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Abstract—This paper reports a novel recurrence theory that
enables us to calculate the exact joint probability density function
(pdf) of the random gain and the random avalanche buildup time
in avalanche photodiodes (APDs) including the effect of dead
space. Such calculations reveal a strong statistical correlation
between the gain and the buildup time for all widths of the mul-
tiplication region. To facilitate the calculation of the photocurrent
statistics in the presence of this correlation, the impulse-response
function of the APD is approximately modeled by a function of
time whose prespecified shape is appropriately parameterized by
two random variables: the gain and the buildup time. The evalua-
tion of the variance of the photocurrent under this model leads to
the definition of the shot-noise-equivalent bandwidth of the APD,
which captures the statistical correlation between the gain and the
buildup time. It is shown that the shot-noise-equivalent bandwidth
in GaAs APDs is greater, by approximately 30%, than the tradi-
tional buildup-time-limited 3-dB bandwidth, which is calculated
from the mean of the impulse-response function. A thorough
analysis of the performance of APD-based integrate-and-dump
digital receivers reveals that the strong correlation between the
gain and the buildup time accentuates intersymbol interference
(ISI) noise, and thus, adversely affects receiver sensitivity at high
transmission rates beyond previously known limits.

Index Terms—Avalanche photodiodes (APDs), bandwidth, bit
error rate (BER), buildup time, correlation, gain, impulse-
response function, intersymbol interference (ISI), receiver sensi-
tivity, shot noise.

I. INTRODUCTION

AVALANCHE photodiodes (APDs) are widely used pho-
todetectors in many high-speed optical receivers, includ-

ing those deployed in 10-Gb/s/channel lightwave systems. The
popularity of APDs is due to their ability to provide high inter-
nal optoelectronic gains. In high-speed systems, the gain that
an APD provides translates into improved receiver sensitivity,
as the gain combats the Johnson noise in the preamplifier stage
of an optical receiver. This benefit, however, comes at the often
tolerable expense of an increase in shot noise by a factor called
the APD’s excess noise factor F , which is a measure of the gain
uncertainty [1]–[4]. In addition, the APD’s avalanche buildup
time, which is the duration of the APD’s single-photo-excited
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impulse-response function, limits the APD’s bandwidth and
causes intersymbol interference (ISI) in digital communication.
The buildup time has heretofore been the factor that limits the
use of APDs in 40-Gb/s systems to this date.

Advances in APD technology, such as the development of
APDs that may feature evanescent light coupling into very
thin multiplication regions (where both carrier transit time and
avalanche buildup time are significantly reduced without much
sacrifice in coupling efficiency), may be a promising path for
bringing APDs to the 40-Gb/s arena [5]–[14]. On the other
hand, to know the exact device requirements for specified
system performance requires (yet to be developed) exact the-
oretical models for assessing the receiver performance at high
speeds, where factors such as ISI and the stochastic nature of
the APD’s impulse-response function play critical roles. In this
paper, we exactly compute the joint statistics of the random gain
and random buildup time in APDs for the first time and incor-
porate these statistics in the analysis of APD-based receivers
at high transmission speeds. This theory is expected to impact
the way we translate system requirements (e.g., those for next-
generation lightwave systems) to device requirements. More-
over, this paper may also impact the design and performance
of emerging strategies (such as equalization and forward-error
correction) used to mitigate ISI and polarization mode disper-
sion in high-speed lightwave systems.

The APD’s impulse-response function is a stochastic process,
with a random duration (RD) (viz., avalanche buildup time) and
a random area representing the multiplication factor, or gain.
Moreover, the random gain and random buildup time are sta-
tistically correlated. One manifestation of this correlation is the
APD’s gain-bandwidth product (GBP), traditionally calculated
as the product between the mean gain and the 3-dB bandwidth
(calculated from the Fourier transform of the average impulse-
response function). However, the GBP conveys the correlation
in the gain and the buildup time in a very limited way—being
the product of mean quantities. In particular, it does not capture
the inherent correlation in the fluctuations in the gain and the
buildup time. For example, even if an APD is operated to
yield a certain fixed mean gain, specific realizations of the
avalanche process that exhibit high gains are accompanied
with long buildup times (those realizations result in greater
ISI and adversely affect receiver sensitivity), and vice versa.
Consequently, at transmission rates near the APD’s bandwidth,
where buildup-time uncertainty is expected to affect ISI, it is
plausible to suspect that the statistical correlation between the
random gain and the random buildup time may play an intricate
role in receiver performance.
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To understand the complex interplay between the buildup
time and the gain, one must appeal to the statistical analysis of
the APD’s impulse-response function. For example, to calculate
the variance of the photocurrent, knowledge of the second mo-
ment of the impulse-response function is required at each time.
Further, in order to calculate the variance of the integrated pho-
tocurrent, as required when assessing the bit error rate (BER) of
an integrate-and-dump receiver, the autocorrelation function of
the impulse response is also necessary [15], [16]. Although
recurrence relations for these quantities are available, their
solutions require intensive computing, especially for the auto-
correlation function [16]. Moreover, calculation of higher order
statistics (e.g., the probability distribution of the photocurrent,
which is required in the calculation of the probability dis-
tribution of the output of an integrate-and-dump receiver) is
practically impossible with existing models.

In this paper, we also provide a novel approximate method
for calculating the statistics of the impulse-response function
using our exact knowledge of the joint statistics of the random
gain and buildup time. The rationale is to first approximate the
random impulse-response function by a function of time whose
prespecified shape is parameterized by the random gain and the
random buildup time. A simple example of such a function is a
rectangular RD (RD-R) function whose duration is the buildup
time and whose area is proportional to the gain (more complex
functions may also be considered). The exact calculation of the
joint probability distribution function (PDF) of the gain and
buildup time is accomplished by developing a novel recursive
theory that generalizes the existing recursive techniques for
computing the marginal PDFs of the gain [17], [18] and the
buildup time [19]. The computations are carried out for homo-
junction APDs under the simplifying assumptions of a constant
electric field (in the multiplication region) and a constant drift
velocity for carriers. We emphasize that the theory developed
here incorporates the dead-space effect, which is inherent in
the process of cascaded impact ionizations. Dead space is the
minimum distance a newly generated carrier must travel before
it becomes capable of effecting an impact ionization. It is well
known that this effect becomes increasingly more important
in thin multiplication layers, where the fast buildup time is
accompanied by reduced excess noise factor.

We also utilize this avalanche multiplication theory to an-
alyze the receiver performance in an ON–OFF keying (OOK)
optical receiver. We particularly investigate the effect of the
statistical correlation in the gain and the buildup time on the
receiver performance in high-speed transmission settings.

II. JOINT PROBABILITY DISTRIBUTION OF

GAIN AND BUILDUP TIME

Consider an APD with a multiplication region extending
from x = 0 to x = w. Assume that an electron is injected into
the multiplication region from the left at x = 0, thereby start-
ing the avalanche process. Upon entering the multiplication re-
gion, the injected electron travels to the right a random distance
Xe,0, after which it impact ionizes, resulting in two offspring
electrons and a hole. The probability density function (pdf) of
the free path Xe,0 of the injected electron is denoted by he,0(ξ).

For example, according to the dead-space multiplication theory
(DSMT) [20], he,0(ξ) = α(ξ) exp[−

∫ ξ

de,0
α(y)dy]u(ξ − de,0),

where α(ξ) is the position-dependent (field-dependent) nonlo-
calized ionization coefficient, de,0 is the dead space associated
with the injected electron, and u(x) is the unit step function
[i.e., u(x) = 1 if x ≥ 0, and zero otherwise]. After each im-
pact ionization, a newly created electron (or adversely, hole)
born at position x travels a free distance Xe,x to the right
(or adversely, a distance Xh,x to the left) before it impacts
ionizes. Let he(ξ|x) and hh(ξ|x) denote the pdfs of Xe,x

and Xh,x, respectively [in the DSMT model [20], he(ξ|x) =
α(x+ξ) exp[−

∫ ξ

de(x) α(x+y)dy]u(ξ−de(x)) and hh(ξ|x) =

β(x− ξ) exp[−
∫ ξ

dh(x) α(x− y)dy]u(ξ − dh(x)), where de(x)
and dh(x) are, respectively, the position-dependent (field-
dependent) dead spaces associated with the electron and holes
that are created at x].

For a linear-mode operation of the APD (i.e., when the
APD is operated below breakdown, that is, the probability
of avalanche breakdown is zero, or equivalently, the mean
gain is finite), the cascade of impact ionizations terminate at
some finite random time T , called the avalanche buildup time,
yielding a net random gain G. Note that if we consider the
electrical current, or the APD’s impulse-response function due
to the injected electron, resulting from the carriers generated
by the cascade of impact ionizations, then T is precisely the
RD of the impulse-response function. Our goal is to determine
fG,T (m, t) = P{G = m,T ≤ t}, the joint PDF of the random
variables G and T , where m is the number of electron-hole pairs
involved in the avalanche buildup, and t is the time by which the
avalanche buildup is completed.

We first define certain intermediate quantities that are es-
sential in the formulation of the recursive (renewal) equations
that would ultimately yield fG,T (m, t). For each x ∈ [0, w],
let Z(x) be the total number of carriers (electrons and holes,
collectively) generated by a parent electron positioned at x, and
let Te(x) be the random time until all these carriers exit the
multiplication region. Similarly, we define Y (x) as the total
number of carriers generated as a result of a parent hole posi-
tioned at x and let Th(x) denote the time until all these carriers
exit the multiplication region. Note that G = 0.5(Z(0) + 1)
and Te(0) = T . Let us now define the joint PDF of Z(x) and
Te(x) by fe(m, t;x) = P{Z(x) = m,Te(x) ≤ t}. Similarly,
define fh(m, t;x) = P{Y (x) = m,Th(x) ≤ t}. Note that, as a
special case, fG,T (m, t) = fe(2m− 1, t; 0). We now invoke a
renewal argument that will allow us to recursively characterize
fe(m, t;x) and fh(m, t;x).

A. Recursive Equations

In avalanching, once a parent carrier impact ionizes, the
regenerated parent carrier and the offspring carriers indepen-
dently repeat a similar process as their parent. Suppose that the
parent electron at x first impacts the ionization after traveling
a distance Xe = ξ ∈ [0, w − x] from x. In such an event, there
would be two newly created carriers (an electron and a hole).
Now, the key observation is that, conditional on the occurrence
of this initial ionization, the event that Te(x) is less than or
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equal to t and Z(x) = m is precisely the event that the re-
sponses due to the newly created carriers all terminate in the
remaining time (i.e., t less the electron transport time from x
to x + ξ, or simply t− ξ/ve) and that the three carriers collec-
tively generate m total offsprings within the remaining time of
t− ξ/ve. By invoking the well-known convolution principle for
the probability mass function of sums of independent random
variables, we obtain the convolution in (1) and (2). Here, ve

is the electron saturation velocity in the multiplication region.
By means of this renewal argument and by using standard
properties of conditional expectations and sums of independent
random variables, we can see that by conditioning on the
occurrence of the initial ionization at ξ, the conditional PDF
fe(m, t;x|ξ) can be written as

fe(m, t;x|ξ) = fe

(
m, t− ξ

ve
;x + ξ

)
∗ fe

(
m, t− ξ

ve
; +ξ

)

∗fh

(
m, t− ξ

ve
;x + ξ

)
(1)

where ∗ denotes discrete convolution (in the variable m). Simi-
larly, the conditional PDF fh(m, t;x|ξ) can be written as

fh(m, t;x|ξ) = fh

(
m, t− ξ

vh
;x−ξ

)
∗fh

(
m, t− ξ

vh
;x−ξ

)

∗fe

(
m, t− ξ

vh
;x−ξ

)
(2)

where vh is the hole saturation velocity in the multiplication
layer.

The condition on the location ξ of the first impact ionization
can now be removed by averaging over all possible locations
ξ in the interval [0, w − x]. However, it is possible that the
parent electron (or hole) born at x does not impact ionize at
all, corresponding to the event {Xe > w − x} (or {Xh > x}).
In particular, if Xe > w − x (or Xh > x), then Te(x) = (w −
x)/ve [or Th(x) = x/vh] and Z(x) = 1 [or Y (x) = 1].

With the above considerations and after performing an av-
erage over all possible locations of the first ionization, we
obtain the following coupled recursive equations that together
characterize fe(m, t;x) and fh(m, t;x):

fe(m, t;x)
= ge(x, t)δm−1

+

w−x∫
0

{
fe

(
m, t− ξ

ve
;x + ξ

)
∗ fe

(
m, t− ξ

ve
;x + ξ

)

∗ fh

(
m, t− ξ

ve
;x + ξ

)}
he(ξ|x) dξ (3)

fh(m, t;x)
= gh(x, t)δm−1

+

x∫
0

{
fh

(
m, t− ξ

vh
;x− ξ

)
∗ fh

(
m, t− ξ

vh
;x− ξ

)

∗fe

(
m, t− ξ

vh
;x− ξ

)}
hh(ξ|x) dξ (4)

where δ(k) is equal to one if k = 0, and zero otherwise

ge(x, t) =


1 −

w∫
x

he(ξ|x) dξ


u

(
t− w − x

ve

)
(5)

and

gh(x, t) =


1 −

x∫
0

hh(ξ|x) dξ


u

(
t− x

vh

)
. (6)

The convolutions in the above equations can be converted
into products by taking the z transform (0 ≤ |z| ≤ 1) of
fe(m, t;x) and fh(m, t;x) with respect to the variable m. The
transformed quantities, denoted by Fe(z, t;x) and Fh(z, t;x),
respectively, will satisfy

Fe(z, t;x) = ge(x, t)z +

w−x∫
0

F 2
e

(
z, t− ξ

ve
;x + ξ

)

× Fh

(
z, t− ξ

ve
;x + ξ

)
he (ξ|x) dξ (7)

and

Fh(z, t;x) = gh(x, t)z +

x∫
0

F 2
h

(
z, t− ξ

vh
;x− ξ

)

× Fe

(
z, t− ξ

vh
;x− ξ

)
hh(ξ|x)dξ. (8)

In actuality, the energy states of the carriers after ionizations
are not identical. The carriers with excess energy above the
ionization threshold do not necessarily end up with zero energy
after ionization. Therefore, they may travel a relatively shorter
dead-space length even in a constant field. Das and Deen [21]
accommodated this effect in their work by assuming that the ex-
cess energy after ionization is equally distributed. Alternatively,
the effect of uncertainty in energy states of the carriers can be
considered, for example, through adopting a stochastic model
for the carrier’s dead space, as done in [22]. For simplicity
and brevity, in this paper, we assume zero energy state of
the carriers after each ionization as well as a deterministic
dead space.We next introduce a numerical recipe for computing
Fe, Fh, fe, and fh.

B. Numerical Solutions

Calculation of Fe and Fh: For any fixed z, we can solve (7)
and (8) numerically using the simple iterative method described
below. We first select a maximum limit tmax for the range of
the buildup time to be considered. We then select a mesh size
for the time t and the space x allowing the discretization of
the function Fe and Fh, and hence, converting the integrals
into summations. The flowchart is presented in Fig. 1. We set
the zeroth iteration of the functions Fe(z, t;x) and Fh(z, t;x),
denoted by F

(0)
e (z, t;x) and F

(0)
h (z, t;x), respectively, to be

ge(x, t)z and gh(x, t)z, for 0 ≤ x ≤ w and 0 ≤ t ≤ tmax.



758 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 2, FEBRUARY 2006

Fig. 1. Flowchart describing the iterative procedure (Picard iterations) used to
solve the renewal equations.

Next, the first iterates F
(1)
e (z, t;x) and F

(1)
h (z, t;x) are com-

puted by substituting the zeroth iterates into the right-hand side
of (7) and (8). Subsequent iterates are generated in the same
way. This procedure is continued until the iterates converge uni-
formly in t and x. More precisely, we stop the iteration process
when the maximum relative change from the (n− 1)th to the
nth iterate in the functions F

(n)
e (Z, t;x) and F

(n)
h (Z, t;x) is

below a predefined tolerance level. At such point, the procedure
for computing Fe and Fh is complete and we set them to the
respective values at the last round of iterations.

Calculation of fG,T : Let FG,T (z, t) be the z transform
of fG,T (m, t) with respect to m. Then, since fG,T (m, t) =
fe(2m− 1, t; 0), we obtain

FG,T (z, t) =
√
zF1(

√
z, t; 0)

which we need to convert back to the m domain. Since G is
an integer-valued random variable, we can apply the efficient
technique proposed by Gubner and Hayat [23] to recover the
fG,T (m, t) from FG,T (z, t), with z restricted to the unit circle.

In this paper, the electric field required for achieving a certain
average gain is obtained by using the direct approach reported
in [17], with the ionization coefficients, dead spaces, and
ionization-threshold energies taken from [24]. Subsequently,

Fig. 2. Joint PDF of the random gain G and the random buildup time T for
a GaAs APD with a 160-nm multiplication layer. The applied electric field in
the multiplication region is taken as 5.47 × 103 kV/cm, yielding a theoretical
average gain of 〈G〉 = 10.46.

Fig. 3. Joint pdf of the random gain G and the random buildup time T for the
APD considered in Fig. 2. In order to better show the details of the pdf, large
peaks have been truncated.

these electric fields and their corresponding ionization coef-
ficients and dead spaces are utilized in the proposed renewal
equations to obtain the solution of the joint PDF.

Fig. 2 shows an example of the joint PDF fG,T (m, t) cal-
culated for a homojunction GaAs APD with a 160-nm multi-
plication layer exhibiting an average gain of 10.46 (from the
direct approach). The electron and hole saturation velocities are
assumed to be 0.67 × 107 cm/s (from [25]) and the nonlocal-
ized ionization coefficients for electrons and holes and their
respective ionization-threshold energies are taken from [24].
The joint pdf, shown in Fig. 3, is obtained by taking the
derivative of fG,T (m, t) with respect to t. Recall that if we
restrict the random gain realization to unity (the cross section
corresponding to m = 1 in Fig. 2), then the PDF of T becomes
a step function with a jump at the electron transit time w/ve.
Consequently, the joint pdf of T is expected to exhibit a Dirac
impulse at the electron transit time. These two features are
observed in Figs. 2 and 3, respectively. Fig. 3 also shows that
as the realized value m of the random gain increases, the pdf
of the T (i.e., cross section of the joint pdf along the t-axis)
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Fig. 4. Bottom: Correlation coefficient ρ of the random gain G and the
random buildup time T for a GaAs APD as a function of the multiplication-
layer width w. Top: Ratio r of shot-noise-equivalent bandwidth Bsneq to the
3-dB bandwidth B3-dB. The mean gain is held constant at 〈G〉 = 10.

shifts toward a higher buildup-time mean and a larger spread
about the mean. These are clear indications of the statistical
correlation between the gain and the buildup time as well as the
increase in the buildup-time uncertainty at higher realizations
of the gain.

In this example, the average gain calculated by the direct ap-
proach is 10.46. The marginal distribution of the gain (obtained
by averaging the joint PDF over the buildup time) yields the
mean of 10.48, which is in good agreement with the direct-
approach result. Additionally, if the time t in (7) and (8) is set
to infinity, (7) and (8) become the renewal equations governing
the generating function of the random gain, and these renewal
equations are equivalent to those reported in [17].

Similarly, the probability mass function of G for various re-
alizations t of the random buildup time T shifts toward a higher
mean (accompanied by a larger spread) as t increases. This
also confirms the correlation between the gain and the buildup
time. Fig. 4 (bottom graph) shows the correlation coefficient
ρ of G and T as a function of the width of the multiplication
region while the mean gain is held fixed at ten. The correlation
coefficient is calculated by ρ = (E[GT ] − E[G]E[T ])/σGσT ,
and the values of correlation coefficients are approximately
0.9 for the entire range of w.

We next use the joint PDF of G and T to calculate the
statistical properties of the impulse-response function and in-
vestigate the effect of the correlation between G and T on ISI
and receiver performance in high-speed digital receivers.

III. PARAMETRIC MODELING OF THE

IMPULSE-RESPONSE FUNCTION AND THE

SHOT-NOISE-EQUIVALENT BANDWIDTH

In this section, we introduce a novel stochastic model for the
impulse-response function that facilitates the calculation of its
statistics once the joint PDF of the gain and the buildup time has
been determined. The rationale is to approximate the impulse-
response function Ip(t) by a prespecified shape function of time
that is parameterized by the random gain G and the random

Fig. 5. Models for impulse-response function: the RD-R model (solid curve)
and the RD-T model (dotted curve). Note that the area under each of the models
is qG. A DD-E is also shown for which the decay rate is deterministic.

buildup time T . In this fashion, the randomness of the impulse-
response function, as a stochastic process, is lumped in the
random parameters G and T . This significantly simplifies the
complexity of the impulse-response function while maintaining
the key features that govern the excess-noise and speed proper-
ties of the APD, namely, randomness in the impulse-response
function’s area (representing gain uncertainty) and random-
ness in its duration (representing bandwidth uncertainty). An
example of such a shape function is the rectangular RD
(RD-rectangular or RD-R) with random height qG/T and RD
T , as shown in Fig. 5, where q is the electronic charge. Note that
the area under this function is qG. Another example is the tri-
angular RD (RD-triangular or RD-T) model, shown in the same
figure, for which the RD is again T but a peak occurs at
the electron transit time τe across the multiplication region.
The peak in the RD-T model is consistent with the behavior
of the true impulse-response function, as all first-generation
electrons continue to multiply until they simultaneously exit
the multiplication region at precisely τe units of time past the
time of the primary-electron injection. The height of the peak is
2qG/T so that the area under the shape function is qG. Other
shape functions may also be considered.

To see the validity of the proposed RD-R and RD-T models,
we calculated the mean impulse-response function, denoted by
ip(t) = E[Ip(t)], and compared it to the exact theoretical model
for the mean impulse-response function [15]. For example, it
can be easily shown that for the rectangular model

E [Ip(t)] =
∞∑

m=1

∞∫
t

qmτ−1 ∂

∂τ
fG,T (m, τ) dτ, t ≥ 0

which can be easily computed as the joint distribution fG,T

has already been computed. Figs. 6 and 7 depict the mean and
the second moment of the random impulse-response function
obtained using both the rectangular and triangular paramet-
ric models. Indeed, the area under ip(t) is 10.48q, which is
in excellent agreement with the theoretical average gain of
10.46q that is calculated independently using that in [24]. The
comparison with the theoretical prediction of the APD mean
impulse-response function by Hayat and Saleh [15] is also
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Fig. 6. Mean impulse-response function ip(t) corresponding to the RD
model with a rectangular shape (solid curve), the RD model with a triangular
shape (dotted curve), and the exact model [15] (dashed curve). Note that the
rectangular-shape RD model slightly underestimates the bandwidth while the
triangular-shaped RD model overestimates it.

Fig. 7. Second moment of the impulse-response function ip(t) corresponding
to the RD model with a rectangular shape (solid curve), the RD model with a
triangular shape (dotted curve), and the exact model [15] (dashed curve).

shown on this figure (dashed curve). The RD-R model predicts
GBPs of 274 and 194 GHz for the multiplication width 100
and 200 nm, respectively, which are comparable to 292 GHz
and 171 GHz, respectively, reported in [16]. Note that, due to
the frequency-response characteristics of the rectangular and
triangular waveforms, the rectangular model slightly underes-
timates the bandwidth while the triangular model overestimates
it. Nevertheless, the approximation is very good in both cases.

A. Bandwidth

The calculation of the variance of the photocurrent gener-
ated by an APD (i.e., the variance of the filtered shot noise
[26]) requires knowledge of the second moment of the APD’s
impulse-response function of time t. In particular, the variance
of the photocurrent is given by [27] q(ηP/hν)

∫∞
−∞〈I2

p(t)〉dt,
where P is the optical power, η is the APD’s quantum efficiency

(the probability that a single photon incident on the device
generates a photocarrier pair that contributes to the detector’s
current), h is Plank’s constant, and ν is the photon’s fre-
quency. However, calculation of the second-order statistics of
the impulse-response function are generally computationally
intensive, with no known closed-form expressions available
[15], [28]. As a result, simplifying assumptions that ignore
the randomness in the shape of the impulse-response func-
tion are often practiced in the calculation of the photocurrent
variance. For example, one customary approach is to assume
that the impulse-response function takes the simplified form of
Ip,c(t) = qGh(t) [i.e., the deterministic duration (DD) model],
where h(t) is a unit-area deterministic function that is pro-
portional to the mean impulse-response function [3]. We em-
phasize that implicit in such simplifications is the absence of
the statistical correlation between the gain and buildup time.
For example, the DD model Ip,c(t) = qGh(t) implies that
both high-gain and low-gain realizations of Ip,c(t) yield the
same bandwidth, while in actuality, high-gain realizations are
accompanied by long buildup times, and hence low bandwidth,
and vice versa. Nevertheless, the type of simplifications de-
scribed above admit the customary closed-form expression for
the variance of the photocurrent given by 2Bcq〈G〉2FηP/hν,
where Bc is the conventional bandwidth of the APD and
F is the APD’s excess noise factor (F = 〈G2〉/〈G〉2). For
example, if the DD model Ip,c(t) = qGh(t) is used, then Bc =∫∞
−∞ h2(t)dt/2(

∫∞
−∞ h(t)dt)2 [3], which approximates the 3-dB

bandwidth of the APD. The point being made here is that Bc is
calculated solely from the mean impulse-response function and
it does not capture the statistical correlation between the gain
and the buildup time.

In contrast, if the exact expression for the photocurrent
variance is used [viz., q(ηP/hν) ×

∫∞
−∞〈I2

p(t)〉dt], then we can
continue to conveniently express the shot-noise variance in the
customary form of 2qBsneq〈G〉2FηP/hν provided that we use
the correct bandwidth Bsneq, which we term the shot-noise-
equivalent bandwidth. This leads to the definition of Bsneq as

Bsneq =

∫∞
−∞
〈
I2
p(t)
〉
dt

2q2〈G〉2F . (9)

We emphasize that, in contrast to Bc, Bsneq includes the effects
of fluctuations in the shape (e.g., gain and duration) of the
APD’s random impulse-response function. Moreover, a closed-
form estimate of the second moment of the APD’s impulse-
response function can be obtained approximately using the
parametric stochastic models for the impulse-response function
introduced in Section III. For example, with the RD-R model

〈
I2
p(t)
〉

=
∞∑

m=1

∞∫
t

q2m2τ−2 ∂

∂τ
fG,T (m, τ) dτ, t ≥ 0

(10)
and the expression for Bsneq can be simplified to

Bsneq =

〈
G2

T

〉
2〈G〉2F ≡

〈
G2

T

〉
2〈G2〉 (11)
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which can be readily evaluated using our knowledge of the joint
distribution fG,T obtained in Section II.

The point of the preceding analysis is that, to incorporate
the effect of statistical correlation between the APD’s gain and
buildup time on the signal-to-noise ratio (SNR) of the photocur-
rent, we must use Bsneq in place of B3-dB in the customary
SNR expression ηP/2hνFB3-dB.

We have evaluated the shot-noise-equivalent bandwidth
Bsneq for GaAs APDs, for various widths of the multiplication
layer, and compared it with Bc taken as the 3-dB bandwidth.
Fig. 4 (upper curve) shows the ratio r = Bsneq/Bc as a function
of the width of the multiplication layer for a fixed mean gain
of 〈G〉 = 10. Notably, the shot-noise-equivalent bandwidth ex-
ceeds the 3-dB bandwidth by approximately 30%. Thus, our
calculations show that the 3-dB bandwidth, which is customar-
ily used in calculating the shot-noise variance, leads to tangible
underestimation of the shot-noise variance. This is primarily a
result of ignoring the statistical correlation between the buildup
time and the gain, or equivalently, it results from ignoring the
uncertainty in the shape of the impulse-response function.

IV. RECEIVER-PERFORMANCE ANALYSIS

In this section, we investigate the effect of the correlation
between the buildup time and the gain on the performance of
an APD-based receiver in a direct-detection OOK optical com-
munication system. Since we are particularly interested in the
performance at high transmission speeds, we will assume that
the buildup time dominates the RC effects and governs the re-
ceiver bandwidth characteristics. We first consider the SNR for
the output of an integrate-and-dump receiver in the presence of
ISI, Johnson noise, and buildup-time and gain uncertainties of
the APD. Subsequently, we will examine the receiver sensitivity
at high transmission speeds. Our analysis will ignore optical
pulse broadening and dispersion effects.

A. Statistics of the Photocurrent and the
Integrate-and-Dump Output

Consider an arbitrary bit of duration Tb from a stream of
optical pulses, and let I(t) denote the photocurrent in such a
bit. The photocurrent I(t) contains two components: Ic(t), the
component due to photons occurring in the present bit, and
IISI(t), the ISI component, which is due to the photons that
had arrived in previous bits. More precisely, if we represent
the photon arrival times by the sequence {ti} and assume that
the current bit extends from 0 to Tb, then for 0 ≤ t ≤ Tb, the
photocurrent can be written as

I(t) =
∑
ti<0

Ipi
(t− ti) +

∑
0≤ti<t

Ipi
(t− ti)

�
= IISI(t) + Ic(t) (12)

where Ipi
(t− ti) is the impulse-response function induced by

a photon absorption at time ti. Note that Ic(t) and IISI(t) are

statistically independent since they correspond to disjoint and
independent sets of photon absorptions. Suppose that photons
are absorbed at a rate of φ(τ) photons per second [φ(τ) =
ηP (τ)/hν, where P (τ) is the received optical power at time τ ].
By using standard filtered-shot-noise analysis [26], we can
express the mean of I(t) in terms of a convolution as follows:

〈I(t)〉 =

0∫
−∞

〈Ip(t− τ)〉φ(τ)dτ +

t∫
0

〈Ip(t− τ)〉φ(τ)dτ

�
= 〈IISI(t)〉 + 〈Ic(t)〉 . (13)

To see the maximum ISI effect, we consider the case for
which all the bits prior to the current bit are ON, i.e., φ(τ) ≡ φ1,
for all τ , where φ1 is the photon absorption rate in a pulse. It
follows that

〈Ic(t)〉 =φ1

t∫
0

〈Ip(t−τ)〉 dτ = φ1

t∫
0

〈Ip(τ)〉 dτ (14)

〈IISI(t)〉 =φ1

0∫
−∞

〈Ip(t−τ)〉 dτ = φ1

∞∫
t

〈Ip(τ)〉 dτ. (15)

The photocurrent I(t) is fed into a bit integrator that yields
the integral of the photocurrent synchronously over each bit
of duration Tb. The integral is used to detect the information
(0 or 1) modulated with the incident optical sequences. We
denote the output of the integrate-and-dump unit by Γ =∫ Tb

0 I(t)dt, which can be further decomposed [see (12)–(15)]
into two parts: Γ = Γc + ΓISI. The first component is the net
signal resulting from the photocurrent due to the absorbed pho-
tons in the present bit, and the second component corresponds
to ISI resulting from the photocurrent due to the absorbed
photons in the previous bits. The means of Γ, Γc, and ΓISI are,
respectively

〈Γc〉 =φ1

Tb∫
0

t∫
0

〈Ip(t− τ)〉 dτdt (16)

〈ΓISI〉 =φ1

Tb∫
0

0∫
−∞

〈Ip(t− τ)〉 dτdt (17)

and

〈Γ〉 = φ1

Tb∫
0

t∫
−∞

〈Ip(t− τ)〉 dτdt. (18)

The variance of Γ is given by

σ2
Γ = φ1

Tb∫
0

Tb∫
0

µ∧ν∫
−∞

RIp(µ− τ, ν − τ)dτdµdν (19)
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where µ ∧ ν is the minimum of µ and ν, RIp(µ, ν) is the au-
tocorrelation function of the impulse-response Ip(t), which is
defined as RIp(µ, ν) = E[Ip(µ− ξ)Ip(ν − ξ)] [the derivation
of (19) utilizes standard analysis of filtered shot-noise processes
[26] and will not be presented here).

We now define the maximal-ISI SNR for the integrate-and-
dump output as 〈Γc〉2/σ2

Γ. In the next section, we specialize the
SNR to two models for the APD’s impulse-response function:
the RD-R model and the DD-exponential (DD-E) model. This
will permit us to perform a comparison that shows the effect of
the uncertainty in the shape of the impulse-response function
on the receiver SNR.

B. SNR for a DD-E Model

We now use a DD-E model to approximate the APD’s
impulse-response function: IDD(t) = qGbe−btu(t) (we ignore
the electronic charge). Here, b is the fixed exponential rate con-
sistent with the 3-dB bandwidth B3-dB of the APD [15], [16],
namely, b = 2πB3-dB. Note that in this model the statisti-
cal correlation between the buildup time and the gain is ig-
nored. Clearly, the mean of this impulse-response function is
〈IDD(t)〉 = 〈G〉be−btu(t), and the autocorrelation function can
also be calculated, yielding

RIDD(µ, ν) = 〈G2〉b2e−b(µ+ν)u(µ)u(ν).

We now substitute 〈IDD(t)〉 and RIDD(µ, ν) into (16) and (19),
respectively, and obtain

〈Γc〉 =φ1〈G〉
[
Tb − 1

b
(1 − e−bTb)

]

σ2
Γ =φ1〈G2〉

[
Tb − 1

b
(1 − e−bTb)

]
.

Note that only the marginal statistics for the random variable G
are used in above equations. Finally, we replace b by 2πB3-dB

and obtain

SNRDD =
φ1Tb

F

(
2πTbB3−dB − 1 + e−2πTbB3-dB

2πTbB3-dB

)
. (20)

Note that the first fraction is the SNR of an instantaneous
detector and the second fraction is a scaling factor accounting
for ISI effects.

C. SNR for the RD-R Model

As introduced in Section III, the RD-R parametric model for
the random impulse-response function is

IRD(t) =
(
G

T

)
{u(t) − u(t− T )} .

Since the first moment 〈IRD(t)〉 and the second moment
〈I2

RD(t)〉 of the impulse-response function (below avalanche
breakdown) are known to decay exponentially at the same rate

[15], bse is referred to the decay rate (we will see later that bse
is related with Bsneq). We approximate them by

〈IRD(t)〉 ≈ ae−bset and
〈
I2
RD(t)

〉
≈ ce−bset. (21)

If we substitute these approximations in (16), we obtain

〈Γc〉 = φ
a

bse

(
Tb − 1

bse
(1 − e−bseTb)

)
. (22)

Next, to calculate the second moment of the photocurrent in
(19), we need to first determine the autocorrelation function
RIRD(µ, ν) = E[IRD(µ)IRD(ν)], which can be approximated
by (given in Appendix A)

RIRD(µ, ν) ≈ ce−bse(µ∨ν). (23)

If we now substitute the above autocorrelation function into
(19), we obtain the expression for the variance of the receiver
output

σ2
Γ ≈ φ1

2c
b2se

[
Tb − 1

bse
(1 − e−bseTb)

]
(24)

and the SNR according to the RD-R model can be cast as

SNRRD =
〈Γc〉2
σ2

Γ

=
φ a2

b2se

[
Tb − 1

bse
(1 − e−bseTb)

]
2c
b2se

. (25)

Our next step is to explore the physical meaning of the parame-
ters a, bse, and c based on our rectangular model. To do so, we
note that

∞∫
0

〈IRD(t)〉 dt ≈
∞∫

0

ae−bsetdt =
a

bse
and (26)

〈 ∞∫
0

IRD(t)dt

〉
=

〈 ∞∫
0

G

T
{u(t) − u(t− T )} dt

〉
= 〈G〉

(27)

and use the fact that the left sides of the above two equations
are equal to conclude that a/bse ≈ 〈G〉. Similarly

∞∫
0

〈
I2
RD(t)

〉
dt ≈

∞∫
0

ce−bsetdt =
c

bse
and (28)

〈 ∞∫
0

I2
RD(t)dt

〉
=

〈 ∞∫
0

G2

T 2
{u(t) − u(t− T )dt}

〉
=
〈
G2

T

〉

(29)

which results in c/bse ≈ 〈G2/T 〉.
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We now proceed to characterize bse. Note that the approxi-
mation of 〈IRD(t)〉 ≈ ae−bset is based on the rectangular pa-
rameterized model, which takes into account the correlation of
G and T . Thus, the effective bandwidth rendered by its shape
(which is bse/4) should be identical to the shot-noise-equivalent
bandwidth Bsneq. We therefore have bse = 4Bsneq. By sub-
stituting the approximation a/bse ≈ 〈G〉 and bse = 4Bsneq in
(25), we can recast the SNR as

SNRRD =
φ1〈G〉2〈

G2

T

〉 (4TbBsneq − 1 + e−4TbBsneq)
2

. (30)

Note that the joint statistics of G and T are used in the
above equation. Finally, recall that Bsneq = 〈G2/T 〉/2〈G〉2F
(see Section III-A) and define a correction factor κ = 4Bsneq/
2πB3-dB to obtain

SNRRD =
φ1Tb

F

(
2πκTbB3-dB − 1 + e−2πκTbB3-dB

2πκTbB3-dB

)
.

(31)

In the above formula, the first fraction is the SNR for an
instantaneous detector for which case the ISI is absent; the
second fraction represents the correction factor due to ISI. Note
that the statistical correlation between the buildup time and the
gain is incorporated through the parameter Bsneq.

More general expressions for the SNR, taking into account
the randomness of the sequence of 1’s and 0’s (as in an OOK
setting), are derived in Appendix B. Results corresponding to
these generalized expressions for the SNR will be in the next
section.

D. Results: ISI and Gain–Buildup-Time
Correlation Effects on the SNR

We now examine the ISI correction factor of the SNR
expression given by (31) (the quantity in parenthesis) and
observe that it monotonically varies from 1 to 0 as the product
TbBsneq, which is a measure of the transmission speed relative
to the APD’s buildup time, varies from ∞ to 0. Recall that
it was shown in Section III-A that the ratio r = Bsneq/B3-dB

is approximately 1.3 (for the APD parameters considered),
which implies that κ < 1. Consequently, by comparing the
SNR expression given in (20) (which corresponds to the case
when the correlation between the gain and the buildup time is
ignored) and SNRRD, and by using the monotonicity of the
ISI factor, we conclude that SNRDD < SNRRD. Namely, the
correlation between the gain and buildup time adversely affects
the SNR. In what follows, we will show that this effect becomes
more significant at high transmission speeds.

Fig. 8 depicts SNRDD and SNRRD as a function of the
transmission rates. The signal-to-noise expressions are given in
Appendix B [see (53), (54), (59), and (60)]. It is assumed that
a GaAs APD is being used with multiplication-layer width of
w = 100 nm and an average gain of 〈G〉 = 10. Moreover, the

Fig. 8. SNR of the output of the integrate-and-dump receiver as a function of
the digital transmission speed for a GaAs APD with a 100-nm multiplication
layer and a theoretical mean gain of 10. The solid curve corresponds to the
case where the RD-R model is used for the APD’s impulse-response function,
while the dashed curve corresponds to the DD-E model. The average number
of photons is fixed to 1000 photons/bit and the Johnson noise is selected so that
σJ = 500 noise counts/bit.

average number of photons absorbed by the APD is assumed
to be 1000 per “1” bit, and the Johnson-noise parameter is
σJ = 500 noise counts per bit. We observe that as the trans-
mission rate increases, the effect of ISI becomes progressively
more detrimental to the SNR. It is also shown that the rela-
tive separation between SNRRD and SNR increases with the
transmission rate.

V. BER AND RECEIVER SENSITIVITY

In this section, we investigate the effect of the statistical
correlation between the gain and buildup time on the receiver
performance. We use the same APD parameters as those used
in the previous section. The APD’s 3-dB bandwidth is found
to be B3-dB = 29 GHz. We first consider the RD-R model.
Let µ0,RD, σ2

0,RD, µ1,RD, and σ2
1,RD denote the mean and

variance corresponding to the cases for which the current bit
is 0 and 1, respectively. These parameters are (see Appendix B
for derivation)

µ0,RD =
1
2
n0〈G〉
κλ

(1 − e−κλ) (32)

σ2
0,RD =

1
4
n2

0〈G〉2
κλ2

(1 − e−κλ)4

(1 − e−2κλ)

+
n0〈G2〉

2κλ
(1 − e−κλ − κλe−κλ) + σ2

J (33)

µ1,RD =µ0,RD +
n0〈G〉
κλ

(κλ− 1 + e−κλ) (34)

σ2
1,RD =σ2

0,RD +
n0〈G2〉

κλ
(κλ− 2 + 2e−κλ + κλe−κλ) (35)
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Fig. 9. BER as a function of the transmission speed using the RD-R model
(solid curve) and the DD-E model (dashed curve). The mean gain of the APD
is assumed as 10 and the average number of photons per bit is fixed to 1000
photons/bit. The Johnson noise is selected so that σJ = 500 noise counts/bit.

where λ = 2πTbB3-dB and κ is the correction factor defined
earlier. Note that µ0,RD and σ2

0,RD (less σ2
J) are entirely

due to ISI.
In contrast to the above statistics, the corresponding quan-

tities for the DD-E model for which the correlation between
the gain and the buildup time is ignored can be found to be
(we omit the derivation)

µ0,DD =
1
2
n0〈G〉

λ
(1 − e−λ) (36)

σ2
0,DD =

1
4
n2

0〈G〉2
λ2

(1 − e−λ)4

(1 − e−2λ)

+
n0〈G2〉

λ
(1 − e−λ)2 + σ2

J (37)

µ1,DD =µ0,DD +
n0〈G〉

λ
(λ− 1 + e−λ) (38)

σ2
1,DD =σ2

0,DD +
n0〈G2〉

2λ
(
2λ− (1 − e−λ)2

)
. (39)

As before, µ0,DD and σ2
0,DD (less σ2

J) are contributions of ISI.
To simplify the analysis, we will approximate the output of

the receiver by a Gaussian random variable. The BER is then
obtained according to

BER ≈ 1
2

{
erfc

(
θ − µ0,RD√

2σ0,RD

)
+ erfc

(
µ1,RD − θ√

2σ1,RD

)}
(40)

where θ is the optimal decision threshold. Fig. 9 depicts
the BER as a function of the transmission rate calculated
for both the DD-E and RD-R models. Here, n0 is assumed
1000 photons/bit and the Johnson noise is held constant at
σJ = 500 noise counts/bit. The adverse effect of the correlation
between the gain and the buildup time is evident in this plot,

Fig. 10. Receiver sensitivity as a function of the transmission speed using the
RD-R model (solid curve) and the DD-E model (dashed curve). The parameters
of the APD and Johnson noise are the same as in Fig. 9.

as seen by the elevated BER curve in the RD-R model case
compared to that obtained for the DD-E model. This behavior
is also consistent with the SNR plots shown in Fig. 8.

Finally, Fig. 10 shows the receiver sensitivity, defined as the
minimum n0 needed to achieve a BER of 10−9. As shown
in the figure, the entire transmission range can be split into
two parts: a Johnson-noise-limited regime at low transmission
speeds and an ISI-limited regime at high transmission speeds.
The adverse effect of the correlation between the gain and the
buildup time is observed in the ISI-limited regime through the
higher sensitivity predicted by the RD-R model compared to
that obtained for the DD-E model. For instance, we observe
that, in comparison to the predictions of the RD-R model,
the DD-E model results in underestimating the sensitivity by
3.4% at a transmission speed of 10 Gb/s, by 7.2% at 15 Gb/s,
and by 26% at 20 Gb/s. Thus, the effect of neglecting the
statistical correlation between build time and the gain in the
receiver-performance analysis leads to an underassessment of
ISI, which, in turn, leads to an overly optimistic assessment
of the receiver performance. Moreover, this trend intensifies
progressively as transmission rate increases.

VI. CONCLUSION

The statistical correlation between the random gain and the
random avalanche buildup time in APDs is determined for
the first time, and the effect of the correlation on the receiver
performance is established. We have shown that, as a result
of this correlation, the photocurrent SNR is diminished by a
factor r = Bsneq/B3-dB, where B3-dB is the APD’s 3-dB band-
width and Bsneq is the shot-noise-equivalent bandwidth, which
takes into account the statistical correlation between the gain
and the buildup time and defined by Bsneq = 〈G2/T 〉/2〈G2〉.
Thus, Bsneq is precisely the bandwidth that needs to be used
in calculating the shot-noise variance when photodetection is
achieved by means of an APD. For example, our calculations
show that Bsneq/B3-dB is approximately 1.3 for a GaAs APD
with a multiplication region in the range 30–250 nm.
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Additionally, we have derived compact expressions for the
output of an integrate-and-dump receiver in an OOK direct-
detection system that includes the effects of ISI and the
statistical correlation between the gain and the buildup time.
This expression is similar to its counterpart when the
gain–buildup-time correlation is ignored, but it includes a cor-
rection factor, κ = (4Bsneq)/(2πB3-dB), that explicitly quan-
tifies the SNR degradation due to this correlation. Notably, our
results predict that this correlation adversely affects ISI noise,
and hence receiver sensitivity. Moreover, such an adverse effect
becomes progressively more significant as the transmission rate
increases.

The analysis in this paper is carried out under the simpli-
fying assumptions of a constant electric field in the APD’s
multiplication region and a constant drift velocity for carriers.
The analysis, however, includes the effects of dead space and
utilizes nonlocalized ionization coefficients. Generalization to
nonuniform fields, variable carrier drift speed, and heterostruc-
ture APDs can be carried out in a straightforward fashion using
the techniques recently reported in [20] and [29].

APPENDIX A
AUTOCORRELATION FUNCTION OF THE

RD PARAMETRIC MODEL

For the RD-R model, the autocorrelation function can be
expressed as

RIRD(µ, ν)

=
〈
G

T
{u(µ) − u(µ− T )} G

T
{u(ν) − u(ν − T )}

〉

=
∞∑

m=1

∞∫
0

m2

τ2
{u(µ) − u(µ− τ)}

× {u(ν) − u(ν − τ)} ∂

∂τ
fG,T (m, τ)dτ.

Note that the integrand is zero unless τ ≥ µ ∨ ν (the notation
µ ∨ ν denotes the maximum of µ and ν). Therefore, the above
integral can be rewritten compactly as

RIRD(µ, ν) =
∞∑

m=1

∞∫
µ∨ν

m2

τ2

∂

∂τ
fG,T (m, τ)dτ. (41)

In particular, the mean of I2
RD(t) is given by

〈
I2
RD(t)

〉
= RIRD(t, t). (42)

We now recall the approximation 〈I2
RD(t)〉 ≈ ce−bset and com-

pare (41) and (42), and we conclude that RIRD(µ, ν) can be
approximated by

RIRD(µ, ν) ≈ ce−bse(µ∨ν). (43)

APPENDIX B
STATISTICS OF RECEIVER OUTPUT IN

THE PRESENCE OF ISI

We assume that 0 and 1 occur with equal probability in the
transmitted binary sequence Ib(n), and for convenience, we
extend Ib(n) to Ib(t) (where t is a continuous variable) by

Ib(t) = Ib(n), if nTb ≤ t < (n + 1)Tb

and the (absorbed) optical signal at the receiver can be repre-
sented by φ(t) = φ1Ib(t). Note that the covariance function
and the mean of Ib(t) are

σ2
Ib

(ξ1, ξ2) =




1
4 , if nTb ≤ ξ1, ξ2 < (n + 1)Tb,

for n = −1,−2,−3, . . .

0, otherwise

〈Ib(t)〉 =




1
2 , if t ≤ 0

0, if t > 0 and current bit is 0

1, if t > 0 and current bit is 1.

The mean value of the receiver output can be calculated by

〈Γ〉 = φ1

Tb∫
0

t∫
−∞

〈Ip(t− ξ)〉 〈Ib(ξ)〉 dξdt.

If the current bit being sent is zero, then 〈Ib(ξ)〉 = 0 for 0 ≤
ξ < Tb, and

µ0 =
φ1

2

Tb∫
0

0∫
−∞

〈Ip(t− ξ)〉 dξdt. (44)

On the other hand, if the current bit being sent is one, then
〈Ib(ξ)〉 = 1 for 0 ≤ ξ < Tb, and

µ1 =
φ1

2

Tb∫
0

0∫
−∞

〈Ip(t− ξ)〉 dξdt + φ1

Tb∫
0

t∫
0

〈Ip(t− ξ)〉 dξdt

=µ0 + φ1

Tb∫
0

t∫
0

〈Ip(t− ξ)〉 dξdt. (45)



766 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 2, FEBRUARY 2006

To calculate the variance of Γ, we will utilize standard
analysis of filtered shot-noise processes [26] while considering
the stochastic nature of the transmitted signal Ib(t). This yields

〈Γ2〉 =

Tb∫
0

Tb∫
0

µ∫
−∞

ν∫
−∞

ξ1 �=ξ2

〈Ip(µ− ξ1)φ1(ξ1)Ip(ν − ξ2)φ1(ξ2)〉

× dξ1dξ2dµdν

+

Tb∫
0

Tb∫
0

µ∧ν∫
−∞

〈Ip(µ− ξ)Ip(ν − ξ)φ1(ξ)〉 dξdµdν

=φ2
1

Tb∫
0

Tb∫
0

µ∫
−∞

ν∫
−∞

ξ1 �=ξ2

〈Ip(µ− ξ1)〉 〈Ip(ν − ξ2)〉

× 〈Ib(ξ1)Ib(ξ2)〉 dξ1dξ2dµdν

+ φ1

Tb∫
0

Tb∫
0

µ∧ν∫
−∞

〈Ip(µ− ξ)Ip(ν − ξ)〉 〈Ib(ξ)〉 dξdµdν.

Since 〈Ib(ξ1)Ib(ξ2)〉 = 〈Ib(ξ1)〉〈Ib(ξ2)〉 + σ2
Ib

(ξ1, ξ2), and
since the set {(ξ1, ξ2) : ξ1 �= ξ2} has zero area, we obtain

σ2
Γ =φ2

1

Tb∫
0

Tb∫
0

µ∫
−∞

ν∫
−∞

〈Ip(µ− ξ1)〉 〈Ip(ν − ξ2)〉

× σIb(ξ1, ξ2)dξ1dξ2dµdν

+ φ1

Tb∫
0

Tb∫
0

µ∧ν∫
−∞

RIp(µ− ξ,ν − ξ)〈Ib(ξ)〉 dξdµdν. (46)

We first consider the case for which the current bit is zero; in
this case

σ2
0 =

φ2
1

4

Tb∫
0

Tb∫
0

0∫
−∞

0∫
−∞

(ξ1,ξ2)∈D

〈Ip(µ− ξ1)〉〈Ip(ν − ξ2)〉 dξ1dξ2dµdν

+
φ1

2

Tb∫
0

Tb∫
0

0∫
−∞

RIp(µ− ξ, ν − ξ)dξdµdν (47)

where D = {(ξ1, ξ2) : nTb ≤ ξ1, ξ2 < (n + 1)Tb,n= −1,−2,
−3, . . .}.

Alternatively, if the current bit is one, then σ2
Ib

(ξ1, ξ2) = 0
for 0 ≤ ξ1, ξ2 < Tb, and we obtain

σ2
1 =

φ2
1

4

Tb∫
0

Tb∫
0

0∫
−∞

0∫
−∞

(ξ1,ξ2)∈D

〈Ip(µ− ξ1)〉〈Ip(ν − ξ2)〉 dξ1dξ2dµdν

+
φ1

2

Tb∫
0

Tb∫
0

0∫
−∞

RIp(µ− ξ, ν − ξ) dξdµdν

+ φ1

Tb∫
0

Tb∫
0

µ∧ν∫
0

RIp(µ− ξ, ν − ξ) dξdµdν

=σ2
0 + φ1

Tb∫
0

Tb∫
0

µ∧ν∫
0

RIp(µ− ξ, ν − ξ) dξdµdν. (48)

We next specialize these results to the DD-E model and
RD-R models. For the DD-E model, we substitute the impulse-
response function IDD(t) = qGbe−bt and the autocorrelation
function RIDD(µ, ν) = 〈G2〉b2e−b(µ+ν) into (44), (45), (47),
and (48), use b = 2πB3-dB, and define λ = 2πTbB3-dB to
obtain

µ0,DD =
1
2
n0〈G〉

λ
(1 − e−λ) (49)

σ2
0,DD =

1
4
n2

0〈G〉2
λ2

(1 − e−λ)4

(1 − e−2λ)

+
n0〈G2〉

λ
(1 − e−λ)2 + σ2

J (50)

µ1,DD =µ0,DD +
n0〈G〉

λ
(λ− 1 + e−λ) (51)

σ2
1,DD =σ2

0,DD +
n0〈G2〉

2λ
(
2λ− (1 − e−λ)2

)
(52)

where n0 is the average number of absorbed photons per “1”
bit (φ1 = n0/Tb) and σJ is the Johnson-noise parameter. The
general expressions of SNR and ISI for this RD-exponential
model are given by

SNRDD =
(µ1,DD − µ0,DD)2

σ2
1,DD

(53)

ISIDD =σ2
0,DD − σ2

J. (54)

For the RD-R model, in particular, we substitute the ap-
proximations (21), (43), a/bse ≈ 〈G〉, and c/bse ≈ 〈G2/T 〉
into (44), (45), (47), and (48), use bse = 4Bsneq, κ =
4Bsneq/2πB3-dB, and λ = 2πTbB3-dB, and obtain

µ0,RD =
1
2
n0〈G〉
κλ

(1−e−κλ) (55)

σ2
0,RD =

1
4
n2

0〈G〉2
κλ2

(1−e−κλ)4

1−e−4πκTbB3-dB

+
n0〈G2〉

2κλ
(1−e−κλ−κλe−κλ)+σ2

J (56)
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µ1,RD =µ0,RD+
n0〈G〉
κλ

(κλ−1+ e−κλ) (57)

σ2
1,RD =σ2

0,RD+
n0〈G2〉

κλ
(κλ−2 + 2e−κλ+κλe−κλ). (58)

Finally, the general expressions of SNR and ISI for this
RD-R model are given by

SNRRD =
(µ1,RD − µ0,RD)2

σ2
1,RD

(59)

ISIDD =σ2
0,RD − σ2

J. (60)
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