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Several methods have been proposed for the generation of
photon-number-squeezed (sub-Poisson) light by imparting to the
photon stream ananticorrelation that regularizes the times of
arrival of the photons. This is accomplished by means of con-
trol of the excitation or emission process or by feedback, using
a copy of the photon point processes in cases the emissions
occur in pairs. Possible advantages of communication by photon-
number-squeezed light are discussed. For receivers in which the
photon arrival times are observed, the channel capacity cannot
be improved by modifying an initially Poisson photon stream and
making it sub-Poisson. For photon-counting receivers, however,
improvement of the channel capacity is possible. The bit-error-
rate of an on-off keying communication system using sub-Poisson
photons created by introducing anticorrelation into an initially
Poisson beam may or may not be smaller than the error rates
of the Poisson channel, depending on where the maximum-power
constraint is placed.

[. INTRODUCTION

The rates at which information can be transmitted using
optical beams are governed by random fluctuations (noise).
When extraneous noise is eliminated the quantum uncer-
tainties become important, especially at high speeds and
high spatial resolutions since fewer photons are available
for each bit of information. Fundamental limits on the
uncerlainty of light have been a subject of considerable
and continued interest.

In accordance with the semiclassical theory of light,
the optical field is treated classically; it can, therefore, be
without uncertainty. The interaction of light with a photo-
detector, however, generates a stream of photoelectrons
with an uncertainty always greater than a certain minimum.
Light with nonfluctuating intensity (coherent light) gener-
ates photoelectrons described by a Poisson point process.
This is characterized by statistically independent events,
and a number of counts in any prescribed time interval
oheying the Poisson distribution, for which the variance is
identically equal to the mean. This is the minimum possible
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variance. The uncertainty of the corresponding photoelec-
tric current is known as “shot noise.” Light with excess
intensity fluctuations, such as thermal light, generates pho-
toelectron counts with excess fluctuations; the variance is
greater than the mean and the photon counting distribution
is said to be super-Poisson. Until recently, Poisson noise
(shot noise) has been regarded as an impenetrable noise
floor. For all classical light sources, this is indeed the
case. All lightwave communication systems that have been
developed to date make use of Poisson (or super-Poisson)
light.

In the quantum theory of light, however, the two quadra-
tures of the optical field, which represent the real and
imaginary parts of the field phasor, are noncommuting oper-
ators that satisfy the Heisenberg uncertainty principle, like
the position and momentum of a harmonic oscillator. The
precision of one quadrature can be enhanced without limit,
but this will be accompanied by an unbounded increase
of the uncertainty of the other component. Coherent light
has quadrature components with equal uncertainties and a
minimum uncertainty product. Quadrature-squeezed light
is a minimum-uncertainty-product state with nonsymmetric
quadrature components, one having uncertainty lower than
that of coherent light, and the other has greater uncertainty,
as illustrated in Fig. 1(a). Quadrature-squeezed light has
been generated in the laboratory using nonlinear optical
interactions that provide a simultaneous amplification of
one component with an equal reduction of the other (1],
[2]. The usefulness of quadrature-squeczed light stems
from the possibility of using the precise quadrature to
carry information and employing a detection scheme that
is insensitive to the uncertain quadrature.

Light can also be described by its amplitude and phase
or by the photon number and the phase. Similar uncertainty
relations govern the components of this latter pair, so that
the two components cannot be simultancously completely
precise. If the uncertainty of the photon number for all (or
some) counting times is reduced below that of the coherent
state, as illustrated in Fig. 1(b), the light is said to be
photon-number squeezed [3]-[5]. The increased precision
of the photon number, of course, comes at the expense
of an increase of the phase uncertainty. Such light is
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Fig. 1. (a) The circle and the ellipse represent the uncertainties
of the quadrature components of coherent and quadrature-squeezed
optical fields, respectively. (b) The dashed and solid curves repre-
sent the photon-counting distributions for coherent light (Poisson)
and photon-number-squeezed (sub-Poisson) light.

intrinsically nonclassical in nature. The photon counts of
photon-number-squeezed light have a variance less than
the mean, the counting distribution is said to be sub-
Poisson, and the photocurrent is sub-shot noise. There is
no fundamental limit on squeezing the photon number. The
traditional noise floor can, in principle, be lowered to zero.
Light in a photon-number-state, for example, has a precise
number of photons, but the phase is totally random.

The nature of photon-number-squeezed light has been
elucidated in recent years [3]—[16]. This type of light
is expected to find use in various disciplines, ranging
from optical precision measurement [17] to monitoring
the human visual system at the threshold of seeing [18],
[19]. In this paper we consider the potential advantages
of using photon-number-squeezed light in direct-detection
lightwave communication systems and other information-
carrying applications [20], [21].

The earliest sources of photon-number-squeezed light ex-
hibited only a slight reduction of the variance [3]-[5]. Far
stronger photon-number squeezing has been produced in
recent years [22] and continuing advances promise further
improvement. It is therefore of interest to examine the
advantages to be gained in using photon-number-squeezed
light to transmit information.

The channel capacity of optical communication systems
has been the subject of a number of studies over the
years [8]. These studies have assumed a receiver that
observes the number of photon counts in a fixed period
of time. The channel capacity of a receiver that observes
the times of occurrence of the photoevents (the point
process) is evidently greater than or equal to the channel
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capacity of the photon-counting receiver under the same
conditions, because the latter does not record the times of
occurrence of the photoevents. In this paper we discuss
the channel capacity of both the counting receiver and the
point-process receiver for photon-number-squeezed light,
assuming direct detection. We also provide an example
of the reduction of error probability and improvement
of receiver sensitivity of a binary communication sys-
tem achieved by using photon-number-squeezed light. The
channel capacity of systems using quadrature-squeezed
light and a homodyne-detection receiver is discussed in

(8],

II. GENERATION OF PHOTON-NUMBER-SQUEEZED LIGHT

There are essentially three classes of mechanisms by
means of which photon-number-squeezed (sub-Poisson)
light may be generated.

1) In the first class, sub-Poisson light is produced from a
beam of initially Poisson (or super-Poisson) photons.
This can be achieved in a number of ways, e.g.. by
making use of correlated photon beams [23]. Sub-
Poisson photons can be generated from the pairs
of correlated photon beams produced in parametric
downconversion; one of the twin beams is fed back
to control the pump [24] or fed forward to control
the other beam.

2) The second class of mechanisms relies on the direct
generation of squeezed photons from a beam of ini-
tially sub-Poisson excitations (e.g.. electrons) [4]. [5].
[25]. This technique was first used in a space-charge-
limited version of the Franck—Hertz experiment [4].
[5]. Space-charge-smoothing is a well known clas-
sical example of a sub-Poisson process. Perhaps the
simplest implementation of this principle is achieved
by driving a light-emitting diode (LED) with a sub-
Poisson electron current [26], [26a] but it is most
effectively achieved by the use of a semiconductor
injection laser [10], [15], [22].

3) The third method is based on preparing light in
a photon-number-squeezed state, in which the un-
certainty in the optical phasor shown in Fig. I(a)
is confined in the radial direction. An example is
the superposition of light in a quadrature-squeezed
vacuum state (a vacuum state with nonsymmetric
quadratures) with coherent light of appropriate phase,
using a beam splitter. This scheme is used in the
homodyne detection of quadrature-squeezed light [1].
[2). Another example is the use of nonlinear in-
teractions in a Kerr medium (which introduces a
phase shift proportional to the intensity of the light)
[11]. This method cannot be explained in terms
of photons described by point processes controliing
one another, as in the first and second methods. A
quantum mechanical analysis is required to determine
the state of the generated light and the statistics of its
corresponding photon stream.
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The discussion in this paper is generally limited to
photon-number-squeezed light generated by the first and
second methods and described by the point processes
of photon events. Such processes  are described by
characteristics  such as the rate of coincidence of
cvents, and the statistics of the number of counts in
prescribed intervals. Light for which  the arrival of
photon pairs are anticorrelated at small time intervals
is termed antibunched light [12], [33]. Photon anti-
bunching was the first form of nonclassical light to
be studied in the laboratory. The introduction of
photon antibunching may be used to achieve photon-
number squeezing (at least for short counting times).
‘The connection between photon-number squeezing and
antibunching is subtle [4], [12], [25].

A. Generation of Photon-Number Squeezed
Light by Point-Process Control

Consider a point process of excitation and another of
emission, as illustrated in Fig. 2. If the excitation process
is described by a Poisson point process and each excitation
corresponds to an independent emission with some fixed
probability, the emissions obey a Poisson point process. The
presence of anticorrelations (antibunching) in the excitation
process (excitation control) results in a more regular stream
of photons, exhibiting sub-Poisson behavior. Alternatively,
restrictions in the emission mechanism that prohibit, for
example, the emission of closely spaced events, could also
result in an anticorrelated and more regular photon stream.
This mechanism is called emission control. Feedback con-
trol may also be implemented, whereby the emitted photons
control the excitation process or the emission mechanism
by imparting anticorrelation. We discuss these three control
mechanisms in turn.

1) Excitation Control: Consider the light generated by a
collection of atoms excited by inelastic collision with a
stream of electrons, as, for example, in the Franck—Hertz
experiment iflustrated in Fig. 3(a). The electrons are the
excitation process and the atoms represent the emission
process. Coulomb repulsion can render the electron stream
space-charge-limited, so that a regularity is imparted to
the electron flow. Such excitation control therefore re-
sults in the emission of spontaneous fluorescence photons
that are photon-number-squeezed. The space-charge-limited
Franck—Hertz experiment in Hg vapor provided the first
source of unconditionally photon-number-squeezed light
(4] (5}

Unfortunately, the random deletion of photons resulting
from imperfect photon collection and detection diminishes
the sub-Poisson behavior and these losses account for the
small amount of squeezing observed in the Franck—Hertz
experiment. Although the photon-number uncertainty can
in principle be reduced to zero, the effect is fragile (as
is quadrature squeezing), so that loss and the presence of
buckground photons must be assiduously avoided.

To minimize the loss, a number of compact Franck-Hertz-
type devices with high-collection-efficiency have been de-
veloped. The electrons supplied from a de source, such
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Fig. 2. The components of a photon-generation system: An ex-
citation process, an emission process, and the emitted photons.
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Fig. 3. Photon-number-squeezed light can be generated by means
of excitation control. a) The generation of photon-number-squeezed
light at a wavelength of 253.7 nm using a space-charge-limited
electron beam as the excitation process and the Franck—Hertz effect
in Hg vapor as the emission process. (b) A similar scheme in an
InGaAsP/InP distributed-feedback semiconductor injection laser.
The pump fluctuations are suppressed, so that the electrons and
holes (the excitation process) have sub-Poisson distributions. Their
recombination in the active region generates 1.56-yrm photons with
a sub-Poisson distribution. The effect is enhanced by the optical
feedback inherent in the laser (after M. C. Teich and B. E. A.
Saleh, Physics Today, vol. 43, no. 6, 1990).

as a battery, provide a convenient source of sub-Poisson
excitations because of their intrinsic Coulomb repulsion (the
principal source of noise is Johnson noise). An LED, which
ideally emits one photon per injected electron, can serve as
the emitter. A solid-state analog of the space-charge-limited
Franck—Hertz experiment is therefore provided by a simple
LED driven by a constant current source. Indeed, this device
has been shown to emit photon-number-squeezed light [26],
[26a].

A significant advance was achieved when a semiconduc-
tor injection laser diode (ILD) driven by a constant current
was used to produce photon-number-squeezed light [10].
This device behaves like a solid-state simulated-emission
version of the space-charge-limited Franck—Hertz experi-
ment, as shown in Fig. 3(b). It is compact and produces
a large photon flux, and has broadband spectral width
and high efficiency. Other semiconductor device structures,
employing solid-state space-charge-limited current flow and
recombination photons, have also been proposed [12], [16],
[49].

2) Emission Control: Several mechanisms can be used to
regularize a Poisson sequence of events. Dead time, for
example, prohibits a second event from occurring within
a fixed time following the occurrence of a given event.
It therefore prevents the events from being arbitrarily
close to each other and regularizes them. This reduces the
uncertainty of the number of events registered in a fixed
counting time 7'. A trigger or firing mechanism that requires
a fixed time for resetting between consecutive shots, but is
otherwise random, produces a sub-Poisson distribution.
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Because isolated atoms subjected to Poisson excitations
cannot emit photons during the time they are being re
excited, resonance fluorescence emissions are characterized
by this description [48]. In the earliest photon-number-
squeezed experiments carried out with resonance fluores-
cence radiation, single atoms could not be isolated, so that
the photodetector had to be gated to assure operation with
only a single active atom in the apparatus. The resulting
light was therefore conditionally photon-number-squeezed
[3]. Subsequent experiments were successful in trapping
single ions and thus in producing unconditionally photon-
number-squeezed resonance-fluorescence radiation.

3) Feedback Control: The control of the excitations or
emissions may be derived from the emitted photons them-
selves by using feedback control. If the arriving photons
can be monitored without being destroyed, their arrival
times can be used to modify subsequent excitations or
emissions. Feedback control of this type can be carried
out if the photons are observed by means of a quantum
nondemolition (QND) measurement, which allows an ob-
servable to be measured without perturbing it. Schemes for
implementing QND measurements have been implemented.
Feedback control can also be achieved if twin photon
streams are available, in which case one of the streams can
be annihilated to create the control signal, while the clone
stream survives. Configurations of this kind may be useful
for generating photon-number-squeezed light with arbitrary
photon-number statistics [23].

One suggested photon-feedback configuration makes use
of cascaded atomic emissions [34] as portrayed in Fig. 4(a).
A Poisson stream of laser-excited Ca’® atoms enters the
apparatus. Each atom decays by the sequential emission
of two photons—one green and one violet. The green
photon is detected in a conventional manner to provide a
feedback signal. This signal is used to selectively permit
some of the violet companion photons to pass through
an optical gate. Since the photons are always emitted
in correlated pairs, only selected companions survive to
produce a sub-Poisson photon stream at the output. The
same approach has been implemented by making use of a
parametric downconversion experiment [31], [32] as shown
in Fig. 4(b). In this case, the feedback signal is used to
control the excitation (pump) rather than one of the twin
photon beams.

B. Examples of Control Methods

Several examples of the control rule that have been
suggested for use in converting the Poisson emissions into
sub-Poisson photons are illustrated in Fig. 5 and discussed
in the following. It is assumed for simplicity (but without
loss of generality) that the various conversions can be
achieved in an ideal manner.

1) Dead-Time Deletion: Delete all photons within a
prescribed fixed (nonparalyzable) dead time 7, following
the registration of a photon [30]. This approach was
implemented to generate photon-number-squeezed light
by using one of the twin beams produced in parametric
downconversion to selectively gate photons from the other
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Fig. 4. Feedback control for generating photon-number-squeezed
light. (a) The laser excites a beam of Ca*® atoms which then
decay by the sequential emission of a pair of photons (one green
and one violet). The electrical signal produced by the detection
of a green photon is fed forward to operate an optical gate that
selectively allows certain of the violet companion photons to pass.
(b) Parametric downconversion in a nonlinear crystal results in two
correlated streams of photons, one of which provides a feedback
signal to control the excitations by means of an optical modulator
(after M. C. Teich and B. E. A. Saleh, Physics Today, vol. 43, no.
6, 1990).
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Fig. 5. Several transformations of Poisson photons into
sub-Poisson photons that have been suggested for use in quantum
optics. (After M. C. Teich and B. E. A. Saleh, in Progress in Optics,
vol. 26, E. Wolf, Ed., North-Holland, Amsterdam (1988)).

beam via dead-time control [31]. Dead-time deletion could
also be used with correlated photon beams produced in
other ways.

2) Coincidence Decimation: Remove all pairs of photons
separated by a time shorter than a prescribed time interval
7o. This is achieved, for example, in second-harmonic gen-
eration (SHG); two photons closer than the intermediate-
state lifetime of the SHG process are exchanged for a third
photon (which is at twice the frequency and therefore easily
eliminated) [33].

3) Decimation: Select every rth photon (r = 2,3....) of
an initially Poisson photon process, deleting all intermediate
photons. In cascaded atomic emissions from Ca®, for
example, sequences of correlated photon pairs (green and
violet) are emitted. The green photons can be detected and
used to operate a gate that passes every rth violet photon
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[34]. Decimation control could also be used in conjunction
with parametric-downconversion photon twins.

4) Overflow Count Deletion: The number of photons oc-
curring in preselected time intervals [0.To). [To. 2T0). . . . . is
counted, retaining the first ng photons in each time interval
(without changing their occurrence times) and deleting the
remainder. If the average number of photons in [0, Ty] of
the initial process is >> g, then the transformed process
will almost always contain ng photons within this time
interval. As an example, it was suggested [35] that if a
collection of ng atoms in the ground state is subjected to a
bricl, intense, incoherent excitation pulse, all ¢ atoms will
become excited with high probability; the radiated optical
ficld would then be describable, to good approximation, by
an ny-photon state. Related schemes [36], (37] have been
proposed for use with parametric processes.

5) Rate Compensation: Let each photon registration at
time 1, of the control photons cause the rate of the con-
trolled photons to be modulated by a factor A(t — ¢;) (which
vanishes for / < ;). In linear negative feedback the rate
is Ay = Ao — >, h{t = 1;), where Ay is a constant. If the
instantancous photon registration rate happens to be above
the average, then it is reduced, and vice versa. This process
is schematically illustrated in Fig. 5(f) for two adjacent
subintervals 7, and Ty. The use of rate compensation in
conjunction with a QND measurement (using the optical
Kerr effect) has been suggested [38], but rate compensation
could be used just as well, for example, with correlated
photon pairs. Dead-time deletion can be viewed as a special
case of rate compensation in which the occurrence of an
event zeros the rate of the process for a specified time period
74 after the registration [23].

[11. COMMUNICATING WITH PHOTON-NUMBER-SQUEEZED
LIGHT AND A POINT-PROCESS RECEIVER

The channel capacity of a receiver that observes the
times of occurrence of the photoevents (the point process)
is evidently greater than or equal to the channel capacity
of the photon-counting receiver under the same conditions,
because the latter does not record the times of occurrence of
the photoevents. Estimates of optical parameters based on
the point process of the observed photoevents have been
considered in the literature [50]—[52]. In this section we
discuss the channel capacity of both the counting receiver
and the point-process receiver for photon-number-squeezed
light. We demonstrate that the channet capacity of the point-
process receiver cannot in principle be increased by the use
of photon-number-squeezed light [20]. In Section IV we
show that the channel capacity of the counting receiver can
be increased by the use of photon-number-squeezed light
[20].

Consider the transmission of information by use of
photon-number-squeezed photons generated by modifica-
tion of a Poisson excitation process or by conversion of an
initially Poisson photon stream. The initial Poisson point
process has rate yr; and is represented by the number of
evenls N, in the time interval (—oc,t). This process is

transformed into a sub-Poisson point process M; of rate A¢,
in accordance with some deterministic or stochastic rule, as
illustrated in Fig. 6. Several examples of transformations
of this kind are illustrated in Fig. 15. The events of
the initial process N, are assumed to be observable and
their registrations used to operate a mechanism which,
in accordance with the specified rule, controls the events
of the transformed photon process M;. The rate A; of
the process M; is thereby rendered a function of the
realizations of the initial point process N; at prior times,
ie, \r = A(Ny;t' <t). The modified point process
describes the photon arrival times of the final photon-
number-squeezed beam.

Poisson Sub-Poisson
point process point process
N (X) M)
rate rate
POISSON [P0 PHOTON- |AL(X)
MODULATOR PHOTON STATISTICS P—-- | RECEIVER
SQURCE HMODIFIER
Signal X Signal estimate ;l

Fig. 6. Idealized lightwave communication system employing a
Poisson photon source and a photon-statistics modifier (after M.
C. Teich and B. E. A. Saleh, in Progress Optics, vol. 26, E. Wolf,
Ed., North-Holland, Amsterdam, 1988).

Now consider a communication system in which infor-
mation is transmitted by modulating the rate y, of the initial
process N, with a signal X,. The receiver detects the arrival
times of the photons of the modified point process M; and
extracts an estimate of the signal X;. We proceed to show
that none of the modification schemes can increase the
channel capacity of this communication system above that
of a system using simply the initial Poisson point process
for communication.

The channel capacity of a communication system using
a Poisson point process with a variable rate y, controlled
by the signal X; is infinite, if the rate u is permitted
to be increased without bound. If u, is constrained to
be smaller than a maximum rate fiy., then the channel
capacity is C' = /l,max/(i. (The base e has been used for
simplicity). A key point in determining the channel capacity
of the communication system using an initially Poisson
point process that is converted into a sub-Poisson process
is where the rate constraint is placed.

If a constraint is placed on the rate of the initial Poisson
process j4; < jimax, then it is obvious that ¢ cannot be
increased beyond the value [max/€ by any modification
N, — M,. This is simply a consequence of the definition
of channel capacity as the rate of information carried
by the system without error, maximized over all coding,
modulation, and modification schemes. However, can the
modification N; — M, increase the channel capacity if
the constraint is instead placed on the rate of the modified
process Ay (i.e., Ar < Apax)?
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We address this question by noting that the modified
point process M, is, in general, a self-exciting point process
[23], [50] with rate A, (M,; ¢ <t). This is a process
that contains an inherent feedback mechanism in which
present event occurrences are affected by the previous
evert occurrences of the same point process. Of course,
the examples of the modifications N, — M, introduced in
Fig. 5 are special cases of self-exciting point processes.

Now consider a communication system that uses a point
process M, whose rate A; is modulated by a signal X,.
The process M; can be an arbitrary self-exciting point
process, including sub-Poisson processes obtained by the
feedforward- or feedback-modification of an otherwise Pois-
son process [23]. Neither feedforward nor feedback trans-
formations can increase the capacity of this channel, as
provided by Kabanov’s theorem [39] and its extensions
[40]-[42]: »

Kabanov’s Theorem: The capacity of the point-process
channel cannot be increased by feedback. Under the con-
straint A\g < Ay < Apax, the channel capacity C is

C =
1 s \1Fho/e Ao s
- = {1+ 29 .2
/\0[6’<1+/\0) ( +3>ln(1+)\0)
)

where s = Amax — Ag. When A = 0 (no dark counts), this
expression reduces to

C = Apax/e. (2

When the capacity is achieved, the output of the zero-dark-
count point-process channel (Ag = 0) is a Poisson process
with rate Ay = Apax/e. The channel capacity has also
been determined under added constraints on the mean
rate. A coding theorem has also been proved. Kabanov’s
theorem is analogous to the well known result that the
capacity of the white Gaussian channel cannot be increased
by feedback [43].

In summary, no increase in the channel capacity of
a point-process lightwave communication system may be
achieved by using photons that are first generated with Pois-
son statistics and subsequently converted into sub-Poisson
statistics, regardless of whether the power constraint is
placed 4t the Poisson photon source or at the output of the
conversior process; nor may an increase in channel capacity
be achieved by using feedback to generate a self-exciting
point process.

We now examine the applicability of the foregoing con-
clusions to photon-number-squeezed light generated by
mixing an initially coherent beam (local oscillator) with
squeezed vacuum using a beam splitter. Clearly the wave
mixing process is quantum in nature, and does not corre-
spond to a classical (deterministic or stochastic) rule for
conversion of the Poisson arrival times of the coherent
photons into the arrival times of the squeezed photons. In
this mixing process the photons of the coherent beam are
actually never observed. The information may be imparted
to the coherent field by means of intensity modulation or
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phase modulation, but the point process of the coherent pho-
tons does not directly mediate the observed point process,
so that the foregoing ideas are not applicable.

If the coherent beam is intensity modulated by the signal
X, the information is completely contained in the intensity
11, which is assumed not to exceed a maximum value
Pmax. If detected with a point-process receiver prior to
mixing with the squeezed vacuum, a Poisson point process
of rate ji; would be observed, so that the channel capacity
of the system would be fiyax/e. If the coherent light is
mixed with the squeezed vacuum and detected, the arrival
of photons is described by a self-exciting point process
that depends on the rate \;, but not on the realizations of
its corresponding point process, which are never observed.
However, since the observed point process is a self-exciting
process of some type, the channel capacity cannot exceed
Amax/€ Where A\pax is the maximum rate of the detected
superposition. Again, it appears that the use of photon-
number-squeezing by mixing with squeezed vacuum cannot
improve the channel capacity of a communication system
using intensity modulation and a point-process receiver.

IV. COMMUNICATING WITH PHOTON-NUMBER-SQUEEZED
LIGHT AND A PHOTON-COUNTING RECEIVER

The conclusions reached in the previous section are valid
only when there are no restrictions on the receiver structure.
The conclusion is different if the receiver is operated
in the photon-counting regime, in which information is
carried by the random variable n representing the number
of photoevents registered in time intervals of prescribed
duration T (rather than by the photon occurrence times).

A. Channel Capacity

The channel capacity of optical communication systems
using counting receivers has been the subject of a number of
studies over the years [27]~[29], [8]. The information was
often assumed to be carried by light with Poisson statistics
in background light with Bose—Einstein photon statistics
(thermal radiation). More recently, the channel capacity of
a sub-Poisson (photon-number-squeezed) counting system
was examined [8].

The capacity of the photon-counting channel is given by
[28].

C = Blaln(1 4+ 1/a) + In(1 + )] 3)

where 7 is the mean number of counts in 7" and B = 1/T
is the bandwidth. Two limiting expressions emerge:

C = Baln(1/n),
C = Bln(n),

n<<l1
n>> 1. (4)

If an added condition requires that the photon counts obey
the Poisson counting distribution, the capacity is further
reduced. In that case, the limiting results analogous to (4)
are

C = Baln(1/7),
C = (1/2)Bln(n),

<<1
>> 1. )

pui]

]
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The capacity in the region 7 >> 1 is a factor of 2 smaller
in (5) than in (4). The capacity-to-bandwidth ratio C/B
is plotted versus 71, for both the unrestricted and Poisson
photon-counting channels, in Fig. 7.

1 [ 1 1 L
000 667 0.01 01 1 10 100 1000

Fig. 7. Comparison of the capacity of the unrestricted
photon-counting ~ channel  (solid curve) with the Poisson
photon-counting channel (dashed curve).

In the case of photon counting, therefore, an increase
in the channel capacity can in principle be realized
by using photon-number-squeezed light. However, in
the small mean-count limit % << 1 (when the
counting time 7T is very short), the capacity of the
Poisson counting channel approaches that of the unre-
stricted counting channel, and the advantage of photon-
number squeezing disappears. This is not unexpected
in view of the result obtained for the point-process
channel.

B. Error Rate of a Binary OOK Photon-Counting Receiver

The channel capacity provides a limit on the maximum
rate of error-free information transmission for all codes,
modulation formats, and receiver structures [27]-(29].
As such, it does not specify the performance (error
probability) achievable by a communication system
with prescribed coding, modulation, and receiver struc-
ture.

It is therefore of interest to discuss the performance
of a system with specified structure. We consider a bi-
nary on—off keying (OOK) photon-counting system [21].
The information is transmitted by selecting one of two
values for the photon rate A, in time slots of (bit) du-
ration T. The receiver operates by counting the number
of photons received during the time interval 7' and then
deciding which rate was transmitted in accordance with
a likelihood-ratio decision rule (threshold test). For sim-
plicity, it is assumed that background light, dark noise,
and thermal noise are absent, so that photon registrations
arc not permitted when the keying is OFF (ie., false-
alarms are not possible). Furthermore, the detector quantum

efficiency is taken to be unity so that system perfor-
mance is limited only by the quantum fluctuations of the
light.

A measure of performance for a digital system such as
this is the error probability P,. In the simplified system
described above, errors are possible only when the keying
is ON and 0 photons are received (a miss). For a Poisson
transmitter, with equal a priori probabilities for ON and
OFF, P, is [21]

P.(Poisson) = (1/2) exp(—7) ©)

where 7 denotes the mean number of emitted photons in
time T

The receiver sensitivity S is the mean number of photons
per bit necessary to achieve a prescfibed probability of
error, . = 10~ for example. For an QOK optical link
using a Poisson photon stream, (6) yields 7 ~ 20 so that
the mean number of photons per bit S = 7/2 = 10 [12].

The receiver sensitivity of the Poisson channel is com-
pared with that obtained for photon-number-squeezed light
derived from an initially Poisson source. The outcome
will depend on whether the sensitivity is measured at
the input or output of the modification process, i.e., on
where the mean photon-number constraint is placed. As
an example we will use dead-time deletion to demonstrate
that the system performance can be enhanced by the use of
photon-number-squeezed light, provided that the constraint
is applied to the squeezed light. No enhancement of system
performance emerges in converting Poisson photons into
squeezed photons when the constraint is at the Poisson
source.

C. Dead-Time-Modified-Poisson Photon Counts

For a nonparalyzable dead-time modifier that is always
blocked for a dead-time period 74 at the beginning of the
counting interval T, the passage of O photons arises from
the emission of 0 photons in the time T — 74, independent
of the number of emissions during 74. The error probability
for this system is therefore

P.(dead time) = (1/2) exp[-a(l — 7a/T)]  (7)

where 7 is the mean number of photons at the input to the
modifier. The mean number of photons at the output of the
modifier is reduced to [30], [44]

m & nf(1+n7a/T). ®

The receiver sensitivity at the input to the modifier (the
value of 71/2 at which P, = 107°) is, using (7),

S; ~10/(1 — 74/T)

whereas the receiver sensitivity at the output of the modifier
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Fig. 8. The receiver sensitivity (mean number of photons
necessary to achieve a probability of error P, = 10~") for
dead-time-modified-Poisson light measured at the input of the
modifier (S;) and at the output of the modifier (S,), as a
function of the ratio of the dead time to the counting time 7,,/7T.
The well-known “quantum limit” (10 photons/bit) emerges as
/T — 0.

(the value of /2 at which P, = 107%) is, using (8) and

)}
S, ~ 10/(1 + 1974/T).

These sensitivities are plotted in Fig. 8 as a function
of 74/T. If 74/T = 0.1, for example, a minimum
of 11.1 photons (instead of 10) are necessary at the
input to the modifier; but only 3.45 photons are needed
at the output of the modifier. Thus the sensitivity
is enhanced or reduced, depending on where it is
measured.

D. Receiver Sensitivity of the Photon-Number-Squeezed Link

It is instructive to examine the relation between
the receiver sensitivity S and the Fano factor F,
which is the ratio of the variance to the mean. The
Fano factor is a measure of the degree of photon-
number squeezing (F' = 1 for Poisson light and <
1 for sub-Poisson light). Since the relation between
S and F depends on the counting distribution, we
illustrate this relation with two examples, the binomial
distribution and the dead-time-modified Poisson distribu-
tion.

Consider light with photons of a binomial counting
distribution,

i) = () -
n
This light is obtained when an ideal source that generates
a deterministic photon number N suffers loss, resulting
in the random deletion of each photon with probability
(1 —n) [45]. Random photon deletion is inevitable; it
results from absorption, scattering, and the finite quan-
tum efficiency of the detector [12]. The binomial distri-
bution is sub-Poisson with mean (n) = 7N, variance
n(l —n)N, and Fano factor I/ = (1 —1) < 1. It has
been shown that the information rate per symbol carried
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Fig. 9. Receiver sensitivity .S as a function of the Fano factor
F for the binomial channel (solid) and for the dead-time-modified
Poisson channel (dashed). The quantum limit of 10 photons/bit
emerges as [ — 1.

by such a counting channel will be greater than that
for the Poisson channel, but will approach the latter as
71— 0 [35]. A source that emits a binomial number
at the outset [46] retains its binomial form, but exhibits
reduced mean in the presence of random deletion
[45].

The performance of such a binary OOK photon-counting
receiver, in the absence of background, is limited by the
binomial fluctuations of the detected photons. In this case,
it is easily shown from the binomial distribution that [12],
[47]

P. = (1/2)F/0=F), (12)

Solving (12) for the receiver sensitivity S = (n)/2 with
P. = 107 yields

1-F
S~ 10————. 13
(111(1/F> (1)

The receiver sensitivity S versus the Fano factor F is
illustrated by the solid curve in Fig. 9.

A similar analysis for the sensitivity of the dead-time-
modified-Poisson photon-counting distribution measured at
the output of the modifier yields the dashed curve in
Fig. 9. In both cases, the Poisson limit of S = 10 pho-
tons per bit emerges in the limit F' = 1 where thesc
distributions go over to the Poisson. Fewer photons are
needed to achieve the same error probability when F' is
smaller than unity. For example, F' = 0.5 corresponds
to a receiver sensitivity of 7.22 photons per bit for the
binomial case and 5.25 photons per bit for the dead-time
case.

Under idealized conditions, a distribution for which
p(0) = 0 yields zero probability of error and can
operate with a mean number of photons close to 1/2
(i.e., an average close to one photon in the ON bit). To
reduce the error rates of binary optical communications.
therefore, a counting distribution must be found with the

PROCEEDINGS OF THE IEEE. VOL. 80. NO. 3. MARCH 1992



smallest p(0), instead of a distribution with the smallest
variance (or Fano factor). In general, one should seek to
squeeze the tails of the probability distribution, which are
better described by parameters such as the fourth-order
cumulants.
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