moment generating
functional and moment generating function in the case of
instantaneous branching, when the initial process is Poisson.
These are, of course, identical to those for the Poisson-driven
Yule-Furry process, as provided in Sec. II C. General re-
sults, with arbitrary time dynamics, have been derived for
the count mean, variance, and Fano factor, and for the auto-
correlation function and power spectral density of the point
process. It will be evident in the following that the count
mean and variance depend critically on m. The results below
should be compared with those provided in Secs. II C and
nicC.

1. Moment generating functional
The moment generating functional (34) becomes

L _(s)=exp [,uJ-iO [D.lst)—1] dt] ,

where D_(s,t) satisfies the nonlinear integro-differential
functional equation

(61a)

9 D (st)=Dlsit) (hef — 1} [Dylst) — 1]}, (61b)
ox

with the initial condition

Dys,t)=e ), (61¢)
We are unable to obtain a general solution to (61b). However,
in the simple special case where

hoft) =b(t), (62)

(61b) can be shown to have the solution

- x,— s(t)
¢ ¢ . (63)
1—(1—e e

The moment generating functional is then

D, (st)=

a I —e=
L (s)=¢ex [— f dt]. (64)
¥ Pl —el—(1—e %
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2. Moment generating function

The moment generating function Q, (s) of the random
variable N, {T') may be obtained from the moment generat-
ing functional L, (x) by setting s(t ) = sv(t ). Equation {61b) is
then a nonlinear integro-differential equation which is diffi-
cult to solve. In the special case of instantaneous branching,
we can use (64) to obtain

1—e"° ] , (65)
1—(1—e Ne™*°

which is identical to {24) with @ = u 7, as it should be. Equa-
tions (24) and (65) are identified as the moment generating
function of a Yule-Furry process driven by a homogeneous
Poisson point process, as mentioned above.

Q. (s) = exp [ —uT

3. Moments

It is possible to obtain expressions for the mean and
variance of N, (T') for an arbitrary impulse response function
hy(t). Applying the limits of (22) on (42} leads to

(N (T)) =pTe . (66)

Note that (66) is identical to (26) with a = uT. A similar
operation on (52b) yields

Y, (@)= lim Y, (o)

m— oo

_ [H{o) + H(— w))eH@+H-all _ g

, (67)
Ho+H(—w)—1
so that the count variance is [see (58)]
Var[N,(T)] =/.LTf:° Y, (0)®r(w) ‘;—j; (68)

Here H (w)is the Fourier transform of At ) (the transfer func-
tion of the filtering system), H ( — w) is the complex conju-
gate of H (w), and the function @,(w} is given in (57b). Using
Eqgs. (66) and (68), the Fano factor becomes

Fir)=[" @sl0)

IHw) + H(—o)] g+ Hi—e~11 _ 1 do
How+H(—w)—1 27
(69)

For the case of instantaneous multiplication, H (@) = 1 forall
o so that (68) and (69) reduce to the Poisson-driven Yule-
Furry results

Var[N,(T)] = uTe*2e" — 1) (70)

and
F,.=2-1, (71)

respectively. Of course, (70) and (71) are then identical with
(27a) and (27b) witha = uT.

To assess the effects of the characteristic decay time 7,
of the filter 4.(z ) on the fluctuation properties of the counting
process N, (T'), we consider a simple example. We make use
of the ideal low-pass filter transfer function

H{o)= [1’ ol <e. , (72)

0, otherwise,
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where /2 = 1/7,. It can be shown that (69) then leads to

Fx=[28x—1]§(T/TP)+ [l—g(T/Tp)] , (73a)
where
EB)=(2/m Si(B/2) — (4/B}[1 — cos{ B /2)] (73b)
and
Si(ﬂ)=fﬁmdy. (73¢)
0 y

In Fig. 5 we plot the Fano factor F,(T') as a function of
the branching parameter x, with the ratio 8=17/7, asa
parameter. In the limit 7»7,, £(7/7,}—1, and

F,.=2>~1 for T»7,, (73d)
in accord with the (instantaneous) results presented in (71).
In the opposite limit (T<7,), £(T/7,}—>2T /7,, corre-
sponding to a reduced Fano factor
F, =[2e"—1]2T/7,)+ 1 — (2T /7,) for T<7,. (74)

It is apparent from (74) and from Fig. 5 that as T /7, de-
creases, the Fano factor, and therefore the degree of fluctu
ation, decreases. The reason for this, once again, is the cut-
ting apart of the particlelike clusters of multiplied events.

4. Autocorrelation function and power spectral density

The autocorrelation function and power spectral den-
sity for the process dN (¢ ) may be determined by taking the
limit of (52a) and (54), respectively. The results are

S.a
IDEAL LOW-PASS FILTER
T _
=, = °°/
4.0 L s
/
/Im.m
/
304 /

VARTIANCE~TO-MEAN RATIO F.(TD

- "
— 8.1
- -
// /
’/ I — .21
" |
1.8 = F L B

a.e a.2 B. 4 .6 2.8 1.e

BRANCHING PARAMETER G

FIG. 5. Fano factor F, (T) as a function of the branching parameter x, with
T /7, as a parameter. In this example of continuous branching, the time

dependence of the process is represented by an impulse-response function
whose Fourier transform is an ideal low-pass filter.
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i) = b [ o) enr 22 (79

and

5. (@) = 2mu’e”S(w) + uY, (@), (76)
where Y (w) is given by (67).

The autocorrelation function of the counts ¥, (7"} for
the infinite branching case is obtained from (75) by using (56).
This provides

Roir) = (TP +uT [ Y, 0l0rlo)enr 92, )

The power spectral density in this case is

S, (@) = 27 uT e*8(@) + uTY, (@)Pr(w) , (78)
corresponding to (59).

In Fig. 6, we present the power spectral density for the
Poisson branching point process s,, (w7,) versus normalized
frequency w7, [see (54) and (76)] with m as a parameter. For
the purposes of illustration, we have chosen an exponential
impulse response function [see (49)] and ignored the delta
function at w7, = 0. The product ma = x was maintained

s. @

EXPONENTIAL FILTER (a)

POWER SPECTRAL DENSITY sSm(wT,)

-18 -8 -8 -4 -2 [ 2 4 [ [ 18

NORMAL IZED FREGUENCY (7,5

. EXPONENTIAL FILTER (b)
B0.B84 o= x=4.0

78.8.4 _(1+ y M

e0.0]

50.8.

4.0l

0.0

20.0.{

2.2

8.9
-10 6 ] 12

POWER SPECTRAL DENSITY Sm(wT¥>

NORMALIZED FREGQUENCY (wT,>

FIG. 6. Power spectral density for the Poisson branching point process
5,,(w7,) vs normalized frequency wr,, with m as a parameter. For the pur-
poses of this illustration, we have chosen an exponential impulse response
function, and eliminated the delta function at w7, = 0. The driving rate
p=(1+a)~"=(1+41/m)" " in all cases. (a) ma = x = 1.0; (b)

ma =x=40.
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constant for each plot [ma = x = 1.0 in Fig. 6(a);

ma = x = 4.0 in Fig. 6{b)]. This enables us to follow the be-
havior of 5,,, {(w7,) as m increases toward the continuous limit
{m = o). The driving rate was adjusted in all cases to be
p=(14+a)~™=(1+ 1/m}~ ™ so that the rate of the final
point processes is unity. For the parameters shown, it is evi-
dent that the curves are of very similar shape, although their
absolute and relative magnitudes are strongly dependent on
m and on ma = x.

Finally, we note that while we generally think of x as
position in a continuum of branching stages, and ¢ as time, it
may be more appropriate in some applications to regard the
variable x as time along which branching progresses, and ¢ as
position. In such an interpretation, 4 (t) will indicate diffu-
sion or migration of particles in space, and ¥, (T") the num-
ber of particles in the space [0,7'] at the time x.
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APPENDIX: DERIVATION OF THE CORRELATION
FUNCTION r_,(r) FOR THE POISSON BRANCHING
POINT PROCESS

Differentiating (37) with respect to s, and s,, and setting
5, =s5,=0, provides

r.lr)= hm (A 7

=,u2f ol (t)dtf @2 (r)dt

(4N, (t)AN,, (¢ + 7))

+ ur @ (t)dt, (A1)
where o
DUt = D V(t)+h(—1) z o),
SR = 0P +h(—1)s S L),
®3t) = & Die) + qba”(r)[h( _ey @%)]
+ ¢‘12’(t)[h (— 1) mf qb;”(t)]
Fh(—1)s z @ Pt)
[h (—1)» mjl @)
X[h(—t)tm_‘ m(z)] (A2)
with the initial conditions
o) = —8),
PPt)= —6(t—1), (A3)
@ Pr) = 5(t)b(7) .
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Taking the Fourier transform of (A2) and {A3) to obtain the
frequency-domain equivalent of Eq. (A1) provides
rmlr) =1 @)0)B 7(0) + 1B 00), (A4)

where & 2 (0) is the Fourier transform of @ @ (¢) evaluated at
o = 0. A simple calculation shows that the first term in (A4)
is

1P 0D 20) = { p(l + )" '}2, (AS)
whereas the second term of (A4) is
p®0) =p f Y, ()i 92 (A6)
 w 27

with Y (w) as given in (52b).
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