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Auditory-nerve spike trains exhibit fractal behavior, and therefore traditional renewal-point-process
models fail to describe them adequately. Previous measures of the fractal exponent of these spike
trains are based on the Fano factor and consequently cannot exceed unity. Two estimates of the
fractal exponent are considered which do not suffer from this limit: one derived from the Allan
variance, which was developed by the authors, and one based on the periodogram. These measures
indicate that fractal exponents do indeed exceed unity for some nerve-spike recordings from
stimulated primary afferent cat auditory-nerve fibers. ©1996 Acoustical Society of America.

PACS numbers: 43.64.Pg, 43.64.Bt

INTRODUCTION

The mathematical model that has been traditionally used
in auditory and other branches of sensory neurophysiology is
the homogeneous Poisson point process~HPP! and its close
relatives, the family of refractoriness-modified Poisson point
processes~RMPs!. Members of this family include processes
with refractoriness that is fixed~Ricciardi and Esposito,
1966!, random with a Gaussian distribution~Teich et al.,
1978!, random with an exponential distribution~Young and
Barta, 1986!, and a combination of the first and last kinds~Li
and Young, 1993!. All of these processes are renewal, which
means that they exhibit independent, identically distributed
interevent intervals. These intervals are therefore uncorre-
lated, and such processes are completely specified by their
interevent-interval histograms~IIHs!.

Figure 1 displays the IIH for the spontaneous neural
activity observed on a typical primary afferent~VIII-nerve!
cat auditory-nerve fiber. This particular neuron has a charac-
teristic frequency~CF! of 3926 Hz. The approximately
straight-line behavior of the data for interevent intervals
greater than about 5 ms on this semilogarithmic plot~solid
curve! demonstrates that the histogram has an exponential
tail. The HPP and the RMP models mentioned above~all
except the Gaussian! were fit to the IIH by setting the firstk
moments of the theoretical density function equal to those of
the data, wherek is the number of parameters in each model.
All three models correctly yield an exponential tail; we illus-
trate only the exponentially distributed random dead-time
model~denoted EXP-RMP; dashed curve! since it provides a
reasonably good fit to the data with a minimum of param-
eters. The combined fixed-and-random dead-time model~Li
and Young, 1993! fits the data slightly better for this data set,
but at the expense of an additional parameter. Although the
RMP models fit the IIH well, they fail to accord with many
other statistical features of auditory-nerve spike data. There-
fore, the sequence of auditory nerve spikes isnot renewal
~Lowen and Teich, 1992!, despite a long history of papers to
the contrary.

I. FRACTAL BEHAVIOR IN AUDITORY-NERVE SPIKE
TRAINS

Auditory-nerve spike trains exhibit correlations. Se-
quences of interevent intervals exhibit positive correlation
over the long term~Teich, 1989! and often exhibit negative
correlation over the short term~Lowen and Teich, 1992!.
Such spike trains are therefore not renewal, and RMP models
cannot properly describe them~Teich, 1992!. Rather, a de-
scription of the nerve-spike train requires a fractal-
stochastic-point-process~FSPP! model ~Teich, 1989; Teich,
1992; Teichet al., 1990a, 1990b; Powerset al., 1991; Pow-
ers and Salvi, 1992; Wooet al., 1992; Kumar and Johnson,
1993; Kellyet al., 1996!.

A. Self-similarity of neuronal firing rates

Perhaps the simplest measure of a sequence of action
potentials is its rate: the number of spikes registered per unit
time. For nonfractal processes such as RMPs, fluctuations in
the rate estimate tend to average out as the counting time
used to compute the rate increases. In auditory neural firings
this appears to occur much more slowly; even this straight-
forward measure has fractal properties. The fluctuations of
the rate often do not decrease appreciably even when a very
long counting time is used to compute the rate, but instead
exhibit fluctuations on all time scales~Teich et al., 1990a;
Teich, 1992!. This behavior derives from correlations in the
sequence of interevent intervals, as confirmed by the obser-
vation that the fractal properties of the rate estimate are de-
stroyed by shuffling~randomly reordering! the intervals.
This operation removes the correlations among the intervals
while exactly preserving the interevent-interval histogram.
With all dependencies among the intervals eliminated by
shuffling ~besides those inherent in retaining the same IIH!,
the result is essentially a renewal point process, which the
random RMP indeed models very well. All statistics of the
exponentially distributed random RMP model appear to
closely mimic those of theshuffledauditory data.
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B. Power-law behavior of the Fano factor

Another measure sensitive to correlations is the Fano
factor ~FF!, which is the variance of the number of neural
spikes in a specified counting timeT divided by the mean
number of spikes in that counting time. IfN(s,t) is the num-
ber of spikes recorded in a counting window beginning at
time s and ending at timet, then the FFF(T) of a stationary
data set is

F~T![
E@N2~ t,t1T!#2E2@N~ t,t1T!#

E@N~ t,t1T!#
, ~1!

where E[x] denotes the expectation of the quantityx. In
general the Fano factor varies with the counting timeT;
hence the notationF(T).

The solid curve in Fig. 2 shows the experimental FF for
the same spontaneously firing neuron whose IIH is shown in
Fig. 1. The Fano factor increases steadily for counting times
greater than about 100 ms, and exceeds a value of ten for
counting times in excess of 30 s. Since the FF approximates
a straight line over a large range of counting times on this
doubly logarithmic plot, it is well fit over this range by an
increasing power-law function of the counting time

F~T!'11~T/T0!
aF, ~2!

with aF'0.48 for this particular neuron.
Such a monotonic, power-law increase indicates the

presence of fluctuations on many time scales, with the expo-
nentaF identified as an estimate of the fractal exponent of
the point process describing this recording~Lowen and
Teich, 1995a!. For large counting times, all auditory-nerve
spike trains examined to date in the cat, chinchilla, and
chicken exhibit Fano factors that increase as power-law func-
tions of the counting time~Teich, 1989, 1992; Teichet al.,
1990a, 1990b; Powerset al., 1991; Powers and Salvi, 1992;
Woo et al., 1992; Kumar and Johnson, 1993; Kellyet al.,

1996!. The fractal exponentaF estimates a parameter of the
spike-train recording, and serves to characterize the neuron
and stimulus conditions, much as the average firing rate
does. For RMP processes, the Fano factor remains near or
below unity for all counting times.

A plot of the FF alone cannot reveal whether this large
Fano factor arises from the distribution of the interevent in-
tervals ~the IIH!, or from their ordering. This issue is re-
solved by plotting the Fano factor for the shuffled intervals.
FFs constructed from shuffled data retain information about
the relative sizes of the intervals only; all correlations and
dependencies among the intervals are destroyed by the shuf-
fling process~besides those due to the shape of the IIH!, as
discussed in Sec. I A. The dashed curve in Fig. 2 illustrates
the FF obtained by this method. This curve behaves very
much like the FF for an RMP, approaching a value less than
unity for large counting times. This is consistent with the
loss of self-similarity in the firing rate discussed in Sec. I A
and shows that it is the ordering of the intervals, which in
turn reflects correlations in the spike occurrences, that gives
rise to the power-law growth of the FF for auditory neurons.

Plots of the shuffled and unshuffled FFs also highlight
the small but significant negative correlation over times
scales on the order of tens of ms which exists in most of the
data sets we have studied~p,231029! ~Lowen and Teich,
1992; Teich and Lowen, 1994! ~see also Gaumondet al.,
1982!. This is evident in Fig. 2; an increase in the magnitude
of the FF with shuffling nearT530 ms indicates the pres-
ence of anticorrelation in the sequence of original interevent
intervals. For this particular neuron, then, long intervals are
more likely to be followed by short intervals and vice versa.
Many auditory neurons~but not all! behave this way~Lowen
and Teich, 1992; Gaumond, 1993!. Thus over the short term,
as well as over the long term, neural activity on auditory-

FIG. 1. Semilogarithmic plot of the relative frequency of interevent inter-
vals for spontaneous neural activity in an auditory-nerve fiber~L-19, solid
curve!. The stimulus frequency at which this neuron is most sensitive
~known as its characteristic frequency or CF! is 3926 Hz. The data closely
follow a straight line for intervals greater than about 5 ms. Bin width is 0.5
ms. Also shown is the theoretical result for an exponentially distributed
refractoriness-modified Poisson point process~EXP-RMP! with the same
mean and variance~dashed curve!.

FIG. 2. Doubly logarithmic plot of the Fano factor~solid curve! for the
same auditory neuron~L-19! as illustrated in Fig. 1. For counting times of
about 100 ms and larger, this curve approximately follows a straight line,
representing a fractional power-law increase in the Fano factor with count-
ing time. Also shown is the FF for the shuffled data, which behaves like the
FF for an RMP. The data were shuffled 100 times, and the FF computed for
each set; the mean~dashed curve! 61-standard-deviation limits~dotted
curves! are displayed here. The FF for the shuffled data exceeds that for the
original data nearT530 ms, indicating that the spike train exhibits negative
short-term correlation in the sequence of interevent intervals.
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nerve fibers cannot be modeled as a renewal point process.
The FF for this same auditory neuron is shown in the

upper panel of Fig. 3 when the ear is stimulated by a con-
tinuous tone at the CF, with the acoustic intensity levels~dB
re: threshold! indicated. The spontaneous FF shown in Fig. 2
is reproduced for comparison. The lower panel of Fig. 3
presents the FFs when the frequency of the applied stimulus
is 1000 Hz~below CF!. Various characteristics of the neuron
and stimulus are presented in Table I for this and a number
of other data sets.

The FF plots shown in Fig. 3 all have a similar appear-
ance; however, the minimum value of the Fano factor is
reduced under stimulation. This occurs because the refracto-
riness in the neuron regularizes the spike train more effec-
tively when the rate is higher, and thereby reduces the count
variance. This effect dominates the reduction of any anticor-
relation which might have existed in the interevent intervals
under spontaneously firing conditions~as shown in Fig. 2!.
Another potential contributor is phase locking, which also
reduces the count variance. The estimated Fano-factor expo-
nent aF also appears to increase under stimulation~Teich,
1992; Teichet al., 1990a; Kellyet al., 1996!, although other
estimation methods can give different results~Kelly, 1994;
Kelly et al., 1996!. The FF detects the presence of self-
similarity even when it cannot be discerned in visual repre-
sentations of the nerve-spike train. However, it cannot in-
crease faster than;T1, so that the FF provides a measure of
fractal exponents in the range 0,a,1 only ~Lowen and Te-
ich, 1993, 1995a; Teichet al., 1996a!.

C. Power-law behavior of the Allan factor and the
periodogram

The accurate estimation of a fractal exponent that may
assume a value greater than unity requires the use of a mea-
sure whose power-law exponent is not constrained to lie be-
low unity. We consider two such measures.

We call the first the Allan factor~AF! ~Teich et al.,
1996a!, and define it as the ratio of the Allan variance of the
event count to twice the mean. The Allan variance, in turn,
represents the average variation in the difference of adjacent
counts~Allan, 1966; Barnes and Allan, 1966!. In terms of the
numbers of countsN(s,t) defined earlier, the Allan factor
A(T) for a stationary data set is defined as

FIG. 3. Fano factors for this same neuron~L-19! when the stimulation is a
continuous tone at CF~3926 Hz, upper panel! and below CF at 1000 Hz
~lower panel!. Stimulus levels are indicated in dB above the threshold of the
neuron. The Fano factor for spontaneous firing, shown in Fig. 2, is repro-
duced for purposes of comparison~solid curves!. The shapes of the FF
curves are similar for spontaneous and driven firing; all reveal an approxi-
mately power-law increase with the counting time. The power-law exponent
aF generally increases when a stimulus is applied.

TABLE I. Estimates of the fractal exponent employing the Fano factor~FF!, the Allan factor~AF!, and the
periodogram~PG!. All estimates were calculated by determining the slope of a least-squares straight-line fit to
doubly logarithmic plots of the indicated measures. For the FF and AF, the counting time ranged fromL/100 to
L/10 in ten logarithmically spaced steps, whereL was the duration of the recording. For the PG the frequency
ranged from 1/L to 50/L in 50 linearly spaced steps. Also shown for each recording are the record name,
characteristic frequency~CF! in Hz, estimate of the spontaneous rate~SR! in spikes/s, stimulus frequency in Hz,
acoustic intensity in dB above threshold, and duration of the recording in seconds. Four of the recordings
~L-19-6, L-19-8, R-4-4, and R-7-3! appear to have true fractal exponents greater than unity, since both the AF-
and PG-based estimates exceed unity for these data files. The FF-based estimate, in contrast, cannot exceed
unity.

Neuron Stimulus Fractal exponent

Record CF Rate est. Frequency Intensity Duration estimates

name ~Hz! ~spikes/s! ~Hz! ~dB! ~s! aF aA aS

L-19-3 3926 75.1 ••• ••• 500 0.48 0.48 0.48
L-19-7 3926 93.7 3926 15 501 0.43 0.64 0.68
L-19-5 3926 108.8 3926 115 502 0.55 0.64 0.59
L-19-6 3926 93.8 3926 140 502 0.96 1.11 1.27
L-19-10 3926 93.2 1000 15 501 0.54 0.77 0.78
L-19-8 3926 103.8 1000 115 501 0.78 1.17 1.07
L-19-9 3926 95.7 1000 140 500 0.74 0.87 0.94

R-4-2 3342 78.8 ••• ••• 502 0.74 0.83 0.88
R-4-4 3342 71.4 3342 115 500 0.75 1.29 1.13
R-4-6 3342 79.1 3342 140 350 0.80 0.85 1.39

R-7-2 281 14.1 ••• ••• 501 0.62 0.61 0.72
R-7-3 281 93.6 281 115 303 0.91 1.19 1.56
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A~T![
E$@N~ t1T,t12T!2N~ t,t1T!#2%

2E@N~ t,t1T!#
. ~3!

It is related to the Fano factor by~Scharfet al., 1995!

A~T!52F~T!2F~2T!. ~4!

In general, both quantities vary with the counting timeT.
Indeed, for an FSPP with 0,a,1, the FF and the AF both
vary as;Ta, with the same fractal exponenta, over a large
range of counting timesT. Thus doubly logarithmic plots of
the AF for such processes will yield an estimateaA of the
fractal exponent similar in value toaF .

In contrast to the FF, however, the AF can rise as fast as
;T3 ~see the Appendix!. Thus it can be used to estimate
fractal exponents over the expanded range 0,a,3. Figure 4
displays Allan factors for the same data sets used to obtain
the FF plots shown in Fig. 3. For larger values of the count-
ing time T, the AF curves all rise in approximately power-
law fashion, much as the FF curves do, but with a larger
onset time~Lowen and Ryu, 1996!. Although a given AF
generally appears visually rougher than its FF counterpart, it
nevertheless generally provides a superior estimate of the
fractal exponent~Teich et al., 1996a!. The Allan factor has
been used successfully in connection with the sequence of
human heartbeats, for which the values ofa almost always
exceed unity~Turcott and Teich, 1996!.

For the spontaneous firings represented by the solid
curves in Figs. 3 and 4, the slopes of the AFs closely re-
semble those of the corresponding FFs~see Table 1!. This is
expected, since the fractal exponent appears to be less than
unity for spontaneous activity. However, for the driven re-
cordings of this particular neuron, the AF slopesaA exceed
the corresponding FF slopesaF in the long-time power-law
regime, and in factaA sometimes exceeds unity.

The second measure with a power-law exponent not
constrained to lie below unity is the periodogram~PG!. It is
denotedS( f ) and provides an estimate of the power spectral

density of a point process. Much as for continuous-time pro-
cesses, it reveals how the power is concentrated in various
frequency bands. For an FSPP, the PG decreases as a power-
law function of the frequencyf so thatS( f ) ; f2aS over a
significant range of low frequencies~Lowen and Teich,
1995a!. Nonfractal processes, in contrast, exhibit no such
scaling over any significant range of frequencies. This fractal
exponentaSwill assume a value similar toaA obtained from
the AF when 0,a,3, and toaF obtained from the FF when
0,a,1. It appears thataS does not saturate atanyvalue, in
contrast toaF andaA .

In Fig. 5 we present periodogram plots for the same data
sets which provided the FFs shown in Fig. 3 and the AFs
shown in Fig. 4. The periodograms all decrease in approxi-
mately power-law fashion for low frequencies, and reveal a
larger fractal exponentaS for the driven recordings than for
spontaneous firing. This accords with similar observations of
aF andaA . Examination of Table I reveals that whereas both
aS andaA exceed unity for some recordings,aF never does.

For an ideal FSPP,aS , aF , andaA all coincide when
they lie in the range 0,a,1, andaS5aA for 0,a,3. In
principle, any of these statistics may be obtained from a par-
ticular data set, but in practice each would yield a different
number, thus giving rise to a family of fractal exponents. For
a FSPP of sufficient duration, however, these three quantities
will differ only slightly ~within the ranges specified above!,
and furthermore will not depend significantly on the ranges
of times and frequencies over which they are computed. In
this case the point process under consideration may be said
to be fractal, andaS , aA , and sometimesaF , provide esti-
mates of the true, underlying fractal exponent.

II. DATA ANALYSIS

The experimental data sets comprised spike trains from
various cat primary auditory-nerve fibers, stimulated by a

FIG. 4. Doubly logarithmic plots of the Allan factor versus counting time
for the same recordings as in Fig. 3~neuron L-19!. As with the FF curves in
Fig. 3, the shapes of the Allan factor plots resemble each other. All increase
approximately as a power-law function of the counting time. Driven record-
ings yield a larger estimated fractal exponentaA than do spontaneous re-
cordings.

FIG. 5. Doubly logarithmic plots of the smoothed periodogram versus fre-
quency for the same recordings as shown in Figs. 3 and 4~neuron L-19!.
The periodogram is an estimate of the power spectral density of the spike
train. The shapes of the curves resemble each other; all decrease approxi-
mately as power-law functions of the frequency, for sufficiently low fre-
quencies. A larger estimated fractal exponentaS is associated with driven
firing.
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variety of continuous-tone signals. The methods used for the
collection of data were described previously~Delgutte, 1990;
Kelly, 1994; Kelly et al., 1996!.

The data were processed as follows. The initial 100 s of
each recording was discarded to ensure that stimulus-onset
nonstationarities were not present. Data at the end of each
recording were also discarded in those cases where the ex-
perimental notes indicated a problem, or where unphysi-
ological changes were apparent. In recording L-16-3, for ex-
ample, the number of counts in adjacent 1-s counting
windows had a mean and standard deviation that were both
less than unity, but for one such window near the end of the
recording, eleven counts were registered; the data stretching
from 5 s before that window to the end of the recording were
discarded. Finally, all spikes occurring closer than 0.6 ms
from the previous spike were discarded.

Since fractal fluctuations contain significant low-
frequency components, relatively long data sets are required
for proper analysis; as a result all recordings which did not
exceed 100 s after implementing the previously described
data selection procedures were discarded. We further dis-
carded recordings for which the stimulus conditions were
ambiguous, as well as those which exhibited unphysiological
results ~such as interevent intervals of 2000 s distributed
throughout one data set!.

No other processing was performed, with the goal of
retaining all naturally occurring fractal behavior. Simulations
of fractal processes reveal that FSPPs often contain segments
which appear to be nonstationary, but which in fact are a
legitimate part of the simulation. Eliminating these segments
artificially reduces the amplitude of the fractal fluctuations in
what is left of the recording, yielding a spuriously low esti-
mate for the fractal exponent~Lowen and Teich, 1995a!.

The net result was a total of 73 recordings, taken from
41 different neurons, that were suitable for study. These data
were analyzed to obtain estimates of the fractal exponent
using the three measures discussed above: FF, AF, and PG.

Obtaining the best estimates of the fractal exponentsaF ,
aA , andaS is facilitated by employing the largest range of
times @TMIN ,TMAX # or frequencies@fMIN ,fMAX # for which
scaling behavior exists. The FF and the AF both involve
variances. To obtain reliable estimates of both the ordinary
and Allan variances at a counting timeT requires that the
duration or lengthL of the recording be several times this
counting time. We have found thatTMAX5L/10 forms a
practical upper limit for the counting timeT; the number of
samples is then always at least 10~Lowen and Teich, 1995a!.
For small values of the lower limitTMIN , the slope is under-
estimated~so that the estimate is biased! because the FF and
AF assume values near unity at very smallT, and therefore
no longer follow a power-law form. Various methods can be
employed to minimize this effect~Kelly, 1994; Kelly et al.,
1996!; these will be considered further in a later publication.
Large values ofTMIN , on the other hand, only leave a small
range of counting times and therefore lead to a large variance
in the estimated fractal exponent. Thus there exists a bias–
variance tradeoff. For the data records analyzed here,
TMIN5L/100 provided a good compromise~Lowen and
Teich, 1995a!. Recordings of shorter lengthL necessarily

lead to an underestimation of the underlying fractal exponent
using this method, although this bias appears to be an un-
avoidable artifact of shorter recordings~Woo, 1991!. Obtain-
ing a precise estimate of the fractal exponent often requires a
surprisingly large amount of data~Lowen and Teich, 1995a!.

We computed the estimate of the PG by fast Fourier
transforming the number of counts in adjacent windows of
length L/4096, and then forming the magnitude-square of
this result. The periodogram plots in Fig. 5 were smoothed to
provide a clearer visual indication of the underlying fractal
behavior. In the actual process of estimation this smoothing
was not performed since the least-squares method renders
this unnecessary; furthermore, smoothing only confounds the
estimated valueaS ~Lowen and Teich, 1995a!. The PG does
not derive from a variance, so the smallest frequency avail-
able may be used:fMIN51/L. For the maximum frequency a
similar bias–variance tradeoff exists as for the FF and AF;
we found thatfMAX550/L gave the best results, although the
upper cutoff does not influence the final result significantly
~Lowen and Teich, 1995a!.

III. RESULTS AND DISCUSSION

For the 73 recordings studied, the estimates of the fractal
exponent employing the FF~aF!, AF ~aA!, and PG~aS! were
found to be in reasonably good agreement with each other,
with an average rms difference of 0.24. This compares fa-
vorably with results from simulations of much longer data
sets~106 points!, in which accuracies of60.1 were obtained
~Lowen and Teich, 1995a!. Some differences among the es-
timators are to be expected, since they derive from different
statistical measures, and the relevant time and frequency
ranges also differ. As expected, the FF-based estimator ofa
remained below unity for all 73 recordings. Figure 6 presents
values ofaA and aS for the 41 spontaneous records~open
circles! and the 32 driven records~filled circles!.

Generally, the estimated fractal exponents increased un-
der stimulation in comparison with spontaneously firing con-
ditions. This increase appears to be relatively independent of
the characteristic frequency and spontaneous firing rate of
the neuron, and on the nature and frequency of the stimulus
~Woo, 1991!. The only exceptions were two neurons which
exhibited a small decrease in one of the estimators~aF for
L-19 decreased by 0.05 for a stimulus of15 dB at CF, and
aA for R-12 decreased by 0.13 for a stimulus of115 dB at
CF!, and one neuron~L-18! in which the estimated fractal
exponent decreased an average of 0.40 for the three measures
for a stimulus of115 dB at CF. But for all other neurons, the
estimated values ofa increased under stimulation. Indeed,
for the spontaneous data we found thataA<1.03 and
aS<1.09 for all neurons, and for no neuron were bothaA>1
and aS>1; we conclude that the true value of the fractal
exponenta remains below unity under spontaneously firing
conditions.

Four of the 32 data sets recorded with auditory stimula-
tion appear to have fractal exponents with a true value
greater than unity, since both the AF- and PG-based esti-
mates exceed unity for these data files. These recordings are
presented in Table I, together with all of the other recordings
made from the same neurons. BothaA andaS are subject to
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variance arising from the finiteness of the data set, so that
some of the variation in the estimated values ofa among the
different recordings stems from this estimation error. How-
ever, the correlation coefficient between the AF- and PG-
based estimators of the fractal exponent assumes a value of
10.760 for the data sets recorded with a stimulus present,
indicating that the log-log slopes of the AF and PG indeed
estimate essentially the same underlying value, and do not
merely represent random error in the estimation process.
Confidence in these estimators also stems from the observa-
tion that the behavior of the spontaneously firing recordings
on the whole differs from that of the driven data sets~see
Fig. 6!. Finally, simulations of FSPPs consistently show a
bias away from unity, and toward lower values, for larger
values of the intended fractal exponent~Lowen and Teich,
1995a; Teichet al., 1996a!. Thus if any bias exists we would
expectaA andaS to underestimate the true underlying value
a of the fractal exponent.

IV. CONCLUSION

Auditory-nerve spike trains exhibit fractal behavior.
Such behavior is characteristic of long-term memory and re-
flects neuronal facilitation~see Baudry and Lynch, 1993!. It
has also been observed in sequences of action potentials in
the cat visual system~Teichet al., 1996a, 1996b, 1996c!. In
addition to rate fluctuations which persist over long averag-
ing times, three measures indicate fractal activity: the Fano
factor ~FF!; the Allan factor~AF!, which we define; and the
periodogram~PG!. These three measures yield numerical es-
timates of the fractal exponenta, a number which is a char-
acteristic of the spike-train data. Estimates ofa based on the

FF saturate at unity, but not so for those based on the AF and
PG. In fact, these latter measures show that some stimulated
recordings have a fractal exponenta in excess of unity. Gen-
eralized versions of the FF and AF, based on various families
of wavelet functions, provide additional means for estimat-
ing the fractal exponent of a sequence of nerve spikes~Flan-
drin and Abry, 1992; Teichet al., 1996a; Heneghanet al.,
1995; Abry and Flandrin, 1996!. Finally, we mention that
analytical techniques which incorporate the effects of refrac-
toriness into fractal models of neural spike trains yield robust
estimates of fractal exponents~Lowen and Teich, 1995b!.
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APPENDIX: MAXIMUM POWER-LAW EXPONENT OF
THE ALLAN FACTOR

The Allan factor for a data set may rise no faster thanT3

as a function of the counting timeT over significant ranges
of T. With N(s,t), as before, denoting the number of events
counted in a counting window starting at times and ending
at timet, we reiterate the definition of the Allan factor given
in Eq. ~3!:

A~T![
E$@N~T,2T!2N~0,T!#2%

2E@N~0,T!#
, ~A1!

where we have simplified the notation by setting the arbitrary
starting time tot50. For a counting time twice as large we
obtain

A~2T!5E$@N~2T,4T!2N~0,2T!#2%/2E@N~0,2T!#

2E@N~0,2T!#A~2T!

5E$@N~3T,4T!1N~2T,3T!

2N~T,2T!2N~0,T!#2%

4E@N~0,T!#A~2T!

5E@$@N~3T,4T!2N~2T,3T!#12@N~2T,3T!

2N~T,2T!#1@N~T,2T!2N~0,T!#%2#

<E@$4@N~T,2T!2N~0,T!#%2#

532E@N~0,T!#A~T!. ~A2!

Therefore A(2T)<23A(T). A similar approach yields
A(nT)<n3A(T) for any arbitrary positive integern. Thus
over large ranges of counting timesT, the Allan factor can
increase no faster than;T3.

Many stochastic point processes achieve this upper limit
of ;T3; we illustrate that this limit can be achieved with a
simple process whose ratel(t) varies sinusoidally:

l~ t !5l0@11cos~vt1f!#, ~A3!

FIG. 6. Scatterplot of the estimated values of the fractal exponent for all 73
data sets. The Allan factor~AF! was calculated for each data set with the
counting time ranging fromL/100 to L/10 in ten logarithmically spaced
steps, whereL is the duration of the recording. The periodogram~PG! was
calculated for frequencies ranging from 1/L to 50/L in 50 linearly spaced
steps. The slope of a least-squares straight-line fit to a doubly logarithmic
plot of the AF forms the abscissa, while the slope of a similar fit to the PG
forms the ordinate. Spontaneously firing recordings are represented by open
circles, and driven recordings by filled circles. Driven recordings generally
deliver higher estimates of the fractal exponent than spontaneous recordings.
The diagonal dotted line indicates where the two estimates would coincide.
An infinite-length data set would yield a certain estimate for the fractal
exponent; finite data sets yield estimates which themselves fluctuate about
this value. Three of the resulting estimates for spontaneous data sets turn out
to be negative as a result of these fluctuations.
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wherel0 andv are parameters andf is a random variable
uniformly distributed over@0,2p#. We focus on the counting-
time limits l0

21!T!v21, where the discrete events are well
represented by a continuous rate function. The number of
events in a counting window~0,T! then becomes

N~0,T!5E
0

T

l~u!du

5l0T1l0v
21@sin~vT1f!2sin~f!#

5l0T12l0v
21 sin~vT/2!cos~vT/21f!. ~A4!

The expected number of events is simply E[N(0,T)]5l0T,
while the variance is given by

Var@N~0,T!#54l0
2v22 sin2~vT/2!E@cos2~vT/21f!#

52l0
2v22 sin2~vT/2!

'2l0
2v22@~vT/2!22321~vT/2!4#

5221l0
2T222421l0

2v2T4, ~A5!

where the conditionvT!1 permits the use of a power-series
expansion for the sine function. Dividing the variance by the
mean yields the Fano factor

F~T!'221l0T22421l0v
2T3, ~A6!

which, when substituted into Eq.~3!, yields

A~T!52F~T!2F~2T!'421l0v
2T3 ~A7!

to first order inT.
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