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Exponentially Decaying Rates

PAUL R. PRUCNAL, MEMBER, IEEE, AND MALVIN C. TEICH,
SENIOR MEMBER, 1EEE

Abstract—The effect of nonparalyzable dead time on Poisson point
processes with random integrated rates is studied. The case of exponen-
tiafly decreasing rate, plus background (pedestal), with a uniformly uncer-
tain starting time is explicitly presented. The decay time is considered to be
slow compared to the refractory time. No constraints on the sampling time
are imposed for calculating the mean and variance, though for the counting
distribution, the sampling time must be short compared to the decay time.
The results are expected to be useful in neurobiology, neural counting,
psychophysics, photon counting, nuclear counting, and radiochemistry.

I. INTRODUCTION

The effects of dead time (refractoriness) on homogeneous
(constant rate) Poisson poin. processes has received considerable
attention and has been studied by a number of researchers in
neural counting [1]-[6}, photon counting [3], [7]-{11], and nuclear
counting {3], [12]-[14]. Many cases have been studied in detail,
including paralyzable (extended) and nonparalyzable (nonex-
tended) counting under blocked, unblocked, and equilibrium
conditions. Attention has also been given to the gradual recovery
(sick-time) system {6] and to the vanable refractory case [2].
Mauller has summarized the results of a number of authors [13],
[14] and has compiled a comprehensive and very useful bibliogra-
phy on refractory effects {15].

Although most of the work on refractoriness cited above is
applicable only when the input to the counter is a Poisson point
process with constant rate, a few results are also available for the
case in which the rate is not constant. Bédard [7], Cantor and
Teich [8). Teich and McGill {16}, and Saleh er al. [17} present
expressions for the counting distribution when the rate is a
random process. Restrictions are placed on the ratio of coherence
to sampling times in each of these cases. The counting distribu-
tion has also been calculated when the rate is a known function
of time and the sampling time is uniformly uncertain [9], [10].
Expressions were obtained for the mean and the variance of the
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number of events in a given time interval for a nonextended
refractory counter when the input process is Poisson with a rate
that is a known function of time (18], and an arbitrary stochastic
process [17], {19]. Finally, the interevent probability density was
obtained for a shot-noise random rate {20].

The transient behavior of certain neural processes can some-
times be described by a dead-time-modified Poisson point pro-
cess with a rate that decreases in a typically expooential fashion.
The mean and variance for some simple cases of this type have
been studied by Maller {21} and Harris {22].

In this correspondence the effect of ponextended refractoriness
on Poisson point processes with random integrated rate is studied.
The case of exponentially decaying rate plus background
(pedestal), with uniformly uncertain starting time, is presented.
The decay time is considered to be slow compared to the refrac-
tory time. No constraints on the sampling time are imposed for
calculations of the mean and variance, whereas for the counting
distribution the sampling time must be short compared to the
decay time. The case considered is that for which the counter is
always connected to the input process; this is the equilibrium
counter as opposed to the blocked or unblocked counter. Actu-
ally, in the limits where our results are applicable, the number of
pulses recorded during a sampling time is much greater than
unity, and therefore the differences among blocked, unblocked,

" and equilibrium counters become negligible, so that our results
are indeed valid for all three types of counters.

In Section II, the theory for a dead-time-modified Poisson
point process with random integrated rate is presented. The
collected results are discussed in Section II. A number of appli-
cations in neural counting are presented in Section IV.

II. THEORY

Consider a Poisson point process whose rate is a known
function of time A(¢) in the absence of dead-time effects. The
probability p(n) that n events occur, in an interval beginning at
time 1, and of duration 7, is then given by the Poisson density
function poid (n,E[n]), defined in the upper left quadrant of
Table I. Both the expected value and the variance of n are equal
to the integrated rate M(¢y, T).

For example, let the known rate correspond to an exponential
function, of maximum value A; and time constant 7., superim-
posed on a (constant) pedestal of value A,. In that case,

(1)

Integrating the rate function between the limits ¢ and 1, + T
yields

A1) = Ag + Ajexp(—t/1).

M(15,T) = AT + Ayr.exp(—to/1) /1 (T), (2a)

where

fi(T) =1 -exp(-T/). (2b)

Now if the integrated rate is a random variable, then n is
conditionally a Poisson random variable. The conditioning is
removed by taking the expectation with respect to the statistics of
M(ty.T), as illustrated in the lower left quadrant of Table 1. The
integrated raie may be random by virtue of the rate iiself being a
random process (in which case the point process is doubly
stochastic), or by virtue of 4 or T being a random variable (in
which case the point process is mixed), or any combination of
these. If the rate itself is a random process, then the expectation
described above is sometimes, but not always {23], difficult to
evaluate for arbitrary values of T, and this case will not be
considered further here [11], {24, p. 287). On the other hand, if the
rate is deterministic, and 1, or T is a random variable, the
expectation described above is generally straightforward to
evaluate with respect to the statistics of tg or T [25]-[27).

For example, let 1, be uniformly distributed over the time
interval (1,, f,), where 0 < 1, < t,. Taking the expectations with
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respect 1o {, in the lower left quadrant of Table I yields

p(n) = ;z—f—;f':’poad(an(ro.T))dro (32)

E{n) =;—;}_-‘;j:”M(to,T)dro (3b)

var[n] = E[n]} - E{n]? + Tz—i—ZfIM(tO,T)Z dty. (3)

For the specific example where the rate corresponds to a
decreasing exponential function superimposed on a pedestal, and
1, is again uniform, the integrated rate given in (2a) is substituted
in (3), and the result is integrated, yielding

p(n) = [~1/(t — )F(n + D] £ (AgT)’

j=0
{T(n -, M(14,, T)) - T(n = j, M(12.T))]. (42)
E{n] = AoT - Ay 2fi(T) 2 (12, 1) /(1 - 1), (4b)
var(n] = E[n] = A} S (T) [2(212,200) /2(1; - 1)
=N T g, 0) /(1 - ’1)2- (4)

Here
fz(’th)ECXP("z/"c)“CxP(”l/‘})v (4d)

f1(T) is defined in (2b), M(t,, T) is defined in (2a), I'(-) is the
gamma function, and T'(-, -) is the incomplete gamma function,
defined as [28, p. 260, 6.5.3]

I‘(a,,B)=f:z°”le"’dz, (4¢)

for a > 0. For a = 0 and a < 0, the incomplete gamma function
is defined in terms of the exponential integral {28, p. 262, 6.5.15,
6.5.19]. Equations (4a)-{4¢) reduce to the results derived by
Miiller [21, egs. (9), (17), and (19)] in the limit T < 1., and in the
limit Ay = 0 reduce correctly to the results of Teich and Card
(26].

Now consider a Poisson point process whose rate is a known
function of time, but where certain events are ignored (or lost)
due to refractoriness (dead time). In this way, a given event is
followed by a time interval of fixed duration 1, during which
subsequent events are ignored. It is assumed that the refractory
period is not extended by those events which are ignored (nonex-
tended or nonparalyzable case). It is also assumed that T >» 1,50
that the distinction between the blocked, unblocked, and equi-
librium cases disappears. Let 7. represent the length of time over
which A(¢) changes significantly (coherence time). The statistics
of n have been obtained under the condition that r, « 1., T, and
are shown in the upper right quadrant of Table L. The probability
of n events occurring in the interval (4, g + T) has the addi-
tional restriction that T < 1. Under this condition the integrated
rate reduces to

M(15,T) =2 (1)T. ()

For the example where the known rate corresponds to a
decaying exponential function superimposed on a pedestal, the
count mean and variance are obtained by substituting the right
side of (1) into the integrands in the upper right quadrant of
Table I, yielding (under the restrictions specified in Table 1)

_ Aol (Aere  r) 1 filt*T)
E[n] 2 +( . +Td)ln[ AT ], (6a)

+(ﬁ~—l——)(-l——i)+-l\—f(lnfl+z)‘ (6b)
2g 27, y02 ylz g Yo T
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Fig. 1. Count mecan-to-variance ratio (MVR) versus integrated rate M(0, T)
for known exponcential rate (with pedestal) and noncxtended refractoriness.
The case shown corresponds to 7. = 30. 1, = 3, 19 = 0. T = 300, A/Ag =
0.1. 1. and 10.

where ;
g=1+1A, (6¢)
Yo =1+A(1;) (6d)
n=1+X(,+7T) (6e)
L) =1+1A(1). (6f)

The expression for p(n) is obtained by substituting the right side
of (1) directly into the summations in the upper right quadrant of
Table I. All of these formulas are subject to the conditions
indicated in Table I.

In Fig. 1 we plot the count mean-to-variance ratio (MVR)
versus the integrated rate M(0, T') obtained from (6a), (6b), and
(2a). The parameters chosen are 1, = 30, 7, = 3,1, = 0, T = 300,

n

>

k=0

n-1
-
k=0

’2—“’1

-
pln)=

L4

0.

A/Ay =01, 1, and 10. It is apparent that the MVR becomes
larger as M(0, T') increases. The parameter A, /A, represents the
ratio of the maximum value of the exponential rate to the value
of the constant pedestal. In the limit A,/A, < 1, the exponen-
tial can be neglected with respect to the pedestal, and we should
recover the results for a dead-time-modified Poisson process
with constant rate, for which MVR = E[n]/var[n] = [l +
M, TYyr,/T}?, [18]. The curve for A/Ay = 01 illustrated in
Fig. 1 does indeed approximate this parabolic behavior. For
increasing values of A, /A, the variation of the integrated driv-
ing rate causes the mcan-to-variance ratio to decrease for all

: ) ’[IIPOid(kIM(’mT)[l =(n=1)r]) di,.

n-1
| - Z l———'l;lrpoid(klM(lovT)[l ~—(n - l)r]) dtg,

i031

values of M(0, T). It is well known that dead time deletes highly
bunched events more effectively than relatively unbunched events.
Thus, the counting efficiency for a dead-time-modified Poisson
process of known but variable rate will be reduced below that for
the constant-rate case {18]. The behavior of the count variance,
which represents the regularization of the pulse train, is more
complex [18]. We find from Fig. 1 that increasing values of
A /A, result in decreasing values of the MVR at ail values of
M(0, 7). This behavior is similar to that produced by other
dead-time-modified Poisson processes of known but variable rate
{18] and of random rate, as exemplified by the Bose-Finstein
distribution [8]. Initially bunched processes retain higher variabil-
ity (lower MYR) under the effects of dead time than do instially
Poisson processes.

Finally, if the integrated rate is a random process or random
variable, and 7 < 7, then n is conditionally a dead-time-mod-
ified Poisson random variable. The conditioning is removed by
taking the expectation with respect to the statistics of M(z,, T),
as illustrated in the lower right quadrant of Table I. The resulting
varance for the modified case is expressed as the expectation of
the conditional variance plus the variance of the conditional
expectation, as in the unmodified case (see the variance expres-
sions in the lower left and lower right quadrants of Table I). If
the conditional expectation is not random, then the variance
reduces simply to the expectation of the conditional variance. A
number of interesting cases, in which the integrated rate is a
random process, have been dealt with previously. p(n) has been
obtained for laser light and chaotic light [8], and for interfering
superpositions of coherent and chaotic light {16}, in the
short-counting-time limit (7 << 1.). p(n) has also been obtained
for a shot-noise rate, under special conditions, in the long-count-
ing-time limit (T > r,). The result is the Neyman Type-A, which
does not conform to the restrictions specified in Table I. The
count mean and count variance have also been explicitly calcu-
lated, with T arbitrary, for shot-noise light {17] and for chaotic
light [19].

As an example in this category that may be useful in neural
counting, we now assume that the rate is a known function, but
that randomness is introduced by letting ¢, be uniformly distrib-
uted over the time interval (1, t,), where again 0 < 1, < r,. The
integrated rate is therefore random. Taking the expectation with
respect to f, in the lower right quadrant of Table I yields

j:lzpoid(klM(tU. T)1 - ar]) iy

n<l.
1"
(72)
—gn<—+1;
] ]
n>I+1
T4
1 1y flg+ T)\(()
E = ——dt dt,, 7b
["] ’2—’1'1;1 j;o /3(’) 0 ( )
1 ty f1a+T A(1)
' =— - dt dt
varn] ,2_”/“ f,o 73(py o
1 tof o+ TA(1) }2 5
+ — ——=dt} diy - E[n]}", (Tc
’2"1',;.{‘/;0 £ (1) o~ Enl' (%)

where r = 1,/T, and where the restrictions specified in Table I
apply. For the specific example where the rate corresponds to an
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exponential function superimposed on a pedestal, the integrated rate given in (2a) is substituted in (7), and the result is integrated,
yielding

. & Y LTk —j M(e T = ar]) ~ Tk = j, M(t5.TH[1 = nr])
6, -t E:O(AOT“ ) ,?;:0 F(k+1)
- T (AoT[1 = (= )r])’
2 L =0

s Dk = M T~ (= Ur]) = Pk =5 M(ey. T)[L = (n = 1)r])

Y ,< I
T{k+1) ’ T,
- k=0 4
p(n) = -
T.
1 - —— ¥ (AT{1 =(n-1)r])’
L~ 4 7
y-
-1 i .
5 Dl = MO T = (n = 1)) = T(k = M5 T = (= 1)) T T,
13 ~ 1
k=0 T(k+1) Ty T4
T
Os nz—+ l;
T
where M(ty, T) is defined in (2a), T'(-) is the gamma function,
and T(-, ) is the incomplete gamma function defined in (4e).
The expected value and variance of n can be obtained in a similar TABLE II
manner. as was done by Miller [21], [29] for the case T < 7. NEW OR GENERALIZED RESULTS FOR THE COUNTING DISTRIBUTION
p(n). MEAN E[n]. AND VARIANCE var|n]!
III.  SuMMARY OF RESULTS
The results of this correspondence, that are new or generalized. Restrictions for:
are summarized in Table II. Next to each case in the table are Case p(my Enl varln] Refer to:
shown the restrictions that apply to the statistical quantities that Known rate. Table 1.
were calculated, and reference to the corresponding equations in i:?r?r;‘:;:j: o d d d upper left;
the text, Table I, and Flg 1. unmodifiéd, ’ (22). 2b)
Much of the previous work on the doubly stochastic Poisson
counting distribution, with and without refractoriness, has carried Uniformly
out the appropriate expectations on a case-by-case basis (e.g., see ‘s’lr;crf;“':im_
[26]), with respect to the rate, starting time, or sampling time. m,mafy rate d d d (32). 3b). (3¢)
This presentation has unified the previous work by carrying out parameter;
expectations, wherever possible, with respect to the integrated unmeodified.
rate. An exception to this is the case of the modified variance, forml
which cannot simply b ted as th (ation of the  prerort
ca imply be represented as the expectation of the uncertain
unmodified variance. In particular, for the modified variance starting time: d d d (42). (4b). (4c)
with random integrated rate (Table I, lower right quadrant), the exponential T
correlation properties of the rate must be taken into considera- :r“m?g"
tion. ’
It is expected that the results incorporating uniformly uncer- Known rate, Table 1
tain sampling time will prove useful for experiments where the exponential ot nght:
: : : with pedestal: a. b a a.¢ upper nght:
phase of the known rate function is uncertain, or where the nmcf“m&d‘ : : (1). (6a)-(6Ny:
starting time of the sampling interval cannot be measured with refractonness Fig. 1
great precision.
Uniformly
1V. APPLICATIONS IN NEUROBIOLOGY AND uncertain
. , starting time:
NEUROPHYSIOLOGY arbitrary rate N a a,c (7a).(Tb). (7¢)
The calculations carnied out in this paper should be applicable parameter;
to a number of problems in neurobiology and ncurophysiology. nanexiended
. . . = refractoriness
As an example in neurobiology, the amplitude of the postsyn-
aptic potential (PSP) for certain ncurons sometimes follows an Uniformly
approximately exponential time course during habituation and uncertain
sensitization. This has been discussed by Castellucci et al. [30}-[32] starting time: Table L.
. . . . X exponential a, b a d.c lower right;
for the gill-withdrawal reflex evoked by a weak tactile stimulation with pedestal: ®)
of the siphon skin in the marine mollusk Aplysia californica. Since nonextended
the PSP is induced by the flow of discrete chemical neuro- refractoriness.
transmitter packets (quanta) across a synapse, when the underly- 'Restrictions for the validity of results are as follows: 1, « 1., T3 *T < 1,

ing statistics of the quanta are Poisson, as they appear to be at  (E{A}1,)’r,/6 < 1. “no restrictions.
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sufficiently low arrival rates {33], the Poisson point process with
known exponential rate and a pedestal will provide an ap-
propriate description for quantal arrivals in the presence of
habituation and sensitization. The counting distnbution, mean,
and variance for this case are presented in Table I, upper left
quadrant, along with (2a) and (2b). In the case where the starting
time is uniformly uncertain, or exhaustive sampling is used, (4a).
(4b), and (4¢) apply. Since a pedestal is incorporated into our
calculations, they are more suitable for this cae than are the
calculations of Teich and Card [26].

QOur results are also applicabie to a number of problems
involving the statistics of neural spike generaticn in neurophysiol-
ogy. Spike trains have been recorded from single optic merve
fibers in the frog [34] and cat {35}, after the onset of a step-func-
tion light stimulus. Many of these cells display an instantaneous
spike frequency that is roughly describable by an exponentially
decaying function, with a pedestal. The counting statistics for this
case are again found in Table I, upper left quadrant, together
with (2a) and (2b), il a Poisson-based model is assumed and the
effects of refractoriness are ignored. At high stimulus levels, the
maintained-discharge retinal ganglion cell spike train in the cat is
well modeled by a Poisson process modified by nonextended
(stochastic or relative) refractoriness [2}, [6]. We would therefore
expect that the nonstationary neural spike statistics in response
to an onset (or offset) of the stimulus, will approximately corre-
spond to the results presented in Table I, upper right quadrant,
together with (1), (6a)-(6f), and Fig. 1. If the starting time of the
exponential rate is uniformly uncertain, then (8) applies instead.

It would appear that many of these results will also apply to
the spike trains recorded at primary VIII-th nerve fibers in the
mammalian auditory system [36), [37]. This is expected to be
particularly true at acoustic frequencies greater than about 5 kHz,
where phase locking does not appear to be an important determi-
nant of the neural spike statistics. Other areas of application
include psychophysics, photon counting, nuclear counting, and
radiochemustry.

REFERENCES

{1] L. M. Ricciardi and F. Esposito, “On some distribution functions for
non-linear switching elements with finite dead time,” Kybernetik, vol. 3,
pp- 148-152, 1966.

{21 M. C. Teich, L. Matin, and B. 1. Cantor, “Refractoriness in the main-
tained discharge of the cat’s retinal ganglion cell,” J. Opt. Soc. Amer..
vol. 68, pp. 386-402, 1978.

(3] G. Vannucci and M. C. Teich, “Equivalence of threshold detection with
and without dead time," Appl. Opt.. vol. 18, pp. 3886-3887. Dec. 1979.

{41 M. C. Teich and G. Lachs, “A ncural counting model incorporating
refractoriness and spread of excitation. I. Application to intensity dis-
crimination.” J. Acoust. Soc. Amer., vol. 66, pp. 1738-1749, 1979.

{5] G. Lachs and M. C. Teich, “A neural counting model incorporating
refractoriness and spread of excitation. II. Application to loudness esti-
mation,” J. Acoust. Soc. Amer., vol. 69, pp. 774-782, Mar. 1981.

6] M. C. Teich and P. Diament, * Relative refractoriness in visual informa-
tion processing.” Biol. Cybern., vol. 38, pp. 187-191. 1980.

{7] G. Bédard, “Dead-time corrections to the statistical distribution of
photoclectrons,” Proc. Phys. Soc., vol. 90, pp. 131-141. 1967.

{8 B. ! Cantor and M. C. Teich, *Dead-time corrected photocounting
distributions for laser radiation,” J. Opt. Soc. Amer., vol. 65, pp. 786-791.
July 1975.

{9] M. C. Teich and B. I. Cantor, “Information, error, and imaging in
dcadtime-perturbed doubly-stochastic Poisson counting systems,” [EEE
J. Quuntum Electron., vol. QE-14, pp. 993-1003. 1978.

{10] M. C. Teich and G. Vannucci,
photocounting distributions for modulated laser radiation.™ J. Opt. Soc.
Amer.. vol. 68, pp. 1338-1342, Oct. 1978.

B. E. A. Salch. Photoelectron Statistics.

1978.

I. DcLotto, P. F. Manfredi, and P. Principi, *Counting statistics and

dcad-time losses, Part 1. Energ. Nucl. (Milan), vol. 11, pp. 557-564,

1964.

J. W. Mdller, “Dead-time problems.” Nucl. Instrum. Methods, vol. 112,
pp. 47-57, 1973,

“Observation of dead-time-modified

New York: Springer-Verlag,

{14]
{15}
{16}

nn

(18]

(28]

{291

{30}

31

(32)

133
(34]

{35

{36}

1371

1033

——, “Some formulac for a dead-time-distorted Poisson process.” Nucl.
Instrum. Methods, vol 117, pp. 401-404, {974

J. W. Miller, Ed., “Bibliography on dcad time effects,” Rep. BIPM-
%1 /1i. Burcau International des Poids et Mesures, Sevres, France, 1981
M. C. Teich and W_J McGill, “Neural counting and photon counting in
the presence of dead time,” Phys. Rev. Letr., vol. 36, pp. 754~758. 1473,
Mar. 1976,

B. E. A Saleh. J. T. Tavolaca, and M. C. Teich, " Discrimunation of
shot-noise-driven Poisson processes by external dead time: Application
1o radioluminescence from glass,” JEEE J. Quant. Eleciron . vol. QE-17.
pp. 2341-2350, Dec 1981

G. Vannucei and M. C. Tech, *Effects of rate vanation on the counting
statistics of dead-time-modified Poisson processes,” Opr. Comsun ., vol.
25, pp 267-272, Mayv 1978,

— ., “Dead-time-modified photocount mean and variance for chaotic
radiation.” J. Opt. Soc. Amer.. vol. 71, pp. 164-170, Feb. 1981

M. C. Teich and B. E A Saleh, “Interevent-time statistics for shot-
noise-driven self-exciting point processes in photon detection.” J. Opr.
Soc. Amer., voi. 71, pp. 771-776, June 1981.

J. W. Muller. “Counting statistics of short-lived nuclides,” J. Radioanal.
Chem., vol. 61, pp. 345-1359, 1981

C. M. Harris and B. K. Sclinger, “Single-photon decay spectroscopy. i1
The pile-up problem,” Aust. J. Chem., vol. 32, pp. 2111-2129, 1979.

B. E. A. Saleh and M. C. Teich, “Muitiplied-Poisson noise in pulse.
particle, and photon detection.” Proc. IEEE, vol. 70, pp. 229-145, 1982.
D. L. Snyder, Random Point Processes. New York, Wiley, 1975.

P. Diament and M. C. Teich, “Photoelectron counting distnbutions for
irradiance-modulated radiation.” J. Opt. Soc. Amer., vol. 60, pp. 682-689.
1970.

M. C. Teich and H. C. Card. ~ Photocounting distributions for exponen-
tially decaying sources,” Opt. Leri., vol. 4. pp. 146-148. May 1979,

P. R. Prucnal and H. C. Card, “Effects on VLSI yicid of doubly-stochas-
tic impurity distributions,” J/EEE Trans. Rel., vol. R-31. pp. 185-190.
June 1982

M. Abramowitz and 1. A. Stegun, Eds.. Handbook of Mathematical
Functions. Washington, DC: U.S. Government Printing Office. 1965.
J. W. Muller, “Esperance et variance pour une source decroissante avec
temps mort non cumulatif,” Rep. BIPM WPM-212, Bureau International
des Poids et Mesures, Sevres, France, 1979.

V. Castellucci, H. Pinsker, [. Kupfermann, and E. R. Kandel, “ Neuronal
mechanisms of habituation and dishabituation of the gill-withdrawal
reflex in Aphysia,” Science, vol. 167, pp. 1745-1748, 1970.

V. Castellucci and E R. Kandel, “A quantal analysis of the synaptic
depression underlying habituation of the gill-withdrawal reflex in
Aplysia.” in Proc. Nat. Acad. Sci. USA. vol. 71. pp. 5004-5008. 1974.

J. H. Byme. V. F. Castellucci, and E R. Kandel, *Contnbution of
individual mechanoreceptor sensory neurons to defensive gill-withdrawal
reflex in Aplysia,” J. Neurophysiol.. vol. 41, pp. 418-431. 1978

J. del Castillo and B. Katz. “Quantal components of the end-plate
potential,” J. Physiol. (London). vol. 124, pp. 560-573, 1954.

H. K. Hartline, “The response of single optic nerve fibers of the vertebrate
eye to illumination of the retina,™ Amer. J. Physiol.. vol. 121. pp.
400-415, 1938.

H. B. Barlow and W. R. Levick. “Changes in the maintained discharge
with adaptation level in the cat retina,” J. Physiol. (London). vol. 202.
pp. 699-718. 1969.

N. Y. S. Kiang. T. Watanabe, E C. Thomas, and L. F. Clark, Discharge
Patterns of Single Fibers in the Cat’s Auditory Nerve (Research mono-
graph no. 35). Cambridge. MA: MIT Press, 1965.

R. L. Smith and M. L Brachman, “Adaptation in auditory-nerve fibers:
A revised model,™ Biol. Cybern., vol. 44, pp. 107-120, 1982,

0018-9472/83 /0900-1033801.00 ©1983 IEEE



