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Abstract— We provide a stochastic model that describes the
time dynamics of double-carrier multiplication in an avalanche
photodiode (APD) and obtain the autocorrelation function and
the spectral characteristics of the photoelectric current. The
photoelectric pulse generated by an APD as a result of a single
injected photoelectron is regarded as a nonstationary random
function of time (the impulse response function). A discrete
stochastic model for the electron/hole motion and multiplication
is defined on a spatio-temporal lattice and used to derive recursive
equations for the mean, the variance, and the autocorrelation of
the impulse response as functions of time. Correlation properties
of the impulse response are studied for a conventional and a
multilayer (superlattice) APD with the same mean gain and
carrier-ionization rate ratio. The power spectral density of the
photocurrent in response to a Poisson-distributed stream of
photons of uniform rate is evaluated.

I. INTRODUCTION

TUDIES of the statistical properties of the response of

avalanche photodiodes have largely focused on the gain
statistics without incorporating the time dependence of the
avalanching process itself [1]—[22]. Explicit formulas for the
gain and the excess noise factor have been already derived for
both conventional and superlattice devices [1]—[8]. Although
the excess noise factor is a useful statistic representing the
lowest order statistical properties of the gain fluctuations, it
does not provide the complete statistical description of the
impulse response stochastic process.

The performance analysis of a digital optical transmission
system requires knowledge of the temporal statistics of the
impulse response function. Since APD’s with double-carrier
multiplication properties are vital components of fiber-optic
communication systems, accurate evaluation of their noise is
necessary. Knowledge of the autocorrelation function of the
impulse response makes this evaluation possible [23]-[26].

Studies of the temporal dynamics of the avalanching process
were limited to the mean impulse response and its Fourier
transform [27]—[37]. Naqvi [38] provided an expression for
the mean square avalanche current by including a frequency
dependent factor in Mclntyre’s [1] mean square gain ex-
pression. He solved transport equations for the mean current
densities assuming stationarity of the multiplication process,
i.., that the transient (nonstationary) contribution is negligible
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at high gains. However, in high-data-rate optical transmission
systems the transient contribution is clearly important. Walma
and Hackam [39] provided a partial solution of the problem
by considering only the arrival of electrons at the edge of
the device. They did not determine the photocurrent response.
The autocorrelation function of the impulse response -was
first determined by Matsuo et al. [30] and later by Hayat et
al. [31] for single-carrier multiplication APD’s including the
dead-space effects. )

In this paper we derive the autocorrelation function of
the impulse response of a double-carrier multiplication APD
assuming general conditions including nonuniform carrier ion-
ization rates and unequal carrier velocities. A discrete stochas-
tic model is first determined to describe the APD multiplication
process, then recursive equations for the mean, variance and
autocorrelation of the impulse response are derived and eval-
uated. The theory is applied to a conventional APD (CAPD)
and a multiquantum well (MQW) APD with the same gain
and carrier-ionization rate ratio. The CAPD was found to
have more correlated response, a higher excess noise factor,
and a slower response. However, the signal-to-noise ratio of
the current response is greater than the MQW-APD. For both
devices, the standard deviation of the current (which represents
noise) is low at the onset of multiplication, sharply peaks at
about the same time but does not die off as rapidly as the mean
current. For a high-data-rate optical communication system,
this type of noise will increase intersymbol interference and
therefore reduce the bit-error-rate. Finally, we computed the
mean, the variance, and the autocovariance function of the
photoelectric current due to a uniform stream of Poisson
distributed photons corresponding to a constant optical power.
The photocurrent generated in the conventional APD has a
narrower power spectral density but a higher signal-to-noise
ratio than that of the superlattice APD.

II. THE STOCHASTIC MODEL

A. Impulse Response

We consider an APD with a multiplication region of width
W. The electron and hole ijonization rates are a(z) and 3(z),
and their saturation velocities are v. and vy, respectively.
Assuming a single-electron injected at z = 0 at ¢ = 0 into the
multiplication region z € [0, W], typical trajectories for the
carriers generated by ionizations are depicted in the space-time
diagram in Fig. 1. The initial injected electron drifts under the
strong electric field in the multiplication region, and generates
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(= MULTIPLICATION REGION

Fig. 1. Space-time diagram illustrating typical trajectories for the electrons
and holes generated by ionizations as a result of an injected photoelectron
at 1. The initial injected electron drifts along the solid line with saturation
veloctiy v (the slope of the solid lines). It generates new electron-hole pairs
at 2 and 3 by impact ionization. The holes travel in the opposite direction
along the dashed lines with saturation velocity vy, and can also generate
new electron-hole pairs, for example at 4 and 5. The resulting carriers can
themselves cause impact ionizations, for example at 6.

new electron-hole pairs by impact ionization. The holes travel
in the opposite direction, and can also generate new electron-
hole pairs. The resulting carriers can themselves cause impact

ionizations, and so on. The process terminates when the last -

carrier leaves the multiplication region. The moving charges
induce an electrical current in the external circuit, statistics of
which we wish to determine.

Discretization: 1t is convenient to describe the motion of
the carriers on a discrete space-time grid as shown in Fig. 2.
The space-time coordinates = and ¢ are replaced with discrete
variables k and n, respectively. The ionization rates «(x) and
B(z) are transformed into discrete parameters P[k] and Q[k],
representing the probability of electron and hole ionizations at
each cell, respectively. If Z[k,n] and Y [k, n] are the number of
electrons and holes at location £ and time n, respectively, then
the electric current induced by the motion of these carriers is

L
hin] = % ;{st[k,n] +onY [k n]} )
where L is the number of spatial cells, and ¢ is the magnitude

of the electron charge. The gain of the APD is the area under
the electric current divided by ¢

G= 2L bl @
q n=0

where At is the time increment. The mean, autocorrelation
function, and variance of the current h[n] are respectively,

L
mp[n] = %/- Z {vemzlk,n] + vpmy [k, nl} 3)
k=1 :

9 L L
th[n,m] = % ZZ{’L)ZRzz[k7j:n,m]

k=1j=1
+ ’U;leYY [k7j§ n, TTL]
+ 2vevp Rzy [k, J;n,m]} “4)

oi[n] = Ria[n,n] — mj[n] ©)

Q'—l MULTIPLICATION REGION J
distance
Q : L

Fig. 2. Space-time grid showing the discrete motion of electrons and holes.
Time and distance are represented by n and k, respectively. ke and ky, are

e k . . k P
chosen such that == & 5. In this diagram 7= = 2.

; T g T

Uh h h

where
ma[n] = E{h[n]}
mzlk,n} = E{Z[k,n]}
my-lk,n] = E{Y[k,n]}
Ryn[n,m] = E{h[n]h{m]}

| = E{Z[k,n]Z]j,m]}
Ryvylk,jin,m] = E{Y[k,n]Y[j, m]}
| = E{Zlkn)Y[j,m]}.

Rzzlk,jin,m

Rzyk,j;n,m

The first and second moments of the APD gain are related to
the statistics of h[n] by

At &
M== Z mp(n] ©)
q n=0
and
My = a >3 Runln,m). 7
n=0m=0

The spatio-temporal dynamics of the stochastic processes
Z[k,n] and Y[k, n] are governed by the multiplication process
and are controlled by the ionization probabilities P[k] and
Q[k]. Our goal is to determine the statistics of Z[k,n] and
Y[k,n] so that the statistics of h[n] can be derived from
(1). The dynamics of the multiplication process is described
in Section II-B, and recursive relations are derived for the
moments of Z[k,n] and Y{k,n] in Section IIl. The mean,
the variance, and the autocorrelation function of the impulse
response are determined in Sections III-A, B, and C, respec-
tively.

B. Dynamics of The Multiplication Process

Since the velocities of electrons and holes are different,
an increment of time At corresponds to different electron
and hole displacements v, At and vy, At, respectively. If the
spactial cell size is selected to be Az = v, At, the electron
displacement v, At will not necessarily be an integer multiple
of Axz. We therefore choose two different integers k. and kj,
as the smallest integers satisfying ';—h ~ ’;—i, so that in each
time increment At, electrons will advance by k. Az = v.At
and holes by k, Az = v, At, where Az = % For example, if
electrons are twice as fast as holes, then k. = 2, and k; = 1.
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The dynamics of the electron and hole multiplication can
then be modeled by the following equations:

Zlk,n] = Z[k — ke,n — 1] + 2k — ke,n — 1]

+ylk + kn,n - 1] (8a)
Yik,n]= Yik+kn,n— 1]+ zlk — ke,n — 1]
+ylk + kn,n — 1] (8b)

fork=1,---,Land n=0,---,00, where z[k,n] and y[k, n]
represent the contribution of ionizations to the number of
carriers. These contributions are governed by the cumulative
number of carriers in the neighboring cells at earlier time
increments in accordance with a Bernoulli probability law

Zk—ke,n—1]
dk—ken—1= > & (8¢)
=1
and
Y [k+kn,n-1]
ylk+knn—1= 3 b (8d)
i=1

where a; and b; are independent, and identically distributed
Bernoulli random variables with probabilities P[k] and Q[k],
respectively. Conditioned on Z[k,n] and Y[k, n}, 2[k,n] and
y[k, n] are independent Binomial random variables with pop-
ulations Z[k,n] and Y[k, n] and probabilities P[k + k.] and
Q[k — kx], respectively. The initial condition is Z[k,0] =
6lk — 1] and Y[k,0] = O for all k. The boundary conditions
are: Z[k,n] = Y[k,n] =0 for k € [1,L] and n > 0.

Equation (8a) simply states that the electrons which arrive
at location k£ at time n are the sum of three contributions:
electrons which were at a previous location k — k. at time
n—1; their electron offsprings, each of which is independently
generated with probability P[k]: and hole-generated electrons
each of which is independently generated with probability
Qlk]. Similarly (8b) states that the holes which arrive at
location k at time n are the sum of the holes which were
at the location & + kj, at time n — 1 and their hole offsprings
as well as the holes which are generated by the electrons at
location k — k. at time n — 1.

It is convenient to regard the set of functions, {Z[k,n]},
{Y[k,n]}, {z]k,n]}, and {y[k,n]}, for k = 1,--- L, as
components of vector random processes all varying only in
time

XT[n] = (ZT[n},YT[n]) and zT[n] = (zT[n],yT[n})
&)

where ZT[n] = (Z[1,n), Z[2,n],--,Z|L,n]), YT[n] =
(Y[1,n],Y[2,n],---,Y[L,n]), 2T[n] = (z[1,n],2[2,n],
I} Z[L,’I’I.]), yT[n] = (y[lvn]v y[?, n]7 e 7y[L7n])' Equations
(8a) and (8b) can then be put in the form

Z[n) = S_{Z[n - 1]} + S_{z[n — 1]}

+8.{yln - 1]} (10a)
Yl) = S.{¥[n - 1]} + S.{gln - 1]}
+ S_{z[n - 1}} (10b)
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where S_ and S, are the operators that shift the elements
of a vector by k. and —kj, respectively, and fills the empty
location with zeros, as can be easily seen in (8a) and (8b).
Equivalently,

X[n] = AX[n — 1] + Bz[n — 1] (10c)

where A and B are properly selected matrices.

Conditioned on X|[n] the elements of z[n — 1] are in-
dependent Binomial random variables. For single electron
injection, X7[0] = (1,0,---,0;0,---,0). As (10c) indicates,
the statistics of X|[n] can be solely determined from the
statistics of X [n — 1], so that X [n] is a Markov vector process
[40], [41]. The moments of X[n], mg[n] = E{X|[r]} and
R..[n,m] = E{X[n]X " [m]}, are directly related to the mo-
ments mz[k,n), my[k,n], Rzzlk,j;n,m], Ryylk,j;n,m],
and Rzylk,j;n,m].

1II. STATISTICS OF THE IMPULSE RESPONSE FUNCTION

A. Mean

To obtain the mean value of X [n] we take the expectation
of both sides of (8a) and (8b). Conditioning the right-hand
sides on X[n — 1], and using the fact that given X[n — 1],
the elements of z[n — 1] are independent binomial random
variables, we obtain a recursive relation for m[n]:

mz[k,n] = (1 + Plk))ymz[k — ke,n — 1]

+ Qlklmy [k + kn,n — 1] (11a)
my[k,n] =1+ Q[k])my[k + kp,n — 1]
+ Plklmzk — ke,n — 1] (11b)
for k =1,---,L and n = 0,---,00. The initial condition

is m%[n] = (1,0,--+,0;0,---,0). The boundary conditions
require that mz[k,n| and my[k,n] are zero for k ¢ [1,L].
Equations (11a,b) can be easily computed and my[n] can be
found from (3).

1) Transport Equations: In the limit when the number of
spatial cells are very large (L — oo and Az — 0) and the
ionization probabilities are very small, so that

Plk Qlk
% [AL — a(x), k_h[A_]x — B(x), (12a)
LAz - W, kAz—z, and nAt—1t, (12b)

the mean number of electrons and holes approach to the mean
electron/hole densities, mz(z,t) and my (z, t), respectively,
mz(k,n] my |k, n)
Az Azx

From (11), we obtain the well-known carrier transport equa-
tions

— mz(z,t) and — my(z,t). (13)

dJ(z,1) 1 aJ.(x,t)
oz Ve ot -

a(z)Je(z,1)
+B(z)Jn(z,t) (14a)
= a(zr)J.(z,1)
+B(z)Tu(z,t) (14b)

Jp(z,t) _ i OJn(z,t)
ox v, ot
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where J.(z,t) = quetnz(z,t) and Jyp(z,t) = quamy (2, t).
Once J.(z,t) and Jy(x,t) are determined, the total current
induced in the external circuit that results from charge transport
within the device is

W

J(t) = % / [(Je(z. t) + Jn(z, b)) da. (15)
=0

These equations were independently derived earlier [33] and

were solved for arbitrary APD architectures with position-

dependent ionization rates and distributed carrier injection

{27], [28].

B. Variance

Using (8a) and (8b), an equation for the function
R..In,n] = E{X[n]X"[n]} can be derived in terms of
R..[n — 1,n — 1] by taking conditional expectations as was
done for the mean. The result can be cast in terms of
Rzzlk,j;n,n), Ryylk,jin,n], and Rzy [k, jin,n]:

Ryzlk.jsnon) = (1+ PR+ P[j)

“Rzz[k —ke,j — kein —1,n —1]
+ bk j{ P[K](1 = Plk])mz[k — ke, n — 1]}
+ Q[FIQ[]

“Ryylk +kn,j+knsn—1,n-1]

+ 8k QK1 = QkD)my- [k + kn,m — 1]}
+ 1+ PEDQL]

. Rzy[k‘ — k‘g,]‘ + knin — 1.n— l]

+ (1 + PIDQI]

~Rzy[j—ke,k+kh;n—1,n—1] (16a)

Ryvy [k, j;n,n] = Pk]P]j]
“Rzzlk —ke,j—kein—1,n — 1]
+ 8k ;{P[K](1 = P[k])mz[k — ke,n — 1]}
+ (1+ QK1+ Q[4])
cRyylk+kn, 7+ knin—1,n—1]
+ 6k {QLEI(L — QK)my [k + kn,n — 1]}
+ PlE)(1+ Q5]
‘Rzylk —ke,j+ knsn—1,n 1]
+ P[j](1 + Q[k])
“Bzy|j— ke, k+kn;n—1,n—1] (16b)

Rzy(k,jin,n] =(1+ P[k])P[J]
~Rzz[k—ke,j—kp;n—l,n— 1]
+ 0k ;{ P[k](1 — P[k)mz[k — ke,n — 1]}
+ (1 + QD[]
‘Ryyl[k +kn,j+knin—1,n—1]
+ 8k {QIKI(1 — QE)my [k + k. n — 1]}
+ (1 + Pk + Q[])
“Rzylk — ke, j + knyn —1,n—1]
+ P[5]Qk]
“Rzy[j— ke, k+kpsn—1,n—1] (16c)

forall k,j = 1,. .. ,L.

Here & denotes Kronecker-delta. The initial conditions are
RZZ[kaj;Ov O] = 6k,16j,17 R)'Y[kvj;(LO] = RZY[kaj; 0, 0] =
0, for all k, j € [1, L]. Boundary conditions are Rzz[k, j; 7, 1]
= RYY[k:»j;nwn] = RZY[ksj§nsn] = 0, for k7] g [LL]
Using (4) with m = n, the Rpa[n,n] can be evaluated,
and current variance can be found from (5). These equations
can be computed recursively. P[k] and Q[k] can be used to
approximate a(z) and 3(z) for conventional APD’s where
ionizations occur continuously, or can be directly used for
multilayer APD’s where ionizations take place only at the
energy band-gap discontinuities.

Differential Equations: 1In the limit described in (12), ne-
glecting the terms with second-order coefficients, we define
the autocorrelation and crosscorrelation of the electron and
hole densities at two different locations at the same time as

Rzzlk,j;n,n]
Ax?
Ryvy(k,j;n,n]
Az?
Rzy[k,j; n, n]
Az?

— Rzz(xy,z2;t),
— Ryy(z1,22;t), and

— Rzy(z1,x23t).

Then, we transform the difference equations (16) into partial
differential equations

Y ORzz  ORzz ORzz
€ 8.’E1 01172 ot N
velazy) + a{x2)|Rzz(21, 22, t)
+ vp{B(z2)Rzy (21, T2,1)
+ B(z1)Rzy (x2,21,t)}
+ v (Vet)§(11 — vet)d(xe — vEiYa)
Y ORyy  ORyy n ORyy
" "oz or, at
on[B(z1) + B(x2)|Rz2 (21, 32, t)
+ ve{a(z2)Rzy (%1, T2, 1)
+ a(z1)Rzy (x2,21,1)}
+ vea(vet)6(z1 — vt)6(z2 — UkTb)
ORzy v ORzy  ORzy _
€ 81‘1 h 6(172 ot

(14 vea(z1) + vaB(22)|Rzy (71,22, 1)
+ vea(z2) Rz z(21, 22, t)
+ vaB(z1)Ryy (21,22, t)}
+ vea(vet)6(x1 — vet)d(z2 — vEEYC)

where a(z) = 0, and B(z) = 0 for z;,z0 ¢ [0, W],
and t > 0. The initial conditions are Rzz(z1,22,0) =
6($1)5(1’2), and Ryy(ml,ilfz,o) = Rzy(flll,l‘g,o) = 0. The
boundaries are removed by letting a(z) = 0, and 3(z) = 0 for
z1, T2 € [0, W]. These differential equations (in the sense of
distributions) have not yet been solved analytically. However,
the original equations in (16) are a set of first-order finite-
difference equations [42].
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C. Autocorrelation

Determination of the autocorrelation function of the impulse-
response Ry, [n, m) requires knowledge of R,.[n,m]. Again
R..[n,m] can be obtained from R..[n, m — 1] for all n, and
m=n+1,n+2,--,L. For m > n, by using (8), and taking
properly ordered conditional expectations, one can show that:

Rzzlk,jin,m] = (14 P[j]))Rzzlk,j — kein,m — 1]
+Q[j|Rzy[k,j + knin,m — 1].
Ryvylk,j;n,m] = (1 4+ Q[i])Ryy[k.j + kein,m — 1]

(18a)

+ P[§]Rzy[j — ke, kim —1,n].  (18b)
Rzylk,j;n,m) = (14 Q[j])Rzy[k.j + kesn,m — 1]

+ P[j|Rzzlk,j — kein,m —1].  (18¢c)
Rzzlk,j;n,m} = (1 + P[j))Rzy [k — ke.jim — 1,n]

+ Q[k]Ryylk + kng;m — 1,n]. (18d)

for all k,5 =1,---,L.

Also Rzz[k,j;n,m] and Ryy [k, j;n, m} are symmetric,
i, Rzzlk,j;n,m] = Rzzlk,j;m,n] and Ryy [k, jin,m] =
Ry y [k, j;m,n]. The initial points for these recursion relations
are given by R,.[n,n] which are already found for all
n using (16). Boundary conditions are Rzz[k,j;n,m] =
Ryvylk,j;n,m] = Rzylk,j;n,m] =0, for k, j € [1,L]. The
autocorrelation function of the impulse response Ryp[n,m]
can be easily computed using (4).

Differential Equations: In the limit described by (12), we
write partial differential equations for the autocorrelation
and cross-correlation functions of the electron and hole
densities at two different locations and times, i.e., for
R)zz(xlﬁxz;tl,tz), Ryy(21,72;t1,t2), and Rzy(x1,Z2;t1,
tz .

1o} o
(ve% + 55) Rzz(z1,z95t1,t2) = vea(zs)

‘Rz 7(%1,%2;t1,t2) + vnB(z2)Rzy (21, w25 t1, t2)

(19a)
(—-’U -[1)_+_8_)R ( 1. to) = ﬁ
ha262 ot YY\T1,T2:11, 2)— Uh (12)
- Ryvy(z1,%2;t1,t2) + vea(x2)Rzy (x2, 13 t1, t2)
(19b)
(~th o + ) Ry (1,225, 82) =
"oz T o Fey (@ Eaity ) = vpB{w2)
‘Rzy(z1,22;t1,t2) + vea(z2) Rz z (21, 23 L1, t2)
(19¢)
19} Is]
(vec'?_zl + 8—t1)RZY(I179€2;t1,t2) = vea(z1)

-Rzy(z1,22;t1,t2) + vnB(z1)Rzz (w1, 22511, t2).
(19a)

Values at t; = t; =t > 0 for x1,z2 € [0, W] can be obtained
by solving (17).
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D. Probability Generating Function of X[n]
The probability generating function of X[n] is

L
Gn(s,w) = E{H sf[k,n]wz'[k,n]}

k=1

(20)

where s = (s1,82,---,5.) and w = (w1, we,---,wg). To
relate G, to G,_;, we take the expectation in (20) by
conditioning on X[n — 1]

L
Gn(s,w) = E{E{H 2y ey X [ — 1]}}
k=l

and by using (8) and grouping the s and w; terms of the
same power, we obtain

L
— E{E{H (Skwk)('Z[k—k(,n—1]+y[k+kh,n—1])
k=1

. Sf[k_ke’n—l]wz’[k+k')'71_1]|X[TL _ 1]}}

Since, conditioned on X [n — 1], 2[k — ke, n — 1] and y[k+kn,
n— 1] are independent binomial random variables with popula-
tions Z[k — ke,n — 1] and Y[k + ki, n — 1] and probabilities
P[k] and Qlk], respectively, so that

L

=E SZ[k—kun—l]wY[k+k;, ,n—1]

k k
k=1

. GZ(Skwk)Z[k—ke,n—l]Gy(skwk)Y[kA{-k,‘,7,,_1] }

where G.(s) = (1 — P[k] + sP[k]) and Gy(s) = (1 — Q[k]
+ sQ[k]) denote the probability generating function of 2z
and y, respectively. Substituting for G.(s = spwi) and
Gy(s = skwe),

L
= E{ [T {se(1 = PR + sgwy P[k])}ZF—kem=1]
k=1

Afwr(1 - QK] + skka[k])}Y[Hkh,n—u}

from which we obtain

Gn(s1,-++ ;8L w1,e -, wr) =
Gﬂ‘l(flﬁf27.“ﬂng17927'..VgL)ﬁ (21)
where
3j+ke(1 - P[j + kE]
fi=q tSirwisk Plit+ke]) i j<L—ke
1 if j > L k.
and
Wy, (1 — Q[J — k]
g; = + 85k, Wik, QLJ — kn]) if j > kn
1 if j < kp

with Go(s,t) = s;, for single-electron injection.
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In principle one can obtain m,[n] by taking the first partial
derivative of G, (8, w) with respect to s; and wg. Using the
recursion formula in (21) and chain differentiation one can
derive the same recursion equations for the mean number of
carriers as in (11). Also one can take double partial derivatives
of G, (s, w) with respect to all pairs of s, and wy, and derive
the same recursive equations for R,.[n,n] as in (16). Higher
order moments can be similarly obtained.

IV. EXAMPLES

The foregoing equations are applicable to APD’s with
arbitrary structures. Although the boundary conditions were
set for a single-electron injection at = 0, these equations
are still valid for double-carrier or distributed injection, and
dark noise. We illustrate our theory with two APD structures:
a conventional APD (CAPD) and a multiquantum well APD
(MQW-APD) with the same mean gain (M = 5) and carrier
ionization rate ratio (§ = & = 4.5).

A. Conventional APD

For simplicity, we only consider a single-layer CAPD
with single electron injection at the multiplication region
edge (z =0) and assume constant carrier ionization rates
a = 6300 cm~! and B = 1400 cm™!, and uniform carrier
velocities v, = 107cm/ and v, = 5 x 105cm/s. The
multiplication region width is W = 2 ypm.

1) Mean Impulse Response: We have computed the mean
current myp(t) by using (11) and (3) with L = 100, k. = 2,
and k, = 1. The ionization rates « and 3 correspond to
P = explak.Az] — 1 = 0.02552 and Q = exp|[Bk,Az] —
1 = 0.002804, respectively. The time increment used in this
computation was At = %TI = 0.4ps.

The mean current response is in Fig. 3(a). It rises sharply
to the solid curve peak at the electron transit time, ¢t = 7. =
20 ps, drops abruptly, and decays slowly with a long tail
extending beyond 7, to about 100 ps as a result of the
avalanche buildup time. The corner points following the peak
correspond to secondary arrivals of electrons and holes.

The Fourier transform of the mean current response is
shown in Fig. 3(b). It has a full-width-half-maximum (FWHM)
bandwidth of 10 GHz.

To verify our computations we computed the mean gain (the
area under the mean current divided by ¢) and compared it to
its theoretical value [1]—{4]

a—-4

Me= g raeeaw =

5.08. (22)
Our computations gave 5.10.

2) Variance and Signal-to-Noise Ratio (SNR) of the Impulse
Response: We have computed the variance of the impulse
response o ; (t) by using (16a, b, c), (4), and (5). The standard
deviation of the current o (¢) is the dashed curve in Fig. 3(a).
It is lowest at the onset of the response, where multiplication
noise has not yet accumulated. It peaks at the same time as
the mean current, and subsequently decreases at a much slower
rate and with greater value. This gradual decay of op(t) may
be attributed to the uncertainties accumulated during the first
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Fig. 3. (a) Time dependence of the mean (solid line) and the standard
deviation (dashed line) of the impulse response of a CAPD. (b) The Fourier
transform of the mean response to a single photon (solid line, in units of ¢)
and the power spectral density (dashed line, in units of ¢) of the photoelectric
current corresponding to an optical power normalized to give ¢ = 1. The
unscaled magnitude of the power spectral density corresponding to any y can
be found by multiplying by qu!/2.

T, seconds that do not die off as rapidly as the mean current
itself. For a high-data digital-optical communication-system,
this type of noise will enhance intersymbol interference and
limit the bit-error-rates.

Another measure of performgnce is the signal-to-noise ratio
of the current, SNR(t) = ’:jf% shown in Fig. 4(a). This
function is large for a short time duration and decreases rapidly
to zero with a step jump at ¢t = 7.

Knowledge of the mean and the variance of the impulse
response is generally not sufficient to evaluate the bit-
error-rate in a digital optical communication system using
these detectors. Because the response to a random sequence
of photons representing a pulse of light is the sum of
the electric pulses generated by each of the photons,
the properties of the photoelectric current at any time is
determined not only by the mean and the variance of h(t),
but requires knowledge of its autocorrelation function as
well.

3) Autocorrelation and Correlation Coefficient of the Im-
pulse Response: The autocorrelation of the impulse R (t1,12)
has been computed by using (4) and (18). As shown in Fig. 5,
at pairs of times t;,t3 < 7. the autocorrelation is large but
diminishes as ¢; or ¢; increases. An indication of the degree
of coherence of the impulse response at different pairs of times
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Fig. 4. Time dependence of the signal-to-noise ratio of the current response
of (a) a CAPD, (b) an MQW-APD.

is obtained by computing the correlation coefficient
C(t1,12)

C(tl, tl)C(tZa t2) ’

where C(tl, tg) = th(tl,tQ) - mh(tl)m;,(tg).

T(tl,tz) =

As in Fig. 6, the current is weakly correlated for 0 < ¢; < 7e
and 0 < 5 < T, and thereafter becomes more correlated.
The reason is that at the onset of the multiplication process
the ionization events are relatively independent, whereas later
ionizations become more correlated since they share a common
origin.

To verify our results we computed the volume under the
current autocorrelation function Ry (t1,t2) to obtain the sec-
ond moment of the gain. We then calculated the excess noise
factor for single-electron carrier injection, and compared it to
its theoretical value [5]

F = % — kM + (2 - %)(1 —k) =253 (23)
Our computation gave 2.5.

B. Multiquantum-Well APD

A simple MQW-APD with four GalnAs/AllnAs stages is
shown in Fig. 7. Each layer thickness is 500 A° and the
total width is 3500 A°. The electron and hole ionization
probabilities at each ionization stage are P = 0.3340 and
Q = 0.07422, respectively. Electron and hole velocities are
107 cm/s and 5 x 10% cm/s, respectively. Single electron
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Fig. 5. The autocorrelation function Rpp(t1,t2) of the impulse response
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Fig. 6. Contours of constant correlation coefficient r,p(t1,t2) of CAPD
current response.

injection is assumed at the multiplication region boundary
(x =0).

1) Mean Impulse Response: We have computed the mean
current mp (t) by using (3) and (11) with L = 35, k. = 2, and
kr = 1. The time increment At used in this computation was
0.2 ps. Electrons can only ionize at four locations, k=5,15,
25, 35, and holes can ionize at k = 1, 11, 21, 31. Accordingly,

_ (P ifk=5152535
Pik) = {0 otherwise
and
N = Q ifk=1,11,21,31
Q) { 0 otherwise.

These locations correspond to the energy band-gap transitions
in the multilayer GalnAs/AllnAs crystals. Electrons ionize
upon entering the AllnAs layers and holes ionize upon entering
GalnAs layers.

The mean current response is the solid curve in Fig. 8(a).
As in the conventional case, it rises sharply to a peak, drops
abruptly at t = 7, = 3.5 ps, and decays slowly thereafter.
The discontinuities at ¢ > 7. are due to secondary arrivals
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is 500 A° and the total width is 3500 A°. P = 0.3340 and Q = 0.07422.
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Fig. 8. (a) Time dependence of the mean (solid line) and the standard
deviation (dashed line) of the impulse response of a MQW-APD. (b) The
Fourier transform of the mean response to a single photon (solid line, in
units of ¢) and the power spectral density (dashed line, in units of ¢) of the
photoelectric current corresponding to an optical power normalized to give
# = 1. The magnitude of the power spectral density corresponding to any u
can be found by multiplying it by qu!/2.

of electrons and holes. The mean response diminishes much
faster and attains greater magnitudes than that in conventional
device with the same gain. The Fourier transform of the current
response is plotted in Fig. 8(b). The FWHM bandwidth of
frequency response is 40 GHz.

To verify our results we have computed the mean gain M
(the area under the mean current function) and compared it to
its theoretical value [5]

(P-Q)(1+P)~

M=
PA+QN -+ PV H!

=5.00 (24)

where N is the number of ionization stages. Our computation
was 5.00.

2) Variance and Signal-to-Noise Ratio of the Impulse Response:
We have computed the variance of the impulse response o ,21 (t)
by using (4), (5), and (16). The standard deviation of the
current o, (t) is the dashed curve in Fig. 8(a). It is zero until
the injected electron ionizes for the first time. As for the
CAPD, o,(t) does not decay as rapidly as the mean current. It
diminishes faster than that of the CAPD but it reaches larger
magnitudes.

To compare the two devices we examine their signal-to-
noise ratios depicted in Fig. 4. The CAPD has a higher SNR
at any time, even though it has a greater excess noise factor F.
This may at first appear to be inconsistent. The SNR at time ¢
is a measure of the instantaneous uncertainty, whereas F is a
global measure integrated over the device response time. The
fact that the CAPD has higher SNR (i.e., lower instantaneous
noise) but higher F' (i.c., greater averaged noise) is a result
of its noise being more correlated over its response time than
in the MQW-APD. Thus, if the CAPD and MQW-APD were
to have the same response time, the former would be more
suitable for faster applications than the latter! Clearly, this
is not so, since MQW-APD’s are designed to have shorter
response time. The instantaneous noise (or SNR) of the CAPD
is less because the probability of ionization within a time
increment is very low in comparison with localized high-
probability ionizations in the MQW-APD.

For improved performance, the SNR of a pulse should be
large within the period of time in which most of its energy is
contained. In the conventional case, most of the signal energy
is within 60 ps and the SNR is greater than one for ¢ <
20 ps; whereas in the superlattice case, most of the energy is
within 10 ps and the SNR is greater than one for ¢t < 3.5 ps.
Thus, the CAPD has greater SNR within the time scale it
is utilized. The MQW-APD may be preferred for its speed
and lower excess noise factor in detection circuits with long
integration times, but not for its SNR when the detection is
instantaneous.

3) Autocorrelation and the Correlation Coefficient of the
Impulse Response: The impulse response autocorrelation
Rip(t1,t2) has been computed by using (4) and (18). As
shown in Fig. 9, for 0 < t; < 7. and 0 < 3 < 7. the autocor-
relation is large but it diminishes as ¢; or ¢, increases. The cor-
relation coefficient plot in Fig. 10 clearly show that the MQW-
APD response has weaker correlation than that of CAPD.

To verify our results we computed the volume under the cur-
rent autocorrelation function to obtain the second moment of
the gain. We then calculated the excess noise factor for single-
electron carrier injection, and compared it to its theoretical
value [5]

oM (1-4)(1- %)
== 't T2y Pr0
1-PQ[. . Q(L+P) 1
' {_P+2 140 [M P-Q +1+P]}
= 2.161. (25)

Our computation gave 2.161.
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V. PHOTOELECTRIC CURRENT

The previous analysis dealt with the response h(t) of the
device to a single absorbed photon. Under a steady light
illumination of power P, the total photoelectric current i(t)
is a sequence of electric pulses h(t) beginning at the times
of injection of the photogenerated electrons. If the incident
photon stream is described by a Poisson point process with
rate ¢ and the quantum efficiency is 7, then the photoelectron
injection is another Poisson point process with intensity pu =
n¢, and i(t) is a filtered Poisson process (shot noise) [40]. The
total photocurrent i(¢) is then

i) =) hn(t —tn) (26)

where {¢,} are the electron injection times and {h,(t — t,);
t > t,}, for n = 1,2,--- are statistically independent,
identically distributed random processes all having the same
distributions as the process h(t) described in earlier sections.
The mean, the variance, and the covariance function of i(¢)
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can be shown to be

m; = /L/mh(t) dt = quM @n
0
o= u/E{h2(t)}dt (28)
0
Ci(r) = Cu(t,t +7) = u/th(t’,t' +7)dt’  (29)
0

respectively. The moments of i(t) are thus readily obtained
once the moments of h(t) are found. The power spectral
density S;(f) of the photoelectric current is the Fourier
transform of C;(7) and the circuit bandwidth is

oo

JE{r*(t)}dt

0
(e 2O
2{‘({ mh(t) dt}

PN

B

(30)

Numerical Results: We have computed the mean, the vari-
ance, and the covariance of the photoelectric current cor-
responding to an optical power P = 1 mW at wavelength
A = 1.3 pm, and assuming unity quantum efficiency (n = 1).
For the CAPD, the mean and the standard deviation of the
photocurrent are 5.23 mA and 14 uA, respectively, and the
circuit bandwidth B is 23 GHz. For the MQW-APD, the mean
and the standard deviation of the photocurrent are 5.23 mA and
28 pA, respectively, and circuit bandwidth B is 93 GHz. The
power spectral density of ¢(t) for both devices are the dashed
curves in Figs. 3(b) and 8(b), respectively. The FWHM band-
widths are 27 GHz for CAPD and 100 GHz for MQW-APD
which are in close agreement with the calculated values. The
photocurrent generated in the CAPD has a narrower power
spectral density but a higher signal-to noise ratio.

V1. CONCLUSION

We have determined a discrete stochastic model to describe
the dynamics of the double-carrier multiplication process in
APD’s with arbitrary structure (conventional and superlattice).
Based on this model, we derived recursive equations to com-
pute the mean, the variance, and the autocorrelation function
of the impulse response, assuming single-electron injection.
In the limit of very large grid size, we have transformed the
difference equations into differential equations describing the
mean, the variance, and the autocorrelation function of the
impulse response. Analytical solutions for these differential
equations are found only for the mean current.

We applied our analysis to a conventional APD (CAPD)
and a simple multiquantum-well APD (MQW-APD) with
the same mean gain and carrier ionization ratio. For both
devices we computed the mean, the variance, the SNR, and the
autocorrelation function of the electric current pulse resulting
from the injection of a single electron. A comparison between
the two devices showed that the MQW-APD has a faster
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response and lower excess-noise factor. However, the signal-
to-noise ratio and the correlation of the current response for
the CAPD was greater.

Finally, we computed the mean, the variance, the autoco-
variance function, and the power spectra of the photocurrent
generated by coherent light of uniform power. The photocur-
rent generated in the CAPD has a narrower power spectral
density but a higher signal-to-noise ratig.
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