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greater than unity in auditory-nerve spike trains
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Auditory-nerve spike trains exhibit fractal behavior, and therefore traditional renewal-point-process
models fail to describe them adequately. Previous measures of the fractal exponent of these spike
trains are based on the Fano factor and consequently cannot exceed unity. Two estimates of the
fractal exponent are considered which do not suffer from this limit: one derived from the Allan
variance, which was developed by the authors, and one based on the periodogram. These measures
indicate that fractal exponents do indeed exceed unity for some nerve-spike recordings from
stimulated primary afferent cat auditory-nerve fibers. 1896 Acoustical Society of America.

PACS numbers: 43.64.Pg, 43.64.Bt

INTRODUCTION I. FRACTAL BEHAVIOR IN AUDITORY-NERVE SPIKE

The mathematical model that has been traditionally use(-irRA”\lS
in auditory and other branches of sensory neurophysiology is  Auditory-nerve spike trains exhibit correlations. Se-
the homogeneous Poisson point proc$BP) and its close  guences of interevent intervals exhibit positive correlation
relatives, the family of refractoriness-modified Poisson pointyer the long term(Teich, 1989 and often exhibit negative
processesRMPS. Members of this family include processes ., elation over the short terrfLowen and Teich, 1992
with refractoriness that is fixedRicciardi and EsSposito, g,ch spike trains are therefore not renewal, and RMP models
1966, random with a Gaussian distributidieich et al, cannot properly describe thefieich, 1992. Rather, a de-
1978, random with an exponential distributidiYoung and scription of the nerve-spike trai,n requires a, fractal-
Barta, 1986, and a combination of the first and last kindls stochastic-point-proces&SPR model (Teich, 1989; Teich
and Young, 1998 All of these processes are renewal, which 992: Teichet al, 1990a, 1990b: Poweks aI'., 1991’; Pow-’

means that_ they exhibit mde_pendent, identically distribute Lrs and Salvi, 1992: Woet al, 1992: Kumar and Johnson,
interevent intervals. These intervals are therefore uncorrel- 93: Kelly et al, 1996
lated, and such processes are completely specified by the|$9 ' y ! '
interevent-interval histogram$lHs). A. Self-similarity of neuronal firing rates
Figure 1 displays the IIH for the spontaneous neural . .
o . . Perhaps the simplest measure of a sequence of action
activity observed on a typical primary afferefulll-nerve)

: i . . otentials is its rate: the number of spikes registered per unit
cat auditory-nerve fiber. This particular neuron has a chara me. For nonfractal brocesses such as RMPs. fluctuations in
teristic frequency(CF) of 3926 Hz. The approximately ' P '

straight-line behavior of the data for interevent intervalsthe rate estimate tend to_average out as t he countlng- jume
greater than about 5 ms on this semilogarithmic éatid us:ed to compute the rate increases. In auditory nt_aural fl_rlngs
curve demonstrates that the histogram has an exponentizﬁ“S appears 1o occur much more slqwly; even this st_ralght—
tail. The HPP and the RMP models mentioned abalé forward measure has fractal properties. The fluctuations of
except the Gaussiamere fit to the IIH by setting the firse the rate often do not decrease appreciably even when a very

moments of the theoretical density function equal to those ofPNd counting time is used to compute the rate, but instead
the data, wherk is the number of parameters in each model £xhibit fluctuations on all time scalgSeich et al, 1990a;

All three models correctly yield an exponential tail; we illus- 1€iCh, 1992. This behavior derives from correlations in the
trate only the exponentially distributed random dead-timeS€guence of interevent intervals, as confirmed by the obser-
model(denoted EXP-RMP; dashed cupsnce it provides a vation that the fractal properties of the rate estimate are de-
reasonably good fit to the data with a minimum of param-stroyed by shuffling(randomly reordering the intervals.
eters. The combined fixed-and-random dead-time médel This operation removes the correlations among the intervals
and Young, 1995fits the data slightly better for this data set, While exactly preserving the interevent-interval histogram.
but at the expense of an additional parameter. Although th¥Vith all dependencies among the intervals eliminated by
RMP models fit the IIH well, they fail to accord with many shuffling (besides those inherent in retaining the same,lIH
other statistical features of auditory-nerve spike data. Therethe result is essentially a renewal point process, which the
fore, the sequence of auditory nerve spikesii¢ renewal random RMP indeed models very well. All statistics of the
(Lowen and Teich, 1992 despite a long history of papers to exponentially distributed random RMP model appear to
the contrary. closely mimic those of thehuffledauditory data.
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FIG. 2. Doubly logarithmic plot of the Fano factdsolid curve for the
same auditory neuro(L-19) as illustrated in Fig. 1. For counting times of
curve. The stimulus frequency at which this neuron is most sensitive@Pout 100 ms and larger, this curve approximately follows a straight line,

(known as its characteristic frequency or)d& 3926 Hz. The data closely reprgsenting a fractiqnal power-law increase in the Fano factor with'count-
follow a straight line for intervals greater than about 5 ms. Bin width is 0.5"9 time. Also shown is the FF for the shuffled data, which behaves like the

ms. Also shown is the theoretical result for an exponentially distributedFF for an RMP. The data were shuffled 100 times, and the FF computed for

each set; the meafdashed curve +1-standard-deviation limitgdotted
curves are displayed here. The FF for the shuffled data exceeds that for the
original data neal =30 ms, indicating that the spike train exhibits negative
short-term correlation in the sequence of interevent intervals.

FIG. 1. Semilogarithmic plot of the relative frequency of interevent inter-
vals for spontaneous neural activity in an auditory-nerve fihet9, solid

refractoriness-modified Poisson point procé&XP-RMP with the same
mean and varianc@lashed curve

B. Power-law behavior of the Fano factor

Another measure sensitive to correlations is the Fanqggg. The fractal exponend estimates a parameter of the
factor (FF), which is the variance of the number of neural gpike-train recording, and serves to characterize the neuron
spikes in a specified counting tinie divided by the mean and stimulus conditions, much as the average firing rate

number of spikes in that counting time.N(s, ) is the num-  does. For RMP processes, the Fano factor remains near or
ber of spikes recorded in a counting window beginning athelow unity for all counting times.

time s and ending at time, then the FFR-(T) of a stationary A plot of the FF alone cannot reveal whether this large

data set is Fano factor arises from the distribution of the interevent in-
E[NZ(t,t+T)]— EN(t,t+T)] tervals (the IIH_), or from their ordering. This issu_e is re-

F(T)= (1) solved by plotting the Fano factor for the shuffled intervals.

EIN(tt+T)] FFs constructed from shuffled data retain information about
where Ek] denotes the expectation of the quantity In  the relative sizes of the intervals only; all correlations and
general the Fano factor varies with the counting tifie dependencies among the intervals are destroyed by the shuf-
hence the notatioR (T). fling process(besides those due to the shape of the) llab
The solid curve in Fig. 2 shows the experimental FF fordiscussed in Sec. | A. The dashed curve in Fig. 2 illustrates
the same spontaneously firing neuron whose IIH is shown ithe FF obtained by this method. This curve behaves very
Fig. 1. The Fano factor increases steadily for counting timesnuch like the FF for an RMP, approaching a value less than
greater than about 100 ms, and exceeds a value of ten famnity for large counting times. This is consistent with the
counting times in excess of 30 s. Since the FF approximatel®ss of self-similarity in the firing rate discussed in Sec. | A
a straight line over a large range of counting times on thisand shows that it is the ordering of the intervals, which in
doubly logarithmic plot, it is well fit over this range by an turn reflects correlations in the spike occurrences, that gives
increasing power-law function of the counting time rise to the power-law growth of the FF for auditory neurons.
F(T)~1+ (T/To)"F, @) Plots of the ;hL_lferd and un_shuffled FF; also highlight
the small but significant negative correlation over times
with ax~0.48 for this particular neuron. scales on the order of tens of ms which exists in most of the
Such a monotonic, power-law increase indicates thelata sets we have studi¢d<2x10 % (Lowen and Teich,
presence of fluctuations on many time scales, with the expdt992; Teich and Lowen, 1994see also Gaumondt al,,
nent o identified as an estimate of the fractal exponent 0f1982. This is evident in Fig. 2; an increase in the magnitude
the point process describing this recordifigowen and of the FF with shuffling neaf =30 ms indicates the pres-
Teich, 1995a For large counting times, all auditory-nerve ence of anticorrelation in the sequence of original interevent
spike trains examined to date in the cat, chinchilla, andntervals. For this particular neuron, then, long intervals are
chicken exhibit Fano factors that increase as power-law funcmore likely to be followed by short intervals and vice versa.

tions of the counting timgTeich, 1989, 1992; Teickt al, Many auditory neuronébut not al) behave this wayl.owen
1990a, 1990b; Powest al., 1991; Powers and Salvi, 1992; and Teich, 1992; Gaumond, 1993 hus over the short term,
Woo et al, 1992; Kumar and Johnson, 1993; Kelly al,  as well as over the long term, neural activity on auditory-

3586 J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 S. B. Lowen and M. C. Teich: The periodogram and Allan variance 3586



. - . ' - The FF plots shown in Fig. 3 all have a similar appear-
STIMULUS AT 3926 Hz (CF) ance; however, the minimum value of the Fano factor is
_______ NONE reduced under stimulation. This occurs because the refracto-
-------------- = riness in the neuron regularizes the spike train more effec-
g tively when the rate is higher, and thereby reduces the count
variance. This effect dominates the reduction of any anticor-

. - i : : relation which might have existed in the interevent intervals

F(T)

STIMULUS AT 1000 Hz under spontangously fir_ing conditio(ss shoyvn in Fi_g. )4

; NONE J Another potential contributor is phase locking, which also
2 reduces the count variance. The estimated Fano-factor expo-

nent o also appears to increase under stimulat{@eich,

1992; Teichet al, 1990a; Kellyet al, 1996, although other

estimation methods can give different resulelly, 1994;
4 _3 2 1 o 1 Kelly etal, 1996. The FF detects the presence of self-

10 10 10 10 10 10 N : . oo

COUNTING TIME T (sec) similarity even when it cannot be discerned in visual repre-
sentations of the nerve-spike train. However, it cannot in-
FIG. 3. Fano factors for this same neur@n19) when the stimulation is a  crease faster than T2, so that the FF provides a measure of

continuous tone at Ck3926 Hz, upper panglnd below CF at 1000 Hz  fractal exponents in the range<@<1 only (Lowen and Te-
(lower panel. Stimulus levels are indicated in dB above the threshold of theiCh 1993, 1995a; Teickt al, 19964

neuron. The Fano factor for spontaneous firing, shown in Fig. 2, is repro-~ "’ ! ! K ’
duced for purposes of comparisgsolid curve$. The shapes of the FF
curves are similar for spontaneous and driven firing; all reveal an approxic=  pgower-law behavior of the Allan factor and the
mately power-law increase with the counting time. The power-law exponenberiodogram

ar generally increases when a stimulus is applied.

The accurate estimation of a fractal exponent that may

nerve fibers cannot be modeled as a renewal point processassume a value greater than unity requires the use of a mea-

The FF for this same auditory neuron is shown in thesure whose power-law exponent is not constrained to lie be-
upper panel of Fig. 3 when the ear is stimulated by a conlow unity. We consider two such measures.
tinuous tone at the CF, with the acoustic intensity leydB We call the first the Allan factofAF) (Teich et al,
re: threshold indicated. The spontaneous FF shown in Fig. 219963, and define it as the ratio of the Allan variance of the
is reproduced for comparison. The lower panel of Fig. 3event count to twice the mean. The Allan variance, in turn,
presents the FFs when the frequency of the applied stimulugpresents the average variation in the difference of adjacent
is 1000 Hz(below CH. Various characteristics of the neuron counts(Allan, 1966; Barnes and Allan, 19%8n terms of the
and stimulus are presented in Table | for this and a numbenumbers of countd(s,t) defined earlier, the Allan factor
of other data sets. A(T) for a stationary data set is defined as

TABLE |. Estimates of the fractal exponent employing the Fano fatf#y, the Allan factor(AF), and the
periodogram(PG). All estimates were calculated by determining the slope of a least-squares straight-line fit to
doubly logarithmic plots of the indicated measures. For the FF and AF, the counting time ranged Ifihio

L/10 in ten logarithmically spaced steps, wherevas the duration of the recording. For the PG the frequency
ranged from 1/ to 50L in 50 linearly spaced steps. Also shown for each recording are the record name,
characteristic frequendfCF) in Hz, estimate of the spontaneous ré8®) in spikes/s, stimulus frequency in Hz,
acoustic intensity in dB above threshold, and duration of the recording in seconds. Four of the recordings
(L-19-6, L-19-8, R-4-4, and R-7)3appear to have true fractal exponents greater than unity, since both the AF-

and PG-based estimates exceed unity for these data files. The FF-based estimate, in contrast, cannot exceed

unity.

Neuron Stimulus Fractal exponent
Record CF Rate est. Frequency Intensity Duration estimates
name (Hz) (spikes/$ (Hz) (dB) (9 ap ap as
L-19-3 3926 75.1 500 0.48 0.48 0.48
L-19-7 3926 93.7 3926 +5 501 0.43 0.64 0.68
L-19-5 3926 108.8 3926 +15 502 0.55 0.64 0.59
L-19-6 3926 93.8 3926 +40 502 0.96 1.11 1.27
L-19-10 3926 93.2 1000 +5 501 0.54 0.77 0.78
L-19-8 3926 103.8 1000 +15 501 0.78 1.17 1.07
L-19-9 3926 95.7 1000 +40 500 0.74 0.87 0.94
R-4-2 3342 78.8 502 0.74 0.83 0.88
R-4-4 3342 71.4 3342 +15 500 0.75 1.29 1.13
R-4-6 3342 79.1 3342 +40 350 0.80 0.85 1.39
R-7-2 281 14.1 501 0.62 0.61 0.72
R-7-3 281 93.6 281 +15 303 0.91 1.19 1.56

3587 J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 S. B. Lowen and M. C. Teich: The periodogram and Allan variance 3587



] STIMULUS AT 3926 Hz (CF) X \ STIMULUS AT 3926 Hz (CF)
X 10% L ——— NONE |

A(T)
S(f)

107% 107% 1072 107! 100 10! 1072 107" 10°
COUNTING TIME T (sec) FREQUENCY f (Hz)

FIG. 4. Doubly logarithmic plots of the Allan factor versus counting time FIG. 5. Doubly logarithmic plots of the smoothed periodogram versus fre-

for the same recordings as in Fig(r®uron L-19. As with the FF curves in  quency for the same recordings as shown in Figs. 3 afuedron L-19.

Fig. 3, the shapes of the Allan factor plots resemble each other. All increas&he periodogram is an estimate of the power spectral density of the spike

approximately as a power-law function of the counting time. Driven record-train. The shapes of the curves resemble each other; all decrease approxi-

ings yield a larger estimated fractal exponentthan do spontaneous re- mately as power-law functions of the frequency, for sufficiently low fre-

cordings. quencies. A larger estimated fractal exponegtis associated with driven
firing.

_ 2
A(T)= E{[N(t+T,t+2T)—N(t,t+T)]7}

_ 3) density o_f a point process. Much as for continuous-fcime pro-
2EN(t,t+T)] cesses, it reveals how the power is concentrated in various
It is related to the Fano factor Kcharfet al, 1999 frequency bands. For an FSPP, the PG decrez%ses as a power-
law function of the frequency so thatS(f ) ~ f~“s over a
A(T)=2F(T)—F(2T). (4)  significant range of low frequencied.owen and Teich,
In general, both quantities vary with the counting timie 199_53' Nonfractall processes, in contrast, e?<hibit no such
Indeed, for an ESPP with<Oa<1, the FF and the AF both scaling over any significant range.of. frequen0|e§. This fractal
vary as~T¢, with the same fractal exponent over a large exponentag will assume a value S|m_|lar ta, obtained from
range of counting time$. Thus doubly logarithmic plots of the AF when 6<a<3, and toa: obtained from the FF when

the AF for such processes will yield an estimaig of the ~O~@<1. It appears thats does not saturate anyvalue, in

fractal exponent similar in value to . contrast_ toa anda, . _
In contrast to the FF, however, the AF can rise as fast as In Fig. 5 we present periodogram plots for the same data

~T3 (see the Appendix Thus it can be used to estimate sets which provided the FFs shown in Fig. 3 and the AFs

fractal exponents over the expanded ranger&3. Figure 4 shown in Fig. 4. The periodograms all dec.rease in approxi-
displays Allan factors for the same data sets used to obtaiEately power-law fashion for low frequencies, and reveal a

the FF plots shown in Fig. 3. For larger values of the count-2'9€" fractal exponents for the driven recordings than for
ing time T, the AF curves all rise in approximately power- spontaneous firing. This accords with similar observations of

law fashion, much as the FF curves do, but with a largel® anda, . Examination of Table | reveals that whereas both

onset time(Lowen and Ryu, 1996 Although a given AF @S and a, e>_<ceed unity for some recordings,;_ne_ver does.
generally appears visually rougher than its FF counterpart, it 0" @n ideal FSPPys, o, and e, all coincide when

nevertheless generally provides a superior estimate of the'SY lie in the range ga<1, andas=a, for 0<a<3. In
fractal exponentTeich et al, 1996a. The Allan factor has Principle, any of these statistics may be obtained from a par-

been used successfully in connection with the sequence 61Fular data set, but in practice each would yield a different

human heartbeats, for which the valuescoflmost always number, thus giving rise to a family of fractal exponents. For
exceed unity(Turcott and Teich, 1996 a FSPP of sufficient duration, however, these three quantities

For the spontaneous firings represented by the solidill differ only slightly (within the ranges specified abgye

curves in Figs. 3 and 4, the slopes of the AFs closely reg;md furthermore will not depend significantly on the ranges

semble those of the corresponding RBee Table 1L This is of_times and frequencies over which th_ey are computed. Iq
expected, since the fractal exponent appears to be less thHHi cafse thle po(ljr;t processdunder cpn3|deratlon_énay b_e said
unity for spontaneous activity. However, for the driven re- 10 be rafctr?, ancs, ‘éA’la,n ?omet||me$¢, provide esti-
cordings of this particular neuron, the AF slopesexceed ~Mates of the true, underlying fractal exponent.

the corresponding FF slopeg in the long-time power-law

regime, and in facty, sometimes exceeds unity. Il DATA ANALYSIS
The second measure with a power-law exponent not’
constrained to lie below unity is the periodogrédRG). It is The experimental data sets comprised spike trains from

denotedS(f) and provides an estimate of the power spectralvarious cat primary auditory-nerve fibers, stimulated by a
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variety of continuous-tone signals. The methods used for théead to an underestimation of the underlying fractal exponent
collection of data were described previouBelgutte, 1990; using this method, although this bias appears to be an un-
Kelly, 1994; Kelly et al, 1996. avoidable artifact of shorter recordin&/oo, 199). Obtain-

The data were processed as follows. The initial 100 s ofng a precise estimate of the fractal exponent often requires a
each recording was discarded to ensure that stimulus-onsstirprisingly large amount of dataowen and Teich, 1995a
nonstationarities were not present. Data at the end of each We computed the estimate of the PG by fast Fourier
recording were also discarded in those cases where the eitansforming the number of counts in adjacent windows of
perimental notes indicated a problem, or where unphysilength L/4096, and then forming the magnitude-square of
ological changes were apparent. In recording L-16-3, for exthis result. The periodogram plots in Fig. 5 were smoothed to
ample, the number of counts in adjacent 1-s countingorovide a clearer visual indication of the underlying fractal
windows had a mean and standard deviation that were botbehavior. In the actual process of estimation this smoothing
less than unity, but for one such window near the end of thavas not performed since the least-squares method renders
recording, eleven counts were registered; the data stretchirifis unnecessary; furthermore, smoothing only confounds the
from 5 s before that window to the end of the recording wereestimated valuexs (Lowen and Teich, 1995aThe PG does
discarded. Finally, all spikes occurring closer than 0.6 mgot derive from a variance, so the smallest frequency avail-
from the previous spike were discarded. able may be usedy,y=21/L. For the maximum frequency a

Since fractal fluctuations contain significant low- Similar bias—variance tradeoff exists as for the FF and AF;
frequency components, relatively long data sets are requirede found thatf\,,x =501 gave the best results, although the
for proper analysis; as a result all recordings which did notpper cutoff does not influence the final result significantly
exceed 100 s after implementing the previously describedlowen and Teich, 19935a
data selection procedures were discarded. We further dis-
carded recordings for which the stimulus conditions werdll. RESULTS AND DISCUSSION

ambiguous, as well as those which exhibited unphysiological  For the 73 recordings studied, the estimates of the fractal
results (such as interevent intervals of 2000 s distributedexponent employing the Ffe), AF (a,), and PG(ag) were
throughout one data set found to be in reasonably good agreement with each other,
No other processing was performed, with the goal ofyjith an average rms difference of 0.24. This compares fa-
retaining all naturally occurring fractal behavior. Simulationsvoramy with results from simulations of much longer data
of fractal processes reveal that FSPPs often contain segmenrygts(10° points, in which accuracies of-0.1 were obtained
which appear to be nonstationary, but which in fact are gLowen and Teich, 1995aSome differences among the es-
legitimate part of the simulation. Eliminating these segmentsimators are to be expected, since they derive from different
artificially reduces the amplitude of the fractal fluctuations instatistical measures, and the relevant time and frequency
what is left of the recording, yielding a spuriously low esti- ranges also differ. As expected, the FF-based estimatar of
mate for the fractal exponefitowen and Teich, 1995a remained below unity for all 73 recordings. Figure 6 presents
The net result was a total of 73 recordings, taken fromvalues ofa, and ag for the 41 spontaneous recor@spen
41 different neurons, that were suitable for study. These datgircles and the 32 driven recordsilled circles.
were analyzed to obtain estimates of the fractal exponent Generally, the estimated fractal exponents increased un-
using the three measures discussed above: FF, AF, and P@er stimulation in comparison with spontaneously firing con-
Obtaining the best estimates of the fractal exponepts  ditions. This increase appears to be relatively independent of
ap, and ag is facilitated by employing the largest range of the characteristic frequency and spontaneous firing rate of
times [Tyn . Twax] or frequenciesfyy ,fuax] for which  the neuron, and on the nature and frequency of the stimulus
scaling behavior exists. The FF and the AF both involve(Woo, 199). The only exceptions were two neurons which
variances. To obtain reliable estimates of both the ordinargxhibited a small decrease in one of the estimatefsfor
and Allan variances at a counting tinfferequires that the L-19 decreased by 0.05 for a stimulus-66 dB at CF, and
duration or lengthL of the recording be several times this @, for R-12 decreased by 0.13 for a stimulus-615 dB at
counting time. We have found thdty,x=L/10 forms a CF), and one neuroifL-18) in which the estimated fractal
practical upper limit for the counting tim€; the number of exponent decreased an average of 0.40 for the three measures
samples is then always at least(L@wen and Teich, 1995a  for a stimulus of+15 dB at CF. But for all other neurons, the
For small values of the lower limity,y , the slope is under- estimated values of increased under stimulation. Indeed,
estimatedso that the estimate is biagduecause the FF and for the spontaneous data we found thaf<1.03 and
AF assume values near unity at very smiglland therefore  a5=<1.09 for all neurons, and for no neuron were bajj#1
no longer follow a power-law form. Various methods can beand as=1; we conclude that the true value of the fractal
employed to minimize this effecKelly, 1994; Kellyet al,  exponenta remains below unity under spontaneously firing
1996; these will be considered further in a later publication.conditions.
Large values offy,\ , on the other hand, only leave a small Four of the 32 data sets recorded with auditory stimula-
range of counting times and therefore lead to a large variancéon appear to have fractal exponents with a true value
in the estimated fractal exponent. Thus there exists a biasgreater than unity, since both the AF- and PG-based esti-
variance tradeoff. For the data records analyzed heranates exceed unity for these data files. These recordings are
Twin=L/100 provided a good compromiséowen and presented in Table I, together with all of the other recordings
Teich, 1995a Recordings of shorter length necessarily made from the same neurons. Beth and ag are subject to
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. FF saturate at unity, but not so for those based on the AF and
. PG. In fact, these latter measures show that some stimulated
s o« %o recordings have a fractal exponenin excess of unity. Gen-
L "o ‘f . eralized versions of the FF and AF, based on various families
b 1 o ovel of wavelet functions, provide additional means for estimat-
5 ° O R b ing the fractal exponent of a sequence of nerve spikémn-
§ ° % . 3 drin and Abry, 1992; Teictet al, 1996a; Heneghaet al,
% °o o ° 9 1995; Abry and Flandrin, 1996 Finally, we mention that
S o ° Poon analytical techniques which incorporate the effects of refrac-
ﬁl ole toriness into fractal models of neural spike trains yield robust
/ © SPONT. estimates of fractal exponenfisowen and Teich, 1995b
* DRIVEN
0 1
AF—BASED ESTIMATE a, ACKNOWLEDGMENTS

FIG. 6. Scatterplot of the estimated values of the fractal exponent for all 73 ~ The authors are grateful to B. Delgutte and D. H.
data sets. The Allan factqgAF) was calculated for each data set with the Johnson for graci0u3|y Sharing their data. This work was

counting time ranging fronL/100 to L/10 in ten logarithmically spaced : ;
steps, wheré is the duration of the recording. The periodogréP®) was supported by the Whitaker Foundation under Grant No.

calculated for frequencies ranging from_1fo 50L in 50 linearly spaced CU01455801 and by the Office of Naval Research under

steps. The slope of a least-squares straight-line fit to a doubly logarithmi€Grant No. N0O0014-92-J-1251.
plot of the AF forms the abscissa, while the slope of a similar fit to the PG
forms the ordinate. Spontaneously firing recordings are represented by open

circles, and driven recordings by filled circles. Driven recordings generally

deliver higher estimates of the fractal exponent than spontaneous recording%.PPENDlx: MAXIMUM POWER-LAW EXPONENT OF

The diagonal dotted line indicates where the two estimates would coincideTHE ALLAN FACTOR

An infinite-length data set would yield a certain estimate for the fractal

exponent; finite data sets yield estimates which themselves fluctuate about  The Allan factor for a data set may rise no faster tfidn

this value. Three of the resulting estimates for spontaneous data sets turn o 5 function of the counting tirm® over significant ranges
to be negative as a result of these fluctuations. . .
gativ . vetuat of T. With N(s,t), as before, denoting the number of events

counted in a counting window starting at tirmeand ending

variance arising from the finiteness of the data set, S0 thaj; timet, we reiterate the definition of the Allan factor given
some of the variation in the estimated valuesxamong the Eq. (3):

different recordings stems from this estimation error. How- )

ever, the correlation coefficient between the AF- and PG- A(T)= E{[N(T,2T)—N(0,T)]%}

based estimators of the fractal exponent assumes a value of N 2EN(0,T)] ’

.+ 0.‘76(.) for the data sets recorded with a stimulus Presen\tNhere we have simplified the notation by setting the arbitrary

indicating that the log-log slopes of the AF and PG indeed . ; _ . . .
. . . starting time tot=0. For a counting time twice as large we

estimate essentially the same underlying value, and do n%tbtain

merely represent random error in the estimation process.

Confidence in these estimators also stems from the observa- A(2T)=E{[N(2T,4T)— N(O,ZT)]Z}/ZE[N(O,ZT)]

tion that the behavior of the spontaneously firing recordings

on the whole differs from that of the driven data sé&ise 2EN(0,ZT)JA(2T)

(A1)

Fig. 6). Finally, simulations of FSPPs consistently show a =E{[N(3T,4T)+ N(2T,3T)
bias away from unity, and toward lower values, for larger )
values of the intended fractal expondhbwen and Teich, —N(T,2T)—N(0,T)]%}

1995a; Teiclet al, 1996a. Thus if any bias exists we would 4EN(0,T)]A(2T)
expecta, and ag to underestimate the true underlying value
« of the fractal exponent. =E[{[N(3T,4T)—N(2T,3T) ]+ 2[ N(2T,3T)

=N(T,2T)]+[N(T,2T)—N(0,T)]}?]
Auditory-nerve spike trains exhibit fractal behavior. <E[{4[N(T.2T) = N(OT)]}"]

Such behavior is characteristic of long-term memory and re- =326 N(0,T)]A(T). (A2)
flects neuronal facilitatiorisee Baudry and Lynch, 1983t

IV. CONCLUSION

Therefore A(2T)<23A(T). A similar approach yields

has also been observed in sequences of action potentials 3 . L
the cat visual systerflTeichet al, 1996a, 1996b, 1996cin AlnT)=n°A(T) for any arbitrary positive integen. Thus
over large ranges of counting tim@s the Allan factor can

addition to rate fluctuations which persist over long averag-increase no faster than T3,

ing times, three measures indicate fractal activity: the Fano Manv stochastic point brocesses achieve this upper limit
factor (FF); the Allan factor(AF), which we define; and the 3. e P Proces: . bpe

: . . of ~T7; we illustrate that this limit can be achieved with a
periodogramPG). These three measures yield numerical es_sim le process whose raiét) varies sinusoidally:
timates of the fractal exponent a number which is a char- piep y:

acteristic of the spike-train data. Estimatesadfased on the N1)=hg[1l+codwt+ )], (A3)
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where\, and w are parameters and is a random variable
uniformly distributed ovef0,2s]. We focus on the counting-
time limits Ay '<T<w !, where the discrete events are well
represented by a continuous rate function. The number
events in a counting window,T) then becomes

T
N(O,T)=J’0 N(u)du

=N T+ Ao [siN(wT+¢)—sin(¢)]
=AoT+ 2 o0 ! sinwT/2)cog wT/2+ ¢). (A4)

The expected number of events is SImplyNED,T)] =A,T,
while the variance is given by

Vai N(0,T)]=4\2w 2 sirf(wT/2)E[cof(wT/2+ ¢)]
=2\50 "2 sif(wT/2)
~2\30 [ (0T/2)2-3 Y wT/2)*]
=2"\2T2- 24 N\30°T4, (A5)

where the conditiom T<<1 permits the use of a power-series

qf
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