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We consider in detail a new mathematical neural-counting model that is remarkably successful in 
predicting the correct detection law for pure-tone intensity discrimination, while leaving Weber's law 
intact for other commonly encountered stimuli. It incorporates, in rather simple form, two well-known 
effects that become more marked in the peripheral auditory system as stimulus intensity is increased: (1) 
the spread of excitation along the basilar membrane arising from the tuned-filter characteristics of 
individual primary afferent fibers and (2) the saturation of neural counts due to refractoriness. For 
sufficiently high values of intensity, the slope of the intensity-discrimination curve is calculated from a 
simplified (crude saturation) model to be I -- I/4N, where N is the number of poles associated with the 
tuned-filter characteristic of the individual neural channels. Since 1 <_ N < oo, the slope of this curve is 
bounded by 3/4 and I and provides a theoretical basis for the "near miss" to Weber's law. 

PACS numbers: 43.66.Ba, 43.66.Fe, 43.66.Lj [DM] 

INTRODUCTION 

Though the first experiments on pure-tone intensity 
discrimination in audition were performed by Riesz in 
1928, this same topic continues to draw lively interest 
some 50 years later. Why does this fundamental dis- 
crimination problem continue to perplex us, when the 
seemingly more difficult companion discrimination pro- 
blems of tone-in-noise, and noise-in-noise, appear to 
have long ago yielded to solution? The answer, we 
believe, lies in the substantially greater role that 
saturation effects play in the pure-tone case. 

Indeed, saturation has been increasingly drawn into 
the picture as a central element in a number of attempts 
to understand the outcomes of psychophysical discrimi- 
nation experiments in the past decade. Yet, mathe- 
matical models incorporating the effect have, for the 
most part, been phenomenological in nature. In this 
work, we specifically link the saturation of counts in 
individual neural channels with a nonparalyzable dead- 
time t process, and, in accord with neurophysiological 
evidence for individual fibers, ascribe to each channel 
a tuned-filter characteristic. In essence, therefore, 
our "discriminating ear" consists of a collection of 
dead-time-modified, neural-counting channels in the 
auditory system, a greater and greater number of 
which respond to the stimulus as the intensity (or ener- 
gy) of the latter is increased. We thereby provide a 
spread-of-excitation model that is based on neurophys- 
iological data; fortunately, it yields workable expres- 
sions for the statistical quantities that we must havre in 
order to perform calculations of discriminability. 

There have been a substantial number of experimental 
measurements relating to pure-tone intensity discrimi- 
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nation over the years. For a sufficiently high intensity 
baseline, all of the experimental data (gathered over a 
great variety of stimulus durations and frequencies) are 
consistent with a straight-line intensity-discrimination 
curve 2 whose slope measures approximately 9/10 when 
energy units are used (Riesz, 1928; Churcher, King, 
and Davies, 1934; Dimmick and Olson, 1941; Harris, 
1963; Campbell, 1966; Campbell and Lasky, 1967; 
Green, 1967; McGill and Goldberg, 1968a, 1968b; Vie- 
meister, 1972; Schacknow and Raab, 1973; Moore and 
Raab, 1974; Luce and Green, 1974, 1975; Penner et 
al., 1974; Rabinowitz et al., 1976; Jesteadt, Wier, and 
Green 1977; Green et aI., 1979). In particular, Rabino- 
witz etaI. (1976) averaged the intensity-discrimination 
data from 15 recent studies, all conducted at 1000 Hz, and 
concluded that the average slope was 0.91 for intensities 
between 40- and 90-rib sensation level (SL). Since a slope 
of unity for this curve defines Weber' s law, Me Gill and 
Goldberg (1068b) referred to the outcome of • for 
the slope as a "near miss" to Weber's law. The phrase 
has stuck. The near miss indicates that intensity dis- 
crimination for the pure-tone case is superior to that 
for the tone-in-noise and noise-in-noise cases, for 
which Weber's law has been shown to be satisfied ex- 

perimentally over virtually the entire range of SL's 
(Hawkins and Stevens, 1950; Miller, 1947). 

It is also of interest to note that Rabinowitz et 

{1970) reported that tone-in-tone intensity discrimi- 
nation obeys Weber's law for SL's at moderate inten- 
sities (between 10 and 40'riB), and that a slope shallow- 
er than unity (a miss to Weber's law) again obtains for 
SL's below 10 riB. Our model is also in accord with 

these observations, and we discuss this region in the 
final section of the paper. 

McGill (1907) has constructed an elegant neural- 
counting model, based on the mass flow of information 
in the ear, that yields Weber's law for the tone-in-noise 
and noise-in-noise cases. It is also not difficult to con- 

struct a theoretical model that yields a detection law 
substantially different from Weber's law. For example, 
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if we form the hypothesis that a brief auditory stimulus 
creates a simple Potsson neural-counting process with 
a count rate n directly proportional to the stimulus 
energy g, we arrive at the deVries-Rose "square-root- 
detection l•w (deVries, 1943; Rose, 1942; McGill, 
1967, 1971). This law is represented by a straight-line 
intensity-discrimination curve with a slope of «. Re- 
cognizing this, McGill and Goldberg (1968a, 1968b) re- 
tatned McGill's earlier assumption of a Potsson neural- 
counting process (McGill, 1967, 1971) but chose the de- 
tected count rate to be proportional to E •, where p ~ 
(0 <p • 1), rather than to gL This interesting saturation 
device provided a compressed range for the count rate 
that agreed quite well with neurophysiological measure- 
ments over the enormous range of audible stimuli, and 
at the same time yielded reasonable correspondence 
with loudness functions. It also provided a straight-line 
intensity-discrimination curve with a slope of 1 - 
which is bounded by the deVries-Rose law and Weber's 
law, as experiment appears to require. In this model, 
the quantity • is determined from the data. 

In 1972, Penner postulated a modified version of this 
model in which the (compressed) energy undergoes 
Poisson transduction independently in a number of 
charmels, with subsequent summation of the resulting 
neural counts. She referred to this as "neural summa- 

tion" in contrast to McGill's "energy summation." 
tensire neurophysiotogical measurements on the cat and 
monkey tell us that indeed individual primary auditory 
fibers transmit digitally coded neural information, dis- 
play strong saturation effects, and appear to be statis- 
tically independent 3 (Galambos and Davis, 1943; Kiang 
e! el., 1965; Rose ½t eL, 1971; Johnson and Kiang, 
1976). Since the VIIIth nerve appears to be the exclu- 
sive path.way for the transmission of auditory inforan- 
flor{ to the higher centers of the central nervous system, 
we also adopt the point of view that intensity discrimi- 
nation involves the processing of neural counts in multi- 
ple channels. A related multiple-channel model was set 
forth earlier by Sicbert (1965), but he did not deal with 
the near miss to Weber•s Law. 

In spite o• the fact that both the McGill-Goldberg and 
Penner models are enticing in their simplicity, neither 
is altogether satisfactory. In the first place, neither 
McGill and Goldberg nor Penner account for the obser- 
ved frequency response characteristics of the individual 
channels, and in the second place, the assumed power- 
law relationship of count rate to ener•j/has been form- 
ed on an ad hoc basis. We remedy both of these defi- 
ciencies in our model. 

Another class of models, on which less analytical 
work has been carried out, comprises the spread-of- 
excitation models (Zwicker, 1956, 1970; Schuknecht, 
1960; Bos and aleBoer, 1966; Whitfield, 1967). The as- 
sumption here--and it is based on firm neurophysiolo- 
gical evidence--is that the excitation pattern stimulated 
by a pure tone will spread out along the basilar mem- 
brane as the intensity of the tone is increased. The ef- 
fect is not small, and we account for it in our model by 
assuming frequency roll-off characteristics for in- 
dividual neural channels. 

A number of other researchers have constructed de- 

tailed neural-counting and neural-timing models based 
on the statistical data observed from auditory fibers 
excited by pure-tone stimuli. Luce and Green (1972, 
1974, 1975) modeled the Successive spike interarrival 
times (IATs) from first-order auditory fibers as a sim- 
ple renewal process. They attempted to use the multi- 
modal distribution of the IATs for low-frequency sinu- 
soidal stimuli to distinguish between counting and 
timing mechanisms; the data seem to weakly support 
the counting model within the framework of their as- 
sumptions. As with the McGill-Goldberg work, this 
model is predicated on a power-law relationship between 
count rate and energy; a number of other special con- 
ditions are also required (Jesteadt, Wier, and Green, 
1977; Wier, Jesteadt, and Green, 1977). Sanderson 
(1975) calculated performance bounds for a related 
model, based on the multimode distribution of the IATs 
and on neural pulse deletions. However, the results of 
his corrected calculation (Sanderson, 1976) are not in 
accord with the observed near miss to Weber's law. 

Following Siebert (1965, 1968), McGill (1967), and 
Penner (1972), we assume that the simple Potsson 
counting distribution provides a useful point of depar- 
ture. 

The model that is, perhaps, most similar to the one 
we analyze is that employed by Siebert (1968). He en- 
visioned a system consisting of multiple chaunels and 
incorporated both spread of excitation and a saturating 
nonlinearfry. As in Penner's model, the saturation is 
introduced prior to transduction, in such a way that 
the compressed stimulus undergoes Poisson trans- 
duction in a number of channels. T he neural counts are 

added after weighting. Siebert also accounts for the ex- 
perimental observation that neural counts arise from 
spontaneous activity, and he incorporates into his model a 
neural channel density that is nonuniform in frequency. As 
inall of his work, stimulus fluctuations are assumed to 
be unimportant. From a calculation of the bounds on 
the discrimination performance, Siebert concludes that 
the more central parts of the auditory system behave 
nearly optimally, and that Weber's Law should be 
obeyed at sufficiently high intensity baselines. In a 
subsequent study on frequency discrimination, Siebert 
(1970) developed a somewhat different model based on 
nonlinear transduction to a nonstationary Poisson pro- 
cess. As Jesteadt, Wier, and Green (1977, ppo 174- 
175) have pointed out, however, this model is in dis- 
agreement with various psychophysical data. In parti- 
cular, Sicbert's models (1965, 1968, 1970) do not come 
to grips with the observed near miss to Weber's Law 
for pure-tone intensity discrimination. 

Our model differs from Siebert's (1968) in a number of 
significant respects: (1) Our detection system is as- 
sumed to be driven by the stimulus energy; (2) in place 
of an arbitrary saturating nonlinearity prior to Poisson 
transduction, we assume that saturation arises from 
refractorlness in [he neural pulse train so that the 

resulting process is distinctly non-Poisson; (3) we as- 
sume a uniform (in frequency) neural channel density for 
simplicity (we find tImt the inclusion of a realistic density 
function does not appreciably affect our results); (4)we 
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ignore noise arising from the spontaneous firing of the 
auditory fibers (there is some justification for this in- 
asmuch as the presence of a stimulus appears to in- 
hibit the generation of spontaneous neural pulses); (5) 
we do not confine the locus of saturation and spread 
of excitation exclusively to the cochlea, 4 and (6) we 
find that a simple unweighted sum of counts suffices 
for arriving at a decision. 

In Sec. I, we deal with the detection model. This is 
followed by a study of pure-tone intensity discrimination 
in which we utilize both a refractoriness-based model 
and a crude saturation model (Sec. II). The latter is 
useful primarily as a conceptual aid and is expected to 
provide useful results only for high levels of the base- 
line intensity. In Sec. Ill we present results for various 
values of the baseline intensity and in Sec. IV we pre- 
sent the conclusion. 

I. DETECTION MODEL 

A. Qualitative description 

To account for pure-tone intensity discrimination, we 
propose a neural-counting model that incorporates both 
saturation and spread-of-excitation effects. Our work 
draws on various contributions in the auditory litera- 
ture, particularly those 'of McGill (1967), Sicbert (1968), 
and Penner (1972). Following McGill (1967), we as- 
sume that the existence of phase-locked firing has little 
to do with intensity discrimination; we consider the 
underlying count n for each neural channel to be a 
Potsson random variable driven by the stimulus energy. 
We thereby disregard the role of periodicity, relying 
exclusively on place mechanisms; this is consistent 
with the conclusions reached by Siebert (1970). The 
information is assumed to be contained in the number 

of neural impulses observed on a collection of parallel 
channels during an unspecified, but fixed, counting in- 
terval (observation time). 

Though a variety of formulas has been presented to 
mathematically describe the saturation of neural-count- 
ing rate with increasing stimulus intensity or energy 
(see, for example, Zwislocki, 1973), we use the simple 
rectangular hyperbola [see Eq. (7)]. We regard the 
saturation of counts as arising from a fixed nonparalyz- 
able dead time following the registration of each count • 
(Parzen, 1962); indeed, the reduction of counts due to 
such dead-time effects leads directly and naturally to 
the rectangular hyperbolic function (Feller, 1948) for 
the relation between neural-counting rate and stimulus 
energy, though this rationale has not been previously 
considered in the audition literature. Our understand- 

ing of dead-time modified processes draws heavily on 
work in a variety of fields including nuclear particle 
counting (Parzen, 1962; Milller, 1973, 1974), optical 
photon counting (Cantor and Teich, 1975; Teich and 
McGill, 1976; Vannucci and Teich, 1978; Teich and 
Vannucci, 1978; Teich and Cantor, 1978), and neural 
counting (Ricciardi and Esposito, 1966; Teich and Mc- 
Gill, 1976). A similar refractoriness model has re- 
cently been used by Teich, Marin, and Cantor (1978) to 
describe the maintained discharge in the retinal gang- 
lion cell of the cat. Saturation arising from refractori- 
ness differs in character from the compressional 

saturation considered in other models. This is pro- 
bably most easily understood in terms of the mean-to- 
variance ratio which, for the models used by Sicbert 
(1968), McGill and Goldberg (1968a, 1968b), and Penner 
(1972), is always unity (at a given value of the stimu- 
lus energy) since the neural count is a Potsson ran- 
dom variable in spite of the compression. For the 
nonparalyzable dead-time model, on the other hand, 
the mean-to-variance ratio increases monotonically 
with the driving energy [see Eqs. (7) and (8)], repre- 
senting a very different kind of process. 

We consider the spread-of-excitation along the basilar 
membrane with increasing stimulus energy to arise 
from the increasing contributions of channels with 
characteristic frequencies far from the excitation fre- 
quency (Galambos and Davis, 1943; Kiang el al., 1965; 
Rose et al., 1971). For simplicity, we consider the 
transmission characteristics of each of these channels 

to be describable by an N-pole linear filter (Wing, 
1978), although we subsequently provide some modifi- 
cation of this condition to allow for asymmetric re- 

sponse characteristics. The parameter N (which re- 
presents the number of poles) determines how steeply 
the skirts of the filter fall off as a function of excita- 

tion frequency (in general it is 6N dB/octave for an N- 
pole filter). 

Incorporating these two effects--saturation due to 
refractoriness and spread of excitation due to the tuned- 
filter characteristics of the channel--allows us to ar- 

rive at a theoretical detection law for pure tones that is 
in accord with experiment: It is the near-miss to 
Weber's law. We achieve this while maintaining the 
primary response (before refractoriness modifications) 
linearly proportional to incident energy so that we need 
not make ad hoc assumptions involving a power law or 
other compressional relationship between neural-count- 
ing rate and stimulus energy. Our detector is therefore 
an energy detector, and has the remarkable property of 
leaving Weber's law intact precisely in those conditions 
where it is observed in human listeners. It is worth 

noting, perhaps, that we achieve this success by in- 
corporating a number of specific features of the 
auditory system into our model. We cannot paint 
the listener totally out of the picture in the simple and 
elegant way that Hecht, Shlaer, and Pirenne were able 
to for visual detection in 1942 (see, however, Teich, 
Prucnal, and Varmucci, 1977; Prucnal and Teich, 1978; 
Teich et al., 1979). We are rewarded, nevertheless, 
by the success that a closely related model affords us 
in dealing with the estimation of loudness and with 
masking, and we shall address these problems in the 
future. Our approach is consistent with the work of 
Raab and Ades (1946), Rosenzweig (1946), andwith the 
model of Neff and his collaborators (1975) in which dis- 
crimination tasks that excite a new neural population 
(e.g., intensity discrimination) do not appear to be 
mediated by higher neural centers (see Green, 1976, 
pp. 91-92). 

B. Quantitative description 

The overall detection model is presented schemati- 
cally in Fig. 1. Each horizontal channel in the figure 
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FIG. 1. Block diagram for linear filter refraetoriness model (LFRM). 

may represent an afferent peripheral auditory fiber (or 
perhaps a bundle of such fibers) and its subsequent 
neural path. The tuning curve characteristic of each 
channel (for a tone of frequency cot) is represented by 
an N-pole linear filter whose energy response is of the 
form (Wing, 1978) 

AE 

Eo"t(cor) = [1 + Q2(wr/w o- wo/wr)2 J s ' (1) 
where the quantities Eou , and E represent the output and 
input energies, respectively, Q is the ratio of char- 
acteristic frequency to the 3-dB bandwidth for a single- 
pole filter, N is the number of poles, and co o is the 
characteristic frequency of the filter. The constant A 
will be discussed subsequently. 

We assume that all of the fibers maximally responsive 
to a particular frequency are included in one parallel 
channel while those fibers with different characteristic 

frequencies lie in different parallel channels. The Q 
parameter in Eq. (1) is not necessarily assumed to be 
the same for all channels. 

All of the parallel channels are stimulated by the same 
signal but, because the characteristic frequency of each 
channel is different, the signal observed by each of the 
ideal Poisson converters will differ from one channel 

to another (see Fig. 1). Bolsson conversion is such 
that the number of neural counts produced before the 

refracioriness modification n.i is a Poisson-distri- 
buted random variable whose mean value is linearly 
proportional to the energy Eouti that passes through the 
linear filter during the counting interval (the propor- 
lionality cons[an/is designated a). The refractoriness 
modifications are shown as separate entries in Fig. 1 
for ease of description, but they most simply will be an 
inherent part of the pulse-conversion mechanism. 4 

Each channel is assumed to have its own energy-to- 
neural pulse transducer (Johnson and Kiang, 1976). 
This means that the neural impulses generated in each 
channel are independent of those in the other channels. 
For nonrandom inputs, therefore 

o•r:E •, (2) 
i 

where (r• is the variance of the sum or total number of 
counts that reach the decision center and • is the 
variance of the counl for the ith channel after refrac- 

toriness modifications have been made. The fibers and 

the distribution of characteristic frequencies are so 
dense that it will be reasonable te consider the char- 

acteristic frequencies as a continuum. Thus whenever 
Eq. (2) is evaluated in this paper, integration will be 
utilized as opposed to summation. 

The nature of the decision center will depend o• the 
physical parameter being observed. For the intensity- 
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discrimination phenomena investigated in this paper the 
subject is usually asked to select which of two observed 
bursts is the more intense. The decision center in our 

model for this case determines which of the two inter- 

vals (perhaps not the same duration as the bursts) con- 
tained more neural counts. A possible alternative 
decision strategy (which we did not investigate) is one 
that selects the interval achieving a particular number 
of counts in the shortest time, in the manner of Luce 
and Green's (1972) interarrival time model. 

There are various modifications that can be made to 

this model which will be discussed subsequently. In 
particular, we shall shortly see that the filter response 
given in Eq. (1) can be modified to nonsymmetric forms 
to agree more closely with the neurophysiological 
response functions of primary auditory fibers reported 
by a number of researchers (Galambos and Davis, 
1943; Kiang et al., 1965; Rose et ah, 1971). 

II. PURE-TONE INTENSITY DISCRIMINATION 

A. Normal approximation and detection distance 

In intensity-discrimination experiments the subject is 
often presented with two short bursts of a pure tone at 
different levels. Let E s be the energy level of the 
stronger tone burst and E• the energy level of the weak- 
er tone burst? In McGill and Goldberg's (1968a, 1968b) 
work, the stronger level was fixed and the weaker level 
was adjusted until 75% correct decisions were obtained. 
They found experimentally that for sufficiently large 
Es, a plot of log(E s- E•) versus log(E s) yielded a slope 
of about 1•. We shall investigate the slope of the corre- 
sponding intensity-discrimination curve predicted by 
our linear-filter refractoriness model (LFRM). 

For large levels of E s and E,. and the case of pure 
tones (which are nonrandom), many independent chan- 
nels are being added, so that it is reasonable to assume 
that the total number of counts X is a discrete random 

variabte which is approximately normal (Gaussian). 
(see Parzen, 1962). Let 

r =•Xs-X•, (3) 
where X s is the total number of counts when E s is the 
signal energy and X• is the total number of counts when 
E w is the signal energy. ¾ is'clearly a normal random 
variable (NRV) with mean E( ß ) and variance (•z given by 

E(Y) =E(X s ) - •.(X w) (4a) 
and 

(t 2(Y) = c•e(Xs) + (•z(Xw). (4b) 

We note that the Potsson convergence theorem (•inlar, 
1972; McGill, 1967, 1971) does not apply because we 
are dealing with multiple events from each contributing 
channel, as is required for dead-time effects to occur. 
The probability of making a correct decision as to which 
interval contains the larger level is equivalent to 

P(Y>0)= 1 -)[-E(Y)/[o'2(Y)] t/'] , (5) 
where •[. ] is the cumulative distribution function for 
NR¾s. It is therefore convenient to define a detection 
distance h as 

h= ,•E(• E(X•)- E(X•) . = + (6) 
In this paper we shall utilize the detection distance h 

given in Eq. (6); it differs from the definition of d' that 
is often utilized in the literature which omits the q2(X s) 
term in Eq. (6). The principal results however will be 
the same regardless of which definition of detection 
distance is utilized. The pure-tone intensity-discrimi- 
nation results will be obtained by fixing E, and adjusting 
/• until the desired value of h is achieved. In order to 
accomplish this we shall require the refractoriness- 
modified values for E(Xs), (r•(X•),E(X•), and q•(Xw). 

B. Cornpotation of refractoriness-modified mean and 
variance 

The subject area of refractoriness modifications, or 
as the subject is known to physicists and engineers 
"dead-time modifications," has been under extensive 
investigation for many years. Most of the analyses 
have been conducted for conditions where modifications 

are small or where the unmodified counting statistics 
are simple Potsson. The large signal conditions that 
will apply to most of the results in this paper will in- 
volve substantial modifications indeed, and therefore, 
accurate results will be obtained only for the case of 
pure-tone stimuli where the underlying mechanisms 
obey simple Potsson statistics. 

The model that will be utilized in this paper as- 
sumes that the counting system is nonparalyzable.• 
Furthermore it is assumed that the dead-time duration 

is a fixed (nonrandom) quantity whose numerical value 
can be obtained from the reciprocal of the maximum 
firing rate of the neural charmel. This results in only 
a small variation from the results that would be obtained 

by utilizing a random dead-time duration (Parzen, 
1962; Lee, 1974; Teich, Marin, and Cantor, 1978), 
which is likely to more closely approximate the real 
sitnation. 

The refractoriness modifications for simple Potsson 
statistics and fixed dead time are well known. The 

first-order modified mean and variance are (Miiller, 
1974; Cantor and Teich, 1975; Teich, Marin, and Can- 
tor, 1978) 

n½ = 1 + •',,(•'/T) (7) 
and 

% . 
= [1 + ' (a) 

where • is the refractoriness-modified mean, •. is the 
z is the refractoriness-modified unmodified mean, (• • 

variance, ? is the dead-time interval, and T is the 
counting-time interval. These modifications are effect- 
ed at the output of each Potsson converter and the re- 
suits are then added together (integrated in our case) to 
obtain the overall count mean • and the overall count 
varim•ce Z•. For a pure tone of input energy E we have 
from Eq. (1) and the proportionaltry between • and Eo•, 

A'E 

[1 + ' (9) 
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where w r is the frequency of the tone in rad/sec, o• o is 
the characteristic frequency of the channel in rad/sec 
and 

One finds after some minor algebra that the overalI 
mean is 

A 'E -•=--•'• • [l +Q2(wr/Wo_ wo/wr)•jS +A,E(•/T) , (10) 
•d •t the overall vari•ce 

_A'E [1 - , ' 01) 
The limits of integration are chosen to agree with •e 
frequency limits over which the •ripheral auditory 
fibers are assumed to res•nd. • this paper w, =2u(50) 
and w• =2•(20000) are used as limits, but this choice 
is not criScO. The factor 1/2u that appears in Eqs. (10) 
and (11) is equivalent to the assumption of a uniform 
f•er density of I f•er per Hz. 

It should be noted t•t the var•ble of integration is 
the charac•ristic frequency of the filter •d not the 

frequency of the incident tone_which is f•d at •r- The 
m•imum •lue of •, •d hence the m•um •f•c- 
torthess modifications, occur when 
moves a•y from wr,• dec•ases as do •e modifica- 
tions. Even•ally the m•ifications become small as 
w o moves far (• the sense of ocryes or decades) from 
wr- The frequency band in which the modifications are 
si•ic•t will be a function of the ener• of the tone. 
The number of ch•nels that require modification, as 
well as the number of ch•els that are si•icantly 
stimulated, will de•nd on the ener• E. Therefo• 

that number will be different for E• •d E• in the pure- 
to• intensity-discrim•tion data. All of this tends to 
get hidden • •e computations when Eqs. (10) and (11) 
are utilized • Eq. (6). •is is particu•rly t•e be- 
cause we had little success • obtaining closed-form 

e•ressions for • •d •] •d numerical •teg•tion was 
therefore utilized • the computations. • order to get 
a physical picture of the gross effects of refractori- 
ness, we intr•uce tbe crude sa•ration model describ- 
ed • the next section. 

C. Spread of excitation: Crude saturation model 

In order to consider the effects of refractoriness in 

audition, we introduce a model that greatly exaggerates 
these effects. Let E.• be the energy passing through 
the filter and let E• be a nonvarying saturation energy 
parameter such that: 

(1) If E•>E,• then the output of the channel is nonran- 
dom with the number of pulses per detection interval 
proportional to the fixed parameter 

(2) If E•<E,• then the output of that channel is model- 
ed as a simple Poisson process that is not affected by 
refractoriness. 

This "rough and ready" model will be applied to •itua- 
tions where the input energy is much larger than E•, 
and it will yield results that generally agree with those 
obtained from the more accurate accounting of the re- 
fractoriness effects described in the previous section. 

In particular, we shall find a simple analytic expres- 
sion for the slope of the intensity-discrimination curve. 
We note that the conditions required for the crude 
saturation calculation are not specific to the detailed 
nature of the saturation (refractoriness is only one 
example), and the results are expected to be meaning- 
ful only for large values of the baseline intensity. 

Those channels whose characteristic frequencies are 
near the frequency of the input signal will be com- 
pletely saturated, whereas those channels Whose char- 
acteristic frequencies differ considerably from that of 
the input tone will (in this crude model) experience no 
saturation effects whatever. This can be put in more 
quantitative form by solving the equation 

A'E 

{1 + qz[T/(o:T + + (12) 
where 5 is the frequency deviation from w r at which the 
upper frequency crossover from saturation to nonsatu- 
ration occurs. It is shown in the Appendix that 

5 =Co E•/a• , (13) 
whe re 

C o = w•,A /QE• . (14) 

Let 5L be the frequency deviation from wr to the lower 
crossover point. For the large values of E utilized in 
this model, it is also shown in the Appendix that 

5•wr. (15) 

We can now find approximate values for the means and 
variances utilized in Eq. (6). In order to obtain the 
mean we use the assumption that A•E, >> E• and A•E• 
•> E•. This means that nearly all of the neural counts 
arise from the saturated channels and we ignore the 
contribution of the nonsaturated tails when computing 
the mean. Then the expected values are 

+ (16) 

and 

E(X•) • ½• •(• + •), (17) 

where C,• is a constant and • and • are the upper cut- 
off frequencies for E• and E•, respectively. 

The difference of these means is then obtained from 

Eqs. (13), (16), and (17) with the result 

E(X•)- •tX •-•½ t/{'• E'• (16) 

where C• is the constant CoC•E •. 

Approximate values are obtained for the variances by 
ignoring the contributions of the saturated channels, 
which will be small in this case, and by considering the 
contribution of the upper tail [in view of Eq. (15) the 
lower tail does not contribute]. Since the contribution 
of the tail is Potsson distributed in the absence of 

saturation, the variance is equal to the mean and we 

[1 + - ' (19) 
We further approximate the above expression by as- 
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suming that 5 is sufficiently large such that only one 
term in the denominator is significant, with the result 

(20) 
For very large E we have 

o•(E): C4E(•or+ 5)-•t-t • = C4E5- (•-1 •, (21) 

where C 4 is a const•t• Then from Eqs. (13) •d (21) 

a•(E) • CsE •/• , (22) 
where ag•n Ca is a constant •at does not depend on E. 

The preceding approximations therefore result in a 
de•c•on dist•ce given. approximately by 

where C is ag•n a coast• 

Let 

AE A= E s - E•. (24) 
It has been found from the formal computations of h, 
using the accurate refractoriness correction. s, that 

aE << E, (25a) 
and 

E•-•E•. (25b) 
One now finds (as is shown in the Appendix from Eqs. 
(23)-(25)'and the first two terms of the binomial expan- 
sion that 

C •XE 

h = 2•N r•, -•'--r•' (26) 
Taking the logarithm of both sides of Eq. (26) one ob- 
tains 

1og(AE) = (1----•) 1og(E,) + log(2-•). (27) 

6 
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FIG. 2. Intensity-discrimination curve with N= 4, h= 1/•,, 
Q= 1.512, A'= 1.540 x10 '•, and 'r/T= 0.005 (solid), 0.05 
(dashed). Also shown is a straight line of slope 15/16. 
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FIG. 3. Intensity-discrimination curve with N= 4, h= 3/•,, 
Q= 1.512, A'= 1.540 x10 'a, and ?iT= 0.005. Also shown is a 
straight line of slope 15/16. 

s 

The value of h is set so that the desired error rate is 
achieved and therefore the last term on the right-hand 

side of Eq. (27) is a constant. The desired result is the 
slope m of the log(aE) versus log(Es) curve which, from 
Eq. (27), is given by 

rn = 1 - 1/4aV. (2•) 

In particular, when N = 2 the slope is •, when N = 3 the 
slope is •, and when N = 4 the slope is •. Since physi- 
cally sensible values of N fall within the range 1 •< N 
<•, the slope of the theoretical intensity-discrimination 
curve will lie between • and 1. 

A key assumption in the preceding analysis is that 
AE<<Es. At first glance this would seem to be in con- 
flict with results that have been summarized by Luce 
and Green (1974) where it would seem that E s is larger 

I0 
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o 
2o 

I i I . • I I i I i t i 
:50 40 50 60 70 •0 90 too i lO 120 130 

i0 LOG (E s) 

FIG. 4. Intensity-discrimination curve with N= 3, h= 
Q= 1.842, A'= 1.563 x10 'a, and t/T= 0.005 (solid}, 0.05 
(dashed). Also shown is a straight ltae of slope 11/12. This 
data is also represented in Table I. 
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•G. 5. I•e•i•-discrimiutio• curve with •= 2, h= •/• 
•= 2.5•], A'= 1.605 x10 -a, a•d T/•= 0.005 (SO[id), 0.05 
(dashed). Also sho• is a strA[ffht li•e o[ slope 7/8. 

than A/{ by a factor of less than 10. It should be noted 
however, that the data described by Luce and Green use 
a scale based on the sound-pressure level (SPL) where- 
as our data are not based on that scale. The data shown 

in Figs. 2-5, computed using the accurate formulas 
for the moments, clearly justi[y the assumption. 

Irinafly, we point out that the form of the detection 
law for the crude saturation model specifically depends 
on the assumed density of neural channels (in frequency). 
In particular, the uniform-in-linear-[requency density 
implicit in the development above gives rise to the near 
miss to Weber's law, whereas it can be shown that a 
uniform-in-log-frequency density will give rise to 
Weber's Law. In this respect the crude saturation 
model and Siebert's (1968) model behave alike. The re- 
fractoriness model, on the other hand, gives rise to the 
near miss to Weber's law for either density. 

III. RESULTS 

A. Method of computation and choice of parameters 

The data shown in Yigs. 2-5 were computed on an 
IBM 370 computer by the following procedure. Specific 
values were selected for the constants h (the detection 
distance) of Eq. (6), A', N, Q, and ?/T (the dead-time 
ratio) of Eqs. (10) and (11). Then Es, the energy level 
for the stronger burst, is run through a range of 
values, and for each value of E, a value of E• is found 
that satisfies Eq. (6). The integrals in Eq•. (10) and 
(11) were evaluated numerically and the limits co I and 
co z were chosen to correspond to a hearing range of 
50 Hz-20 kHz. The frequency of the input tone was 
chosen to be 1 kHz in all cases. 

The Q parameter was selected by setting the ratio of 
characteristic frequency to 10-dB bandwidth equal to 3 
and then solving for Q specified in Eq. (1) (see Fig. 2). 
This vafue was arrived at from an examination of Fig. 

7.6 in the monograph by Kiang et al. (1965) in which it 
appears that Q is approximately constant for charac- 

teristic frequencies below 2 kHz. The data shown in 
Fig. 2 are for this fixed value of Q. For comparison, 
we also made a computer run for the case where Kiang's 
10-dB Q is set at 10.0 for all frequencies. The result- 
ing data differed [rom the data shown in Fig. 2 by 
amounts so small that they would barely show up on a 
graph as a separate curve. Thus, as far as intensity 
discrimination is concerned, the data are relatively 
insensitive to the selection of the parameter Q. 

Data were computed for dead-time ratios ?/T = 0.005 
and ?/T = 0.05, and are presented in Figs. 2, 4, and 5. It 
can be seen that the slopes for large values of E• are the 
same in both cases. Data were also computed [or ?IT 
: 0.0005 (though not plotted in the figures) with the re- 
suit again being that the final slopes would be unaltered 
by this change. Thus, varying the dead-time ratio pro- 
vides a small shi[t to the straight-line portion of the 

curves, but the •/T parameter does not affect the slope. 

The data will also depend on the choice of parameters 
A' and h. The value h-- 1/xf•-was selected so that the 
probability of the subject making a correct selection is 
0.76 which is compatible with the 75 % correct criterion 
often utilized in experiments. The selection of larger 
values for h results in larger values of ZXE [or a given 
value of E s. However, as can be seen from Fig. 3 (for 
h = 3/x/•-) a straight line is approached asymptotically 
which has the same slope as that computed for h = 
(see Fig. 2). The parameter A' was arbitrarily chosen 
so that the integral of the transfer [unction over the 
range of interest is normalized to unity. The choice of 
A' however will not affect the asymptotic slope of the 
curve as is evident from Eqs. (10) and (11). A' also in- 
corporates the change of units implied by Eqs. (1) and 
(9). 

The principal result of this paper, which is the slope 
of the intensity-discrimination curve for large values of 
Es, is thus relatively independent of the choice of the 
above-described parameters. The number-of-poles 
parameter N does affect this slope, however, as can be 
seen from Figs. 2-5. 

B. Predictions of model for large values of baseline 
intensity 

The results shown in Figs. 2-5 demonstrate that the 
slopes predicted by Eq. (28) using the crude saturation 
model are indeed obtained when the more accurate cal- 
culations of refractoriness-modified means and vari- 

ances are utilized. The slope is a function only of the 
number-of-poles parameter N, and in Figs. 2 and 3 a 
slope of ,5 • is obtained when N = 4. In Fig. 4 the slope 
• is obtained for N = 3, and a slope of • is obtained in 
Fig. 5 for N = 2. Green (1967) observed a slope of {- 
which could be obtained in our model by using N =-• in 
Eq. (1), and McGill and Goldberg (1968b) observed a 
slope of • which could be Obtained by using •V = •. Such 
filters are physically possible since they are nonanti- 
cipatory, but they are not reafizable by a finite number 
of poles. On the other hand, the slopes for the data 
shown in Figs. 2-5 are in excellent agreement with the 
data of McGill and Goldberg (1968a), Schacknow and 
Haab (1973), Luce and Green (1974), and Rabinowitz el 
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al. (1976), and at the same time have the more satisfy- 
ing description of an integer number of poles. 

Most of the experimental data reported in the litera- 
ture are represented in terms of a scale based on SPL. 
Our scale, on the other hand, is arbitrary because of 
the arbitrary choice of the parameter A'. In order to 
effect a direct comparison with data in the literature, 
the following procedure was adopted. A value for log(A/) 
is obtained from the reported experimental data for a 
value of I in the vicinity of 40 dB SPL. (/ and AI refer to 
intensity levels.) This is matched to log(AE) in our 
computed data and the corresponding value of 10 log E s 
is then compared withi dB SPL. The 10 log E s scale is 
shifted by the difference between these two values. We 
have compared our results with the data reported by 
Luce and Green (1974) in this manner. The data are 
matched atI=43 dB SPL; we find that 10 log E s=63.8 
fits this point. Using this 20.8-rib difference for all 
larger values of Es, we find that a good fit to Luce and 
Green's data is obtained for N = 2 (see Fig. 5). 

If one examines the tuning curves of primary auditory 
fibers, it is readily apparent that the frequency rolloff 
is not symmetric. It is far steeper on the high-fre- 
quency side of the characteristic frequency. In order to 
examine the effects of a nonsymmetric filter charac- 
teristic, a computer run was made where the filter 
response was four-pole on the low side of the charac- 
teristic frequency and eight-pole on the high side. This 
filter response was suggested by data from the paper of 
Egan and Hake (1950). For the parameters utilized in 
Fig. 2 [only A • was changed to maintain the normaliZa- 
tion of Eq. (1)], the nonsymmetric results were within 
the graphical accuracy of those obtained with a sym- 
metric four-pole filter. The reason for this is that the 
change in slope only affects the response of those chan- 
nels whose characteristic frequency is less than the 1 
kHz utilized as the tone frequency, and these channels 
in turn are saturated at high signal levels. 

C. Predictions of model for low and moderate values of 
baseline intensity 

If we examine the computer data representing the pre- 
dictions of our model for the lowest values of Es, we 
observe that the •1ope ha• a value of about • As E= in- 
creases, the slope moves toward unity and, ultimately, 
settles ate=0.916 lorN=3 (see Table I). It is remark- 
able that this is precisely in accord with the experi- 
mental results reported by Rabinowitz et al. (1976) for 
low and moderate values of Es, particularly since the 
contribution to the count rate arising from the spon- 
taneous discharge has been ignored and the Gaussian 
approximation has been used (see Parsen, 1962). 

These results may be understood as follows. At the 
lowest level of excitation, refractoriness is absent and 
only one, or perhaps a small number of channels, con- 
tributes to the neural count. The counting statistics in 
this case are simple (unmodified) Potsson, so that the 
deVries-Rose law obtains, yielding a slope of « for the 
intensity-discrimination curve. At slightly higher 
levels, saturation arising from refractoriness sets in, 
thereby driving the slope of the intensity-discrimina- 

TABLE I. Computed data for pure-tone intensity discrimina- 
tionwithN=3, h=l/•f•, Q=1.842, A'=l.563x10 '•, and?/T 
= 0.005. The slope is initially near 1•., moves toward 1, and 
finally approaches 11 These data are also represented in Fig. {•' 
4. 

log (E s - E•) = log(AE) log (E s) Slope 

2.00 3.70 0.511 
2.27 4.20 0.525 

2.55 4.70 0.567 

2.88 5.20 0.665 

3.29 5.70 0.821 

3.76 6.20 0.945 

4.25 6.70 0.975 

4.73 7.20 0.960 
5.20 7.70 0.944 

5.67 8.20 0.933 

6.13 8.70 0.927 

6.60 9.20 0.923 

7.06 9.70 0.921 
7.52 10.20 0.920 

7.97 10.70 0.919 

8.43 11.20 0.918 

8.89 11.70 0.918 

9.35 12.20 0.918 

tion curve toward unity in accordance with the calcula- 
tions of Bouman, Vos, and Walraven (1963). At yet 
higher levels, the spread of excitation yields a slope 
described by the near miss to Weber's law [Eq. (28) 
with N = 3] as many channels, both saturated and un- 
saturated, contribute to the count. 

As a caveat to the reader, we note that recent experi- 
ments performed by Jesteadt, Wier, and Green (1977) 
fail to provide evidence for a deviation from the near 
miss at low and moderate values of baseline intensity. 

IV. CONCLUSION 

The LFRM introduced in this paper provides a de- 
tection model that permits an initially linear dependence 
on the input energy and quantitatively incorporates the 
effects of refractoriness and spread of excitation. The 
predictions for pure-tone intensity discrimination are 
in good agreement with experimentally measured data. 
Corresponding results were not computed for noise-in- 
noise discrimination and tone-in-noise discrimination 

because as yet no formulas are available that yield the 
refractoriness corrections for these cases. The crude 
saturation model is used in the following, however, to 
show that a slope of unity is predicted for both of these 
cases. 

The mean values for the count E(X) remain propor- 
tional to E •/2•v [see Eq. (18)]. Recall that in the crude 
saturation model, channels for which œa• <Era are treat- 
ed as having no saturation corrections whatever. The 
variance contributed by these channels is therefore the 
same as that indicated by McGill (1967) and contains a 
dominant term proportional to the square of the non- 
saturation energy; in our notation, the nonsaturation 
energy has the formE •/2N so that (E•/•N)==E•/•. Thus 
one obtains as the equivalent of Eq. (23), for both the 
noise-in-noise and the tone-in-noise discrimination 
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cases, 

El/2• 
h - [E•/N. •/N•/2, (29) 

where C' is • consist. Using the method o•Uinedin•he 
AppendS, this yields • predicUon of uni• slope for 
the intensity-discrimination curve (for sufficiently large 
values of 

Until •l•orithms •re dercloud for obtaining •e re- 
fr•ctoriness corrections for noise-in-noise •d for 

tone-in-noise, applications of the LFRM will be con- 
strained to nonrandom inputs. In •is regard the authors 
have had some success in applying •e model to pro- 
blems in the measurement of tone loudness •d mask- 

ing. The results of these investigaaons will be reported 
in the near future. It has been found that whereas the 

use of nonsymmetric filters did not have •y appreci•le 
effect on loudness estimation, it was •solutely nec- 
essary to u•lize them in studies of masking. The mask- 
ing studies •so showed that bandwidth limits analogous 
to critical bands must be incorporamd into the m•el, 
whereas attempts to utilize these relatively narrow 
bands in intensity discrimination led to difficulties. In 
particular, unity slopes for •e intensity-discrimination 
cu•es were obt•ned when the r•ge of integration in 
Eqs. (10) •d (11) covered only a few hundred hertz. 

Another fac•r that could be incorporated into the 
LFRM is the density of neural ch•nels (in frequency). 
The model presented here assumes uniform density in 
linear fr•uency •ough •is is clearly not •curate for 
the peripheral auditory system (Spoendlin, 1966). It 
turns ou• however, that a uniform-in-log-fr•uency 
assumption, as well as other realistic density functions, 
provides results that are substantially •e same as 
those generated under the uniform-in-linear-fr•uency 
assumption for v•ues of SPL wi•in the normffi hearing 
range. It is interesting to note •at as •e stimulus in- 
tensity is increased beyond the discomfort level, how- 
ever, •e increment• slo• of the intensity discrimi- 
nation curve approaches unity, as predicted by the crude 
saturation model. In any case, •e •alyfical expres- 
sion for the slo• predicted by •e crude saturation 
model, under •e uniform-in-linear-frequency assump- 
tion• turns out to provide the pro•r slo• for the re- 
fractoriness m•el, regardless of which density is em- 
ployed. A more thorough discussion of the LFRM in- 
corporating •e density of neural ch•nels will be pre- 
sented elsewhere. 

Fi•lly, we point out t•t there are a number of other 
known physiological c•racteristics of the peripheral 
auditory system that we •ve not •cluded • the m•el 
presented here. First, it has long been kn•n t•t a 
pure tone generates a traveling wave with an envelope 
whose magnitude varies substantially with distance 
along the basilar membrane (B•k•sy, 1960). Thus the 
acoustic energy teachug the hair ceils is nonuniformly 
distributed. And second• the hair-cell response itself 
clearly exhibits'a saturating nonlinearity, as is clear 
from the recent exper•ents performed by Russell and 
Sellick (1978). It has been convenient to assume in this 
paper that saturation is associated solely with the 

registration of neural counts through refractoriness, 
or in terms of our crude saturation model. Folding in 
the certainty that there are other phenomena in the 
peripheral auditory system that we do not yet know how 
to properly describe, it is clea. r that our model is basic 
indeed. What is arresting is its ability to describe the 
outcome of psychophysical experiments such as pure- 
tone intensity discrimination, loudness estimation, and 
the masking of tones by tones, in spite of its simple 
nature. And it does so rather remarkably with a small 
number of parameters and with a locus that need not 
be precisely identified. 
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APPENDIX: DERIVATION OF FORMULAS FOR THE 

CRUDE SATURATION MODEL 

We rewrite Eqo (12) as 

E, L Vor+ 5 •? 

Extracting the Nth root, we arrive at 

(A,E/E,a)•/•_i=(?,+6 •o r )2 @2 \tør Wr+6 , (A2) 
which leads to 

[(A'E) •/• - E •/s•t/• 5z + 2•r5 
2 •f• • = (A3) 

This c• now be written as a qu•ratic equation in 5 

5 • - (B - 2)•v5 -Bw• • 0, (A4) 
where 

B-k Q2E•/. / . (AS) 
The solution of Eq. (A4) is 

= - (s + (A6) 

We assume that E is sufficienfiy large such that 
>• E• •d that B • 2. Ignoring the negative solution for 
5, we obtain 

Equations (13) •d (14) follow directly from Eq. (AT). 

A similar •alysis can be •rformed to obt•n the 
lower cu•ff •int. Let 5[ be the frequency deviation 
from w• and let 

d• = • - 5•. (AS) 

The equa•on for d• is then 

•hich lees to the quadratic •uation 
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a• + dr`•0 rB - •o•, = 0. (A10) 

The positive root of Eq. (A10) is 

dr.: (wr/2)[(B 2 + 4)'/z _ B]. (All) 

We note that 

(B 2 + 4)'/z = B(1 + 4/B2) x/• • B(1 + 2/B2), (A12) 
which leads to 

d; = •r/B (A13a) 
and 

5• = •r(1 - l/B) • •r. (A13b) 

This is identic• to Eq. (15). 

To obt•n Eq. (26) from Eq. (23) we proceed as fol- 
lows. From Eq. (24) 

E• = E• + •E (A14a) 

and 

E• I•s = (E• + •)•l •s , (A14b) 
or 

We ret•n •e first •o •rms of the binom[• exposion 
for the r•ght-h•d s•de og Eq. (A15) with •e result 

•I/2N • % ix + (AXe) 
Thus 

(Ax7) 

In •e denominator of Eq. (23) we use •e rela•on 

,• • --• , (A18) 

so that Eq. (26) is readfly obt•ned from Eqs. (A17) •d 
(A13) s•nce E•E•. 

iWe use the terms "dead time" and "refractoriness" inter- 
changeably; see Teich, Matin, and Canter (1978). The dead 
time is said te be nonparalyzable (or nonextended) when 
events occurring during the dead-time interval are not regi- 
stered and do not extend this interval; see Nfdl[er (1973, 1974) 
and Liberr (1975). 

2The intensity-discrimitmtinn curve is the logarithm of the 
just-detectable increment (or decrement) in tene intensity 
(or tone energy), AE= E s-Eu• , versus the logarithm of the 
intensity (or energy) of the background tone, E s (or E• ). 
It is also called the masking function. To make contact with 
the notation used by McGill and Goldberg (1968a, 1968b), 
note that our E s is their Eo, our E,• is their E o-- Es, and our 
AE is their E s. • 

3The experiments have almost surely been performed on a se- 
lected sample of fibers, however. See Spoendlin (1966) and 
Green (1976, p. 265). 

4•nother plausible way in which this process may occur is the 
following. Consider the pooled process arising from a col- 
lection of individual peripheral fibers as constituting a sin- 
gle (Poisson) neural channel at some higher station in the 
chain to the auditory cortex. In that case, the pertinent dead- 
time modification would occur at that higher point, rather 
than at the primary fiber itself, so that the intensity-dis- 
crimination mechanism would involve central as well as pe- 
ripheral mechanisms. The block diagram in Fig. 1, as well 
as all of our calculations, clearly also apply to such a char- 

acterization. 
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