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Abstract—The authors determine the evolution of the photon
point process of a light beam as it passes through a traveling-
wave laser amplifier (TWA). In particular, when coherent light
is presented to the input of the amplifier, the output photon
statistics are characterized by a marked-Poisson (MP) point
process, which has a noncentral-negative-binomial (NNB) out-
put photon-number distribution (PND). Using this distribution
we calculate the probability of error (PE) for an ON-OFF key-
ing (OOK) direct-detection photon-counting communication
system, and show that the results differ somewhat from those
obtained when the Gaussian-PND approximation is used. It is
shown that receiver performance is optimized by filtering the
amplifier output. Analysis of the point process is of interest be-
cause it permits the time response of the amplifier to be deter-
mined; this, in turn, allows the effects of intersymbol interfer-
ence to be calculated.

I. INTRODUCTION

PTICAL-FIBER and semiconductor-laser amplifiers

have become ever more commonplace in optoelec-
tronic systems [1]. Such amplifiers are typically operated
either as traveling-wave or resonant devices, depending
on the application [2], [3]. Amplification results from the
interaction of photons with a large number of atoms for
which a population inversion is externally maintained.
The randomness of the photon generation process in these
devices is an important feature to be considered in sys-
tems applications. This randomness results from the char-
acteristics of the amplification mechanism and the spon-
taneous emission. Mathematically, it may be described in
terms of a random point process describing the time course

- of the photon events.

Optical amplifiers have been examined in the context
of quantum optics by a number of authors. Louisell and
his collaborators [4], [5] developed an early quantum
model of a linear, single-mode, phase-insensitive (inten-
sity) optical amplifier. The spatial propagation of the op-
tical field through the amplifying medium was replaced
by a time-dependent growth of the optical intensity. This
model has provided the basis for a number of general-
izations [6]-[15]. In several of these more general models,
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the photon-number distribution (PND) at the output of the
amplifier has been obtained in terms of the distribution at
the input.

Though it has its limitations, the population-statistical
approach first used by Shimoda, Takahasi, and Townes
[16] generally provides a suitable point of departure for
characterizing the photon-number statistics associated
with laser amplification [12], [17]. This approach has its
origins in the branching-process models developed long
ago for use in cosmic rays and population biology. It re-
lies on the birth-death-immigration (BDI) process, which
is well known in the theory of stochastic processes [18]-
[20].

Various versions of the BDI model have been used to
represent the processes of absorption, stimulated emis-
sion, and spontaneous emission in a cavity [21]-[25]. In
particular, Schell and Barakat [22] examined the approach
to equilibrium of the photon-number distribution for sin-
gle-mode cavity radiation, given a variety of initial PNDs.
They found that a Poisson initial distribution resulted in
a final distribution described by the noncentral-negative-
binomial (NNB) distribution with one degree of freedom
(M = 1). Shepherd and Jakeman [12] obtained the same
results from a quantum point of view by considering a
Poisson number of photons coupled to the cavity radiation
by means of the immigration.

The BDI model has also been used to determine the
photon-number distribution at the output of a rraveling-
wave amplifier (TWA). When the initial photon popula-
tion at the input to the amplifier is Poisson distributed (as
for coherent light), the PND at the output turns out to be
the NNB distribution, but with M degrees of freedom [26].
This distribution has been used as a point of departure for
calculating the performance of a simple photon-counting
lightwave communication system incorporating a TWA
[26], as well as that of a cascade of TWAs [27]. Results
for the PND at the output of a TWA have been derived
for a broad range of photon-number distributions at the
input [28].

In this paper we study the evolution of the photon point
process of a beam of light as it passes through a traveling-
wave amplifier, thereby generalizing the birth-death im-
migration number-statistics approach used by Shimoda,
Takahasi, and Townes [16] and others [21]-[28]. The
merit of our generalization lies in the fact that it reveals
the time dynamics of the amplification process, enabling
us to determine how the photons are splayed out along the
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time axis. In the number-statistics approach, in contrast,
time is integrated out so that only fluctuations of the pho-
ton number in a specified time interval are determined.
The point-process model is seen to provide a point of de-
parture for determining the amplifier response to short
pulses of light, enabling the degradation of receiver per-
formance arising from intersymbol interference to be cal-
culated.
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BD process, the probability that a particle is born (or de-
stroyed) during a short period A¢, about the time ¢, is pro-
portional to the system’s population # at that time as well
as to the duration At. The probability that more than one
particle is born (or destroyed) during At is o (At), i.e., is
of higher order and is ignored. With P(n, t) representing
the probability of finding a total population (number) of
n particles at time ¢, we have [29]

P(n, t + At) = Prob {(finding n at #) N (no transitions during At)}
+ Prob {(finding n — 1 at #) N (1 birth during A7)}
+ Prob {(finding n + 1 at ) N (1 death during At)}
= P(n, t) {1 — [na(@®)At + nb(t)At + o(AD)]}
+Prn—1,0)[(n — Da@At] + P(n + 1,¢t) [(n + Db(2)At] n

Each of the input photons in our traveling-wave config-
uration can be viewed as initiating its own birth-death
process. In Section II, we obtain the output number prob-
ability distribution (and probability generating function)
for a birth-death (BD) process with given (but possibly
varying) birth and death rates, for a single initial input
particle. In Section III, this BD process is used to char-
acterize the photon statistics of the amplified signal (AS)
of a TWA with a single photon at its input. The case of
coherent input light is also considered in this section; since
the AS behaves as a marked-Poisson (MP) point process,
the PND of the AS is shown to be a special case of the
NNB distribution with M = 0. In Section IV, we analyze
the amplified spontaneous emission (ASE) from a TWA,
which can be understood in terms of a sum of equivalent
AS components corresponding to the spontaneously emit-
ted photons. The ASE is also represented by a MP point
process, and its PND turns out to be the negative-binom-
ial (NB) distribution which is also a special case of the
NNB. In Section V, we provide the overall output photon
point process for the TWA. Using the results of Sections
III and IV, we confirm earlier results that the PND for a
TWA with coherent light at the input is described by the
NNB distribution. In Section VI, the probability of error
(PE) for a binary on-off keying (OOK) direct-detection
photon-counting communication system incorporating a
TWA is calculated using the exact NNB number distri-
butions, and the results are compared with those obtained
using Gaussian approximations for the PNDs. It is shown
that optimal performance of the receiver is attained by
designing it so that M is minimized. Finally, the conclu-
sion is presented in Section VII.

II. BIRTH-DEATH NUMBER STATISTICS

A BD process describes the population statistics of a
system in which each of the particles has a birth rate a(¢)
representing the probability density (s™') of producing
another particle, and a death rate b(¢) representing the
probability density (s~') of being destroyed. In a linear

so that

0P, 1) _ . Pl t+ A1) = P(r, 1)
3t At—=0 At

—nla(t) + b®IP(n, 1)
+@m— Da@)P(n — 1, 1)
+@n+ DbE)Pn + 1, 1).

i

2

This is known as the forward Kolmogorov equation for a
linear birth-death process.

The relationship between a probability distribution (PD)
P(n) and its probability generating function (PGF) G(s)
is defined in terms of

G(s) = g]o P(n)s". 3)

For a single initial particle, the PGF for the BD process
satisfies

1+ K—-n)) -1
1L—(nd(s—=1 ~

Ggp(s) = €Y

where
K = exp [Xo [a(x) — bx)] dx], )

)

{ng) = K So X ©

In the special case where a () and b(¢) are the constants
a and b, respectively, these formulas become

K=", (7
a

(ng) = —— (K -=1. (3)

a-b»b
Using (4) and the relationship

1[3"G(s

P(n)=—,[ f)] . ©
n. os s=0
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we obtain the probability distribution of a linear BD pro-
cess with a single initial particle,

1 - K+ {ny)

=0
Pap(n) L o) (10)
n -
v —K(no)"‘l n>90
A + Ln))"t Y’ '
The mean and variance of this distribution are
n=K an
and
Var (n) = K + 2K {ny) — K?, (12)
respectively.

I[II. AMPLIFIED SIGNAL IN A TRAVELING-WAVE
AMPLIFIER

A. Output Point Process for a Single Input Photon

We first develop the point process at the output of a
TWA in the absence of spontaneous emission. Consider
a TWA of length L and cross sectional area A containing
atoms with an energy-level difference that matches the in-
put signal photon energy kv, where & is Planck’s constant
and » is the optical frequency. For each interaction be-
tween a photon and an atom in the upper energy level
inside the TWA, there is a probability =, that the atom
will be stimulated (induced) to undergo a transition to the
lower energy level and, in the process, to emit a duplicate
(clone) photon with precisely the same characteristics as
the original photon. Similarly, for each interaction be-
tween a photon and an atom in the lower energy level,
there is a probability m,, that the atom will be induced to
undergo a transition to the upper energy level and, in the
process, to absorb the original photon. In the TWA, ex-
ternal pumping maintains a higher density of atoms in the
upper energy level than in the lower level. This popula-
tion inversion enables the TWA to amplify the input light.
The number of atoms per unit volume in the upper and
lower energy levels at position z are denoted N,(z) and
N, (2), respectively. We assume that the atomic densities
in both the upper and lower energy levels are uniform over
the cross sectional area of the TWA.

Photons travel along the axis of the amplifier (z-direc-
tion) at the speed of light ¢, so that the photon population
n in the TWA is specified by two variables, representing
the position and the time at which the photons appear, and
denoted z and ¢, respectively. The PD that describes the
evolution of the photon population in the amplifier is writ-
ten as

Pn, z,1)
= Prob {finding n photons at position z at time ¢}.
(13)

Using the approach of Shimoda, Takahasi, and Townes
[16], we assume that a transition (stimulated emission or
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absorption) occurs instantaneously when a photon inter-
acts with an atom. In the context of this model, an initial
signal photon entering the amplifier at the input z = 0 at
time ¢ = O gives rise to photons at position z only at time
t = z/c. Thus,

P(n, z),

“
I

P, z,t) =
6(n),

-
1+
ainanin

where 8 (n) is the Dirac delta function
n=0

1,
o(n) =
@ {0, n+0.

This is illustrated in Fig. 1.

During its transversal through a small width Az in the
amplifier, a photon encounters an average of N,(z)AAz
atoms occupying the upper energy level. Therefore, the
probability of a photon being emitted by stimulated emis-
sion from Az, during the time Az /¢, due to a single pho-
ton entering this region, is w,N;(2)AAz. Similarly, the
probability of a photon being absorbed is 7.,V (2)AAz.

Defining the quantities

Ys:(2) = 7uAN;(2), (14)

Yab (1) = AN, (2), 15)

we see that the gain coefficient is v4(2) — v (2). We
therefore obtain the differential-difference equation for the
photon-number distribution in a TWA at position z (at time
t=z/c)

a—Pg—';ﬁ = e @ + Yo @IP®, D)

+ (= Dy P — 1,2
+ (n+ DYap@PR + 1,7 (16)

which is recognized as the forward Kolmogorov equation
for a linear BD process given in (2).
Thus, in accordance with (4)-(6) and (10), we have

1+ (g - (namp>)(s - l)

Gas(s) = —— 6 =D 17
1 — g+ (N
BT
Pys(n) = oy (18)
_8Mamp)” >0
@+ gy 0 "
with
L
g = exp [ SU [v2@) — Yo )] dz] (19)
and L ®
Vst {2
Mgy = 8 SO 'sz. (20)
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Fig. 1. For a TWA of length L, with a single photon at its input at z = 0,
the AS appears at the output end only at t = L/c, and the population of
photons obeys a BD counting distribution.

In the special case where v, (z) and 7y, (2) are given by
the constants v, and 1,,, respectively, these formulas be-
come

g = exp [(vsr — Ya)L], @1
and

Vst
Yst — Yab

in accordance with (7) and (8). The mean and variance of
this distribution are then

(Mamp ) = (g — 1), 22)

s = 8 (23)

and
(24)

respectively. Equation (23) indicates that g is the mean
number of output photons when the input photon number
is unity; g therefore represents the gain of the amplifier.
Equation (24) shows that {n,,, ) characterizes the vari-
ability of the birth-death amplification process; therefore,
we define it as the amplification-noise parameter of the
amplifier.

In short, amplification in a TWA may be mathemati-
cally characterized by a BD process G,g(s), with ampli-
fier gain g and amplification-noise parameter {n,,,).

Varys(n) = g + 28 {Nampd — 8°

B. Output Point Process for an Arbitrary Sequence of
Input Photons

Knowledge of the single-photon response of a TWA en-
ables us to determine the output for an arbitrary sequence
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Fig. 2. (a) For coherent light at the input to the TWA, the photons obey a
Poisson point process. (b) The photon point process of the AS at the output
z = L is a marked-Poisson (MP) point process.

of photons at the input. Each of the input photons can be
viewed as giving rise to its own BD processes, with time
delay L /c, at the output of the amplifier. The output point
process is therefore the union of all these.

Input photons associated with coherent light, for ex-
ample, are characterized by a Poisson process with rate
\;. With laser light at the input to the TWA, therefore,
the AS photons can be modeled as a marked-Poisson (MP)
point process, as illustrated in Fig. 2. The marks, repre-
senting the random number of photons after amplification,
obey the BD counting distribution characterized by the
mark-PGF G 4 (s) defined in (17).

C. Photon-Counting Statistics for a Poisson Number of
Photons at the Input

The statistical properties of the AS, such as its photon-
counting statistics, inter-event-time statistics, and corre-
lation function can all be determined from the MP point
process associated with amplified coherent light.

In the counting time T, there are a Poisson number of
primary photons, each of which independently generates
a BD-distributed number of amplified photons. Thus the
total number of photons counted during T is the cascade
of these two random variables. The PGF of the total num-
ber of counted photons G s, is, therefore [20], [30],

Gs5c(5) = Gp(Gus(s)),

where Gp(s) is the PGF of a Poisson distribution with
mean input photon number {n;) = \,T, i.e.,

Gp(s) = exp [{n;> s — D]

@5

(26)
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Using (17) and (26), we obtain
gind(s = 1) ]
1= Mgmpd s — DI’ @n

From (9) and (27) we obtain the AS photon-number dis-
tribution

GASc(s) = C€Xp I:

3 Pamp) T g{n,)
Pase(m) = {(1 T <n,,,,,,,>)] *P [_1 + (m,,,,,,)]
. le—l)li_ g(ns) :l’
TR YT
where
: kn!
2 —
LED(=x) = Pl nn — IEH’ n>0

1, n=0.

This is a special case of the noncentral-negative-binomial
(NNB) distribution (see Section V) with M = 0. Its mean
and variance are

s = g4{ny) (29)
and
Vargs. (n) = g{ngd + 2g{n,) {nym), (30)
respectively, while its Fano factor is
Vv
Fuo = 2250 _ 1 4 gy GBI
N4sc

Equation (31) illustrates that an amplified coherent sig-
nal is noisier than the coherent light at the input, whose
PND is a Poisson distribution with a Fano factor of 1.
Even without spontaneous emission, the price of birth—-
death amplification is the introduction of multiplicative
noise resulting from the randomness of the process. Equa-
tion (30) shows that the AS noise consists of two terms,
the first of which is often referred to as signal shot noise
while the second is called amplification noise.

IV. AMPLIFIED SPONTANEOUS EMISSION IN A
TRAVELING-WAVE AMPLIFIER

A. Output Point Process

We now calculate the output point process for a TWA
with spontaneous emission occurring uniformly within it,
when there are no signal photons at the input. We assume
that each of the atoms in the upper level in the amplifier
has the same probability density p,, (s™!) of producing a
photon spontaneously into a single mode. The probability
density of spontaneous emission into M’ modes is defined
as Pg, so that [1]

Psp =M Py (32)
and
M = sp/psp- (33)

Because they are independent emissions, the photons
spontaneously emitted from the small volume surrounding
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Fig. 3. The MP point processes at the amplifier output, resulting from
spontaneous emissions in regions surrounding z,, z, and z, respectively,
are shown in (a)-(c). The different symbols represent different frequencies
(or polarizations or directions) at which the photons are spontaneously
emitted. The spontaneous emissions take the form of a Poisson point pro-
cess. The average height of the mark for a particular position represents
the gain of the BD process. Spontaneously emitted photons originating from
2, therefore experience a larger mean gain than those emitted from z or z,.

position z form a Poisson process with rate A(z). This
spontaneously emitted photon stream can be considered
as an equivalent input signal to a sub-amplifier extending
from position z to the output end of the TWA at z = L.
In accordance with the results in (17)-(24), the output of
the amplifier with this effective input may be described as
a MP point process, as illustrated in Fig. 3, with the mark-

G 1+ 8@ — (namp,@)]1 (s = 1)
N Sy P YA R

G4

where
L

g(2) = exp H 72 @) — Y (@')] dz’} (35)

and

a2’ &,
: 8@")

It is clear that the further the position z is from the am-
plifier output, the more the spontaneous emission photons
are amplified on average (see Fig. 3). Also, the higher the
density N, (z), the higher the rate A (2).

The ASE emerging from the entire TWA can therefore
be modeled as a point process formed from the union of
all the MP sub-processes produced by the photons spon-
taneously emitted from small volumes at different position
z along the amplifier. Since the spontaneous emissions

Ny () = 8@ S (36)
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Fig. 4. The total ASE photon point process at the output of a TWA is a
MP point process that is the union of the constituent MP processes gener-
ated from the photons spontaneously emitted from different positions z along
the amplifier.

from the different atoms are independent, and the ampli-
fier is assumed to be operating in the linear (unsaturated)
region, the overall ASE point process retains the form of
an MP point process [30], as shown in Fig. 4. The overall
rate is

L
Nasg = So P,AN, (2) dz, 37

and the mark-PGF is

L
SO GAS (S, Z) PspA-N2 (Z) dz

Gyse(s) = T
SO PspAN2 (Z) dZ

Using the results following (34), after some algebra we
obtain

1 - Py

Guse(s) In[1 = (ngm) (s — D]

ASE Tst

’

1 -

In (1 = (ngmp? (s — DI, (38)

ASETc
where {n,,,) is the amplification-noise parameter defined
by (20), 7. is the duration of a photon wavepacket (i.e.,
the coherence time [1]), and p,, = w,/7..
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In short, the ASE at the output of a TWA is repre-
sented, like the AS, by an MP point process but now with
a mark-PGF G sz (s) given by (38). This is illustrated in
Fig. 4.

B. Photon-Counting Statistics

With the ASE point process in hand, we can now ex-
amine its photon-counting statistics. Using (25), (26), and
(38), we obtain the PGF of the ASE photon-counting dis-
tribution

exp M aseT(Guse(s) — 1)}

G5 (5)

’

exp {)‘ASET)\

ASE T ¢

In[1 = Ngp) (5 — 1)]}

[l = {gm) s = DI7M,

(39)

with M = M'T/7.. Equation (39) is the PGF of a nega-
tive-binomial (NB) distribution with M degrees of free-
dom. Indeed, this negative-binomial distribution may be
viewed as a Poisson-driven logarithmic distribution, as
was established in the BDI literature long ago [31], [32].
Using (39) and (9), we explicitly write the ASE PND as

n+M-—-1
PASEc(n)=< >

n

)" 40
TR G

which, as will be explained in Section V, is also a special
case of the NNB distribution. The mean and variance of
the ASE photon-number are

Masee = M(ngmp) @n
and
Varsg. (n) = M{ngy) (1 + {Namp)), “2)
respectively, and the Fano factor is
Fasee = 1 + {ngmp). 43)

The number of degrees of freedom, more generally, is
given by

TA_2
. 4.1 + @2

~

(44)

where M’ = P, /p,,, as defined earlier. The quantity 7/7,
is the ratio of the counting time to the coherence time,
A/ A, is the ratio of the detection area to the coherence
area, and @® is the degree of polarization. This expression
for M is valid for T/7, >> 1 and A/A. >> 1 [33]. For
T << 1., A << A, and linear polarization, M = M'.
The number of modes M is therefore decreased by nar-
rowing the optical filter bandwidth at the output of the
amplifier (which increases the coherence time 7. and
thereby decreases M), by using a short integration time
T, by using a small detection area A, and by using linearly
polarized light (® = 1).
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V. OVERALL OuTPUT PHOTON POINT PROCESS FOR A
TRAVELING-WAVE AMPLIFIER

Armed with knowledge of the AS and ASE point pro-
cesses, we now examine the statistics of the photon events
at the output of a TWA with various kinds of input.

A. No Input Light

Without input light, the TWA output is simply the ASE
point process. As described in the preceding section, it is
therefore characterized by a MP point process (Fig. 4)
with a rate A\ 5z given by (37) and a mark-PGF Gz (s)
given in (38); its photon-counting distribution is the NB
distribution given in (40).

B. Single Input Photon

With a single photon entering the TWA at time ¢t = 0,
the overall output is the union of the AS and ASE point
processes. The overall point process therefore consists of
(1) a cluster of photons appearing at L /c with the PGF of
a BD process Gs(s) defined in (17), and (2) the ASE MP
point process with rate N (gz given by (37) and mark-PGF
G 45z (s) given in (38).

The total output photon-counting statistics, when the
counting time T covers the time point L /¢, is represented
by the PGF

GOhe(8) = Gus(s) * Gusec(s)

_ {1 + (8 = Mamp)) 5 — 1)]
R YY)

1= (N> (5 — nIM,
which is the PGF of the BDI process [26], [29].

(45)

C. Coherent Input Light

With coherent light at the amplifier input, the total
TWA output consists of two parts. The first part is, in
accordance with Section III, the AS MP point process with
primary rate A; and mark-PGF G,s(s). The second part is,
in accordance with Section IV, the ASE MP point process
with rate A ,gr and mark-PGF G,gz(s). Since the ASE is
independent of the AS, the union of these two MP point
processes is also a MP point process (see Fig. 5) with an
effective rate

)\out = )\s + )‘ASEa (46)
and with a mark-PGF
AG + MNiseG
G, (s) = 45 (5) ASE ASE(S)' @7

Nous

There are two convenient ways of determining the pho-
ton-counting statistics of the total output of a TWA with
coherent input light. First, since the ASE and AS are in-
dependent, the PGFs multiply, i.e.,

Goutc (S) = GASc (S) GASEc (S) . (48)
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Fig. 5. The totai output photor. point process of a TWA with coherent
input light is an MP process consisting of the union of the AS MP process
and the ASE MP process.

Using (27) and (39), we therefore have
g(ns> (S - 1) :|
1 = Angm> (s — 1)
: [1 - <namp) (S - 1)]_M- (49)

Alternatively, since the total output of the amplifier itself
is a MP point process, according to the approach used to
derive (27) and (39), we have

Gouc(5) = €xp Nou T(Gou(s) — D] (50
Using (46) and (47) in (50), we obtain
Goue(8) = exp INT(Gys(s) — D]
- exp [NuseT(Gyse(s) — D] (51)

which, with the help of (17) and (38), again yields (49).
Equation (49) is the PGF for the generalized Laguerre

polynomial distribution, also known as the noncentral-

negative-binomial (NNB) distribution [26], [28], [33]

— <namP)n _ g<”s> ]
Pau(c(") - (1 + (nw>)n+Mexp [ 1+ <namp)
L rM-b| _ giny) :l 52
La [ Gty (1 + <t ” 2
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where L% " is the generalized Laguerre polynomial

n
- + M- 1)
LU ()= B 5+ .
v N Y R M= Dl - PR
It is of interest to note that P4 (n) defined in (28) is a
special case of the NNB distribution P,,,.(n) with M= 0.

P 455 (n), defined in (40), is another special case of the -

NNB distribution P, (n) with {(n,) = 0. All three of the
PNDs, Ps.(n), P4sg.(n), and P,,.(n), are, therefore,
NNB distributions. The mean and variance of the total
output photon number of a TWA with coherent input light
are

Mowe = 8N + M<ng,,) (53)
and
Var, (n) = g{n,) + 2g(n;) {ngy,»
+ Mfamy) (1 + (ngwy)),  (54)

respectively, which accord with the expressions generally
used [2], [23], [34], [35].

From (54) it is apparent that the total output photon-
number noise of a TWA with coherent input light consists
of three terms, generally designated signal shot noise,
amplification noise, and ASE noise, respectively. The
signal shot noise (first term) arises from the presence of
the input light. The ASE noise (third term) is due to the
spontaneous emission arising inside the amplifier. The
amplification noise (second term) is a gain noise associ-
ated with the randomness of the amplification process of
the TWA, and is unrelated to spontaneous emission.

The semiclassical analysis of optical amplifier noise
gives rise to the same results as those given in (52)~(54)
{36]. In that theory, however, the amplification noise (the
second term on the right-hand side of (54)) is interpreted
as signal-spontaneous beat noise rather than gain noise.
The semiclassical theory imparts this interpretation be-
cause it treats the TWA as a purely deterministic amplifier
plus an independent additive interfering ASE source of
noise.

VI. AMPLIFIER PERFORMANCE
A. Probability of Error

Consider a binary on-off keying (QOK) direct-detec-
tion photon-counting lightwave communication system;
the photon-number statistics approach is adequate for this
configuration. If P, is the probability of mistaking ‘1*’
for *‘0”’, and P, is the probability of mistaking *‘0’* for
1>, and if the ““1”* and ‘“0’” bits are equally likely to
be transmitted, then the probability of error is [37]

PE = 1 (P, + P), (55)

with .
Po= 2 Py(ny, (56)

D-1
P = § Psy(n), (57

0

n
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so that

=3 D-1
PE =1 2 Py(m) + 1 2 Py(n). (58)
n=D n=0
The quantity D represents the detection threshold count,
and Py(n) and Pgy(n) represent the PND’s at the output
of the system when a ‘‘0’’ (the output is noise alone) and
a ‘‘1”’ (the output is signal-plus-noise) is transmitted, re-
spectively. Since “‘0’’ and ‘‘1°’ are equally likely to be
transmitted, the optimal threshold D resulting in the min-
imum PE is set at the point for which Py(D) = Py (D),
which is also known as the maximum likelihood threshold
[371.

We now evaluate the performance of such a system in-
corporating a TWA, in the absence of extraneous back-
ground light and with a receiver of unity quantum effi-
ciency and negligible dark and electronic (thermal) noise.
For simplicity, it is assumed that all of the signal photons
are collected in each bit and that there is no intersymbol
interference. Pgy(n) is then the NNB counting distribution
represented in (52) and Py(n) is the NB distribution rep-
resented in (40). Substituting these two distributions into
(58) allows us to calculate the PE for various values of
{n,). Because of the form of these distributions, (58) has
no closed form solution; thus numerical methods are used
to calculate it on a computer, and the results are shown
as the solid curves in Figs. 6-8 for various values of g,
M, and {n,,,,>. The results presented in these figures show
that: (1) increasing the mode parameter M increases the
PE of the system (Figs. 6 and 7); (2) increasing the am-
plification-noise parameter {n,,,» also increases the PE
(Figs. 8d-8f); (3) when g is small (< 10) increasing the
gain g increases the PE of the system; however, when g
is very large (>100), increasing the gain g has virtually
no effect on PE (Figs. 8a-8c).

B. Gaussian Approximation

Although using the NNB distributions provides an ex-
act solution for the PE, the numerical calculation is com-
plex and time consuming and difficult to carry out for large
values of n. Therefore, simpler approximate forms for the
PE are desired. Gaussian distributions, with the same
means and variances as those of the NNB and NB, are
often used to calculate the PE for lightwave systems using
TWASs [23], [38]. In this case, (58) becomes

1 1 ID—u||>
PE ~ |1 - -erf [—"1
2|: 2 <‘/§0’1

1 |D - Ilo|>]
—-ef [ ——— )|,
2 < \/5 (o))
where p,, 0, and pg, oy are the means and standard devia-

tions of the output when a “‘1’” and a ‘‘0”’ bit is trans-
mitted, respectively;

(59

erf (x) = 2 SO e " dt (60)

v
o~ 2= o
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Fig. 6. Probability of error (PE) for a binary OOK direct-detection system
using a TWA modeled by NNB (solid curves) and Gaussian (dashed curves)
photon-number statistics. In all cases (n,,,,> = g — 1. M takes the values
0.1, 1, and 10 as indicated. For (a)-(c) g = 2, whereas for (d)-(f) g =
10.
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Fig. 7. PE as shown is Fig. 7, except that the gain is now higher; for (a)-
(c) g = 100 and for (d)-(f) g = 1000.

is the error function; and D is the optimal threshold set at
the count for which Pgy (D) = Py(D). ,

Even using the Gaussian approximation, it is difficult
to calculate the appropriate value of D. Thus further ap-
proximation is useful. Under the conditions

_ L = ol
gy + (o)) (61)
0 = 0O,
(59) can be approximated by [37], [39]
N2
PE ~ 1 exp (-0 /2). 62)

V2r 0
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Fig. 8. (a)~(c) Influence of the amplifier’s gain on the PE. Each figure has
4 curves representing the PE calculated from NNB distributions with g =
2 (solid curves), g = 10 (long-dash curves), g = 100 (short-dash curves),
and g = 1000 (dotted curves). For all figures {n,,,,> =g — 1 and M =
(a) 0.1, (b) 1, and (c) 10. The short-dash and dotted curves are so close to
each other as to be indistinguishable. (d)-(f) Influence of the amplification-
noise parameter (n,,,> on the PE. Each figure shows the PE calculated
using NNB (solid curves) and Gaussian (dashed curves) statistics, with
{Ramp) = (d) 99, (e) 110, and (f) 150. For all figures g = 100 and
M=1.

This formula is often used for calculating the PE of an
OOK direct-detection system using a TWA [35], [38].
Using (62) we calculate the approximate PE of the system
with the same parameters as those used to calculate the
exact PE (solid curves) in Figs. 6, 7, and 8(d-f); the re-
sults are shown as the dashed curves in Figs. 6, 7, and
8(d-f). Comparing the two sets of curves, it is seen that
the Gaussian approximation generally overestimates the
PE, but with the parameters used, it is unexpectedly close
to the exact PE (<1 dB difference). However, although
the Gaussian and exact results are close, the optimal
threshold predicted by the Gaussian approximation is quite
different from that predicted by the NNB [26], [40].

C. Discussion

Care must be exercised when using (62) to calculate the
PE of an OOK direct-detection system using a TWA.
First, (59) must provide a proper approximation for (58),
since the PE depends essentially on the tails of Pgy(n) and
Py(n). Even though Pgy(n) and Py(n) can be approxi-
mated by Gaussian distributions under certain conditions
(e.g., a high input photon rate), this does not mean that
their tails can also be approximated by Gaussian tails. We
have shown earlier that the tails of the NNB distributions
do not approach those of Gaussian distributions, even
when the input photon rate increases without bound [26].
Secondly, even if (59) does provide a proper approxima-
tion to (58), we must make sure that the condition in (61)
is fulfilled in order to be able to use (62).

In the special case in which the quantum limit is to be
calculated, with a PE = 107° for example, only misses
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are possible and the probability P, of mistaking ‘‘1’’ for
‘0"’ is equal to the probability of detecting zero photons,
i.e., P; = P45 (0) = exp (—{ny)). When bit 0" is
transmitted, there are no photons; the receiver decides
correctly that bit ‘“‘0’’ has been transmitted, so that Py =
0. The PE is then, using equation (55),

PE = Jexp (= (n,)) = Lexp (—2¢n,)),  (63)

where
(n) = 34ny) (64)

is the overall mean number of input photons per bit. For
PE = 107°, (63) gives {n,) = 10 photons per bit.

However, using (62), we instead obtain a value = 38
photons per bit [38]. The discrepancy arises because (1)
at the quantum limit the input light is so weak that the
Gaussian is not a proper approximation for Pgy(n); and
(2) the ASE = 0 so that (61) is not satisfied. Therefore
(62) does not provide a good approximation in this case.
The result is analogous to that obtained when calculating
the quantum limit for an OOK direct-detection system us-
ing coherent light in the absence of an optical amplifier
(Poisson PND). Using the exact Poisson form of Pgy(n)
gives the well-known ‘‘quantum limit”> of 10 pho-
tons /bit, but using the Gaussian approximation, (62)
gives a value of 18 photons /bit [1].

VII. CoNCLUSION

We have shown that, with coherent light presented at
the input of a TWA, the output photons obey a marked-
Poisson point process which gives rise to the noncentral-
negative~binomial (NNB) photon-number distribution.
The amplification-noise parameter {n,,,,) represents gain-
fluctuation noise arising from the random nature of the
amplification process.

The results obtained here are also applicable to a cas-
cade of optical amplifiers, even in the presence of inter-
vening loss, provided that the mode parameter M is the
same for all amplifiers [27], [41].

The probability of error (PE) for a binary on-off keying
direct-detection photon-counting communication system
employing a TWA has been calculated using the noncen-
tral-negative-binomial distribution. The results show that
reducing the mode parameter M (by suitably filtering the
amplifier output), and reducing the amplification-noise
parameter {7,,,», can significantly improve the perfor-
mance of the system; however, altering the gain g of the
amplifier when it is sufficiently large (> 100) has virtually
no influence on system performance.

Furthermore, use of the Gaussian approximation for the
PE has been compared with the exact results for the PE.
They are unexpectedly close, although the optimal count
threshold predicted by the Gaussian approximation is very
different from that predicted by the exact NNB distribu-
tion.

The results obtained here enable the degradation of sys-
tem performance arising from intersymbol interference to
be calculated. It will be useful to extend this approach to
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include nonlinearity in the amplifier as well and we are
currently examining this problem [17].
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