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Generalized Entangled-Photon Imaging
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ABSTRACT - When one of a pair of entangled photon beams is transmitted through an object, coincidences with

photons in the other beam contain information about the object.

coded-aperture imaging system using this effect.

Entangled-photon beams generated by parametric
downconversion have been used in numerous
experiments to test the foundations of quantum
mechanics. A variety of practical applications have
also been demonstrated using such beams,
including absolute radiometric measurements,
quantum cryptography, and quantum imaging
(1,2]. This paper provides a generalized
formulation of the quantum imaging problem. We
derive an expression for the photon coincidence
rate after each of a pair of entangled photon beams
has been transmitted through a separate general

coincidence rate.

We present a generalized formulation for a

Consider the overall system illustrated in Fig. 1.

A source S emits pairs of entangled photons in
two beams, the signal and the idler.  The signal

photons are transmitted through an object O and
are collected by a detector D), after passing through
an arbitrary optical system A. The idler photons
are transmitted through an optical system B, and
are collected by a detector D,.  The photon
coincidence rate C, is measured with various
optical systems B,

n = 1,2,., in place.  The systems B, may
represent, for example, a set of coded apertures, or
a displaced pinhole. The idea is to extract

linear optical system, one of which contains the information about the object ) from
unknown object. We examine the retrievability of measurements of the coincidence rate G, for
the object information from a measurement of the various optical systems B, , n=1,2,...
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Fig. 1 Generalized entangled-photon imaging system.
To be specific, asssume that O is a thin planar E; = [A(x)f(x)E (x)dx )

object with complex amplitude transmittance f(x),
and for simplicity assume that the object and the
optical systems are both one-dimensional.
Classically, the fields E; and E, at the detectors

D, and D, are related to the fields Ey(x) and
E;(x) at the inputs to the object U and to the
system B, , respectively, by the linear integrals
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E) = [ By(x)E;(x)dx,

where A(x) and B,(x)are appropriate weighting
factors determined from the impulse response
functions of the systems 4 and B, The most

general state of a photon pair at these input planes
is



|¥) = [ dxdx'g(x,x")a} (x)a; (x")]0,0), )

where |0,0) represents the vacuum state and 4; (x)

and ;' (x’) are the photon creation operators for
the signal and idler at positions x and x’,
respectively.  For simplicity we have assumed
further that the signal and the idler are
monochromatic. All of the characteristics of the
source are encoded in the correlation function
g(x,x"). If we are not interested in resolution on
the scale of the wavelength of the photons, we may
consider that the creation and annihilation operators
for different space points commute, i.c.,

[&;(x),&;(x')]=5(x—x’), and similarly for the
idler photons.

The coincidence rate C, = <‘I"£:31— ESEFET "I’)
can now be determined by straightforward use of

the previous equations. This readily leads to the
principal equation of this paper:

Cp = Il 8(x.x") F(0)ACx) By (x"Ydxdx . 3)
This equation relates the coincidence rate C,, to the
unknown object transmittance f(x), through the
known functions A(x), B,(x), and g(x,x’),
which determine the kemel of the transformation.
The coincidence rates { C,} are therefore the
squared magnitudes of linear projections of the
unknown function f(x).

The ideal case in which g(x,x’)=6(x-x"), i.e.,
the photons are perfectly entangled, is particularly
revealing. In this case, Eq. (3) gives

Cp =l FD)A)B, ()] @

Moreover, since A(x) and B,(x)are simply
multiplied under the integral, the systems A and

B, are exchangeable. This may be important in
practical situations where optical components
cannot be placed in the vicinity of the object. The
entangled-photon imaging system therefore offers
the flexibility of obtaining the same effect by
placing a complex optical apparatus in the idler
beam, away from the object.

Suppose now that A(x)=1, ie, that the 4
system simply directs the rays of the signal beam

onto D,. Equation (4) then becomes

C, =) f(x)B(x)dx )
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If the { B,(x)} form a complete set of orthonormal
functions, then the { C,} are simply the squared
magnitudes of the coefficients of an expansion of
the unknown function f(x) in this basis. Under
special conditions, the phases can be retrieved, and
the function f(x) completely reconstructed.

The special case in which B,(x)=d(x—x,),
i.e., when the system B, samples the idler field at

positions  x,, has been demonstrated
experimentally by using a scanning system [1]. In

our case, Eq. (5) then provides C, =|f(x,,)|2 S0

that the coincidence rate yields the intensity
transmittance of the object.

Consider now a system ‘B, that collects light
from two pinholes:  B,(x)=8(x)+8(x - x,).
Such system has been recently demonstrated [2].

Here Eq. (5) gives  C, =|f(0)+ f(x, )f°. As x,
is scanned, the coincidence rate C, provides the
same interference pattern that would have been
obtained if the object were illuminated with
coherent light and viewed through pinholes located
at x=0 and x=x,. The phase of the function
f(x) can in principle be reconstructed up to a
constant phase, the phase of f(0) . With the
magnitude and phase of f(x) determined,
complete knowledge of the object is retrieved.

In conclusion, Eq. (3) shows that complex object
information is encoded in the measured coincidence
rate. By appropriate choices of the systems
functions A(x) and B,(x), such information can
be extracted. Deviation of the function g(x,x")
from a delta function, resulting from partial
entanglement [3}, plays a key role in limiting the
resolution of this imaging system. This effect is
mathematically analogous to the effect of partial
coherence in ordinary imaging systems.
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