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CONSTRUCTION B4: ¢t = 2,k = 7,7 = 13

. w, 2 bits 11-bits constant
weights ap- no. of weight code of no. of
in M subcodes ° tails
pended distance 4
0 0 1 11 1
1 .
2 3 28 7 35
3
4
5 6 28 4 35
6
7 9 1 0 1

to make their weights become 0,3,6, and 9. We use the following
lemma by Baranyai [3].

Lemma 6 (Baranyai): Suppose n = wi and w < i, then Q}, can
be partitioned into () /i subsets of “disjoin” words. That means
if @ and b are in the same subset then @ x b = 0, or equivalently,
M(a,b) = (w,w).

* 3 divides 9, so Q3 can be partitioned into (g) /3 = 28 subsets
with M(a,b) = (3,3). Each of the subset is a 2EC/AUED
subcode. Similarly, Qf can be partitioned into 28 2EC/AUED
subcodes since they are the inverses of sequences of weight 3.
For the tail part, we use the constant weight codes with minimum
distance 4. For the existence of these constant weight codes see
{8].

* This code has the same parameteras the code designed in Exam-
ple 2. However, it lacks efficient encoding/decoding procedure.
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Fractal Renewal Processes

S. B. Lowen, Member, IEEE, and M. C. Teich, Fellow, IEEE

Abstract—Two relativelg simple renewal processes whose power spec-
tral densities vary as 1/ are constructed: 1) a standard renewal point
process, with 0 < D < 1; and 2) a finite-valued alternating renewal
process, with 0 < D < 2. The resulting event number statistics, coinci-
dence rates, minimal coverings, and autocorrelation functions are shown
also to follow power-law forms. These fractal characteristics derive from
interevent-time probability density functions which themselves decay in

- a power-law fashion,

Index Terms—Fractal process, renewal process, 1/f noise.

Noise with a power spectral density that varies as an inverse power
of frequency is called 1/f7 noise. Mathematical models generating
continuous-time 1/ 7 noise include fractal shot noise [1]-[3], suit-
ably filtered white Gaussian noise [4], fractionally integrated white
noise [5], fractal Brownian motion [6], [7], and a superposition of
relaxation processes with an appropriate distribution of time constants
[8], [10]. Mandelbrot modeled burst noise in communication systems
with a form of fractal renewal process [11]. The fractal-shot-noise-
driven doubly stochastic Poisson point process is another discrete
(point) process which yields 1/ noise [12].

In this correspondence, we develop two relatively simple fractal
renewal point processes (FRP’s) that provide plausible models for a
number of physical and biological processes. Both generate 1/77
noise, in the ranges 0 < D < 1 and 0 < D < 2 respectively. The
first is a standard fractal renewal point process (SFRP), with events
represented as points distributed on a line; the second is an alternating
fractal renewal process (AFRP), where the process switches between
two states (see Fig. 1). Both of our processes exhibit power-law
scaling in many of their statistics, and are therefore fractal. This
fractal behavior derives from interevent times which have power-
law-varying probability density functions. We consider the case where
the processes have reached equilibrium so that the renewal density,
or expected rate of events, is constant in time, and thus the processes
are stationary.

Possibly the simplest example is the abrupt-cutoff power-law
density

_ D =P for A<t < B,
p(t) = ADb_poDb~ {0, otherwise. O
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Fig. 1. Sample functions of fractal rencwal processes. Interevent times

are power-law distributed. (a) The standard fractal renewal process (SFRP)
consists of Dirac delta functions and is zero-valued elsewhere. (b) The
alternating fractal renewal process (AFRP) switches between values of zero
and unity. The symmetric case is shown here.

The characteristic function of the interevent time is

D(—jw D —jwB o
bo) = oL [ e,
and (T') denotes the average interevent time. The following results
apply for power-law densities with cutoffs of arbitrary shape; the
abrupt-cutoff form in (1) is most convenient.

These fractal probability densities may be used to construct well-
defined FRP’s, since the densities are zero for nonpositive arguments.

For the SFRP [labeled N(t)] in the medium-frequency limit
B~! « w « A™!, the power spectral density is given by (3) (see
the equation at the bottom of the page) [13]. Thus, for 0 < D < 1,
the power spectral density varies as 1/ fP over a substantial range
of frequencies B~' « w = 2rf <« A™!, where D corresponds to
the power-law exponent in the interevent-time density. However, this
power-law exponent never reaches unity, and no new exponents are
introduced by considering D < 0 or D > 1. A different point process
will result when several SFRP’s are superposed, but the overall power
spectral density will still be 1/f7 [13].

An approximation for the coincidence rate of the abrupt-cutoff
power-law process for 0 < D < 1 is [13]

Gn(T) = (D) 'BP 1 AP sin(x D)|7|° " @
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Fig. 2. Double logarithmic plot of open- and closed-time probability density
functions p(t) vs. ¢ for a K* ion channel at 50 mV bias, replotted from [17].
Note the power-law behavior for both functions.

density u(t) ~ t°~, so that u**(t) ~ t*°~7, and [13]

VO + 1) oo
E{[N(t>—11!} e

In particular, E{N ()} = t/(T) and
Var{N(t)} = [xD*(D + 1)] " B?~' A7 sin(xD)t?*'.  (6)

For the parameter ranges 0 < D < 1 and 0 < A & B < oo, the
set of points generated by the SFRP is itself fractal with dimension
D. Consider a realization of the process, and a minimal covering
of it using segments of length L. For the range A < L < B, the
expected number of intervals required to cover the SFRP will scale
as LD, and thus the capacity dimension is D [13].

The AFRP [labeled X (t)] has two interesting domains: symmetric
and extreme asymmetric. In the latter, the times spent in one state
are much longer than the times spent in the other state, where the
longer times have a fractal distribution. For the regime D > 0, the
power spectral density and the coincidence rate are proportional to
the SFRP results except for the high-frequency and short-time limits.
In the regime —1 < D < 0, however, we obtain

©®)

in the range A < |7| € B. 2, -1 _ D-1 D
For the case A < |t| € B and 0 < D < 1, but with arbitrary Sx(w) = ATs) (-D)" T2 - D) cos(rD/2)B w0
cutoffs in the interevent-time probability density, we have the renewal ~ where (T’s) is the average time spent in the short-time state.
1, for -1 < D <0,
2[T(1 - D)] " cos(xD/2)(wA) 77, for0< D <1,
) 7[in(wA)] “wa), for D=1,
(T)Sv (@) = 2D~%(D — 1)I'(2 — D)[- cos(rD/2)] (wA)P2, for1<D<2, ®
(1/2)[~ In(wA)], for D =2,
DY(D -2)"Y(D - 1)?, for D > 2.
4w, for-1<D<0
2I'(1 — D) cos(xD/2)APwP =2, for0<D<1
TAw™!, for D=1
KT)Sx(@) = o(D - 1)~'T'2 - D)[~ cos(xD/2)] APwP~2, for1< D <2 ®)
24%[- ln(wA)l, for D =2
D(D -2)"' A%, for D > 2.
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In the symmetric domain the dwell times of the two states are given
by identical, abrupt-cutoff power-law distributions, and the power
spectral density also varies as 1/f7, but with a different form from
that of the SFRP. In the medium-frequency limit (47! €« w <
B~'), we then obtain (8) (see the equation at the top of the page)
[13]. The AFRP generates 1/ f2 noise for the full range 0 < D < 2
over a substantial range of frequencies B™! € w = 27f < A7
When several AFRP’s are superposed, the overall power spectral
density will still be 1/f7, and the resulting process will approach a
Gaussian process in the limit of a large number of AFRP’s [13].

For 1 < D < 2, the autocorrelation function also shows power-law
behavior [13]:

Rx(7) - E{X}* = (2D) " [~ cos(x D/2)] A° 7' ™2, (9

for A € |r| € B

FRP’s apply to a wide variety of phenomena [13], including
trapping in amorphous semiconductors [14], electronic burst noise,
movement in systems with fractal boundaries, the digital generation
of 1/fP noise, and ionic currents in cell membranes. We focus
briefly on this last application. Ion channels are openings in the
membranes of cells which allow ions to diffuse into or out of a cell
[15], and which alternate between open and closed states. Some ion
channels may be modeled by a two-state Markov process, with one
state representing the open channel, and the other representing the
closed channel. This model generates exponentially distributed dwell
times in both states. However, many ion channels exhibit power-law
distributed dwell times [16].

Fig. 2 shows an example of a particular ion channel [17] for which
the open- and closed-time probability density functions both follow
power-law forms. The authors of [17] fit the data less accurately
with a combination of three exponentials. The open times decay with
a power-law exponent D + 1 = 0.66 and are much longer than
the closed times, so that this channel is in the regime of (7). The
symmetric AFRP model, in contrast, describes the activity of other
ion channels for which the open and closed times are similar and
fractal. Whole-cell ion currents exhibit spontaneous fluctuations due
to the additive effects of large numbers of ion channels on the cell
membrane. If these ion channels are independent of each other, then
this model predicts that the whole-cell ion current will be Gaussian-
distributed 1/ fD noise. Even for dependent ion channels, in fact,
evidence exists that the overall effect will be the same, although
with a higher variance than for the independent channel case [18].
Indeed, spontaneous voltage fluctuations of neurons often exhibit
Gaussian-distributed 1/ noise [19].
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Forward Collision Resolution — A Technique for
Random Multiple-Access to the Adder Channel

I. Bar-David, Fellow, IEEE, E. Plotnik,
Member, IEEE, R. Rom, Senior Member, IEEE

Abstract—Consider M-Ch T commt ions: T users or less, out
of M potential users, are chosen at random to simultaneously transmit
binary data over a common channel. A method for constructing codes that
achieve error-free M-Ch T com ication over the noiseless Adder
Channel (AC), at a nominal rate of 1/7 bits per channel symbol per active
user, is described and an efficient decoding procedure is presented. The
use of such codes is referred to as Forward Collision Resolution (FCR), as
it enables correct decoding of collided messages without retransmissions.
For any given T a code is available that yields a stable throughput
arbitrarily close to 1 message/slot. Furthermore, if the occurrence of
collisions is made known to the transmitters, such a throughput can
be maintained for arbitrary T,T < M as well. If such feedback is not
available, and T is random, the probability of an unresolved collision is
significantly smaller than the probability of a collision in an uncoded
system, at comparable message-arrival and information rates.

1. INTRODUCTION

The problem of sharing a common channel by several users
has been mostly treated within the framework of either of the
two categories described by Gallager in his review paper [1] and
references cited therein.
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