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Statistical Properties of a Nonstationary 
Neyman-Scott Cluster Process 

BAHAA E. A. SALEH, MEMBER, IEEE AND MALVIN C. TEICH, 
SENIOR MEMBER, IEEE 

Absrract-A recurrence relation is obtained for the counting distribu- 
tion, as well as the probability density of waiting time, for a doubly 
stochastic Poisson point process driven by nonstationary shot noise 
(SNDP). For a stimulus of short duration, the counting distribution 
approximately reduces to the Neyman Type-A. The SNDP is an important 
special Neyman-Scott cluster process. 

I. INTRODUCTION 

The Neyman-Scott cluster point process, originally developed 
in 1958 to describe the distribution of galaxies in space [l], has 
become an important representation for a broad range of phe- 
nomena in the physical, biological, and social sciences [2], [3]. 
Bartlett [4] has shown that the shot-noise driven doubly stochas- 
tic Poisson point process (SNDP) is a special but important 
example of a Neyman-Scott cluster process. This identity was 
subsequently explored by Lawrance [5]. The SNDP is a doubly 
stochastic Poisson point process (DSPP) [6] whose rate is a 
shot-noise process. It is of particular importance in electrical 
engineering [7], physics [8], neurophysiology [9], and geophysics 
[lo], [ll], though it was originally developed by Bartlett in 
connection with an ecological model. 

In a recent series of papers we have examined the properties 
and applications of the stationary SNDP, with particular empha- 
sis on its use in electrical engineering and physics. Explicit results 
have been obtained for the single-fold and multifold counting 
statistics, time statistics, and power spectrum [7]. The SNDP 
describes the photon statistics of shot-noise light. We have de- 
termined the degrees of freedom and degeneracy parameters for 
such light. It turns out that the excess photocount variance 
exhibits particlelike fluctuations, and is maximized for long 
counting times [8]. The interevent-time statistics [9] and counting 
statistics [12] have also been obtained in the presence of self-exci- 
tation (deadtime). An interesting outcome of our studies [7], [8] is 
that the counting distribution reduces to the Neyman Type-A 
distribution [13], [14] in the long counting-time limit (counting 
time T much longer than the characteristic time TV of the 
impulse-response function associated with the shot noise). Under 
certain conditions, this conclusion also applies in the presence of 
dead time [12]. The Neyman Type-A is a two-parameter counting 
distribution that characterizes the cascading of two Poisson 
processes. 

In this note, we obtain the counting distribution, together with 
its mean and variance, for a nonstationary [15] SNDP (i.e., a 
DSPP whose stimulating rate is nonstationary shot noise). We 
also obtain the probability density function for the waiting time 
to the first event. We will show that the counting distribution 
again reduces to the Neyman Type-A distribution when the 
duration of the stimulating pulse TV is short. Finally a number of 
specific applications, in which the signal is a nonstationary pulse, 
will be briefly described. 
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Fig. 1. Schematic representation for the generation of the nonstationary 
SNDP. 

A schematic diagram illustrating the generation of the process 
is presented in Fig. 1, A nonstationary Poisson point process of 
rate p(t) is passed through a linear filter of impulse response 
function h(t). The resulting nonstationary shot-noise process 
A(t) forms the rate for a second Poisson generator, leading to the 
nonstationary SNDP. 

II. COUNTING DISTRIBUTION 

To obtain the counting distribution over the interval [t, t + T], 
as well as the time statistics of a DSPP, we first determine the 
statistics of the integrated rate 

w(t, T) = [‘+‘x(x) dx. (1) 
The statistics of W( t, T) are found from the statistics of A(t). 
The statistical properties of nonstationary shot noise have been 
well documented in the literature [16], [17]. The mean and vari- 
ance are 

and 
G(t)> = P(t)@h(t) (2) 

var[h(t)] = p(t)Oh2(t), (3) 
respectively, and the characteristic function (cf.) is 

f#~(,)(j~) = (exp[jwX(t)]) = exp{p(t)O[eiwh(‘)- l]}. 

(4) 
The symbol @  represents the operation of convolution. Condi- 
tions for the validity of (4) are discussed in [17, pp. 168-1701. The 
functions p(t) and h(t) must satisfy the condition o*( X2( t)) = 
ta2{p(t)@h2(t) + [p(t)@h(t)12} < cc. Actually, Snyder [17, 
pp. 168-1701 proved a more general result for conditions of 
existence of the characteristic functional, from which the preced- 
ing condition is obtained as a special case. 

The statistical properties of the integrated rate W( t, T) can be 
determined by regarding it & a shot-noise process generated 
when Poisson pulses of rate p(t) are filtered by a cascade of two 
linear filters, one with impulse response h(t), followed by a 
second one, which is an integrator over [t, t + T]. The cascade is 

0018-9448/83/1100-0939$01.00 01983 IEEE 



940 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT - 29, NO. 6, NOVEMBER 1983 

equivalent to a single linear filter of impulse response 

f+(t) = j”“%(x) dx. 
I 

(5) 

It therefore follows that the mean, variance, and cf. of IV(t, T) 
are 

and 

(Wt, 0) = PL(t)@b-tt), 
var [ IV(t, T)] = p(t)Oh+(t), 

(6) 

(7) 

GW(r,T)(ju) = exp { p(t)@[eJW”~(‘) - II}, (8) 

respectively. Because W( t, T 
2’ 

1s a shot-noise process, the condi- 
tion for the validity of (8) is w ( W2(t, T)) < 00 [17, pp. 168-1701. 

Given the statistics of the integrated rate W(t, T), we readily 
obtain the statistics for the SNDP. If n represents the number of 
events in an interval [t, t + T], then [16] 

(n> = W’(t, Z-1) = ptt)@h-(t) (9) 
var(n) = (W(t,T)) + var[W(t,T)] 

= (1 + a)(n), (10) 
where 

a = [p(t)oh~(t)l/[,(t)oh.(t)l. (11) 
Also 

+,,,(jw> = +W(r,T)teJw - 1) 

=exp(p(t)O{exp[-(l-eJ”)h,(t)] -1)). 

(12) 
The counting distribution p[ n( t, T)] can be obtained from the 
relation [ 181 

Combining (8) and (13) leads to the recurrence relation 

(n + l)p(n + 1) = (n) 5 C,p(?r - r> 
I=0 

(14) 

where 

p(O) = exp{p(t)O[e-hr(“-l]}, (15) 

C,=~{p(t)@[h:‘l(t)e-h”“]}/{p(t)@hy(t)}. (16) 

As expected, setting p(t) = p in (9)-(16) reproduces our previ- 
ously obtained results for the stationary SNDP. 

We now consider an important limiting case, in which the rate 
p(t) is an impulse 

p(t) = Es(t), (17) 
of strength E, where 6(t) is the Dirac delta function. Substituting 
(17) into (9) and (10) yields a count mean and variance given by 

(n> = W(t) 
var(n) = (1-f a)(n), a = i+(t). 08) 

Eq. (12) becomes 

+,,,tjo) = exp(E{exp [ -Cl - eJW)Mt)l - l}) 

= exp (+ {exp [ -a(1 - el-)] - 1)). (19) 

This is identically the cf. for the Neyman Type-A distribution of 
mean (n) and parameter a. 

If the rate p(t) has a time course TV that is very short in 
duration compared with the sum of the width T,,, of the impulse 
response function h(t), and the counting time T (T, -=K rp + T), 
then the mean and variance of the distribution are approximately 
given by (18) with E = jp(t) dt. Moreover, if TV +z [rp + T]/N 
then, for an exponentially decaying h(t), the probability distribu- 
tion p(n) may be approximated by a Neyman Type-A distribu- 
tion for all n < N. This may be shown by noting that since h(t) 
is a decaying function of width 7 , h,(t) will have an approxi- 
mate width T + TV. If T,, the widtfr of p(t), is much shorter than 
T + rp,, then in (9) and (ll), convolution with p(t) may be 
approximately replaced by multiplication by E = /p(t) dt. Eq. 
(18) is then reproduced. Furthermore, in (16), the width 
of h;(t) is approximately (T + ~~)/l. The product h&(t) 
exp (-h,( t)) has approximately the same width, (T + r,,)/l. 

Therefore, if 7, << [TV + T]/N, in the computation of C,, for 
1 < N, p(t) may be replaced by a delta function. Consequently, 
p(n), which is computed from (14), may be approximated by a 
Neyman Type-A distribution for n < N. 

We conclude that an SNDP, stimulated by a rate of sufficiently 
short duration, yields approximately the Neyman Type-A count- 
ing distribution with parameter 

a = hT(t) = [‘+‘h(x) dx. (20) 

If h(t) is a decaying function of time, the probability distribution 
of the number of counts over the interval [t, t + T] remains 
Neyman Type-A as t is increased, but has a decaying mean and a 
decaying parameter. Eventually, for large t, the distribution ap- 
proaches the Poisson distribution. This limiting case will remain 
valid as long as the width of the function p(t) is much less than 
that of the impulse response h(t). 

Finally, we note that if the rate p(t) consists of a superposition 
of a uniform with a pulsed rate p(t), the overall counting 
distribution in the limit of very short rs will also be approximately 
Neyman Type-A. 

III. WAITING TIME TO THE FIRST EVENT 

For a DSPP, the distribution of the waiting time r (the time 
interval from an arbitrary time t to the time at which the first 
event occurs) is [18] 

I) 

=- - W(t.T,(-o ii+ 
Using (5) and (8), we obtain 

(21) 

pt(~) = {p(t)O[h(t + r)emhl(‘)]} 

.exp{p(t)O[e- h,(r) - l]}. (22) 

For a stationary SNDP, (22) reduces to the previously obtained 
result [7]. 

For a nonstationary SNDP whose primary rate p(t) is of 
duration very short compared to TV, we can use (17) to obtain 

~~(7) = Eh(r)e-hT(o’exp {E[e-hT(o)- l]}, (23) 
when the starting time is t = 0. This may be shown by noting 
that if h( t) has a width TV, h,(t) has a width TV + T, and therefore 
both functions [ eehT(‘) - l] and h( t + r)edhT(‘) in (22) have 
widths TV + 7. If r,, the width of p(t), is much shorter than TV, it 
is also much shorter than rp + r and therefore the convolutions in 
(22) may be approximated by 

and 
(24) 

p(t)@[emhT(‘) - 11 c E[ephT(‘) - 11, (25) 
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The validity of (23) is subject to the validity of the approxima- 
tions in (24) and (25), which will hold for rs sufficiently smaller 
than T,, 

It is important to note that pa(r), as obtained from (21), (22), 
or (23), is not always a proper probability density function. 
In situations where (/;A( t) dt) is finite, j$po(r) dr # 1. This 
is a manifestation of the finite probability (given by 
(exp [ - /cX (t) dt])) that zero events occur in the interval [0, cc], 
thereby resulting in an infinite waiting time. 

It is therefore appropriate to normalize (22) and (23) by the 
factor exp { E[ e- hm(r) - l]}, in order to provide a probability 
density function of unit area. This peculiarity is not present in the 
stationary case. 

In the limit of a  weak-impulsive stimulus (E -=z l), (23) can be 
approximated by 

PO(T) = Eh(r)eXp -&i(t) dt]. 
[ 

When properly normalized, this is identical to the waiting time 
for a nonstationary ( inhomogeneous) Poisson process of rate 
X(t) = h(t). This limit can be understood by examining Fig. 1. 
When the primary impulsive rate is weak, the first Poisson 
generator produces (with probability E) a single pulse. This 
pulse, in turn, gives rise’ to a function h(t) that acts as a driving 
rate for the second Poisson generator. Thus the waiting time 
distribution will have the same shape as that of a  simple nonsta- 
tionary Poisson process with rate X(t) = h(t). 

As an example, we consider a system with an exponential 
impulse-response function 

htt) = (2~/Tp)eXP(-2t/Tp), t a  0, (27) 

excited by a short-duration impulsive stimulus. The quantity rp is 
the decay time of h(t) and (Y is its area. The parameter (Y 
represents the average number of secondary events per primary 
event (or the multiplication parameter of the SNDP). Using (23), 
we obtain 

pa(r) = y exp -F - a(1 - e-*“‘p) 
i 

+z{exp[-a(1 -ee-27’7p >I - 1)) (28) 

where N = LYE represents the average total number of events in 
the SNDP over the entire time interval [0, co]. To make its area 
unity, this function must be normalized by the factor exp { E[ e-O 
- l]}, as discussed earlier. For E and (Y very small (i.e., N also 
very small), (28) becomes the exponential distribution 

PO(T) = @N/T,) exP (-27/r,), 
as expected. 

IV. APPLICATIONS 

The foregoing model is expected to provide a useful represen- 
tation for applications in a number of fields. An example of a  
physical process describable by our results is the generation of 
cathodoluminescence radiation by a pulsed electron beam. 

A number of information transmission and processing systems, 
in which the signal is a  nonstationary pulse, can be characterized 
by the treatment presented here. Examples of such systems, in 
which the signal is a  pulse of radiation, are the image intensifier 
(the signal is a  pulse of light, infrared radiation, or X rays), X-ray 
tomography (the signal is a  pulse of X rays), and systems incor- 
porating X-ray film and intensifying screens [19] (the signal in 
that case is a small spot of light, the spatial analog of a  short 
pulse). . 

An application of importance that has been studied in great 
detail, is the transmission of visual information from the retina to 
higher visual centers through the optic nerve [9]. A series of 

experiments characterizing the neural counting distribution in the 
mammalian retinal ganglion cell has recently been conducted by 
Barlow, Levick, and Yoon [20]. These authors illuminated a small 
spot on the retina by means of a  short (T, = 10 ms) flash of 
(Poisson) light, and recorded the probability distribution for the 
number of nerve spikes in a much longer interval of time (T = 200 
ms). They showed that the mean and variance of the Neyman 
Type-A counting distribution, though they did not refer to it by 
name, adequately accounted for the experimental observations of 
these quantities. From their study, they concluded that single 
absorbed quanta can cause multiple nerve impulses at the gangli- 
on cell, representing the kind of two-step statistical process 
discussed here. Indeed, the results of our nonstationary analysis 
predict just such behavior when rs +C ?p + T. Since rp is known to 
be = 30 ms from other studies [9], tins condition is well satisfied 
in the ganglion cell experiments. 

Finally, we note that applications involving a cascade of Pois- 
son processes, driven by stationary and nonstationary signals, 
have been considered elsewhere [21]. 
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