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Discrimination of Shot-Noise-Driven Poisson 
Processes by External Dead Time: 
Application to Radioluminescence 

from  Glass 

Abstract-The  shot-noise-driven  doubly  stochastic Poisson point  pro- 
cess  (SNDP) describes the  photodetection statistics for several kinds of 
luminescence  radiation (e.%, cathodoluminescence).  This process, which 
is bunched  (clustered) in character  and is associated  with  multiplied 
Poisson noise, has many  applications  in pulse, particle,  and  photon  de- 
tection.  In this  work we describe  ways  in which dead  time  can  be used 
to constructively  enhance  or  diminish the effects of point processes that 
display  such bunching,  according to whether  they  are signal or noise. 
We discuss in some  detail  the  subtle  interrelations betweekphotocount 
bunching  arising  in the SNDP  and the antibunching  character arising 
from  dead-time  effects. We demonstrate th& the  dead-time-modified 
count  mean  and  variance  for  an  arbitrary  doubly  stochastic Poisson 
point  process (DSPP) can be  obtained  from  the  Laplace  transform of 
the  single-fold and joint moment-generating  functions  for  the driving 
rate process. The  dead  time is assumed to be small  in  comparison  with 
the  correlation  time of the driving process. Specific  calculations have 
been  carried out  for  the SNDP. The  theoretical  counting  efficiency cm 
and  normalized  variance E" for  shot-noise  light  with  a  rectangular impulse 
response  function  are  shown to depend  principally on the  dead-time 
parameter  and  on the number  of  priinary  events  in  a  correlation  time of 
the driving rate process. q e  values  of em and cU are  significantly re- 
duced below those  obtained  with  the  constant-rate Poisson because  of 
the  clustering  associated  with  the SNDP. The  theory is in  good  accord 
with  the  experimental values  of these  quantities  for  radioluminescence 
radiation  in three transparent  materials  (fused silica, quartz,  and glass). 
Various  parameter values for each  material have been  extracted. For 
large counting  times,  the  experimental  photon-counting  distributions 
are  shown to be well described by the Neyman Type-A  theoretical 
distribution,  both  in  the  absence  and  in  the  presence of dead time. 
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Fig. 1. Block  diagram for  the  generation of a  dead-time-modified SNDP. 

I. INTRODUCTION 

T HE shot-noise -driven doubly stochastic Poisson point 
process  (SNDP)  has been shown to have a broad variety 

of applications in pulse, particle, and  photon  detection [i] - 
[3] . It arises when  events of a primary  homogeneous  Poisson 
process  are filtered, producing  a  continuous shot-noise process, 
which in  turn acts is the random  rate of a  secondary Poisson. 
point process  (see  Fig. i). It is a  doubly stochastic Poisson 
point process  (DSPP).  Since events of the secondary  point 
process cluster about events of the primary process, the SNDP 
is more  strongly  affected  by  the presence of dead time  than is 
the homogeneous Poisson  process. This property  may be ex- 
ploited to  distinguish between an  SNDP and a homogeneous 
(ordinary) Poisson process. 
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In the present work, we delineate some of the subtle inter- 
relations between photon bunching arising in the SNDP and 
the antibunching character arising from dead-time effects. In 
a preliminary manner, we explore ways in which dead time 
can  be  used to  constructively enhance or diminish the  effects 
of point processes that display bunching, according to  whether 
they are  signal or noise. 

The problem proves to be rather difficult from a mathematical 
point of view. Fortunately we are able to make use  of general 
expressions that were recently obtained  for  the mean and vari- 
ance of  the number of events in  a fixed but arbitrary sampling 
time for  an  arbitrary DSPP affected by nonparalyzable dead 
time [4]. In obtaining these expressions, the dead time was 
assumed to be small in comparison with  the characteristic 
fluctuation time of the driving rate process. The mean was 
shown to depend only  on  the  first-order statistics of  the  rate, 
whereas the variance  was formally shown to depend on both 
the  first-  and  second-order statistics of the  rate. The general 
expressions turned out  to be quite complex but  could, never- 
theless, be evaluated for  chaotic light with  the  help of a great 
deal of algebra; indeed, an explicit expression was obtained  for 
the dependence of the dead-time-modified variance on the 
power spectrum  of  the radiation. 

We show here that  a Laplace transformation of the single- 
fold and joint moment-generating functions  for  the driving rate 
process provides a ready solution for  the dead-time-modified 
count mean and variance (Section 11). Thus, the  joint  prob- 
ability density function for the rate process, which is often 
unknown  or  quite complex, is not required for the calculation 
of the variance. Since this result is applicable for an  arbitrary 
DSPP  we are  able to  determine the  effect of dead time on  the 
SNDP count mean and variance (Section 111).  We demonstrate 
that dead time does indeed reduce the mean and variance more 
severely, and more selectively, than in the Poisson case. 

We have  previously shown [l]  , [2] that photoelectrons 
generated by radioluminescence radiation may be described 
by  an SNDP. In Section IV, we present experimental  photon- 
counting  distributions  for radioluminescence radiation induced 

three  transparent materials (fused silica, quartz, and glass), 
both in the absence and in  the presence  of fixed nonparalyzable 
dead time. The  Neyman Type-A theoretical counting distri- 
bution, which is obtained as a special  case of the SNDF', is 
shown to provide a very good fit to  the  data over a  substantial 
range of dead-time values. Finally, the theoretical results de- 
rived in Section 111 are shown to be in accord with the experi- 
mental normalized count mean and variance observed at  the 
output of the dead-time-modified photon  counter, when the 
fixed dead time is varied parametrically (Section V). The 
conclusion is presented in Section VI. 

II.  DEAD-TIME-MODIFIED MEAN AND VARIANCE 
FOR AN ARBITRARY DSPP 

In accordance with the results provided by Vannucci and 
Teich [4], [5], the dead-time-modified mean E(n) and vari- 
ance Var(n) for an arbitrary DSPP,  driven by a  stationary sto- 
chastic rate process h(t), are given approximately by 

and 

(2) 
Here 7d is the dead time, Tis the counting time, and the angu- 
lar brackets (e> represent an ensemble average  over the statistics 
of X ( t ) .  For  the validity of (l), the  condition 

where rc is the correlation time of the random process h(t), 
must be satisfied. For  the validity of (2), condition (3)  must 
be satisfied, along with  the  condition 

(';Td)2 rd << Tc (4) 

where x is the average  value of the  rate. Comparing (3) and 
'(4) it is apparent that (4) is less restrictive when xrd <& 
and more restrictive when xrd >6. No constraints on the 
sampling time are imposed. The case considered is that  for 
which the  counter is always connected to the  input process; 
this is the equilibrium counter as opposed to the blocked or 
unblocked counter. Actually, in  the  limits where our results 
are applicable, the  number  of pulses recorded during a sampl- 
ing time is >> 1, and therefore the differences among blocked, 
unblocked, and equilibrium counters become negligible, so 
that  our results are indeed valid for all three types of counters. 

We now compute  the ensemble averages represented in (1) 
and (2) .  If X is a  random variable with moment-generating 
function (mgf) Qx(s)  = (exp  (-sX)),  then 

and 

where 

is the Laplace transform of the mgf, and 

Also, if X1 and X ,  are random variables with joint mgf 

Qx,,x,(s1,s2)=(exp(-slX1 - s2X2)), 

then 

(1 - - = 1 - 2F(1) t F(1, 1) 
1 t x 1  l + X ,  ) x 

where 
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is the 2-D Laplace transform of Q(sl, sz). The above relations { ;/rc O<t<rc 
are proved in the Appendix. h(t)  = elsewhere. 

formulas in (1) and (2) results in Then 111, E31 
With the substitution X = X, the straightforward use of these 

(12) 
where 

r> rc ,  (21) 

where F(u)  is the Laplace transform of c = pr,, j3 = a/rc. (22) 

Qh(t ) (S)  = (exp [-sW)l)  (1 3) Using (7) and (1 0), the corresponding Laplace transforms are 

dead-time-modified mean  and variance can be computed  from Substitution in (1 1) and (1 2) yields the  counting efficiency 
(71, (8), and (10)-(12). (normalized mean) 

which case €m =E(n)/XT= 1/XTd - VI, (25) 
The simplest example is that of deterministic h(t) = ho, in 

Q h ( t ) ( s )  = ~ X P  ( -s i01  (1  5 )  the  ratio  of variance to unmodified mean 

and Var (n)/KT = v2 - v3 - XT v: + w ,  (26) 

Q A ( o ) , A ( ~ ) ( ~ I  9 $2)  = ~ X P  (-31 Xo) ~ X P  (-s2 ho). (16) and the normalized count variance (ratio  of variance in the 
presence of dead time to variance in the absence of dead time) 

Our formulas then reproduce the known expressions for  the 
dead-time-modified count mean and variance for  the Poisson, eU = Var (n)/(l t a l )  XT. (27) 
viz. [6l ,  [TI 

The quantity x T = p a T  is the mean count  in  the absence of 

1 + hard dom of  the  counting time within the correlation time rc of 
E(n) = A0 (17) dead time, a1 = a/9R where )R is the  number of degrees of  free- 

the shot-noise light [I]  , [2], andXTd = pard. Also and 

For h(t)  corresponding to the  intensity  of  chaotic  light, we 
reproduce the formulas previously obtained  by Vannucci r = a  
and Teich [4] . (29) 

111. DEAD-TIME-MODIFIED MEAN AND VARIANCE 
FOR THE SNDP WITH RECTANGULAR 

IMPULSE -RESPONSE FUNCTION with 

We now consider a driving rate h(t) that is a shot-noise pro- I’ = T / T ~  
cess, obtained  by passing a homogeneous Poisson point process 
of rate p through  a rectangular fiiter of impulse response and 
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Fig. 2. Counting efficiency e ,  = E ( n ) / h T  versus hTd, where h = pa: 
is the average  driving rate and Td is the dead time. Curves  are for a 
Poisson  process  where the  rate is constant (dashed  curve) and for an 
SNDP with rectangular impulse-response function (solid  curves). The 
dependence of the counting efficiency on  the parameter c = prc is 
indicated. The curves extend only up to  their range  of validity for 
a: = 5. It is clear that  the efficiency is  significantly reduced below the 
constant  rate result by bunching in  the SNDP. The results are anal- 
ogous to those presented in Fig. 1 of [ 5 ]  for a rate  that is a known 
function of  time, and in Fig. 1 of [4] for chaotic radiation. 

(-1)j C k-Z-jc2 [r(z+j+ ~ , y ) - r ( z + j t  2, ~ g r c ]  
(k -z - j ) ! ( z -m)!m! j ![c+(k-z+m)”T;Td]  [C+(k-m)XTd] 

- 

(3 1) 

where r(n,x)  is the  incomplete gamma function determined 
by the recurrence relation 

Y(n+ l ,x)=ny(pz,x)-xne-X, Y ( l , x ) = l  -e -x .  (32) 

The quantity XT is not an independent parameter since it can 
be written as QC r. 

In Fig. 2 we present a  plot of the theoretical SNDP counting 
efficiency E, ,  which is the normalized mean E(n)/KT, as a 
function of the dead-time parameter XTd. This quantity  de- 
pends only on xrd and c = pr,, the  number  of primary events 
per correlation time, as is evident from ( 2 5 )  and (28). The 
theory is  valid only whenKTd <<xrc = QC, however [see (3)] . 
The solid curves display the c dependence. The curves ex- 
tend only up  to their range  of validity, e.g., the c = 0.1 curve 
is limited to xrd < 0.1 for Q = 5. The dashed curve is the re- 
sult for  a Poisson point process with constant  rate [E, % 

(1 t ; see (1 7)] . The solid curves  lie everywhere below 
the dashed curve, in accordance with  the upper limit  on dead- 
time counter efficiency derived in Section 6 of [5]. For a 
given value  of XTd =pwrd,  with p, a, rd, and Tall  fixed,  in- 
creasing c corresponds to increasing T ~ .  This means that  the 
time between correlated events increases with c. In  the  limit 
where this time becomes much greater than  the dead time,  the 
behavior should approach  the Poisson result, as indeed it does. 
The dependence of E ,  on 01 can  be understood as follows. For 
a given unmodified mean hT = paT,  with T,  r,, and T,j fixed, 
increasing 01 requires a decrease in p and therefore  a decrease in 
c .  Thus, when the multiplication parameter is increased, the 
counting efficiency is correspondingly reduced. This reflects 

01 10 10 
COUNTING-TO-CORRELATION  T IME  Rf iT IO ( r = T / T c  ) 

Fig. 3. Ratio of count variance to unmodified mean count, Var (n ) /hT  
versus r = T / T ~ .  Dashed curve is representative of  an SNDP with  rect- 
angular  impulse-response function in the absence of dead time (a = 5 ,  
c = 1) whereas  solid  curves are for varying  values of  the dead-time 
parameter XTd as indicated. The parametric variation in the dead- 
time parameter is limited to hrd << QC or hTd Q 1.0. It is evident 
that dead time generally  results in a significant reduction of the vari- 
ance-to-mean ratio. An anomalous region  where the variance-to-mean 
ratio  is increased by dead time appears in  the vicinity  of r = 1 for 
small dead time (see text). The results are equivalent to thosepresented 
in Fig. 2 of [ 5 J for a rate that is a known function of time and in Fig. 
2 of [4] for  chaotic radiation. 

the  fact  that  a dead time kills highly bunched events more 
effectively than relatively unbunched events. In the  limit 
where Q -+ 0, with  the unmodified mean fixed, p (and there- 
fore c) becomes very  large and  the  counting efficiency ap- 
proaches the Poisson result, as it should [ l ]  , [2], [ 8 ] .  

The results presented in Fig. 2 are analogous to those pre- 
sented in Fig. 1 of [5] for  a rate that is a known function of 
time, and in Fig. 1 of [4] for  chaotic radiation. The dead- 
time-modified count mean for  chaotic light is independent  of 
the  spectrum  and has no parametric dependence on a  quantity 
analogous to c because in  that case the single-fold moment- 
generating function Q X ( ~ ) ( S )  depends only on the mean rate 
A .  Equation (20) for  the SNDP,  on the  other  hand, depends 
on the  spectrum of the shot-noise light [through  the impulse 
response function h(t)] , since this  latter  quantity is specif- 
ically linked to the occurrence of a pulse and therefore to 
the dead time. Equation (20), furthermore, depends on 
two parameters (c and P) and therefore exhibits a parametric 
variation. 

In the absence of dead time, the SNDP count variance has 
been studied in detail both  for rectangular and exponential 
h( t1  [ l ]  and  for  arbitrary h(t)  [2]. It is  always proportional 
to  AT, unlike the  count variance for  chaotic light which also 
has a  component  proportional to ( x T ) 2 .  But  like chaotic 
light, the unmodified count variance depends on  both the  first- 
and  second-order statistics of  the rate through  the degrees-of- 
freedom  parameter. It is clear that the dead-time-modified 
count variance  also depends on the  first- and second-order 
statistics of the rate [see (2) and (12)], In Fig. 3 we present 
the  ratio of the  count variance to the unmodified mean, 
Var (n) /XT,  versus r = T/T,, for rectangular h(t). The dashed 
curve shows the result in the absence of dead time, whereas 

- 
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Fig. 4. Normalized  variance (ratio of dead-time-modified variance to 

unmodified  variance) E ,  versus X7d, where x = p a  is the average  driv- 
ing rate  and 7d is the dead  time. Curves are  for  a Poisson  process 
where the  rate is constant  (dashed curve) and  for  an SNDP with  rect- 
angular  impulse-response  function (solid  curves). The  dependence  of 
the  normalized  variance on  the parameter c = ~7~ is indicated. Curves 
shown  are  for a = 5 and r = 10, but  are relatively independent of these 
parameters (see  Figs. 5 and 6) .  The curves extend only up  to their 
range of validity  for 01 = 5. It is clear that the normalized  variance is 
significantly  reduced  below the  constant  rate result  by  bunching  in 
the SNDP. It is  seen that  the dependence  of E ,  is  similar to  that for 
E ,  presented  in Fig. 2. The  results  are  analogous to  those  presented 
in Fig. 3 of [4] for  chaotic  radiation. 

the solid  curves represent the presence of  dead  time withxrd 
as a  parameter.  The  dead-time-modified variance depends on 
r, xrd, c, and a. As a representative example we have chosen 
c = 1 and a! = 5 (the character of the results turns  out to be 
quite independent of these  parameters  though the validity of 
the curves requires that xrd and CCY obey certain constraints as 
indicated earlier). By and large, the  introduction of dead  time 
produces  a  decrease in the variance-to-mean ratio. This is ex- 
pected  because  dead  time regularizes the pulse train. For values 
of Krd that are not  too large (Krd S O.2), however, an interest- 
ing  effect  occurs  in  the region I? = 1 : the  dead-time-modified 
variance turns out  to be  larger than  the  unmodified variance. 
We have previously  noted that, for the  rectangular  impulse- 
response  function  in  the absence of  dead  time, the unmodified 
variance-to-mean  ratio  undergoes  a resonant-like reduction to a 
value of 2 at I' = 1 , regardless of  the values of a! and c [ 11 . We 
expect that this arises from the mathematically ideal nature  of 
the  rectangular fiter, and we attribute  the anomalous relation- 
ship of the  modified  and  unmodified variances to a cancella- 
tion of this resonant-like reduction.  Though the form  of 
presentation is somewhat different, the  information  contained 
in Fig. 3 is similar to  that conveyed by  Fig. 2 of [SI for  a  rate 
that is a known function  of  time  and  by Fig. 2 of [4] for 
chaotic  light. 

In Figs. 4-6 we present the theoretical SNDP normalized 
count variance e,  as a  function  of  the  dead-time  parameter 
hrd. This quantity depends  on 'r;rd, c, a, and r. The  depen- 
dence  on c is indicated  by  the solid  curves in Fig. 4 (a = 5,  
I? = lo), the dependence  on a! is shown  by  the solid curves in 
Fig. 5 (c = 1, I' = lo), and the dependence  on r is shown  by 
the solid curves in Fig. 6 (c = 1 ,  CY = 5). In all  cases the curves 
extend  only up  to their range  of validity, such that xrd  << 
QC. It is evident  from these plots that  the dependence  of e, on 
c is substantial, whereas the  dependence on a and I? is  small 
and, to first approximation,  may be disregarded. The dashed 
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Fig. 5 .  Normalized variance E, versus 5;7d for a  Poisson process where 
the  rate is constant (dashed curve)  and  for  an SNDP with rectangular 
impulse-response  function (solid  curves). The  dependence  of E ,  on 
the parameter a is  shown to be slight (c = 1, r = 10). The curves 
extend  only  up to their region of  validity  for  the value of o! specified. 
Observe that  theunmodifiedmeanXT = p a  Tisnot fixed as a is varied, 
but  rather is proportional to a. 
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Fig. 6 .  Normalized  variance E, versus x7d for  a Poisson process  where 
the  rate is constant  (dashed  curve)  and  for an  SNDP with  rectangular 
impulse-response  function (solid  curves). The  dependence of E ,  on 
the  parameter r is shown to be  slight  in the  extreme cases r << 1 and 
r >> 1 (C = I, (Y = 5). 

curve is the result for a Poisson  process with  constant  rate 
[e, = (1 t h7d)-3 ; see (1 s)] . 

The principal dependence of e, is on x 7 d  and c = prc, as is 
the case for the  normalized count mean e ,  (see  Fig. 2). Again, 
for a given  value  of X7-d = pxrd, with p, a, Td,  and T all fixed, 
increasing c corresponds to increasing rc. This means that  the 
time  between correlated events increases with c. In the limit 
where this time  becomes  much greater than the dead  time,  the 
behavior should  approach  the Poisson result, as indeed  it  does 
(see Fig. 4). The  dependence of e, on a can be understood as 
follows. For a given unmodified mean XT = p a T ,  with T ,  rc, 
and rd fixed, increasing a requires a  decrease in p and  there- 
fore a decrease in c. Thus  the  normalized  mean  and  normalized 
variance  are both substantially reduced by an increase in a 
when the  unmodified mean is constrained to be constant. 
Similarly, when a+ 0 both e,  and e, approach  the  Poisson 
result, as expected. When a is varied and  the  unmodified mean 
is not constrained to  be  constant,  the relative independence 
of e, on a!, illustrated in Fig. 5, emerges. The insensitivity of 
ev to variations in I?, for l' << 1 and r >> 1 , is illustrated in 
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Fig. 6. The curve for I' = 1 lies everywhere just above the 
curve for I' = 10. 

The results presented in Fig. 4 are analogous to those pre- 
sented in Fig. 3 of [4] for  chaotic radiation. As in that case, 
the dead-time-modified count variance depends on  both the 
first- and second-order statistics of the  rate process. Because 
of computational  complexity, we have restricted our study  in 
this paper to a rectangular impulse-response function h (t), cor- 
responding to only a single spectral character in the  chaotic 
case. As pointed out earlier, the  quantity E, depends on the 
spectrum. In contradistinction,  the normalized variance for 
chaotic light is virtually spectrum independent  and,  further- 
more, displays no parametric dependence on a  quantity 
analogous to c, since the multiplication degree of freedom is 
absent. 

In the  next section we proceed to a discussion of the full 
photon-counting  distribution  for radioluminescence radiation 
in  the presence of dead time, when the  counting time T is 
much greater than  the correlation time T ~ .  We then  return to 
an  experimental verification of the theoretical results for  the 
counting efficiency E, and the normalized variance E ,  pre- 
sented above. 

IV. PHOTON-COUNTING  EXPERIMENTS FOR THE SNDP 
I N  THE PRESENCE OF DEAD TIME 

We have conducted  a series of experiments in which a beam 
of p- particles directly irradiated the Hamamatsu W-grade 
1.55 mm thick fused-silica faceplate of  an EMR Type 541N- 
06 - 14 photomultiplier  tube, producing radioluminescence 
radiation. The high-energy electrons were generated by the 
Dynamitron  steady-state  electron accelerator at  the  Jet  Propul- 
sion Laboratory in Pasadena. The energy of each electron in 
the monoenergetic beam  was about  2.2 MeV, and the  emitted 
0- flux was -1 X lo8 cm-2 s- l .  The beam emerged through 
a  2 mil thick  titanium foil window. It traveled a distance of 
about 1.5 m, to a 0.6 cm diameter hole in a lead brick, covered 
with a  thin aluminum plate containing a small aperture.  The 
sample was located behind the hole. The estimated flux  at the 
faceplate of the  photomultiplier  tube was lo5 s-'. The  quan- 
tum efficiency was about 18 percent at 4000 a. External light 
was excluded. The photomultiplier anode pulses  were  passed 
through a discriminator and standardized(EMR Type 6 17K-11- 
M4). An external electronic circuit enabled the point process 
to be modified by an adjustable constant nonparalyzable dead 
time T d ;  the minimum value of rd (60 ns) was limited by  the 
discriminator and standardizing electronics. The surviving 
pulses  were counted during consecutive fixed counting intervals 
( T =  400 p s )  and  the  counts were recorded. The experiment 
was performed repeatedly to obtain good statistical accuracy 
and a histogram representing the relative frequency of the 
counts was constructed. This procedure was carried out  for 
various  values of the dead time ~ d ;  in each case the  count mean 
and variance were computed from the experimental histogram. 
The  duration of a run was about 10 s. 

In the first experiment  that we illustrate, the observed mean 
count was 119.25 (this number was substantially hgher than 
the mean dark  count which could therefore be neglected) and 
the observed count variance  was 1220.0 when the adjustable 
dead time was set at  its minimum value  of 60 ns. The data are 
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Fig. 7. Photon-counting distribution p ( n )  versus number of photon 

counts n. Data (solid dots) represent radioluminescence photon regis- 
trations induced in the fused-silica faceplate of the EMR photomulti- 
plier tube by high-energy p - rays,  when the dead time Td is small (60 
ns). The counting time T = 400 ps.  The experimental count mean 
and variance are  119.25  and  1220.0, respectively. The solid  curve 
represents the Neyman Type-A theoretical counting distribution with 
the same  values  of count mean and variance (a = 9.2). Open dots 
represent experimental data  for Td = 200 ns. The dashed  curve is the 
Neyman Type-A with a mean and variance set equal to the experi- 
mental values. 

shown as the solid dots in  Fig. 7. The solid curve represents 
the Neyman Type-A theoretical counting distribution with  the 
count mean and variance fixed at the experimental values. It 
is clearly in accord with  the  data; we have also previously  shown 
this for Srgo-Ygo-induced radioluminescence radiation in glass 
[2] . Assuming that rc << T (  1 mode, 9I =1), and assuming also 
that  the effects of this minimum dead time are negligible, the 
experimental multiplication parameter a = [Var (n)]  /E(n) - 1 = 
9.2 [2,  eq.  (13)]. Actually, because the primary process in 
this case consisted of high-energy charged particles (electrons), 
eerenkov radiation was probably produced in addition to lumi- 
nescence radiation. However,  even if a large number of photo- 
electrons were generated by the Cerenkov photons arising from 
a single particle, they would nevertheless appear as a single 
(large) photoelectron pulse, since the  6erenkov radiation emis- 
sion time is much  shorter  than  the  transit time in the  photo- 
multiplier tube [8 ] . 

The open circles in Fig. 7 represent the relative frequencies 
of the  counts at an increased level  of dead time, T~ = 200 ns. 
In this case, the observed mean count and the  count variance 
were 80.66 and 554.0, respectively. The dashed curve repre- 
sents a Neyman Type-A theoretical counting distribution with 
the  count mean and variance  fured at these experimental values. 
The  fit is  very good. Although the only general theory avail- 
able for  the dead-time-modified SNDP photon-counting distri- 
bution is limited by  the restriction T<< T~ (see [9] , [lo]), 
a simple physical argument demonstrates  that  the Neyman 
Type-A provides an appropriate theoretical choice in the 
case of our experiments. 

The argument begins with Fig. 8, which is a  plot of the ob- 
served dead-time-modified mean count E(n)  versus the  count 
variance-to-mean ratio Var (n)/E(n) for  the three transparent 
materials. The dead time is varied parametrically so that  the 
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Fig. 8. Dead-time-modified  mean count E(n)  versus cluster  parameter 
[Var (n) /E(n)]  for p --induced  radiolumipescence  radiation  from  three 
transparent  materials [ fused-silica faceplate of EMR photomultiplier 
tube (0), suprasil  quartz (X), and BK-7G Cr-doped Schott glass (A)]. 
The six experimental  points for each  material  represent  different val- 
ues  of  the  fixed  nonparalyzable  dead  time (rd= 60, 200,400, 600, 
800 ns, 1 ps). The  data  are seen to lie along  a  line of unity  slope on 
this log-log plot. 

six experimental  points  for  each  material  represent different 
values of the  fixed  nonparalyzable  dead  time (rd = 60, 200, 
400, 600, 800 ns, 1 ys). The  variance-to-mean  ratio  plotted 
on  the abscissa may be Viewed  as excess clustering above the 
Poisson [for which  Var (n)/E(n)  = 11 . The data  for all mate- 
rials  are  seen to lie along  a straight line  of unity slope on this 
log-log plot.  This indicates that  the reduction  in  mean  count 
produced by increasing the dead  time is associated with  a de- 
crease in the excess clustering. When c is small,.secondary 
events belonging to different clusters are  well separated  and 
the  dead t h e  simply  reduces  the effective multiplication 
parameter  and the mean count by  approximately the same 
quantity.  The distribution therefore maintains  its Neyman 
Type-A  chatacter. 

This interpretation is consistent  with  the  parameters relevant 
to our  experiment. In Section  V we  will  see that for the mate- 
rials  we  have studied, c =prc  0.2 with T~ - 5 ps and c1-l ? 
25 ps.  Recalling that rc is the time over  which secondary  events 
are clustered and p-' is the average primary interarrival time, 
values of rd 5 5 p s  will  kill an increasing number of secondaries 
as the dead time is increased (always  leaving the first secondary 
event that triggered the dead time  intact, of course). Thus , it 
is expected that under the conditions of our  experiment (c << 
1, yrd << 1 ,  T >> 7,) the dead-time-modified  counting distri- 
bution will  be  well represented by the Neyman  Type-A with  a 
reduced  mean  and variance. When rd becomes  somewhat larger 
than r,, with  the Conditions c << 1, Prd << 1, and T >> rc 
maintained,  only  a single secohdary pulse  will  remain per clus- 
ter, rind the counting distribution will approach  the Poisson. It 
will then remain  Poisson until rd increases to the  point that 
it begins to kill events associated with  other clusters (JJT~ - 
1). If Cerenkov radiation is present, primary  events will  also 
be registered and it is these that will  trigger the dead  time; but 
in any case the behavior  will  be  very  similar to  that described 
above. 

Additional  experimental  photon-counting distributions are 
presented in Figs. 9 and 10. In this case the /3- particle beam 

NUMBER OF COUNTS (n) 

Fig; 9. Photon-counting  distribution p ( n )  versus number  of  photon 
counts n., Data (solid dots)  represent  radioluminescence photon 
registrations  induced  in  suprasil  quartz  by high-energy p - rays, When 
the  dead  time is small (60 ris). The  counting  time T = 400,hs. 'The 
experimental  count  mean and  variance  are 55.01 and 260.6, respec- 
tively. The  solid  curve  represents  the Neyman Type-A  theoretical 
counting  distribution  with  the  same values  of count mean  and variance 
[a = 3.73). Open  symbols  represent  experimental  data  for  increasing 
values of ~d (200 ns, 0 ;  600 ns, A;  1 p ,  0). The  broken  cufies  repre- 
sent Neyman Type-A  distributions  with mean  and variance values 
chosen  in  accordance  with  the  experimental  data. 
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Fig. 10. Photon-counting  distribution p(n)  versus number of.photon 

counts n .  Data (solid dots)  represent  radioluminescence photon reg- 
istrationi  induced,  in BK-7G Cr-doped Schott glass  by  high-ehergy p - 
rays,  when the  dead  time is s m a l l  (60 ns). The  counting  time T r  
400 bs. The  experimental  count  mean  and  variance  are 33.59 and 
9 9 ~ 5 3 ,  respectively.  The solid curve  represents the  NeymarType-A 
theoretical  counting  distribution Mth the same  values  of count  mean 
and  variance (ci = 1.96). Open  dots  represent  experimental  data  for 
Td = 200 ns. The  dashed curve is the Neyman Type-A witH a  mein 
and  variance set  equal to the  experimental values. 

.J 

impinged on  external samples of Amversil  suprasil quartz aGd 
BK-7G Cr-doped Schott glass, respectively. The .optical radia- 
tion then  entered  the  photomultiplier  tube and a p.hot6n- 
counting  experiment was performed. Nominal  values for the 
mean, variance, and a parameters are 55.01, 260.6,  ana 3.73; 
respectively, for Fig.9  and 33.59,99.53, and  1.96, respectively, 
for Fig. 10 when the dead  time took on  its  minimum vaiuk 
(solid dots). The Neyman Type+A theoretical counting distri- 
bution provides an excellent fit to the  data in all  cases, both in 
the absence  and in the presence  of  dead time. Indeed  it is 
conceivable that  the  60 ns nominal  dead  time associaikd with 
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Fig. 11. Experimental  counting efficiency em versus X7d for radio- 

luminescence photon  counts generated in  the fused-silica faceplate 
of the EMR photomultiplier tube (O), in suprasil quartz (X), and  in 
BK-7G Cr-doped Schott glass (A). The radioluminescence was induced 
by high-energy 0 -  rays. The three sets of experimental  data are in 
good accord with the theoretical result expected  for an SNDP with 
rectangular impulse-response function  and c = 0.2 as  shown (solid 
curve). The  theoretical curve extends  only up  to  its range of validity 
for CY = 5 .  The dashed  curve  is the result for a Poisson process where 
the rate is constant. 

the electronics has killed some events without  our knowledge, 
and that  the constancy of the Neyman Type-A has already 
come into play in the  data fit by the solid curves. 

Finally, we note  that  the experimental dead-time-modified 
photon-counting  distribution produced in 7056 glass (not 
displayed here), for example, shows evidence  of scallops, 
whereas the associated Neyman Type-A theoretical photon- 
counting  distribution does not. This may reflect behavior 
more like the fixed multiplicative Poisson [8] ~ possibly indicat- 
ing that the number of primaries, or the number of secondaries 
per primary, is confined to a range narrower than  the Poisson. 

V. EXPERIMENTAL DEAD -TIME-MODIFIED COUNT 
MEAN AND VARIANCE FOR THE SNDP 

In the  photon-counting experiments described in the previous 
section,  the  count mean and variance  were monitored as the 
fixed dead time was varied  over a broad range. This enabled us 
to obtain  three sets of experimental data for both the  counting 
efficiency e, and the normalized variance eU as a function of 
Xrd. The results for e, are presented in Fig. 11 for radiation 
generated in the fused-silica faceplate of the EMR photomulti- 
plier tube (0), by an external sample of suprasil quartz (X), 
and by an external sample of BK-7G Cr-doped  Scott glass (A). 
Analogous results for e, are presented in Fig. 12. 

It is evident from the solid curves in Figs. 1 1 and 12  that all 
of the experimental data are in good accord with the  theoreti- 
cally predicted result for  an SNDP, with rectangular impulse- 
response function, and c = 0.2 (see  Figs. 2 and 4). Though the 
curve for e, has been generated using the specific values Q = 5 
and r = 10, it is principally sensitive only to the value of c, 
as illustrated in Figs. 4-6. The theoretical curves extend only 
up  to their rahge of validity for Q = 5 .  The dashed curves in 
Figs. 11 and 12 represent the theoretical results for  a Poisson 
process  where the rate is constant. The experimental efficiency 
and normalized variance are both significantly reduced below 
the  constant rate result by bunchingin  the SNDP, as emphasized 
earlier. 

Using the  extracted value for c,  together with  the values  of 
Q for nominal dead time reported in the previous section, and 
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Fig, 12. Experimental normalized  variance E ,  versus X T ~  for radio- 
luminescence photon counts generated in the fused-silica faceplate 
of the EMR photomultiplier tube (0), in suprasil quartz (X), and in 
BK-7G Cr-doped Schott glass (A). The radioluminescence was induced 
by  high-energy p -  rays. The  three sets of experimental  data are in 
good accord with the theoretical result expected  for  an SNDP with 
rectangular impulse-response function  and c = 0.2 as shown  (solid 
curve). Though the solid curve has been generated assuming a = 5 
and r = 10, it is principdy sensitive only to  the value of c, as is illus- 
strated in Figs. 4-6. The best-fitting value of c for the counting 
efficiency ern is also 0.2 (see  Fig. 11). The theoretical curve extends 
only up to ~ t s  range of validity for a = 5. The dashed  curve  is the 
result for a Poisson process where the rate is constant. 

assuming p constant, we can extract values  of rc for  the various 
cases. The appropriate relationships are h = pa and c = prc. 
Eliminating p we find rc = acrx. But  since h E(n)/T, rc = 
acT/E(n). Substituting c = 0.2, T = 400 ps, and the  appropri- 
ate values of Q and E(n) for each material, we find rc (fused 
silica) 6.2 ps, rc(suprasil) 5.4 ps, and rc(BK-7G)  4.7 ps. 
This justifies the assumption that T >> rc. The calculated value 
for p is therefore "4 X lo4 s-', which is in good accord with 
the estimated flux at  the material and with the  extrapolated 
value of p T  obtained  from Fig. 8 [at Var (n)/E(n) = 11 . 

VI. CONCLUSION 
We have shown that the dead-time-modified count mean and 

variance for an arbitrary DSPP can be obtained from the Laplace 
transform of the single-fold and  joint moment-generating func- 
tions for the driving rate process. The result is valid for an 
arbitrary sampling time, when the (nonparalyzable) dead time 
is small in comparison with the correlation time of the driving 
rate process. 

We have applied the results to the SNDP and obtained ana- 
lytical expressions for the dead-time-modified count mean and 
variance when the impulse-response function h( t )  is rectangu- 
lar. The counting efficiency em and the normalized variance 
e, have been graphically presented as a  function of the  dead- 
time parameter x r d .  The former, E , ,  has been shown to de- 
pend only on the number of primary events per correlation 
time c = prc whereas e, has been shown to depend principally 
on c ,  and only slightly on CY and r. The results have been com- 
pared with those obtained previously for chaotic light. We 
have not carried out explicit calculations for impulse-response 
functions  other  than rectangular because of the algebraic 
complexity of the expressions. Since rd << rc, we speculate 
that  the character of the dead-time-modified mean and vari- 
ance do  not depend substantially on the specific choice of 
h (t) , however. 

Photon-counting experiments were conducted  with  radio- 
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luminescence radiation from three transparent materials. Both 
the  dead-time-modified  photon-counting distribution and  the 
count mean  and varianGe were measured as the dead  time T~ 
was  varied  over a broad range.  The experimental  counting 
efficiency and  normalized variance  were shown to be  well 
fit by the theoretical curves for  an SNDP with  rectangular 
impulse-response  function. As expected,  both e, and e, 
were significantly reduced  below  the constant-rate Poisson 
result by clustering in the SNDP.  Values for  the  parameters 
p, 01, and T~ were extracted for each material. Because the 
natural  impulse-response  function for the  materials  studied 
was likely exponential rather than rectangular, the satisfactory 
fit  of  our  theory to  experiment,  together  with the internal 
consistency of the  extracted  parameter values,  provides support 
for  the  notion  that e, and e, do  not depend critically on h(t) 
in  the small dead-time limit. 

We have already  emphasized that  the results presented  here 
are valid only  for small ~d [see (3) and  (4)]. As ~a becomes 
larger, the  functional  form  of h(t) is expected t o  increasingly 
affect  both E(n) and Var (n).  Indeed,  the  shape of h( t )  should 
play a substantial role  as ~a approaches T ~ .  A form  of  dead- 
time  spectroscopy using the mean count,  analogous to that 
discussed  previously for  chaotic light [4], may  therefore be 
possible. In fact, for p~~ << 1 (well-separated clusters), with 
01 large and p~~ << 1 (which restricts the  dead  time to individ- 
ual clusters), quite a lot of information  about the form of 
h(t) may be inferred by examining  the count mean and vari- 
ance  as ~a is  varied from <<T, to >>T~. Furthermore, it can 
be intuitively argued that, in the  context of fixed dead-time 
signal  processing, the  separation of an SNDP from  a  Poisson 
point process (or from  another  point process that is bunched 
or  antibunched in a distinctive way) may  sometimes be best 
achieved by choosing Td 2 T ~ .  This is especially  easy to see 
if the clusters are well separated  and if the SNDP represents 
an  undesirable  noise process. The use of  dead  time  in signal 
processing applications [ 1 11 , [ 121  is one  of the primary 
motivations in carrying out this study. 

Thus,  an analysis of  the  count mean and variance in the 
regime rd k T ~ ,  though difficult to  carry out, may be quite 
useful. The  experimental data  in Figs. 11 and 12 are seen 
to diverge from an extrapolation  of  the  present  theory when 
the  condition Td << T~ is not obeyed. One  can  begin to see 
what  happens. As X T ~  nears 1 , ~ a  becomes comparable  with 
T ~ .  Since c = 0.2 << 1, p ~ a  = 1.17~ << 1 ; thus  the clusters are 
yell separated  and the occurrence of a  dead  time kills only 
secondary pulses associated with  a given cluster. Now  if T~ 

were  made somewhat larger than T ~ ,  all secondaries save one 
per cluster (the initiator  of  the  dead  time)  would be killed, 
ideally leaving a Poisson point process of rate p. Any  further 
increase in the dead  time  would  then have no effect  on  the 
point process until it becomes sufficiently large ( p ~ a  - 1 )  to 
kill secondary  events associated with other clusters. The 
data in Figs. 11 and 12, though sparse in this region, provide 
some  evidence for an independence of the  count mean and 
variance OnXTd  as this quantity  approaches 1. 

Experimental  plioton-counting distributions for the three 
transparent materials are well described by the Neyman Type- 
A distribution over a  broad range of  dead  times (60 ns-1 ps, 

<< T ~ ) .  Although the only general theory available for the 
dead-time-modified DSPP counting distribution is limited  by 

the restriction T << rC (see [9]  and [ 101 ), we  have presented 
a plausible argument to indicate why  the  Neyman Type-A 
provides  a suitable theoretical description for  the SNDP we 
have considered ( p ~ ~  << 1, @Td << 1, T >> T ~ ) .  It is  possible 
that this line of reasoning  is particularly appropriate  for  rect- 
angular and  exponential  impulse response functions. It is 
because  of the particle-like nature of the SNDP that  the 
theoretical situation is much  better  than  one would  imagine 
at first. The Neyman Type-A has recently  been  analyzed in 
substantial detail; it converges in distribution to  the Gaussian 
[8] and  has  a simple approximate  normalizing  transform  [13] . 
It can therefore be dealt with quite easily in the context  of 
detection  and  estimation  problems. 

As some of the conditions specified above are relaxed, we 
would  expect different results. For example,  when c >> 1 
many  primary  events can occur  within  the correlation time 
T~ and  the  dead-time-modified count mean  and variance, along 
with the underlying  point process, approach  Poisson (see  Figs. 
2  and 4). In this case, the  counting distribution (dead-time- 
modified  Poisson) is  well known [7], [9],  but theoretical 
results are unavailable for arbitrary p ~ ~ ,  PTd, and T/rC. 

APPENDIX 
PROOF OF THE LAPLACE TRANSFORM RELATIONS 

Consider the integrals 

1 X 
exp (-s) exp  (-sX)  ds = - = 1 - - 

1 + x  1 + x  ' (-41) 

im (s - $) exp (-s) exp (-sX) ds 

- 1 1 X - - 
(1 tX)2 (1 tX)3  -(1 tX)3  ' (A21 

Forming the  expectation values of both sides of  each  equation 
and organizing terms, we have 

Using (7) and (lo), (9, (6), and (9) directly follow. 
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