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Information, Error, and  Imaging in 
Deadtime-Perturbed  Doubly 

Stochastic  Poisson 
Counting  Systems 

Abstract-The  detection of a  fluctuating signal in the presence  of 
noise is considered  for  a  doubly  stochastic Poisson counting  system 
that  is subject to fixed  nonparalyzable  detector  deadtime.  Explicit 
expressions  are  obtained  for  the  likelihood-ratio  detection of a  modu- 
lated  source  of  arbitrary statistics in  the  presence  of Poisson noise 
counts. Receiver operating  characteristics (ROC curves) are  presented 
for  an  unmodulated  (amplitude-stabilized)  source  with  detector  dead- 
time as a  parameter;  increasing  deadtime causes a  decrease  in the 
probability  of  detection  for  a  fixed false-alarm rate.  Probability  of 
error curves are  presented  for  an  amplitude-stabilized  source, both  in 
the absence  of  modulation  and  in the presence of triangular  modulation, 
illustrating  the  deleterious  effects  of  modulation,  noise,  and  deadtime 
on receiver performance.  Expressions  for the average mutual  informa- 
tion  and  channel  capacity  of the system are obtained  and  graphically 
presented  for  the  simple  counting receiver and  for  the maximum- 
likelihood  counting  receiver; the channel  capacity decxeases with 
decreasing signal level  and  with  increasing  deadtime  and  modulation 
depth.  Representative  examples  of the  appropriate  counting  distribu- 
tions  are  provided.  Finally,  a  maximum-likelihood  estimate  of  the 
mean  signal  level is  obtained for  a  simple image detection  system  with 
a  deadtime-perturbed  counting  array. An expression for  the statistical 
confidence level of  the  estimate  is also obtained. The results  are valid 
for  an  arbitrary  deadtime-perturbed  doubly  stochastic  Poisson  counting 
system  and  as  such  are  expected to find  application in a  broad  variety 
of  disciplines  including photon  counting  and lightwave communications, 
operations  research,  nuclear  particle  counting,  and  neural  counting  and 
psychophysics. 

I 
I. INTRODUCTION 

N THE PAST decade  there  has  been  considerable effort 
devoted to  the analysis of systems that convert  a  continuous 

source variable into  a discrete counting process. Perhaps the 
earliest study  of  this  kind  was carried out in 1920  by Green- 
wood  and  Yule [ 11, who in the course  of  studying  the  indus- 
trial accident rate in a British munitions  factory,  considered 
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the Poisson transform  of  a  probability  density  function 
specifying  individual  proneness to accident.  Though  much  of 
the  subsequent  work on these  compound  or  doubly  stochastic 
Poisson processes, as they are now called, has specifically dealt 
with  the  photon-counting  detection  of light in a fixed time 
interval, first considered  by  Purcell [2] and  Mandel [3],  the 
formalism  has also been  applied to neural  counting  and  psycho- 
physics by McGill [4].  Teich and  McGill [5] recently  demon- 
strated that McGill’s auditory  neural  counting  model  and 
Mandel’s  semiclassical photon-counting  description  [3] are in 
fact identical from  a  mathematical  point  of view and can  be 
formally  represented in  terms  of  Greenwood  and Yule’s com- 
pound Poisson distribution. This equivalence  was  explicitly 
demonstrated for McGill’s noncentral negative binomial dis- 
tribution  and Pefina’s [6], [7] multimode  confluent  hyper- 
geometric  distribution for a  coherent signal imbedded in 
chaotic noise (an  excellent  approximation for the radiation 
from an amplitude-stabilized  single-mode laser operated  well 
above the  threshold  of oscillation). For all of  these  problems, 
the underlying Poisson behavior can  arise from  the occurrence 
of  independent  events [8] or  from  the  superposition  of  a large 
number  of  arbitrary stochastic point  processes  [9] - [ 1 I]. 

For an optical  system,  forward  photon-counting  distributions 
have been  studied  from both  a  quantum-mechanical  [7], 
[12]-[14] and a semiclassical [3],  [7]  point of view for  a 
broad range of  incident field statistics [7] and  modulation 
formats [ 151 - [20].  (Recently,  increasing  consideration  has 
been given to the  doubly stochastic Poisson  process  where 
attention is directed to the  more  general  photoelectron arrival 
times  [21]  rather  than to their  number in a  fixed  time interval 
as considered here.) Calculations  for  direct-detection likelihood- 
ratio receiver performance [22]-[31] and  information rate 
[32]-[36] have also been carried out  by  anumber  of researchers. 

One factor  that can substantially impair the performance of 
this  kind  of  counting  system-particularly  at  high data rates- 
is deadtime.  Fortunately,  the nonparalyzable  deadtime- 
perturbed  problem can be  treated  rather easily from  a  mathe- 
matical  point of view  since Cantor and Teich [37] have 
obtained  a  closed-form  expression  for  the  deadtime-modified 
counting  distribution  for  a  doubly stochastic Poisson counting 
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Fig. 1. Block  diagram of the  binary-gated  deadtime-modified  likelihood- 
ratio  counting receiver for  detecting  a  fluctuating signal. 

process. The special case of  the deadtime-modified simple 
Poisson distribution  had  been previously dealt with extensively 
by researchers working in nuclear counting [38],  [39] and 
neural  counting [40],  [41]. In both cases, the modified distri- 
bution is simply expressible in terms of  the unmodified distri- 
bution and the deadtime  ratio r /T ,  where r is the deadtime 
and T is the sampling time. Even small values of T/T (-0.01) 
alter  the  distribution  markedly  [37] so that deadtime  effects 
cannot in general be neglected. In a recent paper [20], we 
presented experimental verification of Diament and Teich’s 
[15] - [ 171 theoretical  photon-counting  distributions  for tri- 
angularly and sinusoidally modulated laser radiation and of 
Cantor  and Teich’s [37] nonparalyzable deadtime-modified 
versions of these formulas. 

In this paper we consider likelihood-ratio detection, informa- 
tion transmission, and image detection in  the presence of such 
fured, nonparalyzable  deadtime. In  the counting  system we 
consider, the source is deterministically or stochastically 
modulated (see Fig. 1). The input u to  the  detector is the 
binary-gated modulated signal, and its  output u1 is the  number 
of counts registered in the fixed sampling time interval T.. The 
output  of  the likelihood-ratio  test u2 is a  random variable with 
value 1 or 0 depending on the decision. Noise arising from 
background and dark effects is considered to give  rise to a 
deadtime-modified Poisson counting  distribution  (this may 
come about  from a background that exhibits no intrinsic 
fluctuations, or from  a background that is independent, non- 
interfering,  and additive with the signal, and that has a de- 
generacy parameter [3]  that is much less than  unity). 
Though the Poisson condition  for the background is quite 
generally obeyed,  an arbitrary noise process can be treated 
within our framework at  the price of increased complexity. 

In Section I1 we consider the relevant counting  distributions. 
Likelihood-ratio detection is treated in Section 111, information 
transmission and channel capacity in Section  IV,  and image 
detection in Section V. The conclusions appear in  Section VI. 

11. DEADTIME-MODIFIED COUNTING  DISTRIBUTION 
FOR A FLUCTUATING  SOURCE 

The  nonparalyzable  deadtime-modified  counting  distribu- 
tions used in this work are obtained  by  the method  outlined 
by Cantor and Teich [37], in  conjunction with  the results of 
Diament and Teich [15]-[ 181 for various fluctuating signal 
sources; Teich and Vannucci [20] have experimentally veri- 
fied these expressions in  the case of photon counting with 
sinusoidal and triangular modulation (the  notation in  this 
paper is slightly different from  that used in [20], however). 

In the presence of signal alone (S),  the probability ps (n, r / T )  
of registering n counts in  the time interval T for  a detector 
with nonparalyzable fixed deadtime T is [37],  [20] 

He  re 

where h is the rate parameter driving the process. In general, 
when the source is a stochastically fluctuating signal, the 
angular brackets represent an ensemble average over the statis- 
tics of both  the intrinsic source fluctuations and the imposed 
modulation. 

When only time  fluctuations are present, the overall time- 
integrated intensity  (or energy) at the  detector [3] W is 

W = a [ f + T  I(t’) dt’, 

but since (1) and (2) are valid only for sampling times T short 
in comparison with  both  the intrinsic fluctuation  time of the 
source rc and the period of the modulation T M ,  as explicitly 
shown by Vannucci and Teich [42], (3) reduces to 

W = aI(t)T. (4) 

Furthermore, we choose 

X( t) = air@), (5) 

where a is the  quantum efficiency of  the  detector. Thus, the 
ensemble average represented in (2) is performed with respect 
to the statistics of the instantaneous energy fluctuations of the 
modulated source, or for fixed a, with respect to the  statistics 
of the instantaneous  fluctuations of the rate parameter h or 
the intensity I .  If the instantaneous rate h(t) is not  directly 
proportional to  the source intensity, as represented in (S), 
then  the appropriate statistics of h are obtained by transforma- 
tion  from  the  statistics of I .  In certain applications, the 
statistics of h are known  directly, in which case (3 ) - (5 )  are not 
necessary (e.g., see [l]) .  

Strictly speaking, the preceding results are valid only  for  a 
counter that is unblocked at  the beginning of  the counting 
interval, though this  condition may not be important in 
practice [20],  [42], [43]. A rather  different expression is 
obtained  for the paralyzable deadtime  counter [20] which we 
do  not consider here. Expressions for the deadtime-modified 
mean and variance for the nonparalyzable case are available 
under certain  conditions (they apply here though they have 
been derived for a related problem) [42]. 

The effect of modulation is to cause the mean source inten- 
sity Is to undergo excursions between two levels I, and Ib. 
The modulation depth is defined as rn = (Ib - Iu)/(Ib f Iu), 
and can take on any value between 0 and 1 .  As indicated 
previously, we  assume throughout that  the noise is an indepen- 
dent Poisson process and can therefore be represented by a 
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constant effective intensity level I H .  The  contribution  of  the 
steady noise background to  the modulated signal therefore  has 
the effect of shifting the overall mean  intensity to rm = & t IH, 
where 7 ,  is the  mean  of  the  modulated signal. If the  modula- 
tion is symmetric,  such  that r~ = (I, t Ib)/2, and  there are no 
intrinsic source  fluctuations,  it is not difficult to demonstrate 
that  the effect of  the noise  is simply to shift the  modulation 
depth  down  to an effective value m' = m&/fm. In  the  presence 
of both signal (S) and noise (H) ,  therefore,  the  counting dis- 
tribution ps+H(n,  r/T) is  given by (1) and (2) ,  using the  inten- 
sity statistics appropriate  for  the specified modulation format. 
The overall mean  intensity is taken as rm = Is  t IH, and the 
effective modulation  depth m' = m&/rm replaces  the  modula- 
tion  depth  m used to  calculated'ps(n,'r/T). The  arguments 
are  similar if the source and/or  the  modulation is stochastic 
[18],  except  that  then  PS+H(n, r/T) will not have the same 
form as ps (n, r/T) [44]. 

As described earlier, the noise generated  by  dark effects and 
background is assumed to be  given by  the deadtime-modified 
Poisson counting  distribution  pH(n, r/T) which, in the  absence 
of signal, is [20] , [39]-[41] 

PROBABILITY OF FALSE ALARM (Pf) 

Fig. 2. Receiver operating characteristic (ROC) curves for a likelihood- 
ratio receiver (unmodulated amplitude-stabilized signal) in  the absence 
of deadtime (solid  curve), for the deadtime  ratio r/T = 0.02 (dashed 
curve), and for T/T = 0.05 (dotted curve). The (fixed) unmodified 
signal  level  is hsT = 5, and the unmodified noise level  is ~ H T  = 20 for 
all curves. 

T 
n < -  

7 

T  T 
- < n < - t l .  
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111. LIKELIHOOD-RATIO DETECTION IN THE  PRESENCE 
OF DEADTIME 

Using the likelihood-ratio test  for an on-off  system (non- 
orthogonal signaling format)  such as that shown in Fig. 1 
[22]-[31],  the decision  threshold nD is determined  by  the 
minimum count  number n satisfying the  condition 

PS+H(n,  r/T)/PH(n, r/T) A, (7) 

where ps+H(n,  r/T) and  pH(n,  TIT) are the  counting  distribu- 
tions  described in the  previous  section  and A is the  decision 
level. This result assumes the existence of  a single decision 
threshold [25]. For simplicity, we assume a Bayes criterion 
with  equal costs so that A = (1 - Q)/Q,  where Q is the  a  priori 
probability that  the signal  is present. Maximum-likelihood 
detection is associated  with A = 1 (Q = 0.5). In  order to  con- 
struct  the receiver operating characteristic (ROC), we write  the 
probability  of  detection Pd and  the  probability of false alarm 
Pf in terms  of  the  parameter  nD as 

and 

pf = PH(n, TIT)- 
0 

(9) 
n =nD 

The ROC curve is a  plot  of Pd versus Pf as the  decision 
threshold n D  varies from 0 to 00. 

A. Unmodulated  Amplitude-Stabilized  Signal 

In Fig. 2, we present ROC curves corresponding to an un- 
modulated (m = 0) amplitude-stabilized signal  in the  presence 
of a steady  background  (Poisson  counts).  The solid  curve 
corresponds to  a  detector  with zero  deadtime,  whereas  the 
dashed curve corresponds to a ratio of  deadtime to sampling 
time r /T  = 0.02 and the  dotted curve to  7/T = 0.05, The 
unmodified (fixed) signal level (n s>  = hsT = 5 and the  un- 
modified  noise level (nH) = ~ H T  = 20 for all  curves. The 
effect of  the  deadtime is to decrease  the  probability  of  detec- 
tion  at  a  fixed false-alarm rate (constant Pf). The small-signal 
level h s T  = 5 was  used in order to clearly illustrate this effect 
graphically. i t  is i m p o r t ~ t   t o  note  that  although  continuous 
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Fig. 3. Probability of error (Pe) versus  signal  level (As7') for  an un- 
modulated amplitude-stabilized  signal in the absence of deadtime 
(solid  curves) and  with a deadtime  ratio r/T = 0.02 (dashed  curves), 
The unmodified noise  level AHT is 20 for  the upper pair of curves 
and 10 for  the lower pair. The a priori probability Q = 0.5 for all 
curves. 

curves are drawn in Fig. 2 ,  the ROC is defined only at discrete 
points. This is because the decision threshold ng takes on 
only integer values [26] .  

In terms of  the parameter n D ,  the total probability of error 
P, is 

' . ' O r  
0.98 1 

0.92 x 0.90 

W 
n 

OdO t j 
0.50 ' I , I 

0 IO 20 30 

SIGNAL MEAN (XsT) 
Fig. 4. Probability of  detection (Pd) versus  signal  level (AsT) for  an 

unmodulated  amplitudestabilized signal in the absence of deadtime 
(solid  curves) and with a deadtime ratio r/T = 0.02 (dashed curves). 
The unmodified noise  level AHT is 10 for  the  upper pair of curves and 
20 for  the lower pair. The a priori probability Q = 0.5 for all  curves. 

detection probabilities in  Fig. 4 therefore correspond to  the 
error  probability curves in Fig. 3. Note that  the probability of 
detection  for XHT = 10 and XsT < 8 (upper pair of curves) is 
greater for  a detector with  deadtime than for one without. 
This higher value of Pd is accompanied, however, by an in- 
crease  in the false-alarm rate Pf. This arises from the discrete 
nature of the processes involved; the decision threshold ng 
takes on only integer values, and at threshold the ratio 
PS+H(nD, r/T)/pH(nD, r/T) is not, in general, precisely equal 
to  the decision level A, but is obtained  from the actual  point 
on the ROC curve. 

Selecting nD in accordance with (7)  for maximum-likelihood B* Triangular& Modulated Amplihtde-Stabilized simal 
detection (A = l ) ,  the total probability of  error for an As an example of a  modulated signal, we examine the 
amplitude-stabilized source in the absence of modulation is maximum-likelihood detection of a triangularly modulated 
presented in  Fig. 3 as a  function of  the unmodified mean amplitude-stabilized source in the presence of deadtime. For 
signal  level hsT. The solid curves correspond to a detector an arbitrary modulation depth m', the  quantity pk(n, X) ex- 
with  zero  deadtime, whereas the dashed curves correspond to pressed in ( 2 )  is [ 1 5 ]  -[17],   [37] (see also [20, eqs. (4), ( 7 ) ] )  

pk(n,  X )  = [ 2 m ' h ( ~ -  nr)]-' 

k 
exp [-h(T-  nr)(l - m')]  [X(T-  nr)(1 - m')]j/j! - exp [ -h(T-   nr ) (1   tm ' )]  1 [h(T- nr)(1 t m')]j/j! , 

k 

j =  0 j=o I 
( 1  1 )  

r/T = 0.02. The unmodified noise level hHT = 10 for the 
lower pair of curves and ~ H T  = 20 for  the upper pair. Clearly, 
the effect of the deadtime is.to increase the probability of 
error  in all cases. 

Fig. 4 presents the probability of detection as a function of 
the unmodified mean signal  level for  a detector  with zero 
deadtime (solid curves) and for  the ratio r/T = 0.02 (dashed 
curves). The detection probabilities have been plotted on 
inverted log versus linear paper to expand the scale for high 
values of Pd. The unmodified noise levels  are XHT = 10 for 
the upper pair of curves and ~ H T  = 20 for the lower pair; the 

with X and m' defined previously. It has been shown both 
theoretically [ 151 -[ 171 and experimentally [ 161, [20] that 
this result is very accurate for T << TM, where T M  is the 
period of the modulation, and this  condition is assumed 
throughout. The deadtime-modified distribution for the noise 
alone is  again  given by (6). 

In Figs. 5 and 6 we show representative examples of the 
counting  distributions corresponding to noise alone (dashed 
curves) and to signal plus noise (solid curves) f0r.a triangularly 
modulated signal  in the presence of a  steady noise background. 
The unmodified noise level XHT = 10 and the unmodified 
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Fig. 5. Counting  distributions  corresponding  to  noise  alone  (dashed 
curve)  and signal plus  noise  (solid curves) for  a  triangularly  modulated 
amplitude-stabilized  source  in the presence  of  a  steady noise back- 
ground  with the modulation  depth m as  a  parameter.  The  unmodified 
noise  level ~ H T  = 10, the unmodified  mean signal  level hsT = 15, and 
the deadtime  ratio 7/T = 0.02 for all curves. The signal modulation 
depth m = 0.5 and 1.0 as  indicated.  Since the noise  is unaffected  by 
the modulation, the noise  distribution  (dashed curve) is the same for 
both cases. 

loo' dTz0.05 

i 
1 
-1 
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Fig. 6. Counting  distributions  corresponding to noise alone  (dashed 
curves) and signal plus noise  (solid  curves) for a  triangularly  modu- 
lated  amplitudestabilized  source  in  the  presence  of  a  steady  noise 
background.  The  unmodified noise  level AHT = 10,  the  unmodified 
mean signal  level hsT = 15, and the signal modulation depth m = 0.5 
for all curves. The  deadtime  ratio 7/T = 0.02 and 0.05 as indicated. 

10 20 30 
NUMBER OF COUNTS (n) 

mean signal  level hsT = 15 for all  curves. In Fig. 5 the  dead- 
time ratio r/T is 0.02 and  the  modulation depth m is 0.5 or 
1.0 as indicated  whereas in  Fig. 6, m is constant and equal to 
0.5, but r/T takes  on  the two values 0.02 and 0.05 as indicated. 

For maximum-likelihood  detection (Q = O S ) ,  the decision 
threshold nD can be  determined  simply by examining the 
intersections  of  the  appropriate dashed and solid curves. From 
Fig. 5 , it appears that  the  modulation  depth m has  little effect 
on nD for the particular parameters  used,  whereas nD changes 
more substantially with  deadtime (see Fig. 6) .  This is illus- 
trated  in Fig. 7  which  presents the decision  threshold nD as a 
function  of  the  unmodified  mean signal  level hsT for modula- 

SIGNAL  MEAN (XsT) 
Fig. 7. Decision threshold nD as  a  function  of  unmodified  mean signal 

level AST for a  triangularly  modulated  amplitude-stabilized source. 
The  unmodified  (steady)  noise level AHT = 10 for all curves and the 
signal modulation depths are rn = 0.5 (solid curves) and m = 1.0 
(dotted curves). The  deadtime  ratio T/T  = 0, 0.02, 0.05,  and 0.1 as 
indicated. 

tion  depths m = 0.5 (solid  curves) and m = 1.0 (dotted curves) 
with  the  deadtime  ratio r/T as a  parameter. The steady noise 
level ~ H T  = 10 for all cases. It is clear that  the  modulation  has 
the largest effect  on nD in the absence  of  deadtime, and no 
appreciable  effect on nD in the reasonably severe deadtime- 
limited case (r/T = 0.1). This is not  too surprising, however, 
since  in this  latter case the maximum registered count  must  be 
less than 10. 

In  Appendix  I we present  an  approximate  expression  for  the 
decision  threshold nD for an amplitude-stabilized signal  in the 
absence  of  modulation  when the mean  noise count is large. 
This  approximation  was not used in any  of the results pre- 
sented in this  paper,  however,  which  were  obtained  by calcula- 
tion  on  the Columbia  University IBM OS 360/9 1 computer. 

In Figs. 8 and 9 we present  probability  of  error  curves  for  a 
maximum-likelihood receiver detecting  a triangularly modu- 
lated amplitude-stabilized signal. The solid curves  represent  a 
detector  with zero  deadtime,  whereas  the  dashed curves 
correspond to  the ratio r/T = 0.02 in all  cases. The  modulation 
depth m is 0.5 in  Fig. 8 and 1.0 in Fig. 9.  In  both of the 
figures the  unmodified noise  level XHT is 20 for  the upper 
pair of  curves  and 10 for  the lower pair. The  effect  of  the 
triangular modulation is to broaden  the  counting  distribution 
[15]-[17];  this is reflected in the higher  probability  of  error in 
comparison  with the  unmodulated results presented in Fig. 3. 

IV. CHANNEL  CAPACITY IN THE PRESENCE 
OF DEADTIME 

Whereas the  probability  of error,  the  probability  of  detection, 
and the ROC specify receiver performance,  the rate of infor- 
mation transmission' is governed by the  channel  capacity. We 
consider  a  communication  channel in which the  input U takes 
on  the values al  , a2 , * * * , a,, and the  output V takes  on  the 
values bl  , b2 , * - * , b,. Let ru(ai) be  the  probabmty  that  the 
input Utakesonthevalueai,i=1,2,...,n,andrv(bj)the 
probzbility that  the  output V takes  on  the value bi, 
i = 1 , 2, * * , m. In  a similar manner, we define  a joint  proba- 
bility ruv(ai, bi) and a conditional  probability rvlu(bj  lai). 
The  mutual  information lu;v(ai; bi) between  the  events U = ai 
and V = bi is given by [32] , [45] - [47] 

I u ; v ( ~ ~ ;  bi) = log Cruv(ai, bi)/ [ r ~ ( a i )  rv(bi)I 1 
= log Crt.1 u (bi I a i ) / r ~ ( b i ) )  3 (12) 
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Fig. 8. Probability of  error (Pe) versus unmodified mean  signal  level 
(hsT) for a triangularly modulated amplitude-stabilized signal in the 
absence of  deadtime (solid  curves) and with a deadtime  ratio 
r/T = 0.02 (dashed curves). The unmodified (steady) noise  level 
~ H T  is 20 for  the upper pair of curves and 10 for the lower pair. The 
signal modulation  depth in = 0.5 and the a priori probability Q = 0.5 
for all curves. 

SIGNAL MEAN (XsT) 

Fig. 9. Probability of  error (Pe) versus unmodified mean  signal  level 
(hsT) for a triangularly modulated amplitude-stabilized  signal in the 
absence of  deadtime (solid  curves) and with a deadtime ratio 
r/T = 0.02 (dashed curves). The unmodified (steady) noise  level ~ H T  
is 20 for the upper pair of curves and 10 for the lower pair. The 
signal modulation  depth rn = 1.0 and  the a priori probability Q = 0.5 
for all  curves. 

where the  logarithm is usually taken to  the base 2 for  con- negative integer values 0 ,  1, 2, * - ,m. In this subsection we 
venience in dealing with  binary systems. The average mutual exclude the likelihood-ratio test (see  Fig. 1). 
information  between  the  input U and the  output  Vis  then Letting p(u  = 1) = Q,  p(u = 0) = 1 - Q, and p(u = n)  = r(n), 

the average mutual information I(U; V )  given in (14) is 
I(u; v) = Y u T / ( ~ ,  bj) 1% { T T / ~ u @ ~  Iai)/rv(bj)), (13) explicitly expressible as 

ai bj 

where u and u represent values of the random variables Uand 
V and r(ulu) is the conditional  probability. It should be 
noted  that 

r(u) = r(ulu)r(u). 
U 

Now, if the conditional  probability v (u  I u )  is  given for  the 
channel,  one can maximize I (U; V )  with respect to  r(u) to 
obtain  the  channel  capacity C, i.e., 

If the likelihood-ratio  test  is  excluded, we  have r(n 10) = 
pH(n, T/T) and r(n 11) =pS+H(n, T /T)  as given by (6), and  by 
(1) and ( 2 ) ,  respectively. With v(n 10) and r(n I I), we  can 
calculate I(U; V )  for  any given  value of Q, and thus find the 
channel  capacity C, the maximum value of I (U; V )  [see (16)]. 
For  the system considered here,  this  quantity is a function of 
the  source  statistics, the  deadtime,  the modulation  format  and 
depth, and the various mean levels of signal  and noise. 

B .  Likelihood-Ratio Counting  Receiver 

C =  maxI(U, V) .  
.(U) 

In  this case, the  output V, may  take  on only two values, 0 
(I6) and 1, as determined by  the likelihood-ratio  test.  Thus, 

In the following sections we obtain  the channel  capacity  for 
the modulated-signal counting system in  the presence of  de- 
tector deadtime. 

n g - l  

n = o  
~(010) = pH(n, T P ) ,  r(1 l o j  = 1 - r(olo), 

A. Simple Counting  Receiver n g - l  

Consider a binary system (see  Fig. 1)  in  which the  input U is ' ( O  I ') = pS+H('> T / T ) 7  r ( l  I '1 = - ' ( O  ' ' 1 7  (19) 
taken to be equal t o  1 when a signal is present,  and 0 when 
the signal  is absent.  The output  of  the system VI is  equal to and the average mutual  information is  given by  the well-known 
the  number of counts registered; thus, VI can take on all non-  formula 

n=O 
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SIGNAL PROBABILITY (Q) 
Fig. 10. Average mutual  information I (U; V )  versus a priori signal 

probability Q for a simple  counting receiver  (solid  curves) and for a 
maximum-likelihood  counting receiver (dashed curves) with  the un- 
modified signal mean AsT as  a  parameter. The ratio  of  deadtime  to 
sampling time T/T = 0.02, the unmodified  noise  mean AHT = 10,  and 
the modulation  depth m = 0 for all curves (amplitude-stabilized 
source).  Unmodified signal means  are +T = 5, 10, and 20 as indi- 
cated.  The  peak of  each  curve represents the channel  capacity. 

SIGNAL PROBABILITY (Q) 

Fig. 11. Average mutual  information Z(U; V )  versus a priori signal 
probability Q for a  simple  counting receiver (solid curves) and  for  a 
maximum-likelihood  counting receiver (dashed curves) with  the 
(triangular)  modulation  depth m as  a  parameter. T/T = 0.02, XsT = 15, 
and XHT = 10 for all curves. The (signal) modulation depths are 
m = 0, 0.5, and 1.0  as indicated.  The peak of  each curve represents 
the  channel  capacity. 

1 .o I I I I 

SIGNAL PROBABILITY (Q) 
Fig. 12. Average mutual  information Z(U; V )  versus a priori signal 

probability Q for  a  simple  counting receiver (solid curves) and for  a 
maximum-likelihood  counting receiver (dashed curves) with  the-dead- 
time  ratio T/T  as  a  parameter. XsT = 15, XHT = 10, and m = 0 for all 
cases.  Curves are  shown for T/T  = 0 ,  0.05, and 0.1 as  indicated.  The 
peak  of each  curve represents the channel  capacity. 

I(U; V )  = 2 {Qrh 11) log [r(m I l)/r(m)l 
m=o 

+ (1 - Q )  r(m IO) log Er(m lO)/r(mN}. (20) 

In this case, r(u lu) is a  function  of  the a priori probability Q, 
since Y(U lu) depends  on ylg, which is a  function  of Q. 

In Figs. 10-12 we present  the results for I(U; V )  versus Q 
for  both  types  of receiver, showing the  effects  of a number of 
parameters.  The solid  curves refer to the simple counting re- 
ceiver without  the likelihood-ratio test, whereas  the  dashed 
curves represent the llkelihood-ratio counting receiver.  Fig. 10 
shows  the average mutual  information  for  unmodified signal 
means XsT = 5,  10, and 20 for  an amplitude-stabilized signal 
(zero  modulation).  The  unmodified noise mean XHT= 10 

and  the  ratio T/T  = 0.02 for all  curves. The  effect  of triangular 
modulation is displayed in Fig. 11 where XsT = 15, XHT = 10, 
r/T = 0.02 and  the variable parameter is the  modulation  depth, 
which  takes on  the  values  m = 0,0.5, and 1. Fig. 12  shows the 
mutual  information  for  various values of  the  deadtime  ratio, 
viz., r / T =  0, 0.05, and  0.1.  The  source is  an amplitude- 
stabilized signal  (m = 0) withunmodified  signalmean XsT = 15, 
and the unmodified  noise  mean is X,T= 10. As expected, 
the  channel  capacity  decreases  with  decreasing signal mean 
(Fig. lo), increasing  modulation depth (Fig. 1 l), and increas- 
ing deadtime (Fig. 12).  Note that  the peak mutual informa- 
tion occurs  at or near Q = 0.5 in all  cases. 

An obvious  distinction  between  the  two  types  of receiver  is 
that  the likelihood-ratio receiver exhibits discontinuities in the 
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I(U; V )  versus Q curves. This is because of  the discrete nature 
of the decision threshold  which jumps from  one integer to 
the next at certain values of Q, as Q varies. The  likelihood- 
ratio receiver yields a lower  capacity  than the simple counting 
receiver in all  cases. Since both the  input and output  take  on 
the values of 0 and 1 only,  with  the  binary  counting  likelihood- 
ratio receiver, it may be considered as  an asymmetrical  binary 
channel  [47]  with varying error-transition  probability, i.e., 
r(ll0) and r(0 I 1). Thus,  it is expected that  the channel ca- 
pacity will not exceed 1. 

V. IMAGE DETECTION IN THE PRESENCE 
OF DEADTIME 

The use of a counting  array to detect a received  image has 
been investigated by a number  of  authors  [48]-[5 11. One 
technique 1491  is to obtain a maximum-likelihood estimate 
(MLE) of  the  mean  rate  at  each  detector in the array.  In this 
section, we consider an  elementary  maximum-likelihood  esti- 
mation scheme in the presence of  detector  deadtime.  For an 
image illuminated by a signal that is constant in time  (or by a 
source with degeneracy parameter [3] << l), Poisson counting 
will be observed at each  detector in the absence of deadtime. 
We assume that  the statistics at each  detector in the array are 
independent.  The  probability of observing n counts in a time 
interval T, for a single counting sample at a particular detector 
in the presence of a nonparalyzable  deadtime 7 is, from (6),  

p(nlh) = 2 { x ~ [ T -  nTIk/k!} exp  (-x[T- 1271) 
k=O 

n-1  
- {Xk[T- ( n -  l)7Ik/k!}  exp  {-h[T- ( n -  l ) ~ ] } ,  

k=O 

(2 1) 

for n < T/r. For  simplicity, we do  not consider the  solution 
for  the highest allowed count (T/T < n < T/r + 1). 

In  order to obtain a maximum-likelihood  estimate of  the 
rate,  denoted by XMLE,  we seek the solution of 

ap(n I h)/ah Ih=hMLE = 0. (22) 

After  some algebra, it can be shown (see Appendix 11) that  the 
maximum-likelihood estimate h M L E  is the solution  of the 
transcendental  equation 

AMLETexp ( X M L E T ) = ~ T [ T -  ( n -  1)7In/[T-  n7In+' 2 

n < TIT. (23) 

Equation  (23) can be solved by  an application of Newton's 
method  [52] to yield a value for AMLE to any desired ac- 
curacy. In  the  limit, as r /T+ 0, (23)  reduces to  the zero- 
deadtime result obtained  for a single sampling [49], i.e., 

AMLE = n/T.  (24) 

An approximate closed form  solution  for XMLE can be ob- 
tained in the  two limiting cases A M L E T  << 1 and XMLET >> 
In AMLET.  For X M L E B  << 1, exp (AMLET) 'v- 1 + X M L E T ,  and 
AMLE can be obtained as the solution to  the quadratic  equation 

XMLEr(1 + AMLET) = ~ T [ T -  (n - 1)7In/[T- n7In+'. (25) 

For  the opposite limiting case, we take  the natural  logarithm 
of  (23), yielding 

In X M L E ~  + AMLET= In {nT[T- (n - 1)7In/[T- n7]'+'}; 

(26) 

for AMLET >> In AMLET (which is  valid for AMLET 2 30),  the 
solution is 

AMLE N 7-l In {n7[T- (n - l )~ l " / [T-  nr]"+'}. (27) 

The  statistical  confidence level y [49],  [53] of the maximum- 
likelihood estimate can be  computed  under  the  assumption of 
Bayesian statistics as 

y =  j- p(hln)dh. 
~ M L E + P  

(28) 
~ M L E - ~  

The range of values in X, AMLE - a to AMLE t 0, required to 
reach a prescribed value of y is the confidence interval. With 
the use of  the axioms of Bayesian statistics,  (28)  may be 
written as 

~ M L E + P  
Y =  J ~ M L E - ~  ~ ( ~ l X ) ~ ( h ) d h ~ ~ w ~ ~ n l h ) ~ ( h ) d h ,  (29) 

where p ( A )  is the  probability  density of the mean rate of  the 
counting  distributions.  In the  limit, as p(h )  becomes a very 
wide distribution, the confidence level  as  given by  (28) 
becomes 

~ M L E + P  
y =  j- p(nIA)dh.  (30) 

~ M L E - O  

Since the  expression  in (30) involves integrals over terms  which 
are Poisson in  nature [see (21)], classical statistical  tables  may 
be  used to  obtain  the confidence interval, once a value of y is 
chosen. 

To increase the accuracy of the estimate, the  count could 
be sampled N times,  rather than once, at  each  detector. 
There would then  be N values of  the observed count  number: 
n l ,  n2, - * . , nN. The maximum-likelihood estimate of X 
would then  be  obtained by maximizing the N-fold joint proba- 
bility of observing n1 counts in time interval 1, n2 counts in 
time interval 2,  and so on,  up  to  the  Nth time interval. For 
Poisson counting  in the presence of a fixed deadtime,  if the 
intervals can be assumed to be  independent,  the  joint  proba- 
bility  distribution  simply  reduces to  the product  of  the  in- 
dividual distributions 

N 
P ( n l , n z , ' " , n n r I ~ ) = n  Phi lh ) ,  (3  1) 

i=l 

with  the p(nil X) given by (21). (The higher order (joint) 
statistics  frequently provide useful information  about a system 
in the  nonindependent case.) The  maximum-likelihood esti- 
mate of  the rate  parameter, ANILE, is obtained  from 

ap(nl,n2 , . . . , n ~ I X ) / a A I h = h M L E = ~ .  (32) 

The  solution to  this  equation, using the  joint density  function 
given in (31),  entails a great deal  of algebra inasmuch as each 
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of  the p(nj  I X) consists of  a  summation  of  many  terms.  Thus, 
the  joint  density involves a large number  of  product  terms, 
and (32)  would have to be solved by numerous  applications of 
the  chain rule for  differentiation.  The  solution  could  be 
greatly simplified, however,  by using the  approximate  form  for 
p(nj,h) given in [20]  and in Appendix 11. 

VI. CONCLUSION 
Expressions  have  been  obtained for the fured-time-interval 

counting  distributions  for  a periodically or stochastically 
varying signal in the  presence  of  Poisson  noise  counts  and 
fixed  nonparalyzable  deadtime.  For  symmetric  modulation, 
in the  absence of intrinsic source  fluctuations,  it  has  been 
shown that additive amplitude-stabilized noise affects the  total 
signal by shifting the mean  intensity  upward,  thereby  introduc- 
ing an effective modulation  depth. 

Likelihood-ratio receiver performance  and  information rate 
were evaluated for  a  number  of specific cases.  ROC  curves 
were presented for an unmodulated  amplitude-stabilized signal 
illustrating that  the  deadtime causes  an increase in the false- 
alarm  probability for a fured probability  of  detection, or 
equivalently,  a  lower  probability of  detection  for  a  fixed 
false-alarm rate. 

Representative  deadtime-modified  counting  distributions 
were presented  for  noise  alone  and for signal plus noise with 
various values of  deadtime and (triangular) modulation  depth. 
The  behavior  of  the  decision  threshold was examined graphi- 
cally, and it was demonstrated  that  the  presence  of  modulation 
has relatively little  effect  on  the  decision  threshold, especially 
when the  system is highly  deadtime-limited. An approximate 
analytic expression for n g ,  valid for an  unmodulated 
amplitude-stabilized signal and small deadtime,  shows  that  the 
effect  of  the  deadtime is to reduce  the  decision  threshold. 

Probability  of  error and probability  of  detection curves  were 
provided  for an unmodulated  and  for  a triangularly modulated 
amplitude-stabilized source. The effect  of both  the deadtime 
and the  modulation was to increase the  probability  of  error. 
In the case of modulation  this  occurred as a result of  a  broad- 
ening  of  the  constituent  probability  distributions,  whereas in 
the case of  deadtime,  it  arose  from  a loss of  counts. 

The average mutual  information was presented as a  function 
of  the a priori signal probability Q for  unmodulated and for 
triangularly modulated  amplitude-stabilized sources. The 
channel  capacity was shown to decrease  with increasing dead- 
time,  increasing  modulation depth, and  decreasing signal mean; 
it was  always greater for  the simple counting receiver than 
for the likelihood-ratio counting receiver. 

Finally, a  maximum-likelihood  estimate of  the mean signal 
level for  a  simple image detection  system  with  a  deadtime- 
perturbed  counting  array was presented;  approximate closed- 
form  solutions  were  obtained  in  certain limiting cases. An 
expression  for the statistical confidence level of  the estimate 
was obtained,  and  a  technique was proposed  for  possibly 
increasing this  confidence level by  multiple sampling. 

Inasmuch as the results obtained  here  apply  to an arbitrary 
deadtime-perturbed  doubly stochastic Poisson  counting  system, 
they are expected to find application in such diverse areas as 
optical photocounting  communications,  operations research, 

nuclear  counting,  and  neural  counting  and  psychophysics, 
where  there exists substantial  evidence  of  the  importance  of 
deadtime effects. Thus, for example,  a special case of our 
results provides  the  channel  capacity  and  error  rate for the 
receptive-field-to-ganglion-cell visual pathway  in  the cat's 
retina for  various  conditions  under  which the maintained dis- 
charge  is  observed [41]. 

Clearly, calculations  of the kind  performed  here can be 
extended in the direction  of  orthogonal signal sets [54],  joint- 
counting statistics [ 191, joint likelihood detection,  subopti- 
mum receiver structures,  and  M-ary signaling. The  detection 
law [4], [ 5 5 ]  appropriate to any particular set of  conditions 
could also be investigated. 

APPENDIX  I 
DECISION  THRESHOLD FOR LARGE MEAN NOISE COUNT 

The  decision  threshold nD in the presence of  detector dead- 
time  for an amplitude-stabilized signal in  the  absence  of 
modulation is obtained  by solving the  equation 

pS+H(nD 3 T/T>/PH(nD , = FL (Al l  

We consider  maximum-likelihood  detection so that A = 1. It 
is in general difficult to obtain an analytical solution  to (Al); 
nevertheless, an approximate  expression  for nD can be  ob- 
tained  when  the  mean  noise  count  (and  therefore the mean 
signal plus noise count) is  large. In  that case, the deadtime- 
modified  counting  distributions  can  be  approximated as [20] 

PS+H(nD, T /T)=  {[As [ T -   ~ D T ] " ~ / ~ D ! )  

exp {- [h' AH] [ T -  nDT]} (A2) 

and 

pH(nD,T/T)={h:D[T- n ~ . ] " ~ / n ~ ! }  

- exp { - X H [ T -   n o r ] } .  (A3) 

Substitution  of (A2) and  (A3) into  (Al) yields 

[AS t exp { -x , [T-   nDT]}  (A41 

Multiplying (A4) by TnD and  taking  the  logarithm  provides 

nD In {(As f XH)T} - hs{T-   nDr}   "ng  In (XHT), (A5) 

which gives  rise to  the desired result 

ng XsT [In (1 + X ~ / X H )  + X ~ T ] - ~ .  (A61 

In the  limit, as T + 0, this  properly  reduces to  the  zero- 
deadtime result [23] , [26], [27]  

nD = b T  [In (1 t hS/hH)]- ' .  647) 

APPENDIX I1 

OF THE RATE (AMLE) 

To  obtain  the maximum-likelihood  estimate of  the rate XMLE 

SOLUTION FOR THE MAXIMUM-LIKELIHOOD  ESTIMATE 

in the presence of deadtime,  we  seek  the  solution  of 

ap(n I ~ ) / a ~ l , = , M L ,  = 0, (B1) 

with p(n  I A) given by  (2 1). We first compute derivatives of  the 
form 
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(a/ah)({hk[z= n71k/k!} exp { - x [ T -  1271)) 

= {khk-’ [T-  n71k/k!} exp { -A[T-  n71) 

- [ T -  n7] { h k [ ~ -  n71k/k!} exp { - A [ T -  n ~ ] } ,  

k 2 1. (B2) 

For k = 0, the derivative is 

(a/ah)(exp { -h[T-  n.]}) = - [ T -  1271 exp {-h[T-  YET]}, 

033) 

and the overall derivative in (B 1) becomes 

ap(nIh)/aX=- [T-  n7] exp {-h[T-  n7]} 
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