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Abstract— The psychophysical properties of a multiple-channel neural-
counting model are investigated. Each channel represents a peripheral
afferent fiber (or a group of such fibers) and consists of a cascade of
signal-processing transformations, each of which has a physiological corre-
late in the auditory system. The acoustic signal (which may be a pure tone
or Gaussian noise) is passed by our mathematical construct through the
following series of transformations: an outer- and middle-ear transmission
function, an inner-ear multiple-pole linear-filter tuning mechanism, a non-
linear receptor saturation function, and a refractoriness-modified Poisson
transduction mechanism (which leads to a sub-Poisson neural spike count).
Spontaneous r.eural activity is independently incorporated into each chan-
nel by means of an additive refractoriness-modified Poisson process. A
union process at a more distal center in the nervous system is generated by
a parallel collection of such channels with a density (in frequency) de-
termined by the cochlear mapping function. The statistics of the union
count (in a fixed time) are then processed at a decision center in a manner
that depends on the psychophysical paradigm under consideration. This
random count number is assumed to contain all of the information for the
examples we consider. Our model has been used to calculate psychophysi-
cal functions for the following paradigms: pure-tone loudness estimation,
pure-tone and variable-bandwidth noise intensity discrimination, and vari-
able-bandwidth noise loudness summation. The theoretical results, which
are determined in large part by spread of excitation, are in good agreement
with human psychophysical data, provided that the parameters of the
theoretical model are appropriately chosen. It has been found that a
suitable choice of parameters is both physiologically sensible and self-con-
sistent. As a further indication of the consistency of the model, the same
general parametric dependencies as neurophysiological isointensity con-
tours for peripheral afferent fibers in the squirrel monkey are exhibited by
the single-channel theoretical count mean, which is calculated as a function
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of stimulus level and frequency. The single-channel count mean-to-variance
ratio is in accord with laboratory data. Finally, the roles of the various
components comprising our theoretical system are discussed, and our
model is compared with related constructs.

1. INTRODUCTION

E DEMONSTRATED in Part I [1] of this series of
Wpapers ([1]-[4]) that pure-tone intensity discrimina-
tion could be satisfactorily described in terms of an
energy-based neural-counting model incorporating refrac-
toriness and spread of excitation. In Part II [2] we showed
that the same linear filter refractoriness model (LFRM)
also provided satisfactory results for fitting data obtained
in pure-tone loudness estimation experiments. In Part III
[3] we considered intensity discrimination and loudness
summation for variable-bandwidth noise stimuli and dem-
onstrated once again that the LFRM calculations were in
accord with the trends of the data.

The common model considered in all of these papers
yielded surprisingly good fits to a wide variety of psycho-
physical data, in spite of the fact that the LFRM is clearly
incomplete in some respects. Well-known physiological
effects such as receptor saturation, spontaneous neural
activity, the presence of a frequency-dependent outer- and
middle-ear transfer function, and nonuniform cochlear
mapping are not included in the LFRM. One problem area
for the LFRM is that it predicts a theoretical single-chan-
nel count mean-to-variance ratio y, that increases with
stimulus level, becoming very large at high levels. This is at
variance with the results of recent neurophysiological ex-
periments showing that y,,, assumes a value roughly be-
tween 1 and 2 (in the cat) for a counting time 7 = 50 ms,
essentially independent of stimulus level.

In Part IV [4] of this series, a single-channel version of
the LFRM was modified to include the effects of receptor
saturation and spontaneous neural activity. The modified
system was referred to as the “extended linear filter refrac-
toriness model” (ELFRM). The presence of the saturation
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function brought vy, into line with the experimental value.
Furthermore, the spontaneous neural activity made the
ELFRM a more realistic model. The objective of Part 1V
was to use the single-channel extended model to generate
theoretical neural firing-rate curves for an auditory fiber as
a function of stimulus level and frequency (isointensity
contours). By judicious choice of the parameters of the
model, our results could be made to agree with experimen-
tal isointensity contours.

In this paper we incorporate the ELFRM of Part IV into
a multiple-channel configuration, taking into account the
frequency characteristics of the outer- and middle-ear
transmission function and the cochlear mapping function.
Our principal interest is in the predictive behavior of the
system for several psychophysical paradigms: pure-tone
loudness estimation, pure-tone intensity discrimination, and
intensity discrimination and loudness summation for vari-
able-bandwidth noise. We demonstrate that the theoretical
results are in good agreement with human data for these
paradigms and that the model parameters required to fit
the data are physiologically sensible. We also show that a
single-channel version of the model, using the same param-
eters used in the psychophysical calculations, leads to
theoretical isointensity contours that have the same general
form as neurophysiological results from peripheral fibers in
squirrel monkeys. Our study permits us to demonstrate
that the model parameters required to fit neurophysiologi-
cal (single-channel) and psychophysical (multiple-channel)
data are plausible and consistent and to determine the
roles of the various components comprising the theoretical
system. A preliminary account of this work was presented
at the Annual Meeting of the Acoustical Society of America
in Chicago, IL [5].

The point of view that we adopt is similar to that
introduced by McGill [6] and Siebert [7]. We build the
overall system response from the behavior of individual
idealized elements in the periphery. Much has been learned
about the physiology of the auditory system and neural
activity in the VIIIth nerve in the past 15 years. One of our
aims in this study is to determine for which paradigms
neural-counting information suffices, and how well such
models perform. We therefore devote our attention to
processing that integrates over both place on the cochlear
partition and timing information in the neural spike train.
Paradigms such as frequency discrimination, the detection
of structured signals buried in noise, and speech recogni-
tion could be studied in the context of our model by
examining the properties of the theoretical point process
rather than the neural count.

In Section II, we discuss the individual elements of the
model. In Section II1, theoretical formulations for loudness
estimation and intensity discrimination are presented.
Comparisons of the calculated results with psychoacoustic
data are considered in Section IV. The sensitivity of the
calculations with respect to parameter values and the role
of the various components of the model are discussed in
Section V. Comparison with related models is made in
Section VI. Finally, the summary and conclusions are given
in Section VIL
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II. ELEMENTS OF THE MODEL

The multiple-channel model afferent system is shown
schematically in Fig. 1. Each channel represents a periph-
eral afferent fiber (or a collection of such fibers at the same
characteristic frequency). It consists of a cascade of signal-
processing transformations, each of which has a physiologi-
cal correlate in the auditory system. The acoustic signal
(which may be a pure tone or Gaussian noise) passes
through the following series of transformations: the outer-
and middle-ear transmission function, the inner-ear multi-
ple-pole linear-filter tuning mechanism, the nonlinear re-
ceptor saturation function, and the refractoriness-modified
Poisson transduction mechanism (which leads to neural
counts whose variance is less than the mean). Spontaneous
counts are incorporated into each channel by means of an
additive independent refractoriness-modified Poisson pro-
cess. The parallel collection of these channels, with a
density (in frequency) determined by the cochlear mapping
function, generates a union process at a more distal center
in the auditory pathway. The statistics of the union count
(in a fixed counting time) are processed at a decision
center, in a manner that depends on the psychophysical
paradigm. This random count number is assumed to con-
tain all of the information for the paradigms we consider.

The model differs principally from the one developed in
[1]-[3] in that it includes a memoryless receptor saturation
function and spontaneous events, as well as the outer- and
middle-ear transmission function and the cochlear map-
ping function across channels. As indicated in Section I,
the model considered in [4] is a single-channel version of
the system shown in Fig. 1. As such, it does not incorpo-
rate the outer- and middle-ear transmission function, the
cochlear mapping function, the union of neural counts, nor
the decision center. These characteristics are related to
psychophysical tasks.

A. Single-Channel Elements

We begin with a discussion of the single-channel ele-
ments. The mathematical description of many of the func-
tional blocks shown in Fig. 1 has been presented in detail
in [4]; the formulas are presented here with a minimum of
discussion. The inner-ear multiple-pole tuning mechanism
is taken to be a linear filter whose response to a pure-tone
input at frequency f; is given (see [1]) by

AE,
E, = ’ —.
1+ 02 (su/to ~ fo/12)7]

Here E, and E, are the -output and input energies of the
filter, respectively, f, is the characteristic frequency (CF)
of the neural channel, and Q is a quality factor or tuning
parameter (equal to the ratio of the characteristic frequency
to the 3-dB bandwidth for a single-tuned energy filter
(N = 1)). Q itself depends on the characteristic frequency
of the fiber, so we allow Q = Q(f,). As discussed subse-
quently, the choice N = 3/2 provides agreement of our
calculations with experiment. The parameter r accommo-
dates the observed asymmetric frequency-response char-

(1)
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Fig. 1. Block diagram of the model afferent system used in carrying out the calculations.

acteristics of the neural fibers in a simple way. We set
r=1 in the region f;<f,, and r=2 (rN = 3) in the
region f; > f,. The proportionately constant A that ap-
pears in (1) is absorbed into the constant Ex [see (2) and
(3)]- The linear-filter transmission function given in (1)
(with r = 1) represents a system consisting of a cascade of
masses and springs, each undergoing simple damped
harmonic motion. We have used this well-known response
for resonant linear systems as an empirical functional form
to maintain simplicity.

The output of this filter is fed to a memoryless receptor
saturation function. A linear-filter /nonlinearity cascade is
simpler to analyze than is a nonlinear filter. Two distinct
functional forms for the receptor saturation have been
investigated (see [4]). The first has a mean neural-firing
rate without refractoriness modification, 7 ,(f,), given by

(8]
(o) = TRy 1 - exp[—',{:f(l +5/5)" || @

Here, R, and R,, are the minimum and maximum firing
rates, respectively, in spikes/s (before refractoriness mod-
ification), T is the counting time, E, is an energy refer-
ence level that governs the channel threshold, and 6 is a
parameter controlling the maximum slope of the response.
The quantity R, is selected to match the spontaneous rate,
since the refractoriness modifications at sufficiently low
levels will be negligible. R,, may be calculated (see [4])
from the observed maximum firing rate of the neural
channel R, (which occurs after refractoriness modifica-
tion).

The second saturation function that we examined is
described by the expression (see [4], Appendix)

a(R,, — Ro)ln(1 + Eo/ER)

R_—R
Zm -0 0)1n(1+E0/ER)
RO

Ry —
(3)

n,(fo) =T{ Ry +
1+ a

Here, a governs the maximum slope of the response (anal-
ogous to # in (2)), R, i$ the maximum observed firing rate
in spikes/s after refractorinéss modification, and the
parameters R, R,,, Eg, and T have the same interpreta-
tion as in (2). It has been shown in the Appendix of [4] that
R, = \/YR,, The stimulus energy or intensity E, that
appears in both (2) and (3) is given in (1).

The receptor output feeds an ideal nonparalyzable
dead-time-modified Poisson transduction mechanism. (For
convenience, the additive spontaneous Poisson events have
been incorporated into the receptor saturation function.)
The effects of dead time (refractoriness) on a Poisson
process are well understood [9], [10] and have been dis-
cussed at some length in [1]. When the dead time is fixed,
the expressions for the modified count mean and count
variance are, respectively,

_ B (/)

") T R Gy ) “
and ~

0¢.2(f0)= nu(fO) (5)

[1+(r/T)a (/)]

Here 7 is the dead time, and T is the counting time. When
using these formulas to calculate psychophysical functions,
we take T to be the integration time at the decision center
(see below). The count mean-to-variance ratio y is ob-
tained by simply dividing (4) by (5), i.e.,

v=[1+(r/T)a (/)] (6)

The quantity 7,(f,) is obtained from (1), together with
either (2) or (3).

B. Multiple-Channel Elements

We now turn our attention to the set of M parallel
channels (see Fig. 1). For simplicity and concreteness, we
take the outer- and middle-ear energy transmission func-
tion 7(f) to be the human threshold-of-hearing curve
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(actually, the threshold-of-hearing curve reflects the behav-
ior of the entire auditory system, but we use this function
as an approximation for the function T(f)). We have
obtained a rather simple empirical form for 7'( f) (which is
denoted T,5(f) when expressed in dB) from the data of
Scharf [11]

Tis(f) = —{a[ln (N’ +bo[ln()] +¢}. (7)

Numerical estimates for the constants a, b, and ¢ were
obtained by fitting Scharf’s data with two quadratic equa-
tions in In ( /), one on each side of the minimum threshold
(taken to be t 1450 Hz), and assuming zero slope at the
Jjunction. The resulting constants associated with (7) are
displayed in footnote b of Table I. To convert T ( f) into
T(f), we use the simple relation

T(f) = 10 Tss()/10] (8)
This element of the model plays an important role princi-
pally for broadband stimuli.

The dependence of ¢ on f, is characterized by an
emnirical relation of the form

Q(fy) = dy + d; In(fy). 9)
This is drawn from the neurophysiological dependence
measured in chamber-raised cats [12]. Values for the con-
stants d, and 4, are displayed in footnote d of Table L
Similar behavior is observed for cats that are not specially
raised.

The cochlear mapping function is incorporated into the
model by means of a nonuniform (in characteristic
frequency) weighting of the number of neural channels (see
Fig. 1). The quantity p(f;) is a suitably normalized neural-
fiber density function, reflecting the tonotopic organization
of the cochlea. A simple form that we used is

o(fo) = k/f,- (10a)

This reflects the roughly logarithmic distribution of char-
acteristic frequency along the cochlear partition, as re-
vealed by neuroanatomical studies [13], [14]. We can de-
termine the normalization constant k by assuming that

[ o) iy = (10)

Here f, and f, represent the lower and upper frequency
limits, respectively, of the characteristic frequencies of hu-
man peripheral auditory fibers, and M is the total number
of these fibers. Values are given in footnote b of Table L.
As a shorthand notation we refer to calculations using this
uniform-in-log-frequency distribution as “with fiber den-
sity.” When p(f,) is chosen to be independent of f,
(uniform-in-linear-frequency distribution), the results are
referred to as “without fiber density.” All of the calcula-
tions reported in [1]-[3] were carried out without fiber
density. As will be seen subsequently, the cochlear map-
ping function plays an important role in determining the
values of the model parameters.

The union operation forms a point process that is the
superposition of the constituent single-channel processes.
The decision center extracts those statistics of the union
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point process appropriate for a particular paradigm (e.g.,
the modified count mean for loudness estimation or the
count mean and variance for intensity discrimination). The
roles of these two operations are identical to those assumed
in [1]-[3].

The sum of the neural counts from the individual chan-
nels during the fixed counting time T is a random variable
N,. Its mean and variance, denoted (N,) and 32, respec-
tively, are given by

(N = [ oo fo) dfy (11)

L

and

22 = ["02(f)e( fo) dho- (12)
i3

Equations (11) and (12) are approximate because we have
used integration to provide the overall count mean and
variance. This is satisfactory because the characteristic
frequencies of the peripheral fibers essentially form a con-
tinuum.

The count statistics that are essential for those psycho-
physical paradigms of interest to use are (N,), 22, and a
modified version of (N,) that will be described below.

III. THEORETICAL FORMULATIONS FOR
PsYCHOACOUSTIC PARADIGMS

A. Pure-tone Loudness Estimation

In the course of carrying out our study it became ap-
parent that the total mean number of counts (N,) repre-
sented in (11), which includes a contribution from sponta-
neous events, would not suffice for fitting loudness data at
low stimulus levels. In loudness estimation experiments, a
subject is asked to associate a numerical value with the
magnitude of a stimulus; he or she is expected to generate
a loudness function with value zero in the absence of
sound. It is therefore not unreasonable to suppose that
spontaneous counts should not contribute to the loudness
(they were omitted from the loudness estimation model
used in [2]). The observable for loudness estimation is
therefore considered to be a modified sum of counts,
denoted as (N}, in which spontaneous events are sub-
tracted at each channel before integration. There is also
neurophysiological justification for ignoring the sponta-
neous events inasmuch as the presence of a stimulus seems
to inhibit their generation [15]. We. do not imply that
spontaneous activity is to be ignored altogether, or that the
detection system necessarily differentiates between sponta-
neous and driven events. In fact, the forms that we have
chosen for (2) and (3) exhibit a functional dependence on
R,, and the fluctuations of the neural count therefore
contain within them the fluctuations of spontaneous activ-
ity.

In analogy with (11) we define (N} as the total mod-
ified mean neural count. If the spontaneous count, and the
effects of dead time on it, are small (N} can be approxi-
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mated as
(13)
The parameter Rj is the spontaneous count that emerges
when E, is set equal to O in (2) and (3). Thus
Ry = TR, [1 — exp (= Ro/R )]
for exponential receptor saturation, and
Ry, =R,T
for logarithmic receptor saturation.
Any single observation of the scalar loudness random

variable A will be given by the total modified neural count,
which varies from trial to trial (see [2]). Thus

A=uN/

(N)y = ff [7.(f) = Rol o fy) .

(14a)

(14b)

(15)
where p is a constant. The experimental psychophysical
data that we attempt to fit almost always involve averages
over repeated trials, however. If we assume that these trials
are statistically independent (see [2]), the average provides
a pure-tone loudness function L given by

L=pu(N,). (16)

B. Pure-Tone Intensity Discrimination

The usual intensity-discrimination paradigm makes use
of a two-interval forced-choice (2IFC) procedure. The sub-
ject is sequentially presented with two short stimulus bursts
at different levels. The level of one burst is fixed while the
level of the other burst is adjusted until the subject makes a
correct decision on a prespecified percentage of trials. This
stimulus level difference is measured as a function of the
base stimulus level.

An appropriate quantitative measure for pure-tone in-
tensity discrimination is provided by the detection distance
h given by [1]

L (N = (N
(52, +32)"%

The quantities (N, ) and =2 are obtained from (N,) and
22 in (11) and (12), respectively; the subscripts s and w
refer to the stronger and weaker stimuli. The parameter 4
is selected to satisfy the specified criterion for the probabil-
ity of a correct decision. As an example, let’s suppose that
the level of the stronger input is fixed, and the level of the
weaker input is adjusted to satisfy (17) with some particu-
lar value of h. This procedure provides one data point.
Other data points are obtained by choosing different val-
ues for the level of the stronger input (keeping 4 constant)
and repeating the process by varying the weaker level until
(17) is satisfied.

Equation (17) is based in part on the normal approxima-
tion as described in [1]. This simplification permits error
probabilities to be expressed solely in terms of the count
mean and variance, which we can calculate from our
model. It is interesting to note that it is immaterial whether
primed or unprimed variables are used in the numerator of

(17)
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(17) since
(Neg) = (Noy) = (NS = (NG (18)

The denominator, on the other hand, retains its depen-
dence on spontaneous activity. According to this equation,
therefore, intensity discrimination (and indeed any psycho-
physical paradigm that depends on the probability of
counts) will implicitly retain a dependence on spontaneous
activity. We have not determined the extent of this depen-
dence, though it is likely to be more important at low
stimulus levels.

C. Intensity Discrimination and Loudness Summation for
Variable-Bandwidth Noise

The detection of signals other than pure tones is governed
by many individual channels that contribute to the union
process even at low stimulus levels. As is evident from Fig.
1, the functions 7(f), Q(f,), and p(f,) will be most
important under these stimulus conditions. Furthermore
there is the question of external stimulus fluctuations and
the role that they play [6], [7], [16], [17]. We consider this
latter issue first.

In [3] we pointed out that stimulus intensity fluctuations
diminish in importance for detection systems exhibiting
large values of the time-bandwidth product (in comparison
with unity) because of the time averaging of the fluctua-
tions. The averaging (for each afferent fiber in the counting
time 7') may be sufficient to eradicate almost all variability
in the energy [6], leading back to the dead-time-modified
Poisson process used to derive the pure-tone results. Stud-
ies of the photon-counting detection of natural light (which
is an exponential-noise-driven Poisson process) show that
the output events may be accurately represented as a
simple Poisson counting process (rather than a doubly
stochastic counting process) as long as the product of
counting time and bandwidth (rad/s) is greater than about
ten [18], [19].

If we consider that the bandwidth of a system is
expressible as Aw = 27Af = 27f,/Q, then the time-band-
width product TAw = 2#Tf,/Q. If T = 0.1 s and Q = 40,
then at low characteristic frequencies, where stimulus
fluctuations exhibit their maximum effect, TAw = f,/200.
Even for a fiber with a CF as low as 200 Hz, there is a
good deal of averaging occurring. Saturation and refracto-
riness further diminish the importance of residual fluctua-
tions at moderate and high stimulus levels [3]. Our treat-
ment of intensity discrimination and loudness summation
with noise stimuli therefore ignores the effect of such
fluctuations. This is the point of view adopted by Siebert
(7], [16].

The calculations for intensity discrimination and loud-
ness summation follow from the results presented in [3].
The stimulus that we consider is bandlimited flat-spectrum
noise characterized by the spectral density

S~(f)=TI’ Lh<f<s),

0, otherwise.

(19)
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The quantity 7 is the stimulus noise energy spectral den-
sity, and f; and f, are the lower and upper cutoff frequen-
cies, respectively. When the noise consists of short bursts,
as in all of the experiments cited here, its magnitude may
be expressed equivalently in terms of energy (E), power
(P), or intensity (/). After passing through the outer- and
middle-ear transmission function, the energy spectral den-
sity presented to the inner ear takes the form

S(f) = S{)T(f). (20)

The output of the asymmetric linear filter associated
with an individual neural channel is then [3]

E(f0)=A1ffo AL
v+ st~ frfV]"

1 fu S(f)df _
o (102~ fuf)]

+A4 (21)

Here A, is a constant that is absorbed into Eg, and r = 2
for the second integral, where f > f, as discussed earlier.
The remainder of the calculations follow those for pure
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tones. E( f,), obtained in (21) above, is used in the recep-
tor saturation formulas (2) or (3). Ultimately, results are
obtained for (N,), 22, and (N,), and intensity discrimina-
tion and loudness are calculated by using (17) and (16),
respectively.

1V. CoOMPARISON OF THEORY WITH
PsycHoacousTIC DATA

A. Pure-Tone Loudness Estimation

In Fig. 2, we present loudness-estimation data (versus
pure-tone stimulus intensity in dB) for tone bursts at 100
Hz, 1000 Hz, and 3000 Hz. The open circles are experimen-
tal data points. The data at 100 Hz are adapted from
Hellman and Zwislocki [20, Fig. 2]; they were obtained
monaurally and represent an average over nine listeners.
The data at 1000 Hz are adapted from Hellman and
Zwislocki [21, Fig. 1]; they were obtained binaurally and
represent an average over several studies. The data at 3000
Hz are adapted from Hellman {22, Fig. 1]; they were
obtained binaurally and represent an average over ten
listeners. The solid curves are theoretical loudness func-
tions calculated on the basis of (16). The logarithmic
saturation function (3) was used in all cases (exponential
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(a)
Fig. 2.

INTENSITY LEVEL IN DECIBELS

(®)

Plot of loudness estimate versus pure-tone stimulus intensity (dB) for three frequencies. Open circles denote

INTENSITY LEVEL IN DECIBELS

(©

experimental measurements. Solid curves are theoretical loudness functions calculated on the basis of the model afferent
system shown in Fig. 1 using the logarithmic saturation function. Parameters for the theoretical curves are presented in Table
L. The fits of theory to data are seen to be quite good, with behavior similar to Stevens’ power law emerging at high stimulus
levels. (a) Data at 100 Hz (adapted from Hellman and Zwislocki, (20, Fig. 2]); they were obtained monaurally and represent
an average over nine listeners. (b) Data at 1000 Hz (adapted from Hellman and Zwislocki [21, Fig. 1]); they were obtained
binaurally and represent an average over several studies. (c) Data at 3000 Hz (adapted from Hellman [22, Fig. 1]); they were
obtained binaurally and represent an average over ten listeners.
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TABLE I
MODEL PARAMETER VALUES USED TO FIT EXPERIMENTAL DATA IN
F1GS. 2--6 USING LOGARITHMIC FORM FOR RECEPTOR
SATURATION FUNCTION®P-¢

Fig. Faradigm f+r or Em B{far e p= hT Results

No. center mateched
freq. ate

2a Pure-tone 100 Hz  1.44x10% 40-90 - -

2b  loudness 1000 Hz b.07 40-90 - -

2c estimation JO00 Hz 56.7 40-90 - -

I Fure—tone
intensity
discrimination 1000 Hz 8.0 40G-90 - .87 4% dB SL

4a Noise intensity
discrimination
(aF = 200 Hz) 1000 H=z 750 40~-90 - 3,87 40 dR SPL

4b Noise intensity
discrimination

(aF = 800 Hz) 1000 Hz I000 40-90 - I.87 50 dR SFL
b Loudness
summation 1420 Hz 52.4 2.80 - -

6b Spike-rate
isointensity
contoursh 2100 H= 100 S0 - - -

2The following single-channel parameters are identical for all figures (except for the
single-fiber isointensity contours as noted in footnote h below): N=3/2, r=2, a=0.5,
R({,= 2, Ry, =150 (corresponding to R, =122), r=1.3-1.5 ms, and y =1.5.

The following multiple-channel parameters are identical for all paradigms. For the outer-
and middle-ear transmission function T35 ( f) (7), when f <1450 Hz: a = 8.4410, b = —122.89,
¢=447.28; when f>1450 Hz: ¢ =13.245, b=-192.79, ¢=701.70. This function is used
only for noise stimuli. For the lower and upper limits of the characteristic frequencies f;, of the
individual channels (f; < fy<f,): f. =50 Hz; f, =15 kHz. For the cochlear mapping
function p(f;) (10): k = 5260, when the number of neural channels Af = 30000 (which is the
approximate number of peripheral afferent fibers in the human auditory system). The central
integration time T is taken to be 0.1 s.

¢The parameters 4 in (1) and A4; in (21) are absorbed into E, and hence carry no
significance.

4 For the variation of Q with characteristic frequency (9): d; and d, were chosen such that
Q(50 Hz) = 40 and Q(15 kHz) = 90, viz., d; = 5.7068, d, = 8.7661. This was satisfactory for all
paradigms except loudness summation. See footnote h for the value used for single-fiber
isointensity contours.

u is a free parameter for loudness estimation. It brings the calculated loudness function into
accord with the subject’s scale, essentially moving it vertically. Since g is determined at the
central decision center, its value is governed by effects all along the auditory pathway (e.g.,
thinning of the union process).

'h is a free parameter for intensity discrimination. It has been adjusted to bring the
calculated intensity discrimination functions into approximate consonance with the experimen-
tal curves (E; also plays some role in this). The value reported below cannot be taken too
seriously since it is appropriate for the union process rather than for the process at the decision
center where & operates. If the central counting process is a thinned version of the peripheral
process N, as may be expected, the required value of # will be smaller than that specified in
this column.

& The parameter 4 was adjusted to approximately match the intensity discrimination calcula-
tions and data along the abscissa. The theoretical curve was then finely adjusted in the
horizontal direction to provide precise matching at the stimulus levels specified below.

" For these squirrcl-monkey isointensity contours, we chose R, =130, T=1 (rather than
0.1) because the firing rate is measured in spikes/s, and Q(2100 Hz)= 50, which lies in the
region between 40 and 90.
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saturation led to almost identical results). The fits of the
curves to the data points are very good. Numerical values
for the parameters used in these calculations are presented
in Table I. N = 3/2 was used throughout. The transmis-
sion function T(f) was not used because the stimulus is a
single frequency in each case. This accounts for the rather
large value of the parameter £, when f; = 100 Hz.

B. Pure-Tone Intensity Discrimination

In Fig. 3, we show a typical set of intensity-discrimina-
tion data collected for a pure-tone stimulus at 1 kHz (open
circles). These particular data are adapted from Luce and
Green [23, Fig. 3]. though similar results have been re-
ported by many researchers (see [1]). Intensity discrimina-
tion data may be displayed in a number of ways [24]; we
plot the Weber fraction, log(Al/I), versus I (dB). (To
make contact with the usual notation, we replace E,, by [
and E, — E, by Al) The solid curve represents calcula-
tions based on (17), using N = 3/2 and the logarithmic
saturation function. (Exponential saturation again led to
similar results.) The theoretical and experimental values
were precisely matched at 43 dB SL. Numerical values for
the parameters are given in Table 1. The fit of the theory to
the data is quite good, representing something close to the
near miss to Weber’s law at high stimulus levels (see [1]).

C. Intensity Discrimination for Variable-Bandwidth Noise

Data similar to that shown in Fig. 3, but for variable-
bandwidth noise, are presented in Fig. 4. The Weber
fraction (AI/I in dB) is plotted versus the power ratio per
1/3 octave of the stimulus burst (/ dB re 0.0002 pbar).
The experimental data (open circles) are adapted from Bos
and de Boer [25, Fig. 5]. The Gaussian stimulus bursts had
a flat energy spectral density, with a (geometric mean)
frequency of 1 kHz and a duration of 125 ms. A very weak
broadband background noise (—30 dB re I) was also
present during the experiments. In Fig. 4(a), the noise
bandwidth A F is 200 Hz, whereas in Fig. 4(b) it is 800 Hz.
The solid curves represent theoretical intensity-discrimina-
tion functions calculated on the basis of (17), using
(19)-(21) (the weak broadband background noise was
ignored in the theory). The calculations were matched to
the data at 40 dB SPL in Fig. 4(a) and at 50 dB SPL in Fig.
4(b). Numerical value for the parameters are given in Table
[. Again, the model calculations follow the data quite well.
The behavior for these relatively narrowband stimuli
resembles that for the pure tone (Fig. 3); both exhibit a
near miss to Weber’s law at high stimulus levels.

D. Loudness Summation for Variable-Bandwidth Noise

These data are usually presented in the form of sound
pressure level for an equivalently loud pure tone or pre-
specified band of noise, versus the half-power bandwidth
of the (flat-spectrum bandlimited Gaussian) noise stimulus
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A F (see [3}). In Fig. 5, the open circles represent measure-
ments for which the comparison was a band of noise of
center frequency 1420 Hz and half-power bandwidth 210
Hz. The data are adapted from Zwicker, Flottorp, and
Stevens [26, Fig. 8], and represent values of AF ranging
from 35 Hz to 7.5 kHz. The solid curves represent the
theoretical calculations based on (16), using (19)—(21). The
logarithmic saturation function was used for the calcula-
tion (exponential saturation gave similar results). Parame-
ters for the theoretical curves are shown in Table 1. Here
too, the theory follows the general shapes of the loudness
summation data, but we have had to use a substantially
lower value of Q than for the other paradigms. The use of
larger values of Q in our model yields curves that rise too
steeply with increasing AF. We conjecture in Section VII
that critical-band phenomena may have some bearing on
this issue.

Because the stimulus in this case is broadband, the
middle-ear transfer function T(f) was essential to the
calculation. The theoretical curves in Fig. 5 fit the data far
better than do the calculations presented in [3, Fig. 3]. The
principal reason for this is the use of 7(f). Without this
transmission function, the loudess summation effect grows
rapidly and monotonically with A F. The results for AF =
3.5 kHz and 7.5 kHz are then far too large, and the gentle
maximum in the 30 dB calculation never appears (see [3]).
Similar measurements have recently been made with com-
plexes of pure tones [27].

E. Neurophysiological Isointensity Contours

Strictly speaking, the discussion in this subsection should
be dealt with elsewhere since it pertains to animal neuro-
physiological data rather than human psychophysical data.
Nevertheless we wish to explicitly show that the mean
spike firing rate for an individual mammalian peripheral
fiber, stimulated by a pure tone of variable frequency and
intensity, 1s not too dissimilar from the results predicted by
our model using N = 3/2. In Fig. 6(a), we present experi-
mental isointensity contours collected by Rose er al. [28]
for a (squirrel-monkey) afferent fiber with a characteristic
frequency of 2100 Hz. In Fig. 6(b), we show the theoretical
curves based on (a single channel of) the model afferent
system, using N = 3 /2. The lowest theoretical isointensity
contour is at a level of 30 dB and the highest is at 80 dB
(the curves are in steps of 10 dB). Parameter values are
given in Table I (see footnote h). The value of Q (= 50)
was chosen to lie in the region between 40 and 90. Though
the calculated and experimental curves do not agree well in
detail, they have the same general parametric dependences.
Isointensity contours calculated at other frequencies have
about the same level of agreement with data.

V. ROLE OF PARAMETER VALUES AND VARIOUS
ELEMENTS OF THE MODEL

We now examine the values assigned to the parameters
in the model and show that they are both physiologically
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Fig. 3. Weber fraction (log A7/T) plotted against stimulus intensity (I
dB SL) for pure-tone intensity discrimination. Experimental data are
represented by open circles (adapted from Luce and Green [23, Fig. 3}).
Data were obtained at 1 kHz. Solid curve is the intensity discrimination
function calculated on the basis of the model afferent system shown in
Fig. 1. It follows general trend of the data and represents something
close to the near miss to Weber’s law at high stimulus levels. Parameters
for the theoretical curve are presented in Table L

plausible and self-consistent. The interplay among the
cochlear mapping function and the inner-ear tuning
parameters N and Q is then discussed. This is followed by
an examination of the roles assumed by the various compo-
nents of the theoretical system and a discussion of their
relative importance in provding agreement with the data.

A. Parameter Values

There are many parameters specified in the model affer-
ent system (see Fig. 1) and it is important to establish their
association with empirical values. We begin with the
single-channel parameters listed in footnote a of Table 1.
Values for «, R, and R,, have been selected to accord
with typical single-fiber measurements (e.g., rate functions
and isointensity contours) in the cat [15], [29] and squirrel
monkey [28]. The count mean-to-variance ratio y has been
set at 1.5 in accordance with the measurements of Teich
and Khanna in the cat [30]. R,, and 7 are determined
from R, and vy (see [4, Appendix]). Values for human
auditory fibers are likely to be similar.

The multiple-channel parameters a, b, and ¢ associated
with T,y (see footnote b of Table I), as well as the range of
fo (between f, and f), and the central integration time T
(6], are determined from behavioral measurements in hu-
mans. The number of primary fibers M, and the logarith-
mic form for the cochlear mapping distribution, are de-
termined from neuroanatomical studies in humans [13],
[14], [31]. (It is interesting to note that recent neuromag-
netic measurements confirm that the logarithmic tonotopic
organization present in the cochlea is carried through to
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the auditory cortex [32], [33].) Taking the number of pe-
ripheral afferent fibers in the auditory system to be M =
30000, with f, = 50 Hz and f,, = 15 kHz, we find from
(10a) and (10b) that k£ = M/[In (f,/f.)] = 30000/
[In (300)] = 5260.

The role of the inner-ear linear-filter parameters N, r,
and Q( f,) is more subtle and quite critical. Essentially all
of the psychophysical data, and the squirrel-monkey isoin-
tensity contours as well, can be fit by using N = 3 /2 when
the cochlea mapping function is included in the model.
This half-integer value of N suggests that the sound pres-
sure level probably plays an important role in the mecha-
nism of auditory transduction. Indeed, the fact that the
neural point process in primary auditory fibers displays
firing behavior that is linked to the phase of the pressure
waveform (phase locking) supports this notion. Neverthe-
less, for convenience we frame our model in terms of
energy and do not concern ourselves with phase informa-
tion at this juncture. The asymmetry parameter r was
inserted in an ad hoc manner to account for the steeper
rolloff of neural tuning curves on the high-frequency side
relative to the low-frequency side. Its value does not affect
the computed results significantly as long as r > 2. The
value r = 2 provides sufficient attenuation for frequencies
above the CF so it was used throughout.

The values and range of the tuning parameter Q( f,) turn
out to be crucial, particularly for intensity discrimination.
Increasing Q causes the intensity discrimination curve
[log(AI/I) versus logI] to descend more rapidly. The
values reported in Table I have been found to provide the
best fit to the intensity discrimination data. Pure-tone
loudness estimation is not very sensitive to the choice of Q,
provided that it is sufficiently large. Thus intensity dis-
crimination and pure-tone loudness estimation data can be
fit with the same Q(f,;). As we indicated earlier, we have
used an empirical form for Q(f,) [see (9)] drawn from
Liberman’s neurophysiologically determined dependence
in the cat [12]. His measurements for Q,,,; can be con-
verted to equivalent values for the parameter Q in (1), by
using the relation

[10%Y — 117220 4, 45) (2Quapan + 1)
(4Q4OdB + 1) )

Q= (22)

Equation (22) is very similar to (21) in [2], where we
converted Kiang’s Q45 to Q. Using Liberman’s Q45
values for the cat, the conversion yields Q(50 Hz, cat) = 14
and Q(15 kHz, cat) = 37. The exact values depend on
precisely which bandwidth he used in determining Q 4 45.
To obtain good fits to human psychophysical data, we had
to choose slightly larger values of Q. These are Q(50 Hz,
human) = 40 and Q(15 kHz, human)= 90, leading to
d, = 5.7068 and d, = 8.7661. For the squirrel-monkey
isointensity contours (Fig. 6(b)), we used Q(2100 Hz,
monkey) = 50, which lies between 40 and 90. Much lower
values of Q (= 2.80) were required to fit loudness summa-
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Fig. 4. Weber fraction (AI/I in dB) plotted against power ratio per 1/3 octave of the stimulus burst (/ dB re 0.0002 pbar)
for variable-bandwidth noise intensity discrimination. Experimental data are represented by open circles (adapted from Bos
and de Boer [25, Fig. 5]). Data obtained using Gaussian noise stimulus with a (geometric mean) frequency of 1 kHz and
duration of 125 ms. A very weak broadband background noise (—30 dB re I') was also present. Solid curves are the intensity
discrimination functions calculated on the basis of the model afferent system shown in Fig. 1. Again, they follow the trends
of the data and represent a behavior similar to the near miss to Weber’s law at high stimulus levels. (a) Noise bandwidth
A F = 200 Hz. Theory is matched to experiment at 40 dB SPL. (b) Noise bandwidth A F = 800 Hz. Theory is matched to
experiment at 50 dB SPL. Parameters for the theoretical curves are presented in Table L.

tion data [34] (see Table I and Fig. 5), as indicated in the parameter of the model, although some of its variation
previous section. results from substantial changes in auditory sensitivity with

Aside from Q, the parameter that varies substantially stimulus frequency (the outer- and middle-ear transmission
from one paradigm to another is the scaling factor E, (it function was ignored for pure-tone calculations). For loud-
ranges from = 6 to = 10°% see Table I). This is a free ness estimation, changing Ey causes the computed curves
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Fig. 5. Loudness summation effect (LSE) versus stimulus noise band-
width, Experimental data are represented by open circles (adapted from
Zwicker, Flottorp, and Stevens [26, Fig. 8]). Data show dependence of
loudness on the bandwidth AF of flat-spectrum Gaussian noise of
center frequency 1420 Hz. Total noise energy was maintained constant
for each curve. Subjects adjusted the SPL of a band of noise, of center
frequency 1429 Hz and bandwidth 210 Hz, to match the loudness at
each noise bandwidth AF. Solid curves represent theoretical calcula-
tions based on the model afferent system shown in Fig. 1. Parameters
for the theoretical curves are presented in Table L. Theoretical calcula-
tions follow the general trends exhibited by the experimental LSE.

to move horizontally, essentially without change of shape.
It also has a modest role in adjusting the position of the
intensity discrimination curves, and in altering the loud-
ness summation curves. Since these latter data are refer-
enced to specified preset stimulus intensities, the locations
of the maximum loudness summation effect (LSE) will
vary with Ej. The values for E listed in Table I represent
the least mean-square-difference fit for the loudness sum-
mation data. Larger values produced an exaggerated LSE
at 80 and 100 dB SPL, together with a diminished LSE at
30 dB SPL. Lower values produced the opposite. The
parameters 4 in (1) and A, in (21) are absorbed into Ep,
and therefore have no significance.

The scaling factor p is a loudness estimation parameter
[see (16)]. It moves the calculated loudness functions verti-
cally, so that they can be brought into conjunction with the
scale chosen by the subject. Since p is presumably de-
termined at the decision center, rather than peripherally, its
value is governed in part by more distal effects (e.g.,
thinning and/or scaling of the point process before it
reaches the decision center). For this reason, its absolute
value -neans little, though it is interesting to observe that it
assumes roughly the same value for the three sets of
pure-tone loudness estimation data (see Table I). Neither
intensity discrimination nor loudness summation depend
on p, since these paradigms are essentially self-normaliz-
ing.
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Fig. 6. Mean firing rate (count mean in spikes/s) for an individual
peripheral fiber stimulated by a pure tone of variable frequency and
intensity (isointensity contours). (a) Neurophysiological data collected
by Rose et al. [28] for an afferent fiber with a characteristic frequency
of 2100 Hz in the squirrel monkey. (b) Results calculated on the basis
of a single channel of the model afferent system shown in Fig. 1. The
lowest isointensity contour shown is 30 dB and the highest is 80 dB (the
curves are in steps of 10 dB). Parameters for the theoretical calculations
are presented in Table I; the value of Q (= 50) was chosen to be in the
range of most of our psychophysical data. Note that although they do
not agree in detail, calculated and experimental curves have same
general parametric dependences.

The quantity 4 is a parameter for intensity discrimina-
tion [see (17)]. It has been adjusted to bring the calculated
intensity discrimination curves into approximate conso-
nance with the experimental curves. E, also plays a role in
this. A slight additional adjustment in the horizontal posi-
tion of the calculated curves is made in order to provide
precise matching at the stimulus levels specified in Table 1.
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Though the same value of 4 suffices for all three intensity
discrimination curves, this value cannot be taken too seri-
ously because its choice has again been based on calc::-
lations with the peripheral union process rather than with
the decision center process, where A is presumabi. oper-
ative. If the central process is a thinned version of the
peripheral process N, as may be expected, the required
value of 4 will be smaller than that specified in the table.
All loudness paradigms are, of course, independent of 4.

Measurements in single auditory fibers of the cat,
chinchilla, rat, and squirrel monkey (see [4]) tell us that the
spontaneous rate R can vary substantially from fiber to
fiber. The same is true of R,,, v, «, Eg, Q(f,), N, and r.
Appropriate distributions for these parameters could be
constructed and incorporated into a more complex version
of this model. We have chosen the simpler route of employ-
ing parallel channels that are identical in all respects,
except for characteristic frequency. Evidently this simplifi-
cation is satisfactory for the paradigms we have considered
here. To investigate the role of such variations, however,
we have examined the dependence of our results on the
specific values used for R, and R,. We carried out
calculations for a theoretical collection of “high sponta-
neous” units with R, = 20 and R,, = 200. y was fixed at
1.5 so that 7 became 0.7 ms. a, N, and r remained the
same as in Table I. The results for loudness did not change,
but the results for intensity discrimination did. To match
the data in this case, we had to set Q(50 Hz) = 90 and
Q(15 kHz) = 150.

In short, most of the parameters used in our model have
values comparable with their physiological counterparts
and are consistent across paradigms. Some variation is
expected, of course, because of model simplifications and
species differences. Therefore, in spite of the large number
of parameters in the model, it essentially has only two free
parameters: Ep and Q(f;). p and £ are essentially fixed,
and their values have little physical significance. The most
critical parameters in providing good fits to the data are N
and Q( f,), both of which are associated with the inner-ear
tuning mechanism. The calculations that we have carried
out should not, therefore, be viewed as merely an exercise
in curve fitting.

B. Interplay Among p(f,), N, and Q(f,)

The loudness functions (Fig. 2) predicted by the model
using N = 3/2 are quite good. We carried out the same
calculations without fiber density to examine the interplay
among the cochlear mapping function and the values of N
and Q required to fit the data. Good fits were obtained
using N = 2 and a much lower value of Q. This is similar
to the result obtained in [2], where the saturation function
and cochlear mapping function were absent, and where
N = 2 and Q was fixed at 18.7 (and was not a function of
f).

This can be understood as follows. At low and moderate
stimulus intensities, only one or a few channels near the
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stimulus - frequency contribute to the overall neural count
{see [2]), and the form of p( f;) is not important. At high
levels, channels with characteristic frequencies near the
stimulus frequency are largely saturated, and the loudness
function continues to grow principally because of spread of
excitation. In this region, the crude saturation model is
satisfactory (see [1], [2]); it leads to a loudness function
described by Stevens’ power law [35], with slope p = 1/2N.
It is here that p(f,) plays a crucial role. The origin of the
1/2N value for the slope in the crude saturation model is
spread of excitation, primarily in the direction of in-
creasing characteristic frequency. This is exemplified by the
f&V term in the denominator of (1). When fiber density is
included, this term goes as f7V'! leading to Stevens’
power law with a slope p =1/(2N + 1). In this simple
scheme the uniform-in-log-frequency fiber density behaves
like an additional pole in the system, lowering the slope of
the loudness function. Thus, good fits can be obtained to
high-intensity loudness data (which has a slope of = 1/4)
by using N = 3/2 with fiber density or N = 2 without
fiber density. If the experimental loudness function had a
slope of 1/3 instead of 1/4, we would require N = 1 with
fiber density or N = 3 /2 without it.

For pure-tone intensity discrimination, the fit of the
theory to the data is again quite good using N = 3 /2, as is
evident from Fig. 3; something close to the near miss to
Weber’s law [36], [37] emerges at high stimulus levels. In
[1], we carried out calculations without fiber density, with
N = 2, and with substantially lower Q, obtaining reason-
able agreement with experiment. The situation is similar to
that for loudness estimation: incorporating the cochlear
mapping function requires a decrease in N by 1/2 and a
substantial increase in Q.

For noise intensity discrimination and loudness summa-
tion, calculations were carried out without fiber density in
[3]. The best-fitting values of N and @ were 2 and 6.2,
respectively. The computed curves followed the trend of
the experimental data, but the fits of theory to data were
not nearly as good as those shown in Figs. 4 and 5, using
N = 3/2 and the outer- and middle-ear transmission func-
tion.

Finally we consider the squirrel-monkey isointensity
contours displayed in Fig. 6. These were fit by a single
channel version of the model displayed in Fig. 1, using
N =3/2 and @ = 50. The reader may recall that [4] was
devoted to the response of individual neural fibers. All of
the theoretical calculations explicitly shown there used
N =2 and Q = 8. The fits to the data were somewhat
better than those displayed in Fig. 6(b). It seems that
isointensity contours can be best fit by using N = 2 with
low @, or N = 3/2 with substantially higher Q. Only the
N = 3/2 calculations are consistent with loudness estima-
tion experiments when fiber density is included, however.

There is obviously a strong interplay among p(f,), N,
and Q. Incorporating the cochlear mapping function gener-
ally requires a reduction of the value of N by 1/2 and a
substantially higher value of Q to fit the data.
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C. Saturation, Refractoriness, and Spread of Excitation

A brief discussion regarding the roles that saturation,
refractoriness, and spread of excitation play may be useful.
The details of the saturation function turn out not to be an
important determinant of the outcome of our calculations,
provided that a reasonable saturation function is used.
Both the logarithmic and the exponential forms provided
good results. At high stimulus levels, in particular, the
theoretical system is essentially transparent to the behavior
of the receptor saturation function.

The two key high-intensity pure-tone laws, Stevens’ law
and the near-miss to Weber’s law, arise from spread of
excitation associated with the inner-ear linear filters. It is
this element in the theory that appears to permit the
auditory system as a whole to respond over a range of
stimulus intensities exceeding 100 dB, while the individual
channels experience their entire growth, R, to R, over a
much smaller range.

To investigate the importance of refractoriness in the
theory, we carried out a set of calculations identical to
those described earlier, except for removing the effects of
refractoriness altogether. This was achieved by setting 7 = 0
(y =10, R,, = R,), leaving the (logarithmic) saturation
function and all other parameters of the model intact. The
loudness estimation and loudness summation results were
both nearly unchanged, provided that E, and p were
readjusted to fit the data. Pure-tone intensity discrimina-
tion data could also be fit in the absence of refractoriness,
but the value of Q had to be increased somewhat (we used
O(50 Hz) = 60 and Q(15 kHz) = 120). Noise intensity
discrimination results were not recomputed for 7 = 0. It
appears that refractoriness, like saturation, is not an criti-
cal determinant of the character of the theoretical func-
tions. The important thing is that at least one of them is
present.

It is now not difficult to understand why the simpler
model we considered in [1]-[3] worked so well (the LFRM
included refractoriness but excluded saturation). The spread
of excitation across the bank of linear filters gives rise to
power-function loudness and near-miss intensity dis-
crimination. In the simple LFRM scheme, saturation is
provided by the refractoriness function (rectangular hyper-
bolic rather than logarithmic or exponential). The role of
dead time, per se, was not crucial in arriving at these laws.
This is apparent from Figs. 2, 4, and 5 of [1], where the
calculations for 7/T = 0.05, 0.005, and 0.0005 display
essentially the same slopes on a log-log plot.

Nevertheless, it is useful and appropriate to incorporate
refractoriness (and /or an effect like it such as phase lock-
ing) into the model, in addition to saturation. It provides a
mechanism for reconciling the model calculations for count
mean-to-variance ratio with single-fiber neurophysiological
data. Typical values for vy, are 1.5 [30], demonstrating
that the underlying peripheral point process is usually
sub-Poisson. One may achieve this most easily by using the
LFRM, but the system presented here provides a more
complete theory in which the separate receptor saturation
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function limits y to a value that is in accord with experi-
ment.

V1. COMPARISON WITH RELATED MODELS

We now compare and contrast the model afferent system
presented in Fig. 1 with a number of related models. We
discuss several theoretical systems that have predictive
capabilities for both loudness and intensity discrimination.

A. McGill-Goldberg—Penner Model

Our model evolved from the neural-counting formalism
presented by McGill in 1967 [6] and modified by Penner in
1972 [38]. McGill considered the energy fluctuations of a
superposed acoustic tone and interfering Gaussian noise.
He derived the properties of a doubly stochastic Poisson
counting process driven by these energy fluctuations, and
associated the result with the mass flow of neural informa-
tion in the auditory pathway. His calculations predicted
Weber’s Law for tone-in-noise and noise-in-noise intensity
discrimination, in accord with experiment, and the
deVries-Rose square-root law for tone-in-tone intensity
discrimination. This latter result is at variance with experi-
ment (see [1]). To eliminate this problem, and to provide a
rudimentary model for loudness, McGill and Goldberg
[36], [37] inserted into the model an E* power-law satura-
tion function (0 < p < 1), acting on the energy before
Poisson transduction. This provided a power-law loudness
function, and a near-miss-to-Weber’s-law intensity discrim-
ination function (a term coined by McGill and Goldberg)
for pure tones, in accord with experiment. Penner [38] was
concerned with the response of the McGill-Goldberg model
to noise stimuli, and further modified it by considering a
collection of parallel channels. Each channel consisted of
an independent Poisson generator driven by a power—law
function of the energy. The number of neural counts,
rather than the energy, was summed. Our model replaces
the power-law receptor saturation function by a form that
is more consistent with physiological data (it includes
spontaneous counts), introduces spread of excitation by
incorporating a linear filter in each of the multiple chan-
nels, includes the effects of refractoriness, includes the
cochlear mapping function, and incorporates the frequency
dependence of the outer- and middle-ear transmission
function. It ignores stimulus fluctuations, however.

B. Siebert Model

The theoretical framework that our model resembles
most is that first discussed by Siebert [7] in 1968. He
envisioned a system consisting of independent multiple
channels, each with a linear filter driving a Poisson con-
verter through a saturating nonlinearity. Spontaneous
counts were included. A cochlear mapping function and a
linear-filter middle-ear transmission function were incorpo-
rated into the model. In subsequent studies [16], [39], he
developed a related construct based on nonlinear transduc-
tion to a nonhomogeneous Poisson process. This permitted
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stimulus phase information to be retained in the neural
point process.

There are a number of ways in which our model differs
from Siebert’s 1968 framework: 1) In addition to a saturat-
ing nonlinearity prior to Poisson transduction, we assume
that a refractoriness modification follows the transduction.
2) We associate a simple cascaded tuned-circuit linear-filter
transfer function with each channel. 3) We construct our
model with physiological elements, avoiding optimal detec-
tion schemes. Thus we use a suboptimal unweighted sum of
counts in a fixed counting time to arrive at a decision. A
further and less important distinction concerns the compu-
tational methods. We carry out integrations in the frequency
domain ‘so that the role of the various elements on the
overall system response can be determined. Siebert’s vari-
able of integration is distance along the cochlear partition
so that the effects of fiber density, for example, are intrin-
sic to the integrand.

We have discussed item 1) in the previous section;
incorporating refractoriness has little bearing on calculated
psychophysical functions but permits the theoretical
single-fiber counting process to exhibit y > 1, in accor-
dance with neurophysiological data.

The most crucial distinction that causes the two models
to offer différent predictions for psychophysical laws is
item 2). In Fig. 1 we used a multiple-pole linear-filter
inner-ear transmission characteristic for each channel, much
as we did for the LFRM and for the crude saturation
model (see [1]). It is this function (in particular the value of
N) that leads to theoretical predictions of Stevens’ loud-
ness law and the near-miss discrimination law. Siebert [7]
also used a tuned transmission function, but it consisted of
a pure 10th-power frequency rolloff on the low-frequency
side, and 20th-power frequency rolloff on the high-
frequency side of the center frequency. His model predic-
ted a roughly logarithmic loudness law, and Weber’s dis-
crimination law at high stimulus intensities. We would
obtain these results as well, were we to use such steep
rolloffs in our model. (It is not clear, however, whether
Siebert’s model would produce the near miss to Weber’s
law if he used rolloffs comparable to those we use.) Indeed,
in 1974 Goldstein [40] demonstrated that Siebert’s logarith-
mic loudness function becomes a power-law loudness
function if a segment of the characteristic tuning in each
channel is made less steep. Neither Siebert’s nor Goldstein’s
models deal with the parameter . We have found that the
details of the linear-filter transmission function must be
dealt with carefully since they govern the character of the
theoretical loudness and intensity discrimination functions.

Concerning item 3), we mention that although there is
strong resemblance between the structure of Siebert’s model
and ours, the point of view is somewhat different. Siebert
[7], [39] has devoted a great deal of effort to determining
theoretical limits for the minimum variance achievable by
various observables. He has, for example, shown that hu-
man frequency discrimination is considerably less acute
than that predicted by the Cramer-Rao bound. He con-
cludes that the processing of the information carried on the
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VIIIth nerve to higher auditory stations must be subopti-
mal. Our approach has been to deal with a structured
peripheral model, with elements closely allied to known
physiological function. Both approaches, of course, can
provide useful and complementary information.

The single specific observable of interest to us is the
unweighted sum of counts from all channels, in the fixed
counting time 7. Integration over a fixed time is a rela-
tively simple process. Using N, as the statistic corresponds
to suboptimal processing since the occurrence-time infor-
mation carried by the individual channels is averaged over
the time 7' In his 1968 work [7], Siebert considered multi-
ple observables and obtained approximate results for the
simultaneous optimal processing of the number of neural
events in each individual channel. Later, in 1970 [39], he
compared some of his results with human psychophysical
performance and showed that the auditory system behaved
suboptimally. In a subsequent study carried out in 1973
[16], that dealt principally with threshold auditory detec-
tion, he concluded that “the central processor does not
make optimum use of the incoming pattern information,
but bases its decision on simply a running estimate of the
average firing rate in which the effect of past firing dies out
exponentially with age.” This is the suboptimal counting
approach used by McGill [6] and in our model as well.

C. Whitfield Model

In 1967 Whitfield [41] developed an interesting qualita-
tive model for several aspects of audition based principally
on spread of excitation. He considered each neural channel
as being in one of two states in binary fashion: either
stimulated or not stimulated by the external signal. The
number of contributing channels in his model increases
with the stimulus intensity as does the perceived loudness.
The increase is governed by the frequency response char-
acteristics of the individual channels. Of course, a simple
model of this kind ignores the details of the receptor
saturation function and the stochastic character of the
neural response. The cochlear mapping function and mid-
dle-ear transmission function are also omitted. The crude
saturation model introduced in [1] is somewhat similar in
character to Whitfield’s model for pure-tone stimuli;
presum-ably, therefore, his model would also lead to
Stevens’ law and the near-miss law, if the tuning character-
istics of the channels were appropriately chosen. These
laws are not in accord with experiment for weak stimulus
levels, however, so that the usefulness of the Whitfield
model is likely to be restricted to high intensities. Whitfield
further postulated the existence of complex but unspecified
processing in the central nervous system, to resolve the
dilemma posed by Viemeister [42]. This relates to the
observation that Weber’s law obtains in the presence of
band-reject background noise which should in theory act to
prevent the spread of excitation. It is possible to explain
both the loudness and intensity discrimination laws, and
Viemeister’s result, by considering the model afferent sys-
tem in Fig. 1, in conjunction with the logarithmic satura-
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tion function. This provides Weber’s law at large stimulus
levels, even for a single channel (see [4]). The spread of
excitation produces the near miss.

D. Zwicker Model

Zwicker introduced a single-band excitation pattern
model (EPM) that has proved useful for studying intensity
discrimination {43]-[45] and loudness [34], [46]. In particu-
lar, Zwicker and Scharf [34] constructed an empirical model
that accurately reproduces the loudness summation effect;
agreement with experiment is very good. Their calculations
make use of an excitation pattern derived from masking
experiments [46], critical bands, and graphical procedures.
The loudness within a critical band is assumed to be
governed by power—law behavior for large signals; the 0.23
slope of the loudness function used by them is in close
agreement with the value of about § predicted by our
model for N = 3/2 (when the cochlear mapping function
is included). Although we do not explicitly consider critical
bands in our formulation, it is possible that their effects are
intrinsically manifested in the low value of Q that we must
use to fit loudness summation data. In any case, we do not
divide the frequency response characteristics of the audi-
tory system into discrete bands as they do.

E. Florentine- Buus Model

Zwicker’s excitation pattern model has recently been
extended to a multiple-band version by Florentine and
Buus [47]; performance is determined by information in all
critical bands. This provides a substantially improved basis
for computing intensity discrimination, and their proce-
dure turns out to be very successful. Indeed, their formula-
tion should be suitable for dealing with all of the psycho-
physical paradigms that we consider. The distinction
between the EPM and the model afferent system shown in
Fig. 1 lies not so much in the predictions of the models, as
both are successful in this regard, but rather in their
structures. We have attempted to reconcile psychophysical
observations with the physiology of the peripheral auditory
system, examining the role of each of the elements of the
model along the way. The EPM, on the.other hand, draws
its structure from empirical excitation patterns.

F. Luce—Green Model

A number of other researchers have constructed detailed
neural-counting and neural-timing models based on the
point process observed from primary auditory fibers. Luce
and Green [48] considered the successive spike interarrival
times (IAT’s) from first-order neurons. As with the
McGill-Goldberg—Penner formulation, their model is pre-
dicate? on a power—law relationship between count rate
and energy; a number of other specialized conditions are
also required (see [1] for further discussion). As indicated
earlier, it is not likely that all of the timing information is
used in the simple psychophysical paradigms that we have
considered. Nevertheless, the Luce—Green model brings to

833

mind the fact that the time required for the sum of neural
counts (o achieve a preset value is an observable closely
related to the (inverse of the) number of neural events
recorded in a fixed counting time 7. The system shown in
Fig. 1 couid be adapted to accommodate such processing,
but we have not carried out calculations of this nature.

VII. SUMMARY AND CONCLUSIONS

We have constructed a mathematical model for psycho-
acoustic performance using the physiological elements of
the peripheral auditory system. The acoustic energy of the
stimulus (pure tone or noise) is assumed to pass through a
filter that characterizes the middle-ear transmission func-
tion, and then to excite a parallel bank of identical neural
channels. Each channel represents a peripheral afferent
fiber (or a collection of such fibers) and consists of a
cascade of elements. Spontaneous neural activity is inde-
pendently incorporated into each channel. The parallel
collection of these channels has a density (in frequency)
determined by the cochlear mapping function, and gener-
ates_a union process at a more distal center in the nervous
system. The statistics of the union count (in a fixed time)
are then processed at a decision center in a manner that
depends on the psychophysical paradigm. This random
count number is assumed to contain all of the information
for the examples we consider.

The system has been investigated in the context of four
psychoacoustic paradigms: pure-tone loudness estimation,
pure-tone and variable-bandwidth noise intensity dis-
crimination, and variable-bandwidth noise loudness sum-
mation. In all cases, the theoretical results are in good
agreement with human psychoacoustic data, provided that
the parameters of the theoretical model are appropriately
chosen.

The model has many parameters but almost all of these
are fixed at values that are physiologically plausible and
consistent (even though they have been selected from a
mixture of data applicable to humans, monkeys, and cats).
The loudness parameter ¢ and the intensity discrimination
parameter & have little physical significance. There are two
parameters for which the values vary substantially. These
are the reference energy E, and the quality factor Q( f,).
An essential finding of our work is that we are able to
obtain theoretical psychophysical functions that fit loud-
ness and intensity discrimination data, for both tones and
noise, using a neural counting model with two free parame-
ters. The noise paradigms appear to require higher values
of E, and, at least for loudness summation, a substantially
lower value of Q. It is as if the system widens its band-

width in response to a broadband stimulus, and is conse-

quently less sensitive because of the increased noise. This
behavior is also associated with ideal energy detection [6],
where the detection process increases its bandwidth in
order to pay attention to the broadband energy characteris-
tics of a pure-noise stimulus. An alternative hypothesis to
explain this observation is that noise excites the system
incoherently, resulting in a lower conversion efficiency.
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The tuned linear-filter transmission function associated
with each channel turns out to be a critical determinant of
psychophysical behavior, primarily for strong pure-tone
and narrowband stimuli. It permits the spread of excitation
across the bank of channels that leads to the pure-tone
laws: Stevens’ power law for loudness and the near-miss to
Weber’s law for intensity discrimination. Theoretically these
laws are a direct consequence of the assumed transfer-func-
tion characteristic of the individual neural channels, cou-
pled with the cochlear mapping function. The two prin-
cipal parameters associated with the linear filters, N and
Q(f,), are most important. The dertails of saturation,
Poisson transduction, and refractoriness are not important
in this strong stimulus range.

The ideal Poisson converter is the stochastic element of
the model. It, together with saturation and refractoriness,
are psychoacoustically important primarily at low and
intermediate stimulus levels and for broadband stimuli,
viz., when spread of excitation is not dominant. Psycho-
physical functions calculated with either saturation or re-
fractoriness alone turn out to be acceptable. The principal
distinction relates to neurophysiological data. A Poisson
process with presaturation, in the absence of refractoriness,
leads to a neural count mean-to-variance ratio that is
identically unity at all stimulus levels. A refractoriness-
modified Poisson process without presaturation leads to
vy > 1 at high stimulus levels. The use of both effects
together, however, can provide y = 1.5 at all stimulus
levels, in accordance with experiment [30]. The form used
for the saturation function is not particularly important.
The logarithmic form has the advantage. of unequivocally
producing Weber’s law in band-reject noise, thereby pro-
viding accord with Viemeister’s [42] measurements. The
sum of the neural counts in a fixed counting time appears
to be a suitable decision variable. It is suboptimal and
yields a detection law with the proper parametric depen-
dences [6], [16].

What are the special conditions required for the model
calculations to accord with psychoacoustic data? In the
first place we have seen that spontaneous counts must be
subtracted to obtain proper loudness functions. This is not
difficult to justify (especially if we consider the neural
spike train at higher centers in the auditory system). A
more interesting condition is the substantially lower value
of Q required to fit loudness summation, a matter that we
have already discussed. To fit the psychoacoustic data we
have had to choose N = 3 /2. This requires that, within the
confines of our model, the inner-ear tuning mechanism
have a three-pole structure. Although the mechanisms of
tuning in the inner ear are still not fully understood, one
plausible explanation is via a cascade of filtering mecha-
nisms, one or more of which is responsive to pressure [49],
[50].

We have compared our model with a number of related
theories in rather qualitative terms (viz., those of McGill-
Goldberg-Penner, Siebert, Whitfield, Zwicker,
Florentine—Buus, and Luce—Green). The theoretical con-
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struct that our work resembles most closely is that devel-
oped by Siebert [7]. The essential distinction is that he uses
very sharp rolloffs for the tuning of the individual neural
channels. This leads to a loudness function that is ap-
proximately logarithmic in form, and to Weber’s intensity
discrimination law at sufficiently high stimulus levels,
neither of which is in accord with experiment. Though
single-fiber neural rate tuning curves do indeed have very
high slopes when weakly stimulated [12], [15], response
functions that are considerably less steep are observed at
moderate and high excitation levels [28], [51] so that the
value N = 3/2 may not be unreasonable in that regime.
This is, in fact, evident from the broadening of the isoin-
tensity contours with increasing level, as illustrated in
Fig. 6.

There remain a number of reasonably well-understood
physiological characteristics of the peripheral auditory sys-
tem that we have not accounted for in our model afferent
system. These include the distribution of excitation along
the basilar membrane, the slightly nonuniform fiber in-
nervation density, and the large variability of parameters
associated with individual VIIIth-nerve fibers (e.g., the
spontaneous and maximum firing rates). Other relevant
factors are symmetric versus nonsymmetric linear-filter
characteristics, individual tuning of the inner-ear cascade
elements, monaural versus binaural processing, and the
role of relative refractoriness [10]. Furthermore, most of
the paradigms with which we have dealt involve short
stimulus bursts that generate neural firing transients at
stimulus discontinuities [15]. We have recently made some
theoretical progress in dealing with this effect when the
process is Poisson and nonparalyzable dead time is present
[9]- These results can be incorporated into our calculations.
In terms of processing at the decision center, we have
postulated simple counting. A more realistic assumption
would be to incorporate filtering at this stage as well [16],
though such a limitation is not likely to be serious.

Two of the obvious limitations of our model involve the
assumptions of a refractoriness-modified Poisson process
and simple neural counting. These assumptions seem to be
satisfactory for the simple paradigms with which we have
dealt. However, we know that the single-fiber auditory
neural point process exhibits substantial phase locking [52],
which illustrates that the single-fiber process is not a
simple Poisson modified by refractoriness [30]. Further-
more the individual channels may not be independent, and
the contributions of their events to the central process may
not be a simple union. In the context of the counting
statistics, however, the refractoriness-modified Poisson and
the true process may be quite similar in character [30].
However, the extraction of phase and frequency informa-
tion almost certainly requires a scheme more complex than
simple counting. It is reasonable to expect that experiments
involving paradigms such as frequency discrimination and
speech recognition will require a model in which the spike
timing, and perhaps place information as well, is retained
at the decision center. As an example, Srulovicz and
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Goldstein [53] recently constructed a detailed probabilistic
model using the “central spectrum” to represent the psy-
chophysics of frequency discrimination.

Perhaps we should conclude with a brief indication of
possible directions for a next-generation psychoacoustic
model. It might be useful to consider one or more of the
following: 1) using pressure rather than energy as the
stimulus variable. This will provide a point process that
captures phase information; 2) using a measure such as the
spectral density of the point process, rather than simply the
count number. This will permit timing information to be
transmitted; 3) using critical bands in the system, to allow
for the apparent adaptation of the detection process to the
bandwidth of the stimulus; and 4) incorporating the effects
of stimulus fluctuations into the model, which may be
important at low intensities.
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