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A Neural-Counting Model Based on Physiological
Characteristics of the Peripheral Auditory
System. IV. Application to Response of
Individual Neural Fibers
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Abstract—An energy-based neural-counting model, incorporating re-
fractoriness and spread of excitation, has recently been applied to intensity
discrimination and loudness estimation for a variety of acoustic stimuli. In
this model, refractoriness was the sole means of achieving the saturation
effect of the afferent fiber’s response. Though refractoriness (or an effect
like it) should be included in a proper Poisson-based model to produce a
neural count variance less than the count mean (in accordance with
experiment), there is a strong additional saturation effect associated with
the response of the receptor. This earlier model is now extended to
incorporate the effects of receptor saturation and spontaneous neural
activity. In this paper the behavior of individual neural channels is investi-
gated. Theoretical firing-rate curves are obtained as a function of stimulus
level and frequency (isointensity contours). These are found to be in good
agreement with neurophysiological data. It is shown that it is possible to fit
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human psychophysical tuning curves with a double-tuned linear filter, by
judicious choice of the tuning parameter Q.

1. INTRODUCTION

HIS is the fourth in a series of papers demonstrating

the effectiveness of a mathematical model for predict-
ing certain characteristics of the auditory system. The goal
of this work is the development of a useful general model,
founded on a number of elemental components, and
possessing parametric values in accordance with observed
values. In [10, part I it was demonstrated that an energy-
based neural-counting model incorporating refractoriness
and spread of excitation satisfactorily described the results
of pure-tone intensity discrimination experiments, In [4]
(Part 1I) it was shown that the identical linear filter refrac-
toriness model (LFRM) also provided sensible results for
pure-tone loudness estimation experiments at all stimulus
levels. In [11] (Part III) this model is considered in the
context of variable-bandwidth noise stimuli. The specific
model discussed in [10], [4], and [11] did not account for

0018-9472 /83 /0900-0964$01.00 ©1983 IEEE



LACHS ef al.: NEURAL-COUNTING MODEL

the details of the receptor response, assuming it to be
linearly proportional to the driving stimulus energy. In
essence, it utilized the refractoriness modifications of the
Poisson process as the sole means of mathematically realiz-
ing the known saturation of the inner-ear response. One of
the most obvious discrepancies between experiment and
the LFRM arises in the value for the mean-to-variance
ratio of the number of neural events observed on single
fibers of the VIIIth nerve. Experimentally, this quantity
tends toward a fixed limit with increasing stimulus level;
however, when calculated on the basis of the LFRM, this
ratio increases without bound as the stimulus energy in-
creases. This discrepancy is eliminated in the work pre-
sented here.

We have extended the model of Parts I, I, and III ([10],
[4], and [11]) to include the effects of receptor saturation
and spontaneous neural activity in the primary afferent
fibers. This is accomplished by incorporating a receptor
saturation function that maps the stimulus energy in each
channel into a driving rate for a Poisson process. Through
this function, we incorporate the spontaneous activity and
saturating response observed in single auditory fibers, and
achieve a constant count mean-to-variance ratio for large
stimulus energies. It will be shown that such a function,
when used in conjunction with the tuned-filter response
and dead-time modifications discussed in [10], [4], and [11],
provides a good fit to related neurophysiological phenom-
ena. The LFRM, as modified to include the effects of
receptor response, will be referred to as the extended linear
filter refractoriness model (ELFRM). A preliminary ac-
count of this work was presented at the Annual Meeting of
the Acoustical Society of America in Chicago [3].

Two different receptor saturation functions were studied
in detail. The first is based on a theoretical argument put
forth by Zwislocki [15]. The form of this equation is
basically exponential, and exhibits a hard saturating re-
sponse for sufficiently strong stimuli. The second satura-
tion function was designed to produce Weber’s law, and a
fixed mean-to-variance ratio for large stimulus levels, in
each channel. The basis of this function is the natural
logarithm, which exhibits a softer saturation.

In this paper, we consider the response of the individual
neural channels comprising the ELFRM. We compare the
predictions of the ELFRM with various neurophysiological
and psychophysical tuning experiments. The calculated
mean-to-variance ratio with dead-time modification includ-
ed, as predicted by the ELFRM, is designed to be com-
parable with neurophysiological data [9]. Data for neural
firing rate, as a function of stimulus intensity, as well as
neural isointensity contours, are then modeled. All of these
tasks make use of the ELFRM on a single channel basis,
and are useful in determining an acceptable range for each
of the key parameters. Finally, we show that the sharp
tuning characteristics associated with psychophysical mask-
ing in the human auditory system can be fit by an ap-
propriate choice of the parameters for the linear filter
employed in the model. These values turn out to be sensi-
ble.
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In a companion paper [12], we will discuss the applica-
tion of the ELFRM to psychophysical intensity discrimina-
tion, loudness estimation, and loudness summation. That
work will rely on the sum of the responses of all neural
channels, and the parameter values obtained by the model-
ing procedure used in this paper will be used to model the
psychophysical phenomena examined in [12].

In Section II, we introduce the extended model and
discuss its mathematical characteristics. Comparisons of
the calculated results with neurophysiological and psycho-
physical data will be described in Section III. Section IV
contains a discussion of the results and conclusions.

II. DETECTION MODEL

A. Discussion of the Model

The extended linear filter refractoriness model (ELFRM)
is based on the LFRM discussed in [10], [4], and [11] and is
illustrated in Fig. 1. The modeling procedures discussed in
this paper are for single channel responses. The input
signal is assumed to excite the inner ear; we consider the
transmission of the stimulus through the outer and middle
ears to be essentially linear filtering, Though the presence
of harmonics and combination tones is important for some
paradigms, we do not consider them here. The modeling of
the inner auditory system is both difficult and challenging.
In particular, the dynamics of cochlear and receptor mo-
tion are not very well understood, and there are many
nonlinear effects associated with these elements. Our basic
construct for this part of the auditory system, as described
below, consists of a linear filter followed by a nonlinear
element. This is, of course, a gross idealization. But it
captures the behavior of the inner ear, as it applies to the
paradigms we consider, in a simple way.

The input is presented to a series of tuned asymmetric
linear filters, each with its own characteristic or best
frequency f,. It is assumed that all fibers maximally sensi-
tive to a particular frequency are represented as a single
linear filter and comprise a single channel. We consider a
continuum of such channels, across the range of audible
frequencies. The strength of the stimulus in any particular
channel is dependent upon the energy response of that
channel’s multiple-tuned ( N-tuned or 2 N-pole) linear filter
to the frequency(s) of stimulation f; and is given by

Z 1)

E, = .
(1 + (st = £/ 1))

Here E, and E, are the output and input energies of the
filter, respectively, f, is the best frequency of the neural
channel, and Q is a tuning parameter (which is equal to the
ratio of the best frequency to the 3-dB bandwidth for a
single-tuned filter (N = 1)). Unless otherwise stated, N = 2
is employed for f;. < f, and N = 4 is employed for f;. > f,,
thereby incorporating the asymmetric frequency-response
characteristics of the neural channels. The output of the
filter is fed into a memoryless receptor saturation function
(discussed in Section II-B) which, in turn, feeds an ideal
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Fig. 1. Block diagram of the extended linear filter refractoriness model

(ELERM).

Poisson converter. The proportionality constant 4 that
appears in [10, eq. (1)] is absorbed in the constant E, (see
Section II-B).

Based on the relative insensitivity of the neural counting
statistics on characteristic frequency [9], we do not treat
phase locking as a separate phenomenon. Rather, we con-
sider the underlying neural count » for each channel to be
a Poisson random variable driven by the filtered saturated
stimulus energy. In this case

=0y, (2)
where 7, and o} are the (unmodified) count mean and
variance, respectively, before modification by dead time
(refractoriness).

The refractoriness modification is the final stage in the
mathematical model for each individual channel, as shown
in Fig. 1. We account for the dead time inherent in the

system through the well-known formulas for an underlying
Poisson process [10], [13]:

)

") = T ) ®)
and

02(f,) = —Tulle) @)

[1+ (/T ()]

where 71.( f,) and ¢2( f,) are the corrected (modified) count
mean and variance, respectively, #,(f,) is the unmodified
mean count, T is the nonparalyzable dead-time, and T is
the counting time. In the LFRM discussed in [10], [4], and
[11], the dead-time modifications were the sole means of
mathematically achieving the saturation of the neural re-
sponse. In the ELFRM, on the other hand, the effects of
receptor saturation are explicitly defined. By separately
considering saturation and dead-time effects, we are able

to study the relative significance of each on the response of

our model auditory system.

For many psychophysical tasks, the overall number of
neural impulses on a collection of parallel channels, ob-
served in a fixed but unspecified counting time 7, appears
to be a sufficient statistic. This aspect of the model pre-
sented in Fig, 1 will be discussed further in [12].

B. Receptor Saturation Function

As previously indicated, two distinct functional forms
for the receptor saturation function were investigated. The

first form [15] is given by
E\?
1+ =2 ) } (5)

ER

where R,, is defined as the hypothetical maximum re-
sponse rate in spikes/s (before refractoriness modification)
on a single neural fiber, R is the spontaneous discharge
rate in spikes/s (which is assumed to be unaffected by the
dead-time processes), Ey is a reference level that governs
the channel threshold, and # is a parameter that controls
the maximum slope of the response (taken to be 0.5
throughout this paper).

The second saturation function that we have investigated
is described by the expression

2]

Ry

mm=m4vﬁp

a(Rm - Ro)ln(1 + Eo/ER)

1+ R’"_R"l(1+E E
aRM__R n 0/ R)/

{6)

where a determines the maximum slope of the response
(analogous to # in (5)). The quantities R, R ,,, and E, are
defined above, and the quantity R, is the maximum ob-
served firing rate in spikes/s after refractoriness modifica-
tion. This function is discussed in substantial detail in the
Appendix. The stimulus intensity or energy E,, defined in
both (5) and (6), is given by (1). Both functions introduce
spontaneous and maximum response rates of single audi-
tory fibers and allow for the introduction of a nonlinear
receptor (hair cell) response.

n(f,)=T{R,+

ki

ITI. APPLICATION OF THE ELFRM TO NEUROPHYSIO -
LOGICAL AND PSYCHOPHYSICAL DATA

In Section III-A, we compare the mean-to-variance ratio
of the count predicted by the ELFRM with observed
neurophysiological values. In Section III-B, we compare
the predicted mean response of single channels of the
ELFRM with the observed response of single neural fibers.
In particular, we examine the dynamic range and the
response rate, as a function of the stimulus energy and
frequency. The neurophysiological data are drawn from
Kiang [2] and from Rose et al. [8]. In Section HI-C we
discuss the procedure used for modeling human psycho-
physical tuning curves, and compare the results with those
of Johnson-Davies and Patterson [1]. The data fitting pro-
cedures discussed in this section provide a representative
range for the parameters of the ELFRM model to be used
in other studies. Though the derived values are appropriate
for the auditory system of cats or squirrel monkeys, it will
be demonstrated in [12] that these parameters are also
suitable for fitting a broad variety of psychophysical data
obtained from humans.
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A. Mean-to-Variance Ratio of the Neural Count

We begin with a discussion of the count mean-to-vari-
ance ratio y as a function of the stimulus intensity, for
typical primary afferent fibers. Neurophysiological experi-
ments in the cat demonstrate that this ratio approaches a
relatively constant value, between 1 and 2 for T = 50 ms,
as the stimulus energy is increased [9]. This value appears
to be relatively independent of the characteristic frequency
of the fiber. The mean-to-variance ratio y predicted by the
ELFRM is obtained from (3) and (4):

v=[1+(/T)a.(f)]" (7)

Here, 71,(f,)/T is the uncorrected mean firing rate, per

fiber, which in our case is determined from either (5) or (6).

The LFRM model of [10], [4], and [11] assumed 7 ( f,)

to be linearly proportional to the stimulus energy, in which
case

YLFRM — [1 +(T/T)(an)]2’ (8)

where a is a constant. It is clear that y, gy, represented in
(8), increases without bound as the stimulus energy gets
larger. The saturating rate function in the ELFRM
eliminates this disagreement with experiment. If, for exam-
ple, the saturation function of (5) is used in (7), for large
stimulus intensities the calculated mean-to-variance ratio
approaches

Yexp = [1 + TRM]2’

(©)

so that

r= (Y = 1)/Ry. (10)
Thus, y may be found from 7 and R,, or, conversely, the
dead time 7.may be found from y and R,,. Furthermore,
R, = \/'? R,.. It is shown in the Appendix that identical
results are obtained for the logarithmic saturation function
(see (27)-(29)).
We next consider the mean response of single afferent
units to various stimulus frequencies and intensities.

B. Single-Channel Mean Response

Perhaps the simplest observation of neural activity is the
mean firing rate as a function of stimulus intensity (for a
fixed stimulus frequency). In a typical experiment, the
neural unit is stimulated at its characteristic (or best)
frequency. By varying the stimulus intensity, it is possible
to determine: a) the spontaneous response rate of the
neural unit, b) the dynamic range (response range) of the
unit, and ¢) the maximum rate of response elicited.

Evaluation of the mean response rate for the ELFRM
begins with the tuned-filter response represented in (1). For
the frequency of stimulation equal to the characteristic
frequency, the denominator of (1) becomes unity for all
values of Q and N, so that

E =E,. (11)
We wish to evaluate the modified mean 7 ( f,), utilizing (3)
and either (5) or (6). Figs. 2(a) and (b) show the best fit to
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Fig. 2. Mean firing rate for a single afferent fiber, in response to a tone
of frequency equal to the fiber’s characteristic frequency (CF = 5.83
kHz), as a function of the stimulus intensity (dB). Experimental data
(+) reported by Kiang [15] and adapted by Zwislocki [2). ELFRM
results (solid curves) for (a) exponential receptor saturation function
and (b) logarithmic receptor saturation function. Key parameters for
each case are: (a) R, = 5.0, Ry, = 147, £, = 2.0,0 = 0.5,y = 1.5; (b)
R,=50,R,, =1200, E = 6000, « =14,y = 1.5.

the experimental mean firing rate function versus intensity
level for a particular unit (data adapted from [2] as re-
plotted in [15]), for the exponential and logarithmic recep-
tor saturation functions, respectively. The values used for
the parameters of each function are reported in the figure
caption.

We first discuss the parameters for Fig. 2(a). The value
of 8 was chosen, as indicated, to be 0.5. This was de-
termined by varying the magnitude of 4 to determine its
effect on the rate function. We found that its value pri-
marily influenced the slope of the response in the curve’s
central region. Lower values of 6 produced a shallower
response; higher values decreased the dynamic range of the
theoretical unit. The vaie § = 0.5 was also suggested by
Zwislocki [15]. This parameter remains constant throughout
the remaining fitting procedures. The magnitude of R, the
spontaneous firing rate, was taken directly from the experi-
mental data. The value of R,, was chosen to achieve the
maximum response rate, indicated by the experimental
data, after the dead-time correction has been made. The
quantity y was chosen to be 1.5 throughout. Ey is, perhaps,
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the only true free parameter in this modeling task. Its
influence is to shift the calculated curve horizontally; thus
its magnitude was chosen to align the calculated and
experimental data.

In Fig. 2(b) we directly assign the experimental values
for the spontaneous and maximum response rates to R,
and R, respectively. We insert the observed maximum
firing rate in the case of the logarithmic saturation func-
tion, since the effects of refractoriness are already incorpo-
rated into its form (see Appendix). The counterpart of 4§ is
a, which affects the dynamic range of the theoretical neural
unit. The best fit for the particular unit illustrated requires
o = 1.4. Typical values for this parameter, used in other
modeling procedures, lie between 0.5 and 1.5. Again, y =
1.5. The reference level parameter E; was chosen in the
same manner as described above, i.e., to align the calcu-
lated response curve with the experimental data.

Comparing Figs. 2(a) and (b) demonstrates that the
exponential function exhibits a harder saturation than the
logarithmic function. Both provide good fits to this particu-
lar set of neurophysiological data; however, these results
are not representative of all auditory units. Indeed
Liberman [5], [6] has shown that there are classes of
auditory units, exhibiting both low and high spontaneous
firing rates. In this paper we have explicitly modeled the
response of several low spontaneous units; in [12], we also
discuss the effects of high spontaneous response rates on
psychophysical modeling.

A pertinent physiological characteristic of the auditory
system is the response of a neural unit to frequencies away
from the characteristic frequency (CF). This is evident in
the neural firing characteristics recorded by Rose, Hind,
Anderson, and Brugge [8], and is incorporated into the
ELFRM through the multiple-tuned linear-filter response
function. The experimental data collected in [8] was ob-
tained by measuring the mean firing rate of individual
VIIIth-nerve auditory neurons excited by pure-tone stimuli
of given intensity level and variable frequency (isointensity
contours). In general, when presented on a linear-linear
plot, these contours display rather narrow response widths
for low stimulus intensities, which broaden significantly as
the stimulus level increases. Spontaneous and maximum
firing rates vary with each unit. The ELFRM model was
implemented by evaluating the mean count rate of a single
channel, including refractoriness modifications. This calcu-
lation makes use of (1), (3), and (5) or (6).

Figs. 3(a) and (b) represent calculated isointensity con-
tours of a theoretical auditory nerve unit most sensitive to
2100 Hz. These are the predicted neural-firing characteris-
tics, using the exponential and logarithmic saturation func-
tions, respectively. They may be compared with the con-
tours shown in Fig. 3(c), which are the experimental results
obtained by Rose er al. [8]. The parameter values used to
fit these data are listed in Table 1. Note, once again, that
the value of R,, used to produce the curves in Fig. 3(b) is
that of the observed maximum response rate, as shown in
Fig. 3(c). However, the value of R,, used with the exponen-
tial function, Fig. 3(a), is larger than R,, (see (29)). This is
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Fig. 3. Mean response of a single afferent fiber to a tone of variable
frequency and intensity. (a) The ELFRM results using the exponential
receptor saturation function. (b) Results were calculated using the
logarithmic function. (c) Data collected by Rose et al. [8] are shown for
a fiber with a characteristic frequency of 2100 Hz. (Pertinent parameter
values are listed in Table 1)

because the logarithmic form was designed with the dead
time in mind, whereas the exponential form was not. The
parameters N and Q are brought into play by the tuned
linear-filter response. The larger the value of Q, the sharper
the tuning. It will be shown in Section III-C that values of
Q ~ 5 also provide suitable fits to the psychophysical
tuning curves. As in [10], [4], and [11], the pole-pair para-
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TABLE I
PARAMETERS FOR THE ELFRM THEORETICAL ISOINTENSITY CONTOURS?
Functional
Form of
Saturation CF=2100Hz CF =4100Hz
Function Parameters! [Figs. 3(a), 3(b)]  [Figs. 4(a), 4(b)}
R, (Spikes /s)? 159 128
Exponential  Q (Single-Tuned Value) 7.7 7.7
Ey (Stimulus Units) 5.0 50 x 103
7 (ms) 1.42 1.75
R, (Spikes/s)? 130 105
Logarithmic  Q (Single-Tuned Value) 7.7 77
Eg (Stimulus Units) 6.0 x 103 7.5 x 10°
T (ms) 1.42 1.75

4The following parameters have been given the same values for all cases:
R, =120 spikes/s; y = 1.5; 8 = 0.5, applicable only in exponential case;
o = 1.4, applicable only in logarithmic case; N = 2 (fr < f,), N = 4(fr > [,).
2See (29) for relation between R mand R,

meter N was taken to be 2 for f- < f, and 4 for f,. > f,.
Again, the value of E, was chosen to align the threshold
levels of the experimental and calculated data.

To demonstrate the robustness of the ELFRM, as well as
the suitability of the functional relationships investigated,
the isointensity contours for a fiber with a CF of 4100 Hz
have been generated using the same approach. Figs. 4 (a),
(b), and (c) present contours obtained using the expo-
nential saturation function, the logarithmic saturation
function, and the experimental data (Rose ez al. [8]), re-
spectively. The values for the various parameters used to
produce each set of curves are comparable with those used
for Fig. 3 (see Table I).

The data that we have dealt with has, to this point, been
neurophysiological in nature. An important question is
how suitably the ELFRM predicts psychophysical phe-
nomena, and whether the (neurophysiological) parameter
values provided in Table I are applicable to such (psycho-
physical) data. In the next section, we discuss the applica-
tion of the ELFRM to psychophysical tuning curves, which
are a manifestation of the auditory system’s tuning mecha-
nisms. Other psychological paradigms will be discussed in
[12].

C. Human Psychophysical Tuning Curves

The psychophysical counterpart of the neural tuning
curve is the psychophysical tuning curve. These are typi-
cally obtained [14] by presenting a human observer with a
probe tone, generally of fixed frequency and level, and
then measuring the power necessary for a masking tone to
just mask the probe as a function of the frequency of the
masker. As in most experimental situations, there are
numerous variations on this theme. There are, for example,
noise maskers, and forward, simultaneous, and backward
masking paradigms.

Psychophysical tuning curves are usually obtained in the
neighborhood of threshold, which may permit the ap-
proximation that only a small number of neural fibers are
active, and that saturation and refractoriness effects may
be neglected. Considering only a single channel at the
probe frequency, then, we calculate the masker level re-

quired for masking by means of the relation

E/E =1+ 04ty - )] " (2)
The masker level (in dB) is then given by —101og(E,/E)).
This expression is similar to that provided in (1), except
that now f,, is the masker frequency, /, 1s the probe
frequency, and Q is the (single-tuned) 3-dB tuning parame-
ter. The factor r introduces the asymmetric behavior of the
auditory filter.

The data depicted in Fig. 5 (open squares) were collected
under a simultaneous masking paradigm [1], using a
sinusoidal probe tone and a narrowband noise masker. In
the ELFRM calculations, for simplicity, the narrowband
noise was assumed to be a pure sinusoid of frequency equal
to the center frequency of the masking noise (solid curve).
The parameter values listed in the figure caption (N =
2/N =4, Q= 8.6) are those used to produce the calcu-
lated results. Observe that we are able to fit the data using
the N = 2/N = 4 model employed previously, and in [10],
[4], and [11]. It is important to note that the 6N dB /octave
roll-off associated with an N-tuned circuit applies only in
the tails of the transfer function. By appropriate choice of
the parameter Q, we are able to achieve the 160 dB /octave
roll-off on the high-frequency side, and the 120 dB /octave
roll-off on the low-frequency side reported by Johnson-
Davies and Patterson [1] in the vicinity of resonance. Note
also that the choice of Q is comparable to that used in the
neurophysiological model discussed earlier.

This paper is principally based on the physiological
response characteristics of peripheral auditory fibers. We
have considered the fits to psychophysical data primarily
as an indication that our results are applicable to humans
as well as to cats and squirrel monkeys. We expect that the
ELFRM would reproduce human neurophysiological tun-
ing curves, with an appropriate choice of Q, were they
available.

IV. DiscussioN AND CONCLUSION

We have presented a mathematical model for a single
auditory channel in the inner ear. It incorporates a tuned-
filter response, a nonlinear receptor response, Poisson con-
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version, refractoriness modification, and spontaneous
activity. Calculations based on the model are in accord
with a variety of physiological and psychophysical data.
An encouraging feature is the consistency in the parameter
values for all cases. Most of the parameters (R, R,, or
Ry, 0 or a, and y) are determined directly from the
neurophysiological data. T and R, are tied to R ,, through
the parameter y. A single value for the tuning parameter Q,
though free, fits two sets of experimental isointensity con-
tours (CF = 2100 Hz, CF = 4100 Hz) for the squirrel
monkey. A nearby value fits a human psychophysical
tuning curve. N appears to remain fixed at 2 below CF,
and 4 above CF. We have also been able to obtain satisfac-

Fig. 5.

[EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-13, NO. 5, SEPTEMBER /OCTOBER 1983

60[»»

o

°

-

wl

>

wl

-

14

(]

()/() I o EXPERIMENTAL DATA

< — CALCULATED

= 0 H L 1 1 1
1200 1600 2000 2400

MASKER FREQUENCY (Hz)

Human psychophysical tuning curve obtained in a simultaneous
masking paradigm. Experimental data (open squares) collected by
Johnson-Davies and Patterson [1] for listener DJD. The ELFRM
predictions, plotted as the solid curve, utilized a double-tuned filter
(N = 2) on the low-frequency side, a quadruple-tuned filter (N = 4) on
the high-frequency side, and a (single-tuned) value of Q = 86.

tory and consistent fits for N = 1.5/N = 3.0 using a sub-
stantially larger value of Q (= 90). This might correspond,
for example, to a cascade of single-tuned energy transduc-
tion and single-tuned pressure transduction.

Perhaps the least constrained parameter in our model is
Eg, the reference or threshold energy, It was varied until
the location and magnitude of each peak response in a data
set were simultaneously matched. It is of interest to note
the rather radical differences in the values of E, used to
match the 2100 Hz and 4100 Hz data (see Table I). In both
cases, the optimal magnitude of E, for the 4100 Hz data
was at least two orders of magnitude (20 dB) greater than
that for the 2100 Hz data. It is likely that the middle-ear
transfer function is an important factor in the decrease of
sensitivity at the higher frequency.

In the LFRM model presented in [10], [4], and [11],
refractoriness was the sole means of achieving the satura-
tion of the afferent fiber’s response, and we indicated that
the inclusion of an explicit receptor saturation function
would free the model from this restriction. The results
presented in this paper (Figs. 2—-4) incorporate both satura-
tion and refractoriness. As a matter of interest, we ex-
amined the consequences of allowing only saturation to
limit the neural count, by excluding the effects of dead
time. The result was theoretical isointensity curves, nar-
rower than those presented in Figs. 3 and 4 despite the
effects of spread of excitation. In any case, dead time (or
an effect like it) should be included in a proper Poisson-
based model to produce a count variance less than the
count mean (y > 1), in accordance with the experiment. It
is “interesting to note, furthermore, that dead time is a
feedback mechanism and, as such, behaves like an auto-
matic gain control (AGC), which is often considered to be
an important part of signal processing in the auditory
system. Indeed, (3) displays the same form as the classic
expression for gain with feedback.
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THE LOGARITHMIC SATURATION FUNCTION

The logarithmic saturation function (6) has been desig-
ned to satisfy the following conditions after refractoriness
modification: a) Weber’s intensity-discrimination law is
obeyed for each channel at large stimulus energies; b) a
mean-to-variance ratio for the channel count that is fixed

h =

B(Tc)' " AE,

971

where the additive spontaneous contribution R, has been
omitted for simplicity, and where

c=a(R,—R,), (21)
B =1/Eg, (22)
b=a(R,—R,)/(Ry~R,)=c/(Ry,—R,). (23)

Calculating the derivative of (20), and inserting it into (19)
gives

V2(1+ BE,)[1+ bIn(1 + BE,)][In(1 + BE,)][b + cr + {In(1 + gE,)} "']""*

and > 1 at large stimulus energies; and c¢) ability to fit
single-fiber neural firing-rate data. The effects of dead time
are parametrically included in the function through the
parameter R, (which is related to R,, through (29)), since
it was assumed at the outset that the effects of dead time
would be incorporated into the final results. We demon-
strate these properties in the following,.

For calculating intensity discrimination, it is customary
to define a detection distance 4 given by (see [10])

_ _[#(E, + AE) -7 (E,)]
[62(E, + AE,) + o2(E,)]*

(13)

Here 7, and o are the dead-time-modified count mean
and variance, respectively, and E, is the energy or intensity

level. Equation (13) can be approximated as
3 (dn./dE,)AE,

= *———_\/EOC ,
under the reasonable assumption that the count variance is

unchanged between the levels E, and E, + AE,.
Rewriting (3) and (4), we obtain

7.(f,) =NE,)T/[1+\(E,)7]

h (14)

(15)

and

o2(f,) = ME,)T/[1 + N(E,)r]’, (16)

where the rate A(E)) is given by
ME,) =a,(f,)/T. (17)

We now form the derivative of (15) with respect to E,,
which leads to

dla (/)] _ 7. 9ME,)/dE, (18)

dE, [1+ A (E)]*
so that
y - AE, d[(1)]/dE,
V2 o
_ TAE, d\(E,)/dE, 19)

2 {(TME)1 + ME)])
We use the saturation function described in (6),

cln(1 + BE,)
1+ bIn(1 + BE,)’

ME,) = (20)

(24)

In the limit of large stimulus intensities (BE, > 1), (24)
approaches the asymptotic form
_ ( k )AEO ~ k,AEO’ 25)
[in(BE)]* ) Eo £

where &k and k’ are constants that are essentially indepen-
dent of E_, since the behavior of the denominator of (23) is
dominated by E,. The same result is obtained when the
additive spontaneous contribution R, (see (6)) is included
in the calculation. For a fixed detection distance A, (25)
corresponds to Weber’s intensity-discrimination law.

The count mean-to-variance ratio vy, is, from (6), (7),
(17) and (20),

Y = [1 + A(EO)T]z
reln(1 + BE,) |?
1+bIn(1 + BE,) |-

For large stimulus energies, y,, — [1 + R + 7¢/b]?, so

that
(27)

=|14+Ry71+ (26)

Ym = [1 + TRM]29

and

7= (¥ = 1)/Ry. (28)
It is clear that v, is fixed and > 1. Equations (27) and (28)
are the same as (9) and (10) for Yexp- 1 this same limit
[A(E, > ) = Ry, (A3) provides ,(f,) = Ry T/
(1 + Ry,7). Using this, and the fact that the dead-time-
modified mean count R, T = 71 (f,), with 7 given by (28),
establishes the relation between R ,, (maximum firing rate
before refractoriness modification) and R, (maximum fir-
ing rate after refractoriness modification):

Ry = ¥R, (29)
Equation (29) is valid for both the logarithmic and the
exponential saturation functions.

Finally, we observe that the form of the dead-time-mod-
ified logarithmic saturation function is appropriate for
fitting single-fiber neural firing-rate data, as demonstrated
in Section III-B.
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