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Abstract—Noise and random fluctuations play an important
role in quantum electronic devices and systems. Such fluctuations
reside, for example, in the random creation of photons in optical
amplifying media and in the generation of electron–hole pairs in
ionizing regions of semiconductor devices. We provide an overview
of the fundamental random branching processes that underlie
optical and electronic gain. We describe branching processes as
concatenations of basic elements that comprise filtered Poisson
processes (shot noise) driving secondary Poisson processes. In
the presence of feedback, these elementary processes become
self-exciting in nature; they are then suitable for characterizing
squeezed light and sub-Poisson photon emissions.

Index Terms—Avalanche photodiode, branching process,
cascaded stochastic process, cascaded-Poisson process, com-
pound-Poisson process, doubly Poisson process, doubly stochastic
process, filtered Poisson process, fluctuations, gain, laser, mul-
tiply-Poisson process, noise, nonclassical light, optical amplifier,
photomultiplier tube, Poisson process, quantum electronics,
self-exciting process, shot noise, squeezed light, sub-Poisson light,
twin-photon beams.

I. INTRODUCTION

T HE OPTICAL amplifier, the laser, and the avalanche
photodiode are devices that lie at the heart of quantum

electronics. And the heart of these devices lie processes
involving the sequential generation of cascades of particles,
photons or electrons, in a chain-reaction-like branching fashion.
Whether it is photons in an optical amplifying medium, or
electrons and holes in a semiconductor device, the underlying
cascading process is described by the theory of branching
processes [1]. This mathematical construct, first set forth
by Irénée Bienaymé in 1845, is probably best known for its
successes in describing cosmic-ray showers and nuclear chain
reactions. However, it is also ideally suited to describing optical
amplification in laser media and electronic gain in avalanche
photodiodes (APDs). It permits us to determine the gain, time
response, and noise characteristics of these devices. Indeed,
various aspects of branching theory have appeared in one
form or another in the quantum electronics literature since its
inception.
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As Shimodaet al. [2] understood early on, photons in an op-
tical amplifying medium may undergo birth (stimulated emis-
sion) or death (absorption). The third process attendant to op-
tical amplification is immigration (spontaneous emission). In a
traveling-wave configuration, the photon amplifier is described
by the birth–death–immigration (BDI) process, a special case of
branching theory. The initial photon distribution is determined
by the statistical character of the light presented to the ampli-
fying medium [3].

A classical laser oscillator operates on the basis of these same
three processes but the photons are trapped by the optical res-
onator that provides the feedback. The ensuing gain saturation
results in a suppression of the exponential intensity growth that
characterize the laser amplifier. Nevertheless, the equilibrium
photon-number distribution that results bears the stamp of the
BDI branching process that underlies it [4].

Photodetectors with gain are also characterized by branching
processes. In this case, the birth, death, and immigration
processes are associated with charged carriers (electrons and
holes) rather than with photons [5]. Indeed, the very first
application of branching-process theory to the field of quantum
electronics was set forth in the context of photodetection. In
1938, when branching processes first found their way into
the physical sciences [1], [6], [7], [8], Shockley and Pierce
[9] used a branching-process model to calculate the gain and
noise properties of the electron-multiplication cascade in a
photomultiplier tube (PMT).

The branching-theory descriptions of these three devices
characterize not only the physics underlying their operation,
but also provide a measure of their noisiness. From an engi-
neering perspective, this allows the performance of systems
incorporating these devices to be determined. One example
is an optical receiver incorporating an avalanche photodiode
[10]. The beauty of the avalanche process is that every carrier
pair generated by a photon incident on the depletion region
undergoes a chain-reaction cascade that results in hundreds
more carriers being added to it by the time the carriers exit the
multiplication region and produce a current in the circuit. For
sufficiently small values of the photon flux, this process has
the salutary effect of amplifying the photon-induced current so
that it exceeds the receiver circuit noise, which thence serves
to improve the signal-to-noise ratio (SNR) of the system. For
sufficiently large values of the photon flux, on the other hand,
the noise associated with the branching of the charged carriers
in the device (gain fluctuations) is deleterious and reduces
the SNR. Thus, branching theory tells us when the use of
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Fig. 1. (a) Poisson generatorP generates a Poisson point process with
constant rate�. (b) A random linear filterL following P leads to generalized
shot noise. (c) The evolution of a self-exciting point process depends on the
occurrence times of past events. An arbitrary point process, with variability
greater or less than that of the Poisson, can be cast in the form of a self-exciting
process.

an avalanche photodiode in an optical receiver is useful for
enhancing performance.

Branching theory can also be of help in the design of superior
quantum electronic devices. For APDs, as an example, a dead-
space-modified version of branching theory [11] tells us that
thin devices should exhibit superior noise properties, and this
expectation is indeed borne out in practice [12].

This paper provides an overview of fluctuation processes in
quantum electronics that involve cascading and branching. We
make use of an approach that we have found to be useful in
our own work. Branching processes are considered as concate-
nations of elements comprising singly and doubly stochastic
Poisson processes and shot noises [13]. Along the way, the indi-
vidual elements themselves provide the photon statistics for var-
ious sources of light, which is also of interest in quantum elec-
tronics. We begin with the most elemental of such conceptions:
the homogeneous Poisson process, shot noise, and self-exciting
point processes. We end with cascaded and branching Poisson
processes.

II. POISSONPROCESSES

The homogeneous Poisson point process [14], which is illus-
trated in Fig. 1(a), is perhaps the simplest of random cascade el-
ements. It is characterized by a single quantity, its rate, which
is constant. Its distinguishing feature is that it is memoryless;
the occurrence times and numbers of events before an arbitrary
time have no bearing on the subsequent occurrence times and
numbers of events. Because of its simple properties, it forms a
suitable building block for more complex point processes and
cascades. In optics, a light source of constant intensity, such as
an ideal amplitude-stabilized laser, leads to photoelectron sta-
tistics characterized by the homogeneous Poisson point process
[10].

A. Shot Noise

A Poisson process of rate passed through a deterministic
linear filter with impulse-response function gives rise to
shot noise. Campbell obtained values for the mean and variance
of this continuous process in 1909 and used it to characterize
the emission of light [15]. The process was extensively studied,
and namedshot effect, by Schottky in 1918 [16]. When the im-
pulse-response function is of finite duration and the emis-
sions are dense ( ), the shot-noise amplitude distribu-
tion approaches Gaussian statistics [17].

Generalized shot noise arises when a Poisson process is
passed through a linear filter whose impulse response is a
random function chosen from a common distribution, as illus-
trated in Fig. 1(b). It has been shown [18], [19] that an ensemble
of stochastic impulse-response functions has an equivalent
deterministic impulse-response function that is suitable for
calculating the first-order statistics of the shot-noise process.

When the impulse-response function assumes the form of a
decaying power law, its characteristic time can become arbi-
trarily large or small. Such fractal (power-law) shot noise can
then violate the conditions of the central limit theorem where-
upon the amplitude distribution does not approach Gaussian
form for any value of the Poisson rate. The behavior of fractal
shot noise, and its generalized cousin, have been extensively
studied for a variety of parameters of the process [20]. For cer-
tain parameters, the power spectral density exhibits-type
behavior over a substantial range of frequencies, so that the
process serves as a source of shot noise for in the range

. For other parameters, the amplitude probability
density function is a Lévy-stable random variable with an order
parameter less than unity. This process then behaves as a fractal
shot noise that fails to converge to a Gaussian amplitude distri-
bution in the asymptotic limit as the driving rate increases. In the
domain of optics, fractal shot noise provides a suitable model for
describing the intensity statistics ofČerenkov radiation arising
from a random stream of charged particles.

B. Self-Exciting Processes

An arbitrary regular point process can be cast in the form of
a Poisson process with a rate controlled by past events, as illus-
trated in Fig. 1(c). In its most general form, the future evolution
of such a self-exciting point process depends on the occurrence
times of past events as well as on their total number [14].

A special but useful case occurs when the process has limited
memory; in particular, the interevent intervals of a homogeneous
self-exciting Poisson process with a memory that reaches back
exactly one event form a sequence of statistically independent
random variables (a renewal process) [14]. The dead-time-mod-
ified Poisson process, a renewal process, is of particular in-
terest in quantum electronics [21]. The circuitry at the output
of a photodetector, such as a photomultiplier tube operated in
the photon-counting mode, generally exhibits a fixed period of
time following the registration of an event, during which it is
incapable of registering another event, i.e., it is dead. Whether
the dead time assumes nonparalyzable or paralyzable form [22],
its presence serves to substantially regularize the photoelectron
point process. This, in turn, results in a photoelectron counting
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Fig. 2. (a) A Poisson point processP whose rate is a stochastic process
in its own right, is termed a doubly stochastic Poisson point process. (b) A
self-exciting point process whose rate is a stochastic process. (c) A random
linear filter L following a doubly stochastic Poisson process leads to doubly
stochastic generalized shot noise.

distribution whose normalized variance (count variance divided
by count mean) can reach substantially below unity, the value at
which it is fixed for a homogeneous Poisson process [22]. Such
counting statistics are therefore calledsub-Poisson.

III. D OUBLY STOCHASTIC POISSONPROCESSES

The doubly stochastic Poisson process has a rate that takes
on a stochastic nature of its own. This process was first exam-
ined by Wold [23]. Cox [24] studied this process extensively
and provided an example of its use in textile technology. The
designationdoubly stochasticwas introduced to emphasize that
two kinds of randomness are operative: randomness associated
with the point process itself and an independent randomness
associated with its rate, as illustrated in Fig. 2(a). The doubly
stochastic Poisson process, often called the compound Poisson
process, has become the basis for understanding photoelectron
statistics of all orders that result from the detection of clas-
sical light of all forms [25]. The rate of the point process is the
squared magnitude of the complex field. Particular attention was
devoted early on to unraveling the photoelectron statistics for
thermal light, which is characterized by a circularly symmetric
complex Gaussian field [25]–[28], and for interfering superposi-
tions of thermal and amplitude-stabilized (ideal-laser) light [25],
[28], [29].

A. Doubly Stochastic Self-Exciting Processes

The effects of dead time on a doubly stochastic Poisson point
process, illustrated in Fig. 2(b), are substantial and dramatic.
Though the complexity of the calculations quickly escalates, ex-
pressions for the dead-time-modified count mean and variance
have been obtained for thermal light [30], for shot-noise light
[31], which is a doubly Poisson form of light that will be dis-
cussed in some detail subsequently, and for fractal-Gaussian-
noise driven Poisson light [32].

B. Doubly Stochastic Shot Noise

The calculation of the statistical properties of doubly sto-
chastic generalized shot noise, illustrated in Fig. 2(c), was car-
ried out by Picinbonoet al. [28]. To incorporate the effects of
gain fluctuations inherent in the photomultiplication process,
they modeled the photomultiplier-tube anode-current pulses as
a sequence of independent nonstationary brief random impulse-
response functions drawn from a single probability distribu-
tion. They established that in the limit of dense photoemissions,

where is the rate of photoelectron arrivals andis
their effective duration at the anode, the asymptotic photocur-
rent resulting from such a filtered doubly stochastic Poisson
point process in general fails to converge to Gaussian form.
They therefore concluded that the central-limit theorem is not
applicable in this circumstance. They likened this behavior to
the result of finding the limit of a random number of indepen-
dent random variables, and cited Robbins’ 1948 study [28].

Among the specific results derived in this paper are the
single- and two-fold anode current distributions when thermal
light is incident at the faceplate of a photomultiplier tube. The
resulting generalized shot noise was found to be characterized
by an asymptotic probability distribution proportional to the
zeroth-order modified Bessel function of the second kind,.
In recent years, a number of important studies have elaborated
on the emergence of the distribution in this context [33].
The same distribution emerges repeatedly in quantum elec-
tronics; it is useful for characterizing the field and intensity
fluctuations of scattered light, as well as light that has been
transmitted through a random medium such as the turbulent
atmosphere [34].

IV. DOUBLY POISSONPROCESSES

The designationdoubly Poissonindicates the participation of
apair of Poisson processes. The simplest of the doubly Poisson
processes, illustrated in Fig. 3(a), concatenates a homogeneous
Poisson process, a deterministic linear filter, and a second
Poisson process. Since the output of the linear filter is shot
noise, this construct is given the appelationshot-noise-driven
Poisson process[35]. It is a special kind of doubly stochastic
Poisson process as can be understood by comparing Fig. 3(a)
with Fig. 2(a). A representative example of the applicability
of this process in optics is provided by cathodoluminescence.
Such light is generated when a Poisson stream of electrons (the
first Poisson) impinges on a phosphor whereupon it splays out,
over a small range of times of duration (the linear filter), a
random cluster of photons (the second Poisson). The statistical
properties of cathodoluminescence photons are well described
by the shot-noise-driven Poisson process [35].

A number of variations on this construct have been set
forth. A nonstationary version of the shot-noise-driven Poisson
process has been developed [36], as has a fractal shot-noise
version [37]. Moreover, general analysis, synthesis, and esti-
mation techniques have been developed for such fractal-rate
point processes [38].

Unfortunately, expressions for the photocounting distribu-
tions associated with shot-noise light are rather complex. This
is because they depend on a number of features of the process:
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Fig. 3. (a) A Poisson point processP (right) whose stochastic rate is shot noise
is termed a shot-noise-driven Poisson process. (b) A self-exciting process driven
by a shot-noise rate is, by analogy, referred to as a shot-noise-driven self-exciting
process. (c) The Thomas process emerges when the initial shot events not only
excite linear-filter responses but are also carried forward to the output; it is a
variation on the shot-noise-driven Poisson process.

the means of the two Poisson distributions, the spectrum of
the light, and the detector counting time. It turns out, how-
ever, that a simple two-parameter distribution, the Neyman
type-A [39], provides a remarkably good approximation to
the photocounting statistics of shot-noise light with arbitrary
spectral properties and arbitrary counting times [40]. This
distribution therefore plays the role for shot-noise light that the
negative-binomial distribution plays for thermal light [41]. An
accurate method for computing the tails of the Neyman type-A
distribution has been developed [42]. Conditions under which
it converges in distribution to the fixed-multiplicative Poisson
and to the Gaussian have been established [43].

In the context of quantum electronics, shot-noise light pro-
vides a suitable description for the statistical properties of light
generated by a number of mechanisms, including cathodolu-
minescence as described above [35],Čerenkov radiation from
a random stream of charged particles [37], [43], betalumines-
cence photons generated by high-energy electrons at the glass
faceplate of a photomultiplier tube [44], beta and radiolumines-
cence noise in star-scanner detection systems operating in ion-
izing-radiation environments of space [31], [43], and bending-
magnet light produced at the Brookhaven National Laboratory
vacuum-ultraviolet electron storage ring [45]. In the context of
visual neurophysiology, the Neyman type-A distribution is also
useful for understanding how a brief flash of Poisson photons
at the cornea is transformed into a sequence of neural events in
the visual system [46].

In certain cases, such as when detector dead time is present,
superior agreement with experiment is obtained by replacing the
second Poisson process in Fig. 3(a) with a self-exciting process,
as illustrated in Fig. 3(b). This representation is also a spe-
cial case of Fig. 2(b), since shot noise is a special stochastic
rate. Analytical results have been obtained for the count mean
and variance [30], [31], and for the interevent-interval distri-

(a)

(b)

(c)

Fig. 4. (a) A homogeneous Poisson point processP (left) followed by a
deterministic (stochastic) linear filterL generates ordinary (generalized) shot
noise. In this case, the shot noise represents the opticalfield, rather than the
optical intensity, as in Fig. 3, so it must be squared before serving as the rate
for the second Poisson process (P at right). This sequence serves as a model
for Poisson-triggered classical emissions and gives rise to photon statistics that
are noisier than those of the homogeneous Poisson process. (b) Poisson events
can, in the alternative, trigger nonclassical photon emissionsQ (e.g., single
photons), modeled by a self-exciting process. This construct cannot generate
stationary nonclassical light however. (c) The generation of unconditionally
sub-Poisson (photon-number-squeezed) light requires a concatenation in
which sub-Poisson events trigger sub-Poisson emissions, both of which are
represented by self-exciting processes.

bution [47], of shot-noise light in the presence of dead time.
Two optics experiments for which the shot-noise-driven self-ex-
citing process provides an excellent description are betalumi-
nescence in transparent materials [31] and the interspike-in-
terval histogram recorded from a cat retinal ganglion cell in
darkness [47].

Another variation, the Thomas process [48], is illustrated
in Fig. 3(c). This point process is a modified version of the
shot-noise-driven Poisson process in which primary events are
carried forward. In the limit of long counting times, it yields
the Thomas counting distribution [48], [49], whence its name.
Much like the Neyman type-A distribution, the Thomas also
converges in distribution to the fixed-multiplicative Poisson
and to the Gaussian in certain limits [43].

V. TRIGGEREDOPTICAL EMISSIONS

Many processes associated with the generation of light, clas-
sical and nonclassical alike, take place via the triggering of op-
tical emissions by point excitation events [50], [51].

The shot-noise rate function considered in the previous sec-
tion comprised a superposition of brief intensity flashes gener-
ated, for example, by luminescence emissions. This construct
is satisfactory when interference is absent so that intensities
may be added. A more general approach to shot-noise light
considers the superposition of brief nonstationary optical-field
wavepackets which may interfere with each other. The shot-
noise intensity rate function is then obtained as the absolute
square of the superposed analytic signal, as shown in Fig. 4(a).
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Fig. 5. (a) Series cascade of Poisson processes linked by linear filters. (b) Series cascade of Thomas processes. The trigger events are carried forward so that the
result is a Poisson branching process. (c) Parallel excitation of fully correlated Poisson processes such as occurs in spontaneous optical parametric downconversion.
(d) Fully correlated parallel shot noises arising from the simultaneous detection of twin photon beams.

The statistical nature of the emission times introduces fluctua-
tions manifested in the relative contributions of different emis-
sions at a given observation time. This results in the introduc-
tion of an additional particle-like contribution to the normalized
second-order correlation function of the light and a concomitant
increase in the photocount variance [50].

The emissions may be deterministic or stochastic, as indi-
cated in Fig. 4(a). For coherent or thermal wavepacket emis-
sions at Poisson trigger times, interference between the ran-
domly delayed emissions produces additional wave-like noise.
In the limit when the emissions overlap strongly, , the
field exhibits the correlation properties of thermal light, what-
ever the statistics of the individual emissions. This is a con-
sequence of the central limit theorem. In the opposite limit,
when emissions seldom overlap, the light intensity is describ-
able by a superposition of intensities as considered in the pre-
vious section, and the photocounts show enhanced particle-like
noise which exhibits its largest value when the counting time
is long. The photocounts then obey the Neyman type-A and
generalized Polya–Aeppli distributions for coherent and thermal
emissions, respectively [50].

For nonclassical emissions, neither the intensity representa-
tion nor the Poisson-photon generation process embodied in
Fig. 4(a) is applicable [51]. Rather, these must be replaced by a
quantum photon-generation processrepresented by a self-ex-
citing process, as shown in Fig. 4(b). This admits the possibility
of triggering single photons, or sub-Poisson clusters of photons.
However, even when the individual emissions comprise number
states, the Poisson trigger times result in the reduction or elim-
ination of their nonclassical character. Indeed, when the emis-
sions overlap strongly the asymptotic behavior of the field is that
of thermal light, just as if the individual emissions were classical
[50]. This perspective provides a physical underpinning for the
ubiquity of Gaussian light, which can be generated in various
ways.

It is clear from the foregoing that the direct generation of
stationary sub-Poisson (photon-number-squeezed) light cannot
be accommodated using Poisson trigger times. We have de-
veloped a more general theory in which the trigger times
are determined by a self-exciting process, as illustrated in
Fig. 4(c). In particular, results have been derived using trigger
times that fluctuate in accordance with a stationary renewal
point process (which can assume sub-Poisson form), and indi-
vidual emissions that are coherent, thermal, or-state in nature
[51], [52]. Spatial effects are incorporated into the model by
choosing the positions of the emissions to be independent and
uniformly distributed over the source volume. The normal-
ized second-order correlation function that emerges from this
construct contains the usual form for thermal light, but has
two additional terms. The first of these is determined by the
statistical nature of the individual emissions (it is positive for
coherent and thermal, and zero for single-photon, emissions).
The second term is governed by the statistics of the trigger
process (it is positive for super-Poisson, zero for Poisson, and
negative for sub-Poisson excitations). Both additional terms
become small for light with a high degeneracy parameter
(many total photons per emission lifetime), in which case the
light is asymptotically Gaussian. In the opposite limit, when
the degeneracy parameter is small (or the emissions are instan-
taneous), the correlation properties of the trigger process are
directly transferred to the correlation properties of the photons.
The first-order spatial-coherence properties of the field are
identical to those of thermal light (the van Cittert–Zernike the-
orem is obeyed), although the second-order properties differ.
The photon-counting distribution reflects the character of the
correlation function. Thus, sub-Poisson primary excitations,
together with single-photon emissions, leads to sub-Poisson
photon counts under appropriate conditions. Such nonclassical
light may be made arbitrarily intense if interference effects are
eliminated by detecting many spatial modes [52].
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This theory is applicable to the Franck–Hertz experiment
excited by a space-charge-limited electron beam. If the electron
excitations are represented as a sub-Poisson renewal point
process, and the photon emissions as single-photon states,
the light generated should be antibunched and sub-Poisson.
This indeed does turn out to be the case [53]. Ultraviolet
(253.7-nm) sub-Poisson photons were generated in mercury
vapor by inelastic collisions with a space-charge-limited
electron beam. This first stationary and unconditionally
photon-number-squeezed source, dating from 1985, was only
weakly sub-Poisson. However, the same excitation-control
approach has been successfully used in a number of labo-
ratories, in the form of suppressed-noise current sources, to
produce strongly sub-Poisson light from semiconductor lasers
and light-emitting diodes. This and other related techniques for
generating nonclassical light have been summarized in several
review articles [51], [54]–[57].

VI. BRANCHING PROCESSES

The analysis of doubly Poisson processes can be extended
to multiply-Poisson processes. The multifold statistics of the
events at the output of a series cascade of an arbitrary number of
Poisson processes have been determined [58]. A linear filter fol-
lowing the output of each stage converts the pulsatile sequence
of events into a stochastic rate function suitable for driving the
next Poisson process, as illustrated in Fig. 5(a). The greater
the number of stages of the cascade, the longer the tail of the
counting distribution.

If, instead, the cascade comprises Thomas processes, so that
trigger events are carried forward as illustrated in Fig. 5(b), the
result is the Poisson branching process [59]. This process char-
acterizes electron multiplication at the dynodes of a photomul-
tiplier tube. A useful limiting process of the Thomas cascade is
obtained when the number of branching stages is infinite, while
the average number of added events per event of the previous
stage is infinitesimal. In particular, when the branching is instan-
taneous, the limit of continuous branching yields the Yule–Furry
branching process with an initial Poisson population [1], [59].

Parallel, rather than series, configurations of mul-
tiply-Poisson processes can also be constructed, as displayed in
Fig. 5(c) (the doubly Poisson form is illustrated). In the context
of quantum electronics, photon streams with precisely these
properties are generated by optical spontaneous parametric
downconversion. A pump laser beam emits photons in accor-
dance with a Poisson process; each of these photons splits into
an entangled pair in a nonlinear optical crystal such that energy
and momentum are conserved. The resultant twin photon beams
are marginally Poisson, but are fully correlated with each other
[60], [61]. Filtered versions of these photon streams, illustrated
in Fig. 5(d), correspond to correlated shot-noise processes.

VII. CONCLUSION

The Poisson point process and its variations are useful for
describing many phenomena in optics, including the statistics
of photon emissions by various sources of light. The cascading
and concatenation of two or more such processes with linear

filters mediating them has been investigated. Cascaded versions
of these elements give rise to a rich hierarchy of branching
processes that are suitable for characterizing many important
optical and optoelectronic processes in quantum electronics.
Among these are photon multiplication in laser amplifiers and
oscillators, secondary emission in photomultiplier tubes, and
charged–carrier multiplication in avalanche photodetectors.

REFERENCES

[1] T. E. Harris,The Theory of Branching Processes. New York: Dover,
1963/1989.

[2] K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuations in amplifica-
tion of quanta with application to maser amplifiers,”J. Phys. Soc. Japan,
vol. 12, pp. 686–700, 1957.

[3] P. Diament and M. C. Teich, “Evolution of the statistical properties
of photons passed through a traveling-wave laser amplifier,”IEEE J.
Quantum Electron., vol. 28, pp. 1325–1334, 1992.

[4] R. Loudon,The Quantum Theory of Light, 3rd ed. New York: Oxford
Univ. Press, 2000.

[5] M. C. Teich, K. Matsuo, and B. E. A. Saleh, “Excess noise factors for
conventional and superlattice avalanche photodiodes and photomulti-
plier tubes,”IEEE J. Quantum Electron., vol. QE-22, pp. 1184–1193,
1986.

[6] K. B. Athreya and P. E. Ney,Branching Processes. New York:
Springer-Verlag, 1972.

[7] S. Asmussen and H. Hering,Branching Processes. Boston, MA:
Birkhäuser, 1983.

[8] S. K. Srinivasan,Point Process Models of Cavity Radiation and Detec-
tion. New York: Oxford Univ. Press, 1988.

[9] W. Shockley and J. R. Pierce, “A theory of noise for electron multi-
pliers,” Proc. IRE, vol. 26, pp. 321–332, 1938.

[10] B. E. A. Saleh and M. C. Teich,Fundamentals of Photonics. New
York: Wiley, 1991, ch. 17.

[11] M. M. Hayat, B. E. A. Saleh, and M. C. Teich, “Effect of dead space on
gain and noise of double-carrier-multiplication avalanche photodiodes,”
IEEE Trans. Electron Devices, vol. 39, pp. 546–552, 1992.

[12] M. A. Saleh, M. M. Hayat, B. E. A. Saleh, and M. C. Teich, “Dead-space-
based theory correctly predicts excess noise factor for thin GaAs and
AlGaAs avalanche photodiodes,”IEEE Trans. Electron Devices, vol. 47,
pp. 625–633, 2000.

[13] M. C. Teich and B. E. A. Saleh, “Cascaded stochastic processes in op-
tics,” Traitement du Signal, vol. 15, pp. 457–465, 1998.

[14] D. Snyder,Random Point Processes. New York: Wiley-Interscience,
1975.

[15] N. Campbell, “Discontinuities in light emission,”Proc. Cambridge
Philosophical Soc., vol. 15, pp. 310–328, 1909.

[16] W. Schottky, “Über spontane Stromschwankungen in verschiedenen
Elektrizitätsleitern,”Annalen Phys., vol. 57, pp. 541–567, 1918.

[17] S. O. Rice, “Mathematical analysis of random noise,”Bell Syst. Tech. J.,
vol. 23, pp. 282–332, 1944.

[18] B. Picinbono, “Tendance vers le caractère gaussien par filtrage sélectif,”
Comptes Rendus de l’Académie des Sciences, vol. 250, pp. 1174–1176,
1960.

[19] E. N. Gilbert and H. O. Pollak, “Amplitude distribution of shot noise,”
Bell Syst. Tech. J., vol. 39, pp. 333–350, 1960.

[20] S. B. Lowen and M. C. Teich, “Power-law shot noise,”IEEE Trans.
Inform. Theory, vol. 36, pp. 1302–1318, 1990.

[21] B. I. Cantor and M. C. Teich, “Dead-time-corrected photocounting dis-
tributions for laser radiation,”J. Opt. Soc. Amer., vol. 65, pp. 786–791,
1975.

[22] M. C. Teich and G. Vannucci, “Observation of dead-time-modified
photocounting distributions for modulated laser radiation,”J. Opt. Soc.
Amer., vol. 68, pp. 1338–1342, 1978.

[23] H. Wold, “Sur les processus stationnaires ponctuels,” inLe calcul des
probabilités et ses applications. Paris, France: Centre National de la
Recherche Scientifique, 1949, pp. 75–86.

[24] D. R. Cox, “Some statistical methods connected with series of events,”
J. Roy. Stat. Soc. Ser. B, vol. 17, pp. 129–164, 1955.

[25] B. E. A. Saleh,Photoelectron Statistics. Berlin, Germany: Springer-
Verlag, 1978.

[26] L. Mandel, “Fluctuations of photon beams: The distribution of the photo-
electrons,”Proc. Phys. Soc., vol. 74, pp. 233–243, 1959.

[27] G. Bédard, “Photon counting statistics of Gaussian light,”Phys. Rev.,
vol. 151, pp. 1038–1039, 1966.



1456 IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 6, NOVEMBER/DECEMBER 2000

[28] B. Picinbono, C. Bendjaballah, and J. Pouget, “Photoelectron shot
noise,”J. Math. Phys., vol. 11, pp. 2166–2176, 1970.
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