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Noise in Resonant Optical Amplifiers of General
Resonator Configuration
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Abstract—The population-statistical description of a linear optical
amplifier, extended to include both a resonant optical cavity and ex-
plicit input and output photon fluxes, is shown to yield three useful
noise relationships. These apply to amplifiers of quite general resona-
tor structure, including those employing distributed feedback and dis-
tributed Bragg reflection. Despite the treatment’s plainly particulate
character, it provides an expression for the variance of the time-inte-
grated output-photon-detection process in which terms associated with
interferometrically generated beat noise are prominent. For systems
whose photodetector electrical bandwidth B is much smaller than the
amplifier’s optical bandwidth Av, as is almost invariably the case for
semiconductor amplifiers in lightwave-communication systems, the
time-integrated photocurrent variance can be written in a simple,
physically intuitive form. Two quotients are of central importance:
(Av/B) and the ratio ({ng)/{ nas >) of mean amplified-signal power
to mean amplified-spontaneous-emission power. In the usual case of
interest for optical amplifiers in communication systems, where { ng )
>> (nage ), the signal-to-noise ratio of the integrated photocurrent,
on which the error probability in an on-off-keyed system depends, is
= I:(AV/B) (("5)/(”/\51-:))-

1. INTRODUCTION

HE photon-statistical treatment of noise in inverted-
population amplifiers has its origins in the efforts of
Shimoda, Takahasi, and Townes [1] to apply simple
branching-process ideas from cosmic-ray counting and
population biology to fluctuations in the internal photon
population of a maser. Their work resulted in a set of quite
general expressions for the moments and distribution of
the maser’s internal photon number. More than 20 years
later, Yamamoto [2] recognized that the variance expres-
sion obtained from this particle treatment could be re-
written as a simple, physically-transparent equation con-
taining contributions from both beat noise and shot noise.
The resulting well-known expression for the variance [3]
has served as a point of departure for a good deal of the
subsequent work on the subject.
Although treatments of this nature have been extended
to resonant Fabry-Perot-type optical amplifiers [2], [4],
[5], the photon statistics in their usual form apply prop-
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erly only to amplifiers of traveling-wave structure. There
are two reasons for this. First, the treatment describes only
the amplifier’s internal photon population, which is
viewed as evolving stochastically from some initial pho-
ton distribution at the time origin. There is no provision
for a continuous input-photon flux representing a signal
incident upon a resonant structure, nor is there any ex-
plicit outpur-photon flux. While this is not troublesome
for traveling-wave-amplifier descriptions, where the out-
put is taken as the internal photon population delivered
through the structure after a single-pass transit time, dif-
ficulties arise when the treatment is extended to resonant
structures, where the output process is not readily viewed
as the offspring of an initial distribution after a fixed time
interval. In addition, for power gains greater than unity
(i.e., amplification), the model’s internal population must
be described by a process whose mean grows exponen-
tially in time; hence, when the model is applied to such
devices, its time variable must be interpreted as a well-
defined propagation time for a wave traversing an effec-
tively single-pass structure.

Furthermore, a shortcoming for both traveling-wave and
resonant amplifier treatments is that, since the standard
photon-statistical description treats only the internal pho-
ton-number evolution, it yields no temporal information
about the output-photon point process. In particular, it
does not reveal the output correlation properties. Hence,
one obtains little direct information about the higher mo-
ments of the photocurrent that would be measured by a
real, bandwidth-limited photodetector placed at the am-
plifier output.

In spite of these obstacles to a theoretical treatment of
their noise, resonant optical amplifiers command increas-
ing interest. In addition to the familiar Fabry-Perot de-
vices, amplification has recently been demonstrated in
novel resonant structures. For example, optical amplifiers
incorporating distributed-feedback (DFB) resonators have
recently been shown to be capable of rapidly tunable,
high-resolution, wavelength-selective amplification [6]-
[9]. However, little is known about their noise properties
[10]. Thus, a noise theory that proceeds directly from the
statistics of the ourput photon number, rather than the in-
ternal photon population, and that applies in general to
resonant optical amplifiers, would be welcome.

Recently, significant progress toward this end has been
made by introducing new variables into the formal
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branching-process treatment [11], [12], and by reinter-
preting old variables along lines first suggested in the pa-
per of Shimoda.er al. [1]. This has generated the begin-
nings of a fully photon-statistical theory of amplification
noise in resonant optical structures. One virtue of this
treatment is that all statistical quantities of interest, in-
cluding both the distributions and the correlations of the
detector’s time-integrated photocurrent, are obtained di-
rectly from the photon statistics themselves, without re-
course to phenomenological modifications aimed at ac-
counting for the finite RF bandwidth of the photodetector.
As before, the formal results are fairly abstract. However,
we show in this paper that some simple physics lurks
within them and that, if this is recognized, one can draw
several useful inferences. By examining the resonant am-
plifier’s output photon-counting process in much the same
spirit as that applied by Yamamoto to the internal-popu-
lation branching process of a single-pass device, we show
that the resonant amplifier’s output statistics can be recast
in a simple, physically-transparent form. In particular, the
physics responsible for the form of the variance expres-
sion is clarified revealing that, as with the internal popu-
lation number, the prominent output-noise terms take the
form of a combination of interferometric beat noise and
shot noise.

We first review the state of theoretical knowledge about
the internal-photon statistics (Section II) and the output
fluctuations (Section III) of resonant optical amplifiers,
pointing out, enroute, this treatment’s relationship to ear-
lier work. We then establish a physical interpretation
(Section IV) that illuminates the mechanism responsible
for the photocurrent variance generated by a detector
placed at the amplifier output. Finally (Section V), we use
the physical insight so obtained to generate three relation-
ships governing the noise in resonant optical amplifiers.
Applications to DFB amplifiers in lightwave-communi-
cation systems are pointed out.

II. ReESONANT-CAVITY POPULATION STATISTICS

Following the early work of Shimoda er al. [1], the am-
plifier’s photons are treated as a population governed by
a simple birth-death-immigration process, with birth and
death representing stimulated emission and absorption,
respectively, and with immigrants supplied by a sponta-
neous-emission process. The birth rate aN and death rate
bN then depend on the population size N, whereas the
immigration rate ¢ does not. We cast the discussion en-
tirely in the language of population statistics, whose un-
derpinnings in the quantum statistics of an electromag-
netic-field mode interacting with a two-level atomic
system have received attention elsewhere in the literature
[13]-[16]. The amplifier is assumed linear in the sense
that light incident upon it is coupled to a collection of
nonsaturable atoms.

By taking the limit of a difference equation it is easy to
show that the probability P (N; ¢) of finding N individuals
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in the population at time ¢ satisfies the set of forward Kol-
mogorov equations

%P(N; t) = —[(a + b)N + c] P(N; 1) _

+ [a(N = 1)+ c]P(N - 1;1)

+b(N+ 1)P(N + 1;1) (1)

whose initial condition is provided by the initial distri-
bution P(N; 0). The solutions of (1) for arbitrary time
and for an arbitrarily-distributed initial photon population
Ny = N(t = 0), though well known [1], are complex.
Even the population’s first two central moments are un-
wieldy:

(NY = (No) ™" 4 [P — 1], (2)
) _la+b ab + c(a — b)
ar(v) = | 252 () + wrees

+ var (NO)} e2ta=hi

_|latd c(a + b)
Ll S (No) + (a - b)z}
. e(u*bb/ 4 bC . (3)
(a = b)

These have simple physical interpretations, however.
Equation (2) says that after a time 7, the amplifier’s initial
population N, has on average experienced a gain of
e“™?" with its spontaneously-emitted population simi-
larly amplified. Equation (3), a cornerstone of recent op-
tical-amplifier-noise discussions, has been shown by Ya-
mamoto [2] to represent beat noise, shot noise, and other
fluctuations that are usually negligible.

Although (2) and (3) hold for arbitrary (but constant)
a, b, and ¢, it is evident that gains larger than one occur
only if the stimulated-emission coefficient a exceeds the
loss coefficient . In this case, however, N is nonstation-
ary and has a mean that grows exponentially in time.
Thus, the treatment applies naturally only to single-pass
amplifiers possessing a well-defined wave-propagation
time f.

Imposing a resonant cavity on the population is in fact
a simple matter, however, and it results in considerable
simplification of the expressions provided above. One
need only reinterpret several variables [1], [11], [12].
Since the above discussion assumes no particular struc-
ture for the amplifier, (1)-(3) actually continue to apply.
However, the existence of a stationary equilibrium cavity
population N for large ¢ requires that the formal rate coef-
ficients satisfy » > a, which in turn forces one to view
the device’s gain a little differently than before. This is in
any case unavoidable since, for b > a, it is known that
the equilibrium population properties are independent of



GOLDSTEIN AND TEICH: NOISE IN RESONANT OPTICAL AMPLIFIERS

the initial population N,. The equilibrium distribution
P (N) is then of simple negative-binomial form [11]:

N c/a) — 1 N c/a

< H»C) ><a/b> (1 = a/b)”
Pg(N) = N =0

0, N<O. (4)

Imposing a cavity and allowing b > a (and therefore
losing the statistical dependence on N;) has a second con-
sequence: the quantity representing the amplifier’s input
has vanished. This may be remedied [1] simply by rein-
terpreting the description’s immigration parameter c. For
the results to this point, ¢ represents only spontaneous
emission and is set equal to a. One now lets it also rep-
resent the photon flux incident on the amplifier, by virtue
of which signal photons enter the cavity at a constant rate
¢; per unit time. Thus, the entire description obtained so
far remains intact, with the immigration rate given by ¢
= ¢; + a. In particular, the first two moments of the cav-
ity population are still given by (2) and (3). However, for
b > a, all the exponentials in (2) and (3)—which yield
the dominant terms in the standard treatment due to Ya-
mamoto [2], [4], [5]—decay away with time. Only a few
terms then remain, and the moments of the equilibrium
population become simple indeed:

(Ny =32 (5)
b(a + ¢;)

var(N) = ——-. 6

ar(v) = e (6)

At equilibrium, the cavity thus contains an average of
¢;/(b — a) daughter photons from the amplified-signal
process and a /(b — a) due to spontaneous emission. The
quantity (b — a)~', which is proportional to the quality
factor of the loaded cavity, will be seen to determine the
crucial correlation properties.

III. OuTPUT-PROCESS STATISTICS
A. Moments

Despite the simplicity of the resulting expressions, the
reinterpretation just described illuminates only the cavity-
population statistics. The statistics of central concern,
namely those of the amplifier’s output photon number,
have not been dealt with. Indeed, the description as it
stands contains no output flux at all. Again, this may be
remedied [11], [17] by reinterpreting a branching-process
variable. Whereas b had previously represented only in-
ternal losses, one now includes in it losses through the
amplifier’s coupling ports. Thus, one sets b = b, + b; +
b,, representing the processes by which photons are lost
internally at a rate b, N, are coupled out the device’s input
port at a rate b; N, and are coupled to the output port at a
rate b, N. This results in increased damping but requires
no formal changes in the expressions obtained so far.
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We now have the process of central concern, namely
the counting process defined by the coupling of cavity
photons to the amplifier’s output port. Its statistics are
needed. The distribution P°“™(n; T) is defined as the
probability of obtaining n photoelectron counts at the de-
tector within an integration time 7 when the cavity pop-
ulation is in the steady state. Its associated factorial-mo-
ment-generating function Q°™(s; T'), defined by

Qcoum(s; T) - ngo Pcoum(n; T) (1 - 5)'1’ (7)

has been derived in [11], [12] and is
Qcounl(s; T)
=exp [v(1 + ¢;/a)] - {cosh y(s)

+ [ y(s)/2y + v/2y(s)] sinh y(s)}_“m/u)

>

(8)

where
y=(b-a)T/2 (9)
y(s) = Vy* + ab,sT> (10)

Inverting (8) presents difficult integrals, so it does not
readily yield an expression for P°°“™(n; T) that is valid
for arbitrary T. However, by differentiating (8) and set-
ting s = O one obtains the factorial moments of the count-
ing distribution, and from these the central moments fol-
low. We need only the first two. The mean

bo(a + Ci)

(ny = =2~ (11)
could have been readily guessed; by comparison with (5),
it is evident that the mean photocount registered in time
T is simply b, T times the mean equilibrium cavity popu-
lation. However, the photocount variance is far less trans-
parent:

_alat ),
var(n) = (b - a)4 [(p )T
4 e -7 _ 1] +MT. (12)

b

B. Correlations

To reveal the physics lurking in (12), we need the two-
time correlation properties of the cavity photon popula-
tion N and the output photon number n, which are known,
and which we express in autocovariance form. For the
equilibrium cavity population, the usual normalized au-
tocovariance is [11]

(N(1) N(12)) = (N
(N’

a 1
— + 7(bfa)\lzfn\’ 13
<a ¢ <N>>e (13)
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where ¢, and ¢, are arbitrary times. For the output counting
process, a corresponding quantity, the normalized inte-
grated photoelectron-number autocovariance, may be
constructed by considering the covariance of the number
n of counts in (#;, t; + T) and the number n’ of counts
in the nonoverlapping interval (¢,, ¢, + T'). This function,
defined by

(n(t) (1)) — (n)’
(n)

1 o o

= 2 2 (n={ny)(n = (n))

B <Vl>2 n=0n"=0

' Pmum(n, n'st, t, T),

(14)

where P“™(n, n’; t;, t,, T) is the joint distribution of n
and n', can be written [11] as

(n(t) n(1)) = (n)’

(ny’
__a <sinh [(b - a) T/2]>ze“u,-u>|mn
a+c (b —a)T/2 -

(15)

The assumption of nonoverlapping counting intervals re-
quires that |7, — ¢;| = T, with equality occurring in the
case of contiguous intervals.

Optical fluctuations in the amplifier and its output occur
over the time scales represented in the autocovariance
functions of (13) and (15). According to (13), the two-
point correlation properties of the internal photon number
N are determined by the function ¢~ ¢~ ®!2-1l Thyg, the
population fluctuations may be characterized by a corre-
lation time

(16)

whose inverse measures the amplifier’s bandwidth

Av =77 = (b - a). (17)
These two equations express the reasonable assertion that
if the birth rate aN and death rate bN are nearly equal,
then the cavity population exhibits correlations over long
time intervals. If the integration time T is small compared
to the cavity correlation time (b — a)~!, (15) shows that
fluctuations in the photocount n follow those of N. How-
ever, for integration times T >> (b — a)™!, it is easy to
show from (15) that the integrated count covariance sat-
isfies

() n()) = (n) _
(n)’

{(b —la)TT’ (18)

[EEE JOURNAL OF QUANTUM ELECTRONICS. VOL. 25. NO. 1. NOVEMBER 1989

which implies that the integrated photocount correlations
vanish for such large T.

IV. PHYSICAL INTERPRETATION
A. Limiting Forms of Amplification Noise

The physical mechanisms responsible for the photo-
count-variance expression of (12) are revealed by a little
algebra, if one considers two limiting cases. We examine
the noise behavior of amplifiers followed by optical de-
tectors that are, in turn, broadband and narrowband with
respect to the amplifier’s bandwidth. For detectors whose
bandwidth B = (1/T) is much larger than the amplifier
bandwidth (b — a), the photocount variance, given by
(12), may be expanded as a Taylor series in T, yielding

bya(a + ¢;) 72

var(n) = b a)z
b,(a + ¢;) T

b-a) B > (b - a),

(19)

where we have discarded terms above second order. On
the other hand, for detectors of bandwidth B << (b —
a), the exponential in (12) becomes negligible, so that

2b2 + ¢
oa(a c,)T

var(n) = b 0)3
b,(a + ¢;)

(b - a) T, B<< (b-a).

(20)

Some order is introduced by observing that the cavity
population consists of amplified-signal photons entering
the cavity at rate ¢; and amplified-spontaneous-emission
photons generated at rate a, each undergoing a cavity
buildup determined by (b — a)~', as indicated by (5). In
an interval 7, on the average, a fraction b, T of each sub-
population is coupled to the output and detected, possibly
with interaction. Thus, from (11), the mean photocount
can be expressed as the sum (n) = {(ng) + (nase),
where

boci
b—-a

(ns) = T (21)

is the average number of amplified signal photons and

b,a
b —a

(Nase) = T (22)

is the average number of amplified spontaneous-emission
photons detected in time 7. This generates a total inte-
grated photocurrent i = hvRn /T in a detector of respon-
sivity R, with a rectangular impulse response of duration
T, for photons of energy hr. Hence, making use of (21)
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and (22) in (19) and (20), the variance of the integrated
photocurrent may be written simply as

hvR\? 2
(<TR> {(”ASE> + {ng) {nase)

+ (ng) + (”Asrz)}.
B >> (b - a),

var (i) = 2<hLTR>2 {<%> (Mase)” + <%>

) (mey + (52 4 Staed ]

. B << (b-a). (23)

B. Limiting Forms of Interferometric Noise

To shed light on the variance expression of (23), we
compare it with the photocurrent fluctuations that result
when the fields emitted by two identical but independent
single-mode semiconductor lasers are allowed to fall on
the surface of a square-law detector. Optical phase fluc-
tuations are then interferometrically converted to inten-
sity, and hence to photocurrent fluctuations. We represent
the lasers’ emitted electric fields E, ,(t) in the usual way
as E; (1) = Aj y exp i(wyt + ¢ 5(1)), where wy is the
center optical angular frequency, common to both lasers,
A, , are the respective polarization vectors, and b1.-(1)
are independent Wiener-Levy random walks representing
the respective optical phases [18]. We assume the lasers
to have identical linewidth Ap’; hence, the ¢, ,(t) are re-
lated through their structure functions ¢ [&1.2(8)
é12(t) 1) = 2740 |1, — 1 | where ¢, and t, are arbi-
trary times.

A lengthy argument via the fourth-order coherence
functions of the electric fields [19] shows that the resulting
photocurrent’s two-sided power spectral density is given
by the Lorentzian

S; (v) =2R2P1P2<_A—2V_7>» (24)

T (Av') + v
where P, , are the optical powers transported by the in-
terfering beams, whose polarization states we assume to
be matched. R is again the responsivity. Taking the inte-
grating detector, for computational simplicity, to have a
rectangular RF passband of (0, B’) Hz implies that the
variance of the detector current is

2 S”' <R2P|P2Au’
(AV’)2 + 0

var (i) > dv,  (25)

w J-B’

which integrates to

4
var (i) = — R’P\P, arctan (B’ /Av"). (26)
™
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If noise of this sort arises from two processes, taken to be
independent, and representing both signal-spontaneous
and spontaneous-spontaneous beating, then the photocur-
rent variance is

4
var (i) = po R?[ P}sg arctan (B'/Avly )

+ PgPysg arctan (B'/Av, )],  (27)

where P,ge and Pg are the mean amplified-spontaneous-
emission (ASE) power and mean signal power, respec-
tively, and where Aw{, o, and Av{, are the widths of the
spontaneous-spontaneous and signal-spontaneous beat-
noise spectra. Our concern is with the limiting forms of
(27) for large and small detector bandwidths B'. Taking
limits, and using the relations P sz = v ({ng asg ¥/ T)
between mean optical powers and mean counts, gives

[ 2
2<#> {(nASE>2 + (ng) <nASE>}v

B’ >> max (Avs,sp, Ausp,sp),

4 (hR\’ B’ 2 B’
i =4 2 () (o) e’ (515)
e T\ T Avg o (nase)” + Apg

* {ng) <”ASE>},

\ B’ << min (Avg g, Avg, ).

(28)

C. Comparison of Amplification Noise With
Interferometric Noise

It is now easy to appreciate the physics inherent in the
resonant amplifier’s output photocount variance, given by
(12). In the limits of broad and narrow detector RF band-
width, (12) takes the form of (23); thus, in either limit
the photocount variance may be written as a sum of four
terms. The first two of these, which depend on { n,gg )2
and {ng){nase ), are of precisely the same form as the
beat-noise variance expressions of (28), obtained by ex-
amining the interference of two uncorrelated, phase-fluc-
tuating single-mode waves. In fact, the expressions are
identical up to constant factors that result from the simple
bandwidth measures, different for (23) and (28), that were
chosen to facilitate the integrations. Furthermore, the sec-
ond two variance terms of (23) are also easy to appreciate.
For arbitrary integration times T, these may be written as

2e<e(ﬂz + e—<nASE>> L
T

T )37 (29)

where e is the electronic charge. This is just the familiar
expression for the variance due to shot noise.

Thus, the photon-statistical model of a linear optical
amplifier, extended by adding a resonator and explicit in-
put and output signals, provides a noise description that
is in fact transparent. The integrated photocount variance
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contains four terms representing, respectively: sponta-
neous-spontaneous beat noise, signal-spontaneous beat
noise, amplified-signal shot noise, and amplified-sponta-
neous-emission shot noise. The beat-noise terms have
their origin in the nonlinear interaction between the signal
and the ASE fields. The shot-noise terms arise from the
detector’s linear filtering of the fluctuations residing in-
dividually in the signal and ASE output point processes.
Remarkably, a modified, but simple, branching-process
characterization captures both.

V. APPLICATIONS

Having resolved the variance of i into a sum of contri-
butions from four physical processes, as shown in (23), it
is easy to identify the conditions under which each con-
tribution becomes important. For example, shot noise
generally dominates for very short integration times 7, as
may be seen from (23) by inspection, setting max ({ ng ),
{nasg?) < 1, or from (12) by taking the small-7 limit.
However, our concern is to describe systems that now
show practical promise. Thus, we restrict our attention to
semiconductor amplifiers and, in particular, to their ap-
plications in optical communications systems. Intensity-
modulated non-return-to-zero (NRZ) binary signaling at
1 Gb/s is assumed. Our comments hold for resonant de-
vices of rather general structure, including those with Fa-
bry-Perot, distributed-feedback (DFB), and distributed-
Bragg-reflector (DBR) resonator configurations. Opera-
tion below the lasing threshold is assumed.

For this broad class of device, the short-counting-time
limit mentioned a moment ago is of no interest. This is
because the RF bandwidth B of a minimum-error-rate de-
tector is on the order of the bit rate; thus, to amplify the
significant frequency components within even the infor-
mation bandwidth of the signal requires Av = B or equiv-
alently, from (17), T = (b — a)~'. Moreover, one is
actually concemed principally with much longer counting
times. The optical bandwidths A» of current research de-
vices, even DFB’s and DBR’s operated near threshold
[6]-[9], are rarely smaller than 10 GHz, with Fabry-
Perot-type devices typically being far broader. We there-
fore confine ourselves to amplifier-detector combinations
satisfying Av >> B or, equivalently, T >> (b — a)~".
From (11) and (23), the first two moments of i for such
systems are

b .
(iy = hVRH = WRB((ng) + (nase)).
(30)
var(i) = 2(hvRB)’ {<£> (nase) + (%)

“(ns) (nase) + % + (”;s;s)i. (31)
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This variance expression, written explicitly in terms of
the first moments of the two counting distributions, per-
mits three broad observations.

First, by comparing the first pair of terms in (31) with
the second pair, it follows that the ratio of beat-noise
power to shot-noise power in the photocount, or equiva-
lently in the photocurrent, is given by

var (i)

beat B _ 2
W = 2<_A_v> (Nasg) = <m> Pase,  (32)

shot

where P,gg is the average amplified-spontaneous-emis-
sion optical power. Thus, the fraction of noise power re-
siding in terms of interferometric origin is proportional to
the mean ASE power divided by the amplifier’s optical
bandwidth. For InGaAsP DFB amplifiers biased close to
threshold, one typically finds that P,z = —15 dBm
and Ay = 10 GHz [9]. Thus, one expects beat noise to
dominate shot noise by about four orders of magnitude.
In traveling-wave amplifiers, by comparison, beat noise
has similarly been found to dominate, typically by 2-3
orders of magnitude [20]. We consequently confine our
attention to beat noise.

Second, by comparing the first and second terms of
(31), it is apparent that the ratio of signal-spontaneous to
spontaneous-spontaneous beat noise is simply equal to the
first-moment ratio

ﬂ)s-i ~ (Ps/Pasg) = (c;/a).

var (i) (33)

The powers appearing in (33) are readily measured: Pagg
by blocking the signal, and P with the help of a lock-in
amplifier [9]. As will be seen momentarily, large photo-
current signal-to-noise ratios require that the quotient ¢;/a
be large. Thus, when the system is configured to produce
small error rates, the photocurrent variance will be dom-
inated by signal-spontaneous beat noise. This, too, is true
of traveling-wave and Fabry-Perot amplifiers [20].

Finally, defining the signal-to-noise ratio of the output
photocurrent as (is)z/var (i), it follows from (30) and
(31) that

G 1 [g} [ ((rs)/mase) )

var (i) 21 B 1 +(<”S>/<”ASE>
where we have neglected the shot-noise terms. In general,
the error rate in a digital system cannot be inferred from
ratios of this form; rather, full information about the pho-
tocount distribution is required. And while the full nega-
tive-binomial distribution of the cavity population is
known [(4)], that of the photocounts is available only in
the form of a generating function [(8)] that resists inver-
sion. In such cases, one is often tempted to resort to
Gaussian approximations; however, it is known both from
theory [19] and from experiment [21] that interferometric
beat noise in semiconductor-laser devices cannot be relied

)}, (34)
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upon to be Gaussian. Indeed, if the detector bandwidth
greatly exceeds the noise bandwidth, beat-noise distribu-
tions tend to be bimodal [21].

However, in the limit of practical interest, where T
>> (b — a)~', good approximations are available. If the
detector’s integration time 7T and the amplifier’s optical
bandwidth A are sufficiently large, one can divide T into
a number of subintervals, each of duration A T satisfying
ATAv >> 1. Then, from (13), measurements of the cav-
ity population made at any times in two distinct subinter-
vals are uncorrelated. Moreover, from (15) and (18), the
photocounts accumulated in any two distinct subintervals
are uncorrelated and, on physical grounds, independent.
Thus, the integrated photocurrent generated by a detector
of bandwidth 1 /T is represented by a sum process whose
fluctuations are approximately Gaussian. In this case, the
moment ratio of (34) indeed suffices to infer the error rate
in an on-off-keyed system: (ig)?/var(i) = 150 is
needed to achieve an error rate of 107°. Thus, for (Av/B)
= 10, as is typical for Gb/s signals traversing DFB am-
plifiers, low error rates are attainable only if the second
factor of (34) is made large. For such systems, the signal-
to-noise ratio becomes simply

Gs) 1 <g> <<ns>>

var(i) 2\ B ) \(nas/’
For on-off signals falling on a detector whose noise con-
tribution is small compared with the amplification noise
described here, the error probability P, approximately
equals one-half the conditional probability of error given
amark. Thus, P, = (1/4)erfc ({is)/~8var(i)), with
{ig)/~var (i) given by (35).

Clearly, the signal-to-noise ratio in the regime of inter-
est is a product of two factors. The second factor,
{ng)/{nase ), although expressed as an easily measured
first-moment ratio, in fact represents the ratio of output-
signal power to output signal-spontaneous beat-noise
power; the latter, we have seen, is the dominant source
of fluctuations in a low-noise system. The first factor,
given by the bandwidth ratio Av /B, is simply the recip-
rocal of the fraction of this beat-noise power that falls
within the bandwidth of the photodetector. Thus, the sig-
nal-to-noise ratio of the integrated photocurrent simply
equals the quotient of mean signal power divided by the
portion of signal-spontaneous beat-noise power that falls
within the receiver bandwidth. This result, which holds
for resonant amplifiers of quite general resonator config-
uration, agrees, as a special case, with the conclusions
obtained in [2], [5], [20] for devices of Fabry—Perot struc-
ture.

(35)

VI. CoNCLUSION

By reinterpreting key variables, a simple branching-
process treatment of inverted-population amplifiers may
be modified to include both a resonator and explicit input
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and output photon streams, thus exposing the previously
inaccessible process representing the output photocounts.
The resulting description yields physical insight when its
photocurrent fluctuations are compared with those that re-
sult from the mixing of two uncorrelated, phase-fluctuat-
ing, single-mode waves. The physical insight, in turn, en-
ables one to apply approximations suitable for lightwave-
communication systems, so that simple closed-form
expressions result. While the analysis makes explicit ap-
peal only to particle properties of the radiation, it gener-
ates the same noise expressions as those produced by fluc-
tuations of interferometric origin. Indeed, a birth-death-
immigration process with a Poisson initial population, in
a structure of traveling-wave configuration, also has this
behavior [2].
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