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ABSTRACT

The Continuous Wavelet Transform (CWT) and the
Short-Time Fourier Transform (STFT) are used to ana-
lyze the time course of cellular motion in the guinea-pig
inner ear. The velocity responses of individual audi-
tory cells (outer hair cells and Hensen’s cells) to ampli-
tude-modulated (AM) acoustical signals display character-
istics typical of nonlinear systems, such as harmonic gen-
eration. Nonlinear effects are particularly pronounced at
the highest stimulus levels, where half-harmonic, and some-
times quarter-harmonic, components are also seen. Both
the CWT and the STFT are found to be useful in analyz-
ing these velocity responses. We carry out CWT analyses
using a Morlet wavelet and an AM wavelet, and find the
results are quite similar.

1. INTRODUCTION

The velocity of vibration of cellular structures in the guinea-
pig cochlea has been measured by using laser-heterodyne
interferometry [1]. The Short-Time Fourier Transform
(STFT) is a useful tool for following the time course of
the frequency components generated in response to an
amplitude-modulated (AM) stimulus. STFT analysis has
revealed that the cellular vibrations are strongly nonlin-
ear: they exhibit spectral components not only at the car-
rier frequency of the AM stimulus f., but at its harmon-
ics, half-harmonics, and even quarter-harmonics [2}-[5]. In
this paper, we show that the Continuous Wavelet Trans-
form (CWT) [6] is similarly useful, and both the CWT and
the STFT are used to demonstrate the presence of com-
ponents at quarter-harmonic frequencies. The presence of
quarter-harmonic as well as half-harmonic and harmonic
spectral components indicate that the system may undergo
a period-doubling route to chaos [5].

2. METHODS

The CWT and STFT of the measured velocity response
were calculated. The CWT of a signal z(t) is defined as

CWTir, 1) = \/_ / (t)h

with 7 as a scale variable, 7 as a time variable, z(t) as the
velocity signal to be analyzed, h(t) as the prototype wavelet

) dt, (1)
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basis function, and * denoting complex conjugation. This
can also be written as an integral in the frequency domain,
viz. [5]

CWTHr,7) = \/I':r_|‘/°° X(u)H"(ur)exp(j2rur)du, (2)

where u is a dummy frequency variable, and X (u) and H(u)
represent the Fourier transforms of z(t) and h(t), respec-
tively.

The fast-CWT algorithm of Jones and Baraniuk (7]
was used to calculate a discrete approximation of (1).
For comparison, we calculated the CWT based on two
different analysis wavelets; a Morlet wavelet [8] and an
AM wavelet. The discrete-time prototype Morlet wavelet
was obtained by sampling the continuous Morlet wavelet
ha(t) = exp(jct) exp(—at®/2) (with ¢ = 4750 and o =
12207) at 5000 Hz, the sampling rate of the original
data set. The discrete-time prototype AM wavelet was
obtained by sampling the continuous wavelet ham(t) =
Rij2g,. (t) exp(s27 fct)[1 + cos(27 fmt)]/2, where Rr(t) de-
notes the indicator function on the interval [—7,T], and
with f. =756 and fmn = 21.0.

These wavelets were chosen inasmuch as their relative
bandwidths (BW,) are readily controlled. Relative band-
width is defined as the full-width (Af) at 1/e maximum
of the bandpass region surrounding the center frequency of
the wavelet’s Fourier transform, divided by the center fre-
quency itself (i.e., BW,aq = Af/f). Since the frequency
resolution of the CWT at scale r is usefully defined as the
frequency width of H(ur), controlling the relative band-
width is equivalent to controlling the desired frequency res-
olution at a given analysis frequency f. In our case, the rel-
ative bandwidths of the Morlet wavelet and the AM wavelet
are 2v/2a/c and 2.36 fm/ f., respectively. Our choice of pa-
rameters for the Morlet and A M-based wavelets is such that
they have the same relative bandwidths.

The CWT is strictly defined as a time-scale representa-
tion; however it often proves easier to interpret CWTs in
terms of time and frequency rather than time and scale. A
short-lived function (r small) inherently contains high fre-
quencies, so that r is inversely related to frequency. For a
given wavelet transform, the mapping f = K/r can be used,
allowing the CWT of a signal to be interpreted in terms of
frequency rather than scale. We have chosen K = 756. We
readily note from (2) that, unlike the STFT, the CWT does




not map equal-amplitude sinusoidal components into equal-
magnitude CW7Ts because of the premultiplication factor of

4/ Ir}in the definition. To facilitate comparison between the

STFT and the CWT, we therefore plot |r|~*/2CWT, which
we refer to as the “modified CWT™.
The STFT of a signal z(t) is defined as

o0

STFTZ(f,7) =/ z(t)g*(t — 7)exp(—j2xft) dt, (3)

—0o0

with f as a frequency variable, 7 as a time variable, and
g(%) as a window function in time. This can also be written
as an integral in the frequency domain, viz. [5]

STFT(f,7)= (4)

exp(—j21rfr)/ X(u)G"(u - f)exp(j2rur) du,

where X(u) and G(u) represent the Fourier transforms of
z(t) and g¢(t), respectively, and u is a dummy frequency
variable. The Gaussian window g(t) = exp(—Gt*/2) (with
B = 12207) was chosen. A discrete approximation of the
STFT was calculated by taking the Fast Fourier Transforms
of windowed sections of the sampled velocity waveform [2]-
[5]. The discrete-time window was obtained by sampling
the Gaussian window at 5000 Hz.

3. RESULTS

Figure 1(a) shows the velocity waveform of a third-turn
outer hair cell in response to an AM pulse (modulation
index = 100%; modulation frequency = 2.44 Hz) with a
carrier frequency f. = 756 Hz. This frequency lies at the
characteristic frequency (CF) of the cell, i.e., at the acous-
tic frequency to which the cell responds maximally. The
peak sound intensity of the stimulus at the tympanic mem-
brane was 134 dB:re .0002 dynes/cm? (uncorrected). The
velocity waveform is seen to be highly irregular. The modi-
fied CWT magnitude (calculated using the Morlet wavelet)
of this waveform is shown in 3D format in Fig. 1(b) and
in 2D contour format in Fig. 1(c). The frequency res-
olution of this CWT is 49.7 Hz at an analysis frequency
of 756 Hz. The CWT comprises components at harmonic
(fe, 2fc, and 3f.), half-harmonic (f./2, 3f./2, and 5f./2),
and quarter-harmonic (3f./4, 5f./4, Tf./4, and 9f./4) fre-
quencies. The widths of the spectral components increase
as we go to higher analysis frequencies, since the CWT’s
frequency resolution becomes increasingly worse at those
frequencies. In passing, we note that the Morlet wavelet is
not strictly admissible [6, 8] since Ham(0) # 0, where Hp
denotes the Fourier transform of has(t).

The modified CWT magnitude calculated using the AM
wavelet, for the same waveform, is shown in 3D format in
Fig. 1(d) and in 2D contour format in Fig. 1(e). These
are difficult to distinguish from the Morlet results shown
in Figs. 1(b) and 1(c), respectively. This is not surprising
inasmuch as the 4 M-wavelet-based and the Morlet-wavelet-
based analyses were chosen to have the same frequency res-
olutions over the entire time-frequency plane. However, a
slight difference can be discerned in the time-course of the
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component at f./2. In Fig. 1(c), the magnitude of this
component goes to zero twice in the time interval between
90 and 370 ms, whereas in Fig. 1(e) it exists continuously.
This is because the Morlet wavelet minimizes the product of
the time and frequency resolutions whereas the AM wavelet
does not. Since the frequency resolution of the two CWTs
has been chosen to be identical everywhere, this implies
that the time resolution of the AM-wavelet-based CWT is
slightly inferior over the entire time—frequency plane.

Unlike the Morlet wavelet, however, the AM-based
wavelet can be made strictly admissible by selecting fc to
be an integral multiple of f,». However, this is more of theo-
retical interest than practical benefit in the present setting.

The STFT presented in Figs. 1(f) and 1(g) is similar to
the CWT. It has been chosen to have the same frequency
resolution (49.7 Hz) as the CWTs at the carrier frequency,
756 Hz. However, unlike the CWTs, the widths of the spec-
tral components are constant across frequency. For the
STFT, both the time and frequency resolutions are inde-
pendent of frequency, whereas for the CWT the frequency
resolution improves (at the expense of the time resolution)
as the frequency decreases. Thus, the Morlet-wavelet CWT
in principle provides a better estimate of the frequency com-
ponents below f.. The STFT, on the other hand, provides
superior frequency resolution for high frequencies.

We have also used the CWT and the STFT in the analy-
sis of velocity responses measured at lower sound pressure
levels [2]-[5]. At the lowest sound intensities only multi-
ples of the carrier frequency are present. As the intensity
increases, half-harmonic components appear, followed by
quarter-harmonic components at the highest levels. This
pattern is indicative of a period-doubling route to chaos.

4. CONCLUSION

Both CWT and STFT techniques are useful for analyzing
the time-varying responses of sensory cells in the cochlea.
For the CWT, wavelet bases with controllable relative band-
width should be used inasmuch as they allow selected fre-
quency resolution to be chosen at an arbitrary analysis fre-
quency. The Morlet wavelet and AM wavelet are about
equally as effective. The information provided by time-
frequency and time-scale analysis has narrowed the range
of nonlinear oscillators admissible as mathematical models
for cochlear function.
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CARRIER FREQUENCY = 756 Hz
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Figure 1: Velocity response of an outer hair cell in the third turn of a guinea-pig temporal-bone preparation to an
AM pulse with carrier frequency f. = 756 Hz. (a) Time waveform of the response. (b) 3D plot of the modified
CWT magnitude (calculated using the Morlet wavelet) of the velocity response shown in (a). (c) Same modified
CWT magnitude as shown in (b), but with 80 equally spaced contour lines joining points of constant magnitude.
(d) 3D plot of the modified CWT magnitude (calculated using the AM wavelet) of the velocity response shown in
(a). (e) Same modified CWT magnitude as shown in (d), but with 80 equally spaced contour lines. (f) 3D spectral
plot of the STFT magnitude of the velocity response shown in (a). (g) Same STFT magnitude as shown in (d),
but now plotted in 2D contour format, with 80 equally spaced contour lines.
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