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In a previous paper [Teich and Laths, J. Acoust. Soc. Am. 66, 1738--1749 (1979)] we demonstrated that an 
energy-based neural counting model incorporating refractoriness and spread of excitation satisfactorily 
described the results of pure-tone intensity discrimination experiments. In this paper, we show that the 
identical linear filter refractodness model (LFRM) also provides proper results for pure-tone loudness 
estimation experiments at all stimulus levels. In particular, as the stimulus intensity increases from very low 
to moderate values, the model predicts that the slope of the intensity discrimination curve will climb from 1/2 
toward 1, whereas the slope of the loudness funetiun will gradually decline below I in this same region. For 
sufficiently high values of the stimulus intensity, the slopes calculated from a simplified (crude saturation) 
vetotun of the model are found to be 1 --. !/4N for the intensity discrimination curve and I/2.V for the 
loudness function. The quantity N is the number of poles associated with the tuned-filter characteristic of the 
individual neural channels; it is the only important free parameter in the model. Appropriate values for N 
appear to lie between 2 and 4, providing an asymptotic slope for the intensity discrimination curve bounded 
by 7/8 and 15/16 (the near miss to Weber's Law), and an asymptotic slope for the loudness function bounded 
by 1/4 and 1/8. The r•sults follow from the assumption that the neural concomitant of loudness is the 
number of impulses observed on a collection of parallel neural channels during a fixed observation time. Our 
calculations are supported by Hellman and Zwislocki's [J. Acoust. Soc. Am. 33, 687-694 (1961)] observation ' 
of unit slope for the loudness function at low intensities and provide a theoretical foundation, based on spread 
of excitation, for Stevens' power law at high intensities. 

PACS numbers: 43.66.Ba, 43.66.Cb, 43.66.Fe, 43.66.Lj [BS] 

INTRODUCTION 

In Part I of this series of papers (Teich and Lachs, 
1979, denoted I), we demonstrated that pure-tone in- 
tensity discrimination could be satisfactorily described 
in terms of an energy-based neural counting model in- 
corporating refractoriness and spread of excitation. In 
particular, we showed that the experimentally observed 
"near miss" to Weber's Law could be theoretically sup- 
ported by a model incorporating essentially a single 
free parameter 0V) at high levels of the baseline inten- 
sity. In that region, the slope m of the intensity dis- 
crimination curve was calculated from a simplified 
(crude saturation) model to be 

= 1 - 1/4v, (1) 

where N is the number of poles associated with the 
tuned linear filter characteristic of the individual neural 

channe. ls. To fit the broad variety of existing data for 
1-kHz tones, we found that satisfactory values for N 
were integers such 'that 2 -<N -< 4, corresponding to 

Having examined the performance of the linear filter 
refractoriness model (LFRM) for intensity discrimina- 
tion, we naturally ask whether it can also provide a 
sensible theoretical basis for pure-tone loudness esti- 
mation. Fortunately, we can carry out such a study 
quite easily. We simply assign the average total num- 
ber of impulses observed on a set of parallel neural 
channels during an unspecified, but fixed, counting in- 
terval or observation time [see Eq. (10) in I], as the 

neural concomitant of loudness, as suggested earner 
by Bgk•sy (see Schubert, 1978), Fletcher and Munson 
(1933), and others. We demonstrate that this conjunc- 
tion does in fact provide good agreement between our 
predictions and existing data, thereby suggesting that a 
simple neural mechanism underlies loudness; indeed 
Wever (1949) long ago sought such a neural basis. 
Equally important, perhaps, is the demonstration that 
a single theoretical mechanism can be viewed as medi- 
ating both pure-tone intensity discrimination and loud- 
ness. 

A related approach was undertaken by McGill and 
Goldberg (1968a, 1968b) some years ago. In the course 
of studying the near miss to Weber's Law, these auth- 
ors developed a single-channel Poisson neural-counting 
model incorporating saturation of the stimulus energy. 
In their analysis, the detected neural count rate n took 
the form of a fractional-power compression of the stim- 
ulus energy (n----c•E •, 0<p -<1), where c• is a constant 
and p is about 0. 2. Thus loudness, the perceptual con- 
comitant of the neural count rate, took this same form. 
This outcome provided the necessary agreement with 
the extensive body of research that indicated a power- 
law growth of loudness with stimulus intensity or ener- 
gy at high levels (Richardson and Ross, 1930; Stevens, 
1955), but failed to provide a rationale for the growth of 
loudness at low and moderate stimulus levels. We note 

that Marks (1979) has discussed the relationship of the 
power law to other loudness scales from a rather broad 
perspective. 
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Stevens' law for the loudness L of a 1-kHz pure tone 
is of the form (Stevens, 1955, 1970) 

L =/• t'0'3 , (2) 

where k is a constant and I is the stimulus intensity. 
However, this relationship is clearly unsatisfactory at 
levels below about 35 dB SPL (Hellman and Zwislocki, 
1961). A number of authors including S.S. Stevens, 
Ekman, and Scharf and J.C. Stevens (see Scharf and 
Stevens, 1961) therefore suggested an aIternate empir- 
ical relationship of the form 

L: k(•- ;0)', (a) 

where I 0 is a "threshold" stimulus value designed to 
bring the zero of the physical scale into coincidence 
with the zero of the physiological scale, and 7 is a con- 
stant ~ 0. 3. Lochner and Burger (19õ1) used Hellman 
and 7.wisloeki's (19õ1) loudness measurements to sug- 
gest that the relationship ought, instead, to be of the 
form 

z, =k(F- to'), (4) 

with 7- 0.27. More complex forms for the loudness 
function have also been hypothesized (Hellman and Hell- 
man, 1975). Using an altogether different approach, 
Zwicker, Zwicker and Scharf, and others have devel- 
oped geometrical methods for calculating loudness 
based on the spread of excitation along the basilar 
membrane (see Scharf, 1978, pp. 224-227). Scharf 

(1978) has written an excellent and comprehensive re- 
view clmpter summarizing the current state of affairs 
in loudness estimation. 

In the following, we derive the loudness function based 
on the LFRM, describe its qualitative features, and 
demoqstrate that it is in accord with experimental da•a. 
In the course of our excursion, we recover Stevens' 
power law at high intensities as well as Garn. er's (1948), 
Zwislocki's (1969), and Hellman's (1976) unit slope at 
low intensities. 

I. LOUDNESS MODEL 

A. Pure-tone loudness estimation 

Figure I is a block diagram for the LFRM and is re- 
produced from paper I, which described the elements of 
the model in detail. Only the output of the decision cen- 
ter is altered, to deal with loudness estimation rather 
than intensity discrimination. Associated with the de- 
cision center is a scalar loudness random variable .•, 
given by 

= Kx. (5) 

The quantity X is a discrete random variable, well rep- 
resented by a Gaussian distribution, expressing •he to- 
tal number of neural counts from all channels in the 
fixed counting time; g is a constant. The notation is 
identical to that used in I. 
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Block diagram for linear filter refractortness model (LFRM). 
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A variety of clever and interesting methods have been 
used to obtain loudness estimations from human sub- 

jects. Anyone collecting such data finds that the magni- 
tude estimates tend to jump about unpredictably from 
trial to trial. In almost all studies, the results are 
based not on a single observation but rather on an aver- 
age of two or more observations by each subject. Some 
researchers have constructed models in which the vari- 

ability within a single subject emitting responses at dif- 
ferent times plays a key role, whereas others have tak- 
en quite 'the opposite point of view and presented data 
that are averaged not only over observations for a given 
subject, but over many subjects as well. We will at- 
tempt to reconcile our model with both kinds of aver- 
aging. 

In our characterization, we assume that the estimates 
are statistically independent from trial to trial, and that 
the loudness function L is obtained by forming the ex- 
pectation E(' ) of Eq. (5), i.e., 

L -- E(•) = gE(X) = •c•½. (6) 
Here •½ is the overall mean neural count given by Eq. 
(10) in I. Though we assume independence for simplici- 
ty in this paper, it must be emphasized that a consid- 
erable body of evidence demonstrates the existence of 
pronounced sequential effects in magnitude estimation 
(Cross, 1973; Ward, 1973; Green and Luce, 1974; Jes- 
teadt et al. , 1977). 

It is clear that for any single loudness observation, 
Eq. (5) will be satisfied; Since the variance of the 
overall neural count •'[ is described by Eq. (11) in I, 
the variance of g is 

var(g ) = • Z•. (7) 
This provide s an additional measure of the validity of 
our model, and also P9ints up the intimate relationship 
between intensity discrimination and loudness estima- 
tion. Each provides a window on the underlying pro- 
cess. Nevertheless , it has long been assumed that dis- 
crimination data are very stable; the direction over the 
years has therefore been to seek loudness information 

from discrimination data, thereby removing the "con- 
taminants" associated with human estimation. We find, 
interestingly, that both the discrimination and loudness 
predictions emerging from the LFRM are consistent 
with experimental data. 

B. Explicit expression for the loudness function 

The loudness function in Eq. (6) is expressed in 
terms of the overall mean neural count N½. From Eq. 
(10) of I, we have 

•½ A'E f•'• da• o - •,;r • [1 +Q2(wa,/•o o- ,.Oo/Wr)2]•+EA'(r/T) ' 
(8) 

where Wr is the circular frequency of the stimulus (test 
tone) in rad/sec, •o ois the characteristic or center fre- 
quency of the neural channelin rad/sec, N is the number 
of poles associated with the linear filter for each chan- 
nel, Q is the ratio of the characteristic frequency to the 
3-rib bandwidth for a single-pole filter, E is the input 

energy of the test tone, r is the dead-time interval, T 
is the counting-time interval, and A' is a constant. 
When the stimulus consists of short tone bursts, as is 
the ease in all of the experiments considered here, it 
is immaterial whether its magnitude is expressed in 
terms of energy E or in terms of intensity I. The lim- 
its of integration are chosen to agree with the frequency 
limits over which peripheral auditory fibers are as- 
sumed to respond. In this paper •01 =2•(50) and w• 
= 2•r(15 000) are used as limits, but this choice is not 
critical. The factor 1/2•r that appears in Eq. (8) is equi- 
valent to the assumption of a uniform fiber density of 1 
fiber per Hz. It should be noted that the variable of in- 
tegration is the characteristic frequency of the filter 
and not the frequency of the incident tone which is fixed 
at w r. 

C. Method of computation 

To describe how the various parameters in Eq. (8) 
were selected to match a set of experimental data, it 
is useful to define the integral J, 

J(E,A '?/T, co•., Q, N) 

= f•2 dw o • [1 + Q2(•Or/W o- w0/Wr)2] • + EA'(r/T)' (O) 
and the constants 

B• = gA '/2•r , (10a) 

=A'(r/r) . (lOb) 

Then, from Eqs. (6), (8), (9), and (10), the loudness 
function is 

L = B•EJ(E, B•, wr, Q, Iv). (11) 

We begin with two coordinates of the data. Let {L•,E•} 
and {L•, E2} represent the lowest and highest experimen- 
tal loudness and energy values, respectively. We then 
have 

L• = B•E•J(Et, B•, wr, Q, Iv) (12a) 
and 

L2 = B•E•J(E•, B•, cor, Q, N) . (12b) 

Selecting specific values for wr and Q, We obtain B• 
from the solution of 

L• = E• J(Ei,B2, wr, Q,N) ' (13) 
with the aid of an IBM 370/3033 computer using numer- 
ical integration and the IMSL routine called ZBRENT. 
The constant B• is then obtained by substituting the 
computed value of B2 into Eq. (12a). These values are 
then employed as initial values in a minimum-mean - 
square difference-parameter optimization procedure to 
determine the final values of B• and B•. This was 
complished by employing the IMSL routine called 
ZXSSQ to minimize the normalized quantity 

E all data \ L'z• ! ' 

where L,.• represents the experimental loudness esti- 
mate and Lta represents the theoretical loudness value 
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computed with the aid of Eqs. (9)-(11). Finally, the 
theoretical pure-tone loudness function is obt•ned from 
Eqs. (9)-(11), using the optimized values of B i and B2, 
in terms of the parameters N, wr, and Q. We discuss 
the dependence of L on these parameters in Sec. IIC. 

We next deal with the qualitative behavior of the loud- 
ness function at low and high values of the stimulus in- 
tensity. 

D. Qualitative features of the loudness function 

The loudness function is plotted on double-logarithmic 
coordinates (logL versus 1ogE) to match experimental 
data, which are usually graphed as log loudness esti- 
mate versus sound pressure level or sensation level 
(SPL in dB re O. 0002 dyne/cm z or SL). We examine 
the beha{,ior of this function at both low and high values 
of the stimulus energy, and compare it with the intensi- 
ty discrimination curve presented in paper I. 

For E snfficiently small, the quantity EA'(T/T) in Eq. 
(9) is negligible (there is no refractoriness), so that the 
integral J is independent of E. Therefore, using Eq. 
(11), and the fact that Bl, Bz, COr, Q, and N do not depend 
on E, we have 

L -- BiEJ(B•, Wr, Q, N). (14) 

In this limit, therefore, 

logL = logBiJ(B•, w•., Q, N) + logE. (15) 

This equation describes a straight line loudness curve 
of unity slope, in accord with Garner's (1948) postulate 
that loudness is proportional to sound intensity near 
threshold. Zwislocki's (1969) analytic theory of tem- 
poral summation also requires such a proportionaltry. 
Indeed, by eliminating a number of sources of bias, 
Hellman and Zwislocki (1961) obtained reproducible 
loudness curves near threshold, and showed that the 
loudness function _approaches unity slope at the lowest 
level, 4 dB SL, at which they could obtain estimates. 
This result may be understood as follows: In the reg.ion 
of low E where refractoriness is absent, L is propor- 
tional to E since only one, or perhaps a small number 
of c harmels, contribute to the neural count and the LFRM 
predicts that the overall neural count random variable 
will be Potsson. As discussed in paper I, Potsson sta- 
tistics lead to the deVries-Rose square-root law for in- 
tensity discrimination in this region. 

At somewhat higher stimulus levels, from abou[ 10 to 
35 dB, saturation from refractoriness sets in, driving 
the slope of the intensity discrimination curve toward 
unity in accordance with the calculations of van der 
Velden (1949) and Bouman et al. (1963). This decrease 
of discriminability is manifested in the loudness func- 
tion as a gradual decrease in the slope below unity. It 
is in this region that the most detailed information 
about the relative importance of various saturation 
mechanisms may be available. 

At levels above 35 dB, channels with characteristic 
frequencies near the stimulus frequency are largely 
saturated. Nevertheless, the loudness function contin- 
ues to grow because of spread of excitation. As dem- 

onstrated in I, [he intensity discrimination curve ex- 
hibits the near miss to Weber's Law in this region; im- 
proved discrimination arises from the increasing re- 
sponse of strongly driven channels whose characteristic 
frequencies are far removed from the test-tone fre- 
quency. Because spread of excitation is the dominant 
mechanism at high levels, the details of the saturation 
are not important there. Thus we obtained a simple. 
analytic expression for the slope of the intensity-dis- 
crimination curve in this region by means of the crude 
saturation model. We now proceed by employing this 
same tactic for loudness. Using Eq. (18) of I, assum- 
ing a sufficiently high level for E, we obtain 

E (X) = Cs E• zN, (16) 

where C 3 is a constant (see I). Defining a new constant 
B 3 =•(C3, and using Eq. (6), we obtain 

L = BsE TM •N, (17) 
which we rewrite as 

1ogL = (1/25/) logE + logB s . (18) 

The result in Eq. (18) is the promised power law for 
the loudness function at high levels of stimulus intensi- 
ty, with slope 

p = 1/2•V. (19) 

According to our model, energy presented to the audi- 
tory system is nonlinearly encoded into frequency 
spread in a way that matches the wide range of energy 
values in the outer stimulus world to the limited pro- 
cessing capacity of the inner neural world. From a 
neurophysiological point of view, the power law may be 
understood as arising from the filter characteristic of 
the skirts of the tuned neural channels. 

It is useful to compare the predictions of the LFRM 
with those of the McGill-Goldberg (1968a, 1968b) sin- 
gle-channel neural countins model. At high stimulus 
levels, both models produce the same functional form 
for •he slope m of the intensity discrimination curve 
expressed in terms of the slope p of the loudness func- 
tion 

m =1-p/2. (20) 

A moment's reflection provides the underlying reason. 
Both the McGill-Goldberg model and the crude-satura- 
tion version of the LFRM (for the unsaturated channels) 
assume that the underlying statistics are precisely 
Poisson. In the former case, the power-law relation- 
ship is introduced by the hypothesized fractional power- 
law saturation of the neural count rate (n-E •, 0 < p -< 1), 
whereas in the latter case it is introduced by the hypo- 
thesized spread of excitation across the bank of N-pole 
linear filters (-•- EI/zN). For the LFRM,' the fine 
structure of the saturation plays a role only at inter• 
mediate stimulus intensities (10-35 dB), whereas for 
the McGill-Goldberg model it is the crucial determinant 
that provides both straight-line intensity discrimination 
and loudness functions for all values of stimulus inten- 

sity. 

777 J. Acoust. Soc. Am., Vol. 69, No. 3, March 1981 G. Lachs and M. C. Teich: Neural-counting model applied to loudness 777 



II. COMPARISON WITH EXPERIMENTAL DATA 

A. General description 

Figures 2-5 present a broad range of loudnes s data: 
The solid and open dois represent data points obtained 
by a number of researchers using various loudness- 
estimation techniques. All ordinates bear the label 
"loudness estimate," but this subsumes a broad range 
of experimentai conditions. Some figures present data 
collected with a reference s•ndard, and some present 
data collected without a staridard. Data are sometimes 

binaural, sometimes mohattral, sometimes averaged 
over many subjects; and sometimes collected for a sin- 
gle subject. The test-tone frequency ranges from 100 
HZ to 3 kHz. We deal only with magnitude estimation 
data; neither magnitude production nor magnitude bal- 
ance data are considered in this paper. 

The abscissa is labeled "intensity in dB" in all fig- 
ures. It is not important in our method of calculaiion 
that the exper/mental data presented in Fig. 2 are in 
terms of sensation level (SL), while those presented in 
Figs. 3-5 are in terms of sound-pressure level (SPL). 

2C 

IC 

FIG. 2. Plot of loudness estimate versus sUmulus intensity 
in riB. Experimental data (solid dots) adapted from Fig. I of 
the paper by Hellman and Zwislocki (1963). These data were 
obtained binaurally at 1 kHz, with a reference standard of 
unity at 40 dB SL, and represent an average over several stu- 
dies. Solid curve is the LFRM loudness function with/V=2. 

Experimental data (open dots) adapted from Fig. 8 of the paper 
by Hellman and Zwislocki (1963). These data were obtained 
monaurally at 1 kllz, with no reference standard, and repre- 
sent art average over nine listeners. Dashed curve is the. 
LFRM loudness function with N = 2. 
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FIG. 3. 

in dB. 

the paper by Hellman and Zwislocki (1968). These data were 
obtained monaurally at 100 Hz, with no reference standards, 
and represent an average over nine listeners. Solid curve is 
the LFRM loudness function with/V=2. Experimental data 
(open dots) adapted from Fig. I of the paper by Hellman (1976). 
These data were obtained binaurally at 3 kHz, with no refer- 
ence standards, and represent an average over ten listeners. 
Dashed curve is the LFRM loudness function withN=2. 

This is because the stimulus i•tensitl? E in Eq. (8) is 
always multiplied by the constant A', and the process of 
selecting the constants B l and B 2 (see Sec. IC) internal• 
ly adjusts A' to yield an optimal fit to the data, regard- 
less of the scale used for the stimulus intensity. An 
explicit value for A' can be obtained only if either the 
dead-time ratio TiT or the loudness constant • is 
known. 

The solid and dashed curves in Figs. 2-5 represent 
calculations based on the LFHM, where the constants 
B] and B2 are selected by the procedure described in 
Sec. IC. In most cases the fit was obtained by mini- 
mizing the mean-square of the normalized difference 
between the experimental and theoretical loudness val- 
ues. In Fig. 4, however, the fit was effected by match- 
ing the experimental data at the endpoints. 

The theoretical curves were calculated using a non- 
symmetric frequency response function for the individ- 
ual neural channels. The response below- the charac- 
teristic frequency of each channel was chosen to behave 
as an N-pole linear filter, whereas the response above 
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FIG. 4. Plot of loudness estimate versus stimulus intensity 
in riB. Experimental data (solid dots) adapted from Fig. 1 of 
the paper by McGill (1960). These data were obtained binaur- 
ally at 1 kHz, with reference standards presented at the begin- 
ning of a data run. Data are for a single subject. Solid curve 
is the LFRM loudness function with N=4, fitted at the end- 
points. 

the characteristic frequency was chosen to behave as a 
2N-pole linear filter. We were motivated in this choice 
by the masking data collected by Egan and Hake (1950) 
and by Zwicker (1974). Nevertheless, as we discovered 
in our study of intensity discrimination (see I), the re- 
suits differ only insignificantly from those obtained us- 
ing a symmetric N-pole linear filter response function. 

B. Specific comparisons 

The data in Fig. 2 are adapted from Figs. 1 and 8 of 
the paper by Hellman and Zwislocki (1963). The solid 
dots in Fig. 2 represent an average over severat stud- 

ies, for the binaural presentation of a pure tone at 1 
kHz, with a reference standard of I at 40 dB SL. Above 
30 dB SL, the data obey a power function with slope 
0. 27. In the vicinity of the threshold, the experimen- 
tally observed slope approaches 1. The open dots 
shown in Fig. 2, by contrast, were obtained without 
standards for a group of 9 listeners. The stimulus was 
again a pure tone at I kHz, but was ;nonaurally present- 
ed. Above 30 dB SL, the data obey a straight line with 
a slope that is slightly greater than 0.27. The solid 
dots in Fig. 3 are adapted from Fig. 2 of the paper by 
Hellman and Zwislocki (1968). They represent magni- 
tude estimates averaged over 9 subjects, for the [non- 
aural presentation of a pure tone at 100 Hz, without 
reference standards. The authors did not report a val- 
ue for the slope of the measured loudness function. 
Similarly, the open dots in Fig. 3 are adapted from 
Fig. 1 of the paper by Hellman (1976). They represent 
magnitude estimates averaged over 10 subjects, for the 
binaural presentation of a pure tone at 3 kHz, without 
reference standards. The author reported a slope of 
0. 285 for this data. 

In the context of the LFRM with N restricted to inte- 

ger values, the best fit to all of the data described 
above is obtained for N = 2, as represented by the solid 
and dashed curves in Figs. 2 and 3. It is evident that 
the curves produced by the LFRM are in good accord 
with the data; the relevant parameters are presented in 
Table I. From Eq. (17) it is clear that at high levels of 
the stimulus intensity, the theoretical loudness function 
L will be related to the intensity by a power-law func- 
tion with an exponent of T- Thus the sIope on a log-log 
plot will be 0. 25 [see Eq. (18)], in good agreement with 
the experimental values. 

We have also obta/ned very good fits for other exper- 
imental data which we do not present because of space 
limitations. In particular, we find (using endpoint fits) 
that optimal theoretical loudness functions are obtained 
when N= 2, for experimental data from Fig. I of Scharf 
and Stevens (1981), Fig. 5 of Lochner and Burger 
(1962), and Figs. 2-4 of Hellman and Zwislocki (1963). 

All of the data discussed to this point were obtained 
by averaging over multiple subjects, and atl were best 
fit by N=2. By contrast, the data in Figs. 4 and 5 are 
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FIG. 5. Plot of loudness esti- 

mates versus stimulus intensity 
in dB. Experimental data (solid 
dots) adapted from Fig. 4 of the 
paper by Green and Luce (1974). 
These data were obtained bi- 

naurally at 1 kHz, with no refer- 
ence standard. Data are shown 

for mx observers. Solid curves 

are best-fitting LFRM loudness 
functions, which have N values 
that are either 2 or 3 (see 

Table I). The range of stimulus 
intensity for each curve is 42.5 
to 90 dB SPL. 
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TABLE I. Parameters for LFRM theoretical curves in Figs. 2--5. 

Stimulus Single-pole 
Fig. no. Identification frequency (Hz) Best N Q B 1 B 2 

2 solid curve 1000 2 18.7 3.323 x 10 -4 7.586 x 10 -2 
2 dashed curve 1000 2 18.7 2.466x10 -4 1.12•x 10 -t 
3 solid curve 100 2 18.7 7.110x10 -3 3.240x10 -? 
3 dashed curve 3000 2 18.7 3.837 x 10 -5 7.916 x 10 -s 
4 solid curve 1000 4 11.2 1.056 x 10 -4 1.122 x 10 -4 
5 observer I 1000 2 18.7 2.719x 10 -5 3.574x 10 -5 
5 observer 2 1000 2 18.7 1.249 x 10 -4 1.794 • 10 -4 
5 observer 3 1000 3 13.7 5.223 • 10 -5 1.288 x 10 -4 
5 observer 4 1000 3 13.7 3.270 x 10 -3 2.334 • 10 -2 
5 observer 5 1000 3 13.7 1.151 x 10 -4 1.638 • 10 -4 
5 observer 6 1000 3 13.7 1.997 • 102 1.433 • 104 

for individual listeners, which appear to exhibit a 
broader range of slopes (Stevens and Guirao, 1954). 

The data points in Fig. 4 are adapted from Fig. 1 
(subiect R, data collected 1 August 1957) of the paper 
by McGill (1960). The dots were obtained by means of 
a measurement paradigm in which the subject marked 
a point along a 6-in. -long line, to estimate the loudness 
of the tone. The 1-kHz pure-tone stimulus was pre- 
sented binaurally with reference standards provided at 
the beginning of a data run. The best fitting loudness 
function derived from the LFHM, based on fitting the 
endpoints, is shown as the solid curve in Fig. 4, and 
corresponds to the choice N----4 (see Table I). The val- 
ue N=4 was also found to provide the best fit to the da- 
ta presented in Fig. 2 of the paper by' McGill (1960). In 
most cases there was only a modest difference between 
theoretical curves generated using the optimization 
technique to obtain B 1 and Bz and those generated by se- 
lecting B l and B 2 to fit the endpoints. The endpoint 
matching procedure was employed in Fig. 4 to show 
that this method can also provide a good fit to experi- 
mental data. All other graphed results are based on 
the optimization procedure. 

Figure 5 shows a comparison between •he LFHM- 
based computations (solid curves) and the experimental 
data (dots) reported by Green and Luce (1974). The 
dots in Fig. 5 are obtained from the measured numeri- 
cal data values originally used to generate Fig. 4 in 
Green and Luce's paper, and describe experimental 
loudness functions for six individual observers. The 

dots represent experimental estimates for 1-sec duration 
binaurally presented 1-kHz pure tones, without a refer- 
ence standard. The best-fitting •oudneas functions 
rived from the LFRM are shown as the solid curves in 

Fig. 5; the optimal value of N is either 2 or 3 (see 
Table'I). In this case, •he minimum-mean-square fits 
were substantially better than the endpoint fits. We ob- 
serve that the agreement of theory and data is not as 
good as that shown previously. We offer no explanation 
as to why this is so. Improvement could be obtained, of 
course, were N not restricted to integer values. 

The best-fitting integer N values, along with the re- 
sulting values of Bl and B2,- are presented in Table I for 

all figures. In all cases, we have arbitrarily set 
= 12.5 which requires that the single-pole Q used in 
!•.q. (9) be 

(2Q10d B -I- 1) 
Q = (10 • -- 1) • ' •'Q,0d• ' (4Q•0• + 1) ' 

This explains how we arrived at what appear to be high- 
ly specific values of Q in Table I. The choice of pa- 
rameter values is discussed in the next section. 

C. Choice of parameter values 

We have seen in Sec. LD that the theoretical loudness 

function depends principally on the number-of-poles pa- 
rameter N. In particular, the slope of the function at 
high intensities depends only on N whereas the slope at 
low intensities is unity, independent of all parameters 
in the model From the discussion in Sec. IIB, the val- 
ue N=2, which provides p=•- and m =-•, seems to play 
a special role (see Table I). Indeed, the associated 12 
dB/oct slope of the linear-filter transfer function is in 
reasonable accord with the masking data collected by 
Zwicker (1974). Values of the slope of this magnitude 
may perhaps be reconciled with the (much greater) 
slopes of the neural tuning curves measured at the pri- 
mary afferent fibers by recalling that the latter depend 
strongly on the excitation level. This point has been 
made particularly forcefully by Zwicker (1974) in his 
excellent contribution. Furthermore, if the-slope of 
the loudness function is task dependent, as has been 
suggested by Marks (1979) and others, this is easily 
accomodated in our model in terms of an adaptive fil- 
ter. It is also possible that loudness estimation in- 
volves processes more central than the peripheral audi- 
tory system (see footnote 4 in paper I). 

The dependence of L on other system parameters 
Q,A', r/T, •) is more subtle. These parameters will 
principally affect the shape of the loudness function at 
intermediate stimulus levels, as well as the absolute 
position (as opposed to the. slope). 

The quantity •o r is a property of the stimulus, and our 
theoretical loudness functions are in accord with all of 

the experimental data that we attempted to fit (the range 
was 100 Hz to 3 kHz). The shape of L will depend on 
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o•r, and we are able to predict this dependence. With 
regard to Q, we find the following: For N = 9. and arbi- 
trary tot, the computer-generated LFRM results are 
independent of Q•0dn for Q•0dn • 7. õ. This was expliditly 
demonstrated by driving Q•0d,, as high as 9.õ. We ob- 
serve that the theoretical loudness function begins to di- 
verge from the experimental data when Qt0dn is chosen 
below about 7.5; in paper I, the pure-tone intensity dis- 
crimination curve was found to be independent of Ql0da 
for the two values employed, Q•0d,• =3 -and Q•0d,• = 10. 
From a mathematical point of view, we have assumed 
throughout that all poles of the linear filter have identi- 
cal center frequencies. A small difference could 
change the model parameters substantially. 

In our treatment, the three parameters A', r/T, and 
g are not specified since they are subsumed in the (two) 
constants Bl and B: that are fit to the experimental data 
[see Eq. (10)]. Interestingly, we may ultimately be 
able to extract explicit values for A', •'/T, and • by 
making use of the additional information contained in 
the experimental variance of 'the loudness estimate [see 
Eq. (7) and Green and Luce, 1974]. This would provide us 
with three equations and three unknowns. We must 
keep in mind, however, that the values of the model 
constants B•, B:, and Q which produce a good fit to the 
empirical data with the simple LFRM presented here 
(see Table I) will change when the details of the peri- 
pheral auditory system are incorporated. The satura- 
tion of the peripheral receptors in the intermediate in- 
tensity region provides an example, as indicated in the 
Conclusion. To provide an additional measure of the 
validity of our model, it will be particularly valuable to 
simultaneously extract the relevant parameters from 
intensity discrimination data (see I). 

III. CONCLUSION 

It is clear th at the LFRM provides satisfactory re- 
sults both for pure-tone intensity discrimination and 
loudness estimation at all levels of the stimulus inten- 

sity. It therefore provides a single theoretical frame- 
work, within which intensity discrimination and loud- 
ness estimation are perceived as representing two 
manifestations of a common underlying neural basis. 
It would be desirable to collect intensity discrimination 
and loudness data from the same set of subjects to 
certain whether N is indeed a constant of the subject. 

Much work remains to be done. To begin with, we 
must obtain the theoretical loudness function in the 

presence of background noise, and for stimuli other 
than a pure tone. We are just now developing the ap- 
propriate mathematical tools to.carry out this task for 
Gaussian noise stimuli (Vannucci and Teich, 1981). 
Preliminary results indicate that the behavior is in ac- 
cord with experiment. 

And, of course, we should incorporate 'into our model 
the myriad known physiological characteristics of the 
peripheral auditory system. These include the nonuni- 
formly distributed acoustic energy along the basilar 
membrane associated with the envelope of the traveling 

acoustic wave, the approximately logarithmic relation- 
ship between distance along the basilar membrane and 
best frequency, the nonlinear receptor response, the 
nonuniform fiber innervation density, and the nonlinear 
(with stimulus intensity) active fiber density arising 
from the spread in range over which different fibers 
initiate firing. Other relevant factors are symmetric 
versus nonsymmetric linear filter characteristics, the 
use of critical bands, and nonaural versus binaural 
processing. 

We shall report the results of a more complete study 
incorporating these components at a future date, but we 
mention here a number of preliminary findings. One 
rather curious outcome is that the assumption of a uni- 
form-in-linear-frequency fiber density provides a bet-. 
ter match of theory with data than does a uniform-in- 
log-frequency fiber density. As if to echo this result, 
employing this latter density in the crude saturation 
model provides a logarithmic, rather than (the proper) 
power-law, growth of the theoretical loudness function 
with stimulus energy (see also Siebert, 1968). Both 
densities lead to the near miss to Weber's Law for in- 

tensity discrimination, however, as pointed out in I. 
We have also incorporated a nonlinear element in our 
model, to account for the saturation of the hair-cell re- 
sponse, along with refraetoriness and spread of excita- 
tion. The result is a depression of the theoretical loud- 
ness function at low and intermediate stimulus energies, 
leaving the power-law behavior intact at high stimulus 
levels where spread of excitation is the dominant mech- 
anism. This result is relatively independent of the de- 
tails of the saturation function, and is in accord with 
our expectations. We did not us• critical bands in cal- 
culating the loudness function, though it appears they 
should be incorporated in our model if we wish to ad- 
dress the masking of tones by tones. 

Lastly, we point out that we have implicitly ignored 
any distinction between binaural and monaural hearing. 
Perhaps this is not unreasonable inasmuch as the only 
class of binaural experiments that we have considered 
deals with a stimulus that is symmetrically presented 
to both ears. For information in the general case, the 
reader is directed to the work of Falmagne et 

(1979). These authors present a modern probabilistic 
treatment of binaural loudness summation within the 
framework of the forced-choice paradigm. 

Given all of the complexities touched on above, and 
the certainty that there are many phenomena in the per- 
ipheral auditory system that we either do not yet under- 
stand or do not know how to properly describe, it is 
surprising indeed that the simple model outlined here 
performs so well. But it is also gratifying that it does. 
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