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k= 1,2;. a, m, such that 

5 Pr {Ak]Hk} = co, 
i=l 

2 Pr {Ak]4} <co, j=1,2,*.-,m, j#k. 
i=l 

Let the observations be divided into blocks B,, B2; * . , where 
Bi itself consists of the blocks 

B,=S,‘2 S.13 . . . S!m S?’ S.23 . . . s&i . . . ,‘$.+-I) I I,,? ,I,,,,, >I? >I 9 

k=1,2;-. ,m, j=l,2;‘-,m, j+k. 

Each of the blocks Sk’ j= 1 2 . . . ,m, jfk, tests for the event 
A:. If A: occurs during an S$ block and the currently favored 
hypothesis is Hi, then the favored hypothesis becomes Hk. 
Otherwise the favored hypothesis does not change. The algo- 
rithm can be implemented with m+ 1 states by letting states 
T,E{1,2,**. , m} denote the currently favored hypothesis, while 
T, = m+ 1 denotes that during an Sik block the currently 
favored hypothesis is Hi and the observations are matching with 
the event Ak. Thus if each sequence {A:} satisfies (5) then 
m + 1 states can resolve the m-hypothesis test. 

v. REMARKS 

Results on hypothesis testing with a finite memory have been 
extended to a class of problems with dependent observations. 
These extensions can be viewed as a set of sufficient conditions 
on the probability measure P defined on the observation space 
for which m + 1 states can resolve the m-hypothesis test. It would 
be of interest to investigate problems for which the finite mem- 
ory constraint precludes resolution of the true hypothesis. The 
proof of Theorem 2 given here requires discrete-valued random 
variables. It is not known if the result holds in general for the 
continuous case. 

Consider also the following example. Let xi, x2 be a pair of 
random variables with joint probability measure P, and consider 
the hypothesis test H,,: P= PO versus H,: P= P,. Suppose the 
measures are such that Pr {x, + x2 = 01 H,,} = 1 and Pr { X~ + x2 = 
lIH,} = 1. While the hypothesis test can be resolved wrthout a 
memory constraint, it can be shown that a finite memory cannot 
resolve the test with probability one. The probability of error 
can be made arbitrarily small only when the number of memory 
states becomes arbitrarily large. 

This raises the question of finding necessary conditions for a 
finite memory to resolve a hypothesis test. Another question of 
interest is to find the class of problems that can be resolved with 
a finite memory, but require more than m+ 1 states. 
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Single-Threshold Detection of a Random Signal in 
Noise with Multiple Independent Observations, 

Part 2: Continuous Case 
PAUL R. PRUCNAL, MEMBER, IEEE, AND 

MALVIN CARL TEICH, SENIOR MEMBER, IEEE 

Abstract-A single-threshold detector is derived for a wide class of 
classical binary decision problems involving the liielihood-ratio detection 
of a signal embedded in noise. ‘Ibe class of problems considered encom- 
passes the case of multiple independent (but not necessan ‘ly identically 
distributed) observations of a nonnegative (or nonpositive) signal em- 
bedded in additive and independent noise, where the range of the signal 
and noise is contfnuoas. It is shown that a comparison of the sum of the 
observations with a unique threshold comprises an optimum detector if a 
weak condition on the noise is satisfied independent of the signal. Exam- 
ples of noise densities that satisfy and that violate this condition are 
presented. A sofficient condition on the likelihood ratio which implies that 
the sum of the observations is also a sufficient statistic is considered. 

I. INTRODUCTION 

The likelihood-ratio detection of a signal embedded in noise is 
an important class of classical binary decision problems that has 
found widespread application in the synthesis and analysis of 
many types of systems [l], [2]. For complex signal and noise 
statistics, however, it is sometimes difficult or impossible to 
express the likelihood ratio in closed form. Even for simple 
signal and noise statistics, direct implementation of the likeli- 
hood ratio as an optimum detector may be difficult. Sometimes 
it is possible to reduce the likelihood ratio to a simpler but 
equivalent detector by using various ad hoc geometric arguments 
or lengthy algebraic manipulations. 

It is the purpose of this correspondence to ‘derive a remark- 
ably simple detector that is optimum for a broad range of 
classical binary decision problems involving the likelihood-ratio 
detection of a signal embedded in noise. The class of problems 
we consider encompasses the case of N independent (but not 
necessarily identically distributed) observations of a nonnegative 
(or nonpositive) signal random variable embedded in an additive 
and independent noise random variable, where the range of the 
signal and noise is continuous. We show that a comparison of 
the sum of the N observations with a unique threshold comprises 
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an optimum detector, provided that the logarithm of the noise 
probability density does not contain a point of inflection. This 
condition on the noise probability density is sufficient to imply 
our single-threshold detector and does not depend on the signal 
probability density. We show by example that in many cases it is 
not difficult to test the logarithm of the noise density for a point 
of inflection analytically. In more difficult cases, a graphical 
representation of the noise density with a logarithmic ordinate 
scale may be useful in revealing a point of inflection. Finally, we 
develop a restriction on the form of the likelihood ratio that 
renders the sum of the N observations a sufficient statistic. We 
note that our results relate particularly to diversity combining, 
for which a large literature exists [ 11, [9]. 

We have previously [2] derived a limited version of the dis- 
crete case for a single observation (the case N = 1) of a nonnega- 
tive signal embedded in noise, where the logarithm of the noise 
density was concave downward. A more detailed treatment of 
single-threshold detection for the discrete case of N observations 
has been presented elsewhere since it differs substantially from 
the continuous case presented here [3]. 

We consider the following general classical binary detection 
problem. Each of two source outputs corresponds to a hypothe- 
sis Zf, or Hi. To decide which hypothesis is true, based on the 
Bayes or Neyman-Pearson criterion, the optimal processing of 
the observation vector x is the well-known likelihood-ratio test 
11,~. 261 

(1) 

where A(x) represents the likelihood ratio, p(xlHJ is the proba- 
bility density of n given that Hi is true, and A is a constant 
depending on the choice of decision criterion. The observation 
vector x=(x1,. . . ,xN) consists of N independent observations. 

In the simplest situation N= 1, corresponding to a single 
observation xi. In this case A(xJ may be graphically repre- 
sented by a curve in a two-dimensional Cartesian coordinate 
system. In Section II we derive a condition on the noise density 
which implies that A(x,) is monotonic with respect to xi. The 
monotonicity of A(x,) implies, in turn, that (1) is equivalent to 
the single-threshold detector 

HI 
>x 

x’ < (2) 
HO 

with threshold x’. Equation (2) completely specifies the optimum 
processing of xi. 

For the case of multiple observations (N > l), we visualize 
A(x) as an N-dimensional surface in N+ 1 space. An N-dimen- 
sional hyperplane, orthogonal to the A axis at h, cuts through 
the surface A(x). This is illustrated in Fig. l(a) for N=2. Given 
an observation f, the test given by (1) is equivalent to determin- 
ing whether A(i) is located above or below the hyperplane: if it 
is above, Ht is chosen; if it is below, H,, is chosen. The projec- 
tions of the intersections of the hyperplane and A(x) partition 
the remaining N coordinates into N-dimensional decision re- 
gions RI and R,, corresponding to the regions where A(x) is 
above the hyperplane (Hi is chosen) and below the hyperplane 
(HO is chosen), respectively. The decision is then based upon the 
region in which the tip of the observation vector f falls. In Fig. 
l(a), R, is represented by the crosshatched region and RI by the 
unshaded region. If there are multiple intersections of the 
surface and the hyperplane, as in Fig. l(a), then multiple 
boundaries divide the decision regions R, and R,. 

In Section II we prove that if the same condition on the noise 
density considered for N = 1 applies to each component of the 
N-dimensional noise density, then A(y) is monotonic with re- 
spect to y, = Xf- ,xi, as illustrated in Fig. l(b). (Here the likeli- 
hood ratio has now been transformed to the coordinate system 
Yl,' * * ,ylv.) This implies that the decision regions R, and R, are 
partitioned by a boundary X” which is a single-valued function 

A 

A(x) 

(4 

A 

y2 

Yl 

Fig. 1. (a) Likelihood ratio A(x) versus the observations x; for case N=2. 
Solution A(x)=h is represented by multiple curved intersections of A(x) 
with dotted plane. Decision regions R. are crosshatched and represent 
coordinates (xI,xz) for which A(x)<X. Decision regions RI are unshaded 
and represent coordinates (x,,x~) for which h(x) >X. This case exhibits 
multiple curved decision boundaries. @) Transformed likelihood ratio A(y) 
for case N=2, where A(y) is monotonic with respect to y,. Solution 
A(y)=X is represented by single curved intersection of h(y) with dotted 
plane. Region R. is crosshatched and represents coordinates (y,,yz) for 
which A(y)<h. Decision region RI is unshaded and represents coordinates 
(yI,y2) for which A(y)>h. This case exhibits a single-valued decision 
boundary xX(y2) and therefore single-threshold detection. 

of yz, * - * ,YN, as in Fig. l(b). In this case, therefore, (1) is 
equivalent to the single-threshold detector 

H! 
YI : x”(yz; * ’ ,,$,)=ii”(x) (3) 

HO 
where A”(x) is single valued. This single-threshold detector does 
not completely specify the optimal processing, as the single- 
threshold detector does in the case N= 1, since h” is now a 
function of x. However, (3) doesassure the uniqueness of the 
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A(y)-- 

- y2 

A 

Yl (b) 

Fig. 2. (a) Transformed likelihood ratio A(y) for case N =2, where A(y) 
depends only on  coordinateyt. Solution A(y) =X is represented by multiple 
straight-line intersections of A(y) with dotted plane. Decision regions RCJ 
are crosshatched and represent coordinates (y,,ya) for which A(y)<h. The 
decision regions R, are unshaded and represent coordinates (y,,ya) for 
which A(y) >  X. This case exhibits multiple straight decision boundaries, so 
that y, is a  sufficient statistic. (b) Transformed likelihood ratio A(y) for 
case N =2, where A(y) is monotonic with respect toy, and depends only 
on  yt. Solution A(y)=X is represented by single constant intersection of 
A(y) with dotted plane. Decision region R. is crosshatched and represents 
coordinates (y,,ya) for which A(y)<h. Decision region RI is unshaded and 
represents coordinates (yt,ya) for which A(y)> h. This case exhibits a  
single constant boundary A’, so that single-threshold detection completely 
specifies optimal processing. 

threshold, in contrast to the nonmonotonic case of Fig. l(a). 
Note that if N = 1, (3) reduces to (2). In Section III we examine a 
number of noise densities to determine whether single-threshold 
detection is optimal. 

The transformed likelihood ratio A(y) may depend explicitly 
only on the coordinate y,, in which case the decision boundaries 
in three-dimensional space would be straight lines, as illustrated 
in Fig. 2(a). The quantity y, then contains all of the information 
necessary to make a decision and is therefore a sufficient statis- 
tic. In Section IV we develop a sufficient condition on A(x) that 
renders y, =2r=,xi a  sufficient statistic. If, in addition, the 

conditions discussed in Section II are satisfied, then R. and R, 
are partitioned by a single constant boundary h’, as illustrated in 
Fig. 2(b). In this case optimal detection is represented by the 
comparison 

2 xi 2 A’, 
i=l 

HO 

(4) 

which completely specifies the optimal processing. 
The extension of the results presented here from two to M  

hypotheses does not appear to be straightforward. 

II. SINGLE-THRESHOLD DETECTION FOR CONTINLJOUS 
DISTRIBUTIONS WITH N OBSERVATIONS 

Let H, represent the presence of a  signal with probability 
density p,(s,) embedded in noise with probability density p,(n,), 
and let Ha represent the absence of a  signal’(noise alone). The 
noise is within the continuous range a  <n, <b, and the signal is 
within the continuous range c <s, <d. We assume that the signal 
and noise random variables are additive and independent. The 
probability density of xi=si+ n, under each hypothesis is then 

and 

Pi(xilHl)= 
$ 

“‘pNi<xi -&IPSi(Si) d& 
% l 

(5) 

pi(xilHO)=pNi(xi) (6) 
where u,=max (xi - b,c) and ui =min (xi- a,d). We further 
assume that the xi are statistically independent, though not 
necessarily identically distributed, so that the likelihood-ratio 
test in (1) becomes 

HI 
A(X)= fi Ai $  A 

i=l __ 

with 

Substituting (5) and (6) into (8), we obtain 

Ai( [ ~“‘PNi(xi-&)~Si(6) d6] /PNicxi). (9 
%  

We now prove that if the noise distribution satisfies either the 
simple condition 

or 
d2[10gpNi(ni)]/dnf <  0, for all ni and all i (10) 

d*[logplv,(ni)]/dn,? > 4 for all ni and all i, 

then the test 

2  xi 2  A”(X) 
i=l 

HO 

(11) 

(12) 

is optimal. Thus if the logarithm of the noise distribution does 
not contain a point of inflection, single-threshold detection is 
optimal. 

Equation (10) implies that the function log pNi(ni) is concave 
downward, or equivalently, 

d[log~Ni(xi-~i)I/dXi-dI’og~~i(~i)I/dX~ z 0 , 
+forall&ZO,allxi,andalli (13) 

where the left side of the equation is > 0 if & > 0, < 0 if & c 0 
and where pNi(ni) has been evaluated at xi. Computing the 
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derivatives in (13) and cross multiplying yields 

pN.(x.) @Ndxi-&) 
I I dxi 

-pNi(xi-&!g 
L 

forall&~O,allxi,andalli. (14) 

Equation (11) leads to an expression that is identical to (14) with 
one set of inequalities reversed (e.g., & ; 0). 

Forming the derivative of the likelihood ratio in (9), we obtain 
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dAi(xi) -= 
dxi 

-pNdxi- uO~~,Si(“O~~ 
I 

+ 

s 

yl &Ni(xi-&) 

dxi P.d&) d& 
%  1 

Rearranging terms yields 
(15) 

dAi(xi> _ 
dxi -pNi(xi)pNi(xi- uO)~Si(“O) $$ 

I 

The first term on the right-hand side (RIG) of (16) disappears if 
Xi <a, xi>b, or xi < b+ c (SO that ua= c). Therefore, the first 
term on the RHS of (16) disappears for all xi if c > 0 or b = co. 
The second term on the RI-IS of (16) disappears if xi <a, xi >b, 
or xi > a + d (so that u, = d). Therefore, the second term on the 
RI-IS of (16) disappears for all xi if d < 0 or a = - 00. According 
to (14) the integral on the RI-IS of (16) is nonnegative if (10) is 
satisfied and & > 0 or if (11) is satisfied and & < 0 and is 
nonpositive if (10) is satisfied and & < 0 or if (11) is satisfied and 
& > 0. The restriction 6 > 0 requires that ue > 0 (this is true if 
c > 0), and the restriction & < 0 requires that u, < 0 (this is true if 
d<O). 

Combining the above requirements, we find that 

dMxi> ,o 
7’ ’ for all xi and all i (17) 

if (10) is satisfied and the signal is nonnegative, or if (11) is 
satisfied, the signal is nonpositive, and the upper limit of the 
noise is infinity. If the upper limit of the noise b# co, (17) holds 
for all xi <b + c and all xi > b + d. Similarly we find that 

dAi(xi) < 0 
7’ for all xi and all i WV 

if (10) is satisfied and the signal is nonpositive, or if (11) is 
satisfied, the signal is nonnegative, and the lower limit of the 
noise is minus infinity. If the lower limit of the noise a# - 00, 
(18) holds for all xi <a + c and all xi >a + d. In accordance with 
the discussion preceding (2), (17) and (18) directly demonstrate 
that single-threshold detection is optimal for the case N= 1 
under the conditions specified above. 

Let us now consider an N-dimensional coordinate system 
defined by the orthonormal basis El, * * * ,EN, where El = 

N-‘/*(1,. . . , 1) and 4 = (ei,, . . . , eiN). The basis vectors 
E,,. -a ,EN are selected by an orthonormalization procedure [4, 
p. 1651. The proof is carried out for a general set of such basis 
vectors since the result is independent of the particular choice of 
the orthonormal basis. An arbitrary vector y in this coordinate 
system is a linear combination of the $. The transformation of 
the x-coordinate system into the y-coordinate system is given by 

where 
y=Ax (19) 

[N-‘/2 N-‘/2 . . . N-‘/*1 
ezl e2* ‘. . 

A= . . 
e2N 

. . (20) 

eN2 *-. 

In particular, 

y,=N-I$x,. (21) 

Since the rows of A form a basis, they are linearly independent, 
and A - ’ exists. The orthonormality of the rows of A insures that 
A -i = A ‘, so that the inverse transformation is 

xty)=A ‘Y (22) 
with components 

xi(Y)= l$ edk. (23) 
k=l 

Using (7) for the likelihood ratio in conjunction with the chain 
rule for differentiation, we form the derivative 

WX(Y)) = 2 
ayj 

axi(v) aMi+( fi A ( 
au, axi k xk 

ty)) 

I 

. (24) 
i=l k=l 

k#i 

Multiplying and dividing by A(x), (24) becomes 

N axi(y) M -&v))/%  aA(z,Y)) =A(-4 iz, ay. AAXitY)) * (25) 
J J 

Using (23) and the orthogonality of the yj, 

“t-j -n(x) $ eii aA$!$‘):,axi . (26) 
J i=l I 1 

Setting i= 1, substituting for yi using (21), and substituting 
e,,=N-‘I*, we obtain 

Wx) N aAi(xi)/axi 
= iA(x) x (27) 

a 
i=l Ai(xi) ’ 

From (17) each of the terms aAi(xi)/axi in (27) is nonnegative 
for all xi and all i; since N and Ai are also nonnegative, it 
follows that 

for all xi. (28) 

If (11) and (18) are satisfied instead of (10) and (17), each of the 
terms i!lA,(x,)/ax, in (27) is nonpositive for all xi and all i. Since 
N and Ai are nonnegative, it follows that in this case 

, for all xi. (29) 

Equations (28) and (29) indicate that A(x) is either entirely 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. ~~-25, NO. 2, MARCH 1979  217  

monotonically nondecreasing or entirely monotonically nonin- 
creasing, with respect to 27’ ,xi, so that the test 

$  xj z A”(X) (30) 
i=l 

HO 

is optimal in accordance with the discussion preceding (3). 
Therefore, if (10) or (11) is satisfied and if the conditions stated 
in Section II are adhered to, single-threshold detection is opti- 
mal. 

III. DISCUSSION 
In this section we consider the optimal processing of the 

observation vector x for a  number of different noise densities. If 
pNi(ni) satisfies (10) or (11) and the conditions stated in Section 
II are satisfied, then single-threshold detection is optimal. As 
indicated in Section II, the N components of the noise density 
need not be identically distributed. Though single-threshold de- 
tection is optimal for most of the usual noise densities encoun- 
tered, we also cite counterexamples for which our single- 
threshold detector does not necessarily apply. For convenience 
we use natural logarithms in (10) and (1 I), though logarithms to 
an arbitrary base may be used. 

The Guursiun noise density [5, vol. I, p. 174; 6, p. 3721 (with 
mean (a) and variance ((Au)‘)) is 

p,,r,(n,) =(2a((Aa)*))-“* exp [ -(ni-(~>)*/2((A~)*>], 

from which 
(31) 

d*[lnp,,(n,)]/dn; = -((Au)*)- ’ < 0, for all n,. (32) 
Equation (32) satisfies (IO), so single-threshold detection is opti- 
mal. 

The RuyIeigh noise density [7, p. 3661 with unique mode 
((Au)*) is 

PdnJ=u(ni)ni[eXP (-~,~/~((Au)*>)]/((Au)*) (33) 
where the Heaviside unit step function u(ni) is defined by 

U(% )’ ; L  
for n, > 0 
for n, < 0. (34) 

From (33), 

d*[lnp~i(ni)]/@‘= -l/n,?- ~/((Au)*) <0, for all n, 

(35) 

The gamma noise density [6, p. 1241 with parameters M  > 0 
and p >0 is 

which satisfies (IO), so single-threshold detection is optimal. 

(36) 
This distribution (also called Erlangian and Pearson type III) 
can assume a variety of shapes for different values of M  and /3. 
The gamma density is the continuous analog of the negative 
binomial density [5, vol. II, p. 1761. Observe that if M= 1, the 
gamma density reduces to the exponential  density [6, p. 1241, 
which is the continuous analog of the geometric (Bose-Einstein) 
density [5, vol. II, p. 81. The exponential and Bose-Einstein 
densities share the property of lack of memory. Finally, observe 
that if p  = f and M= k/2, where k is a  positive integer, the 
gamma density is the (central) chi-square density with k degrees 
of freedom [6, p. 1241. Using the gamma noise density given in 
(36), we obtain 

d2[lnph,,(ni)]/ffn~=(l -M)/$, for all xi. (37) 
For O<M< 1, (37) obeys (11); for M= 1, (37) obeys both (10) 
and (11); and for M > 1, (37) obeys (10). Thus single-threshold 

detection is optimal for any value of M, including the gamma, 
exponential, and chi-square densities. 

Using the same method it is easy to show that single-threshold 
detection is optimal for the Maxwell noise density. The Rician 
noise density, however, contains a modified Bessel function and 
does not permit easy calculation of d*[ln p,(n,)]/d$, so that 
our usual method is not convenient. An alternate method is to 
plot the Rician noise density with a logarithmic ordinate and to 
inspect it visually for a  point of inflection. Of course, this must 
be done on a case-by-case basis. For the case of unit variance 
and unit specular component [7, eq. 5-1841, such a plot has no 
point of inflection, indicating that single-threshold detection is 
optimal. In the limits of very small and very large specular 
components, the Rician density reduces to the Rayleigh and 
Gaussian densities, for which we have already shown that 
single-threshold detection is optimal. 

The beta noise density [6, p. 1241 with free parameters (Y >0 
and /3 >O is 

(38) 
from which 

d*[lnp,i(ni)]/~n~=[(l-cy)/ni2]+[(l-P)/(l-ni)*], 

for all n,. (39) 

For different choices of cx and p, the beta density can assume a 
wide variety of shapes. If cr < 1 and p < 1, the graph of pNi(ni) is 
U-shaped, approaching co at the extremes, and (39) satisfies 
(1 I), so that single-threshold detection is optimal. If (Y > 1 and 
j3 > 1, the graph of pNi(ni) is bell-shaped, and (39) satisfies (IO), 
so that single-threshold detection is again optimal. However, if 
cr<l and /?>l, or a>1 and /3<1, the inflection points 
(I? fi )/( 1  + y) with y = (1 - /3)/( 1  - o) are real, so that our 
single-threshold detector does not necessarily apply. (For exam- 
ple, assume that the N observations are identically distributed, 
that psi(si) = S(s, - t), where 6 is the Dirac delta, and that pNi(ni) 
is the beta density with (Y =2 and p= t. Using (7) and (9), we 
find by direct calculation that 

A(x)= fi (xi-;)x,‘(I-xi)~ql-xi+;)-1’2 z x 
i=l 

HO 

The Cuuchy noise density [6, pp. 121, 1321 with scale parame- 
ter u  and location parameter p is 

specifies the optimal processing. A graphical representation 
shows that Ai is nonmonotonic, so that single-threshold 
detection is in fact not optimal.) Observe that in both the 
U-shaped and bell-shaped case, the curve flattens as (Y and p 
approach unity. In the limit where (Y = 1 and p= 1, the beta 
density reduces to the uniform density on the interval (0,l). 

from which 
p~j(nj)=~/~[U’+(ni-~)*], (40) 

d2[lnpNi(ni)]/dnf=2[(ni-p)*-02]/[(ni-p)*+o*]*. (41) 

The Cauchy density resembles the Gaussian density in shape, 
but its tails approach the axis so slowly that a mean does not 
exist. In contrast to the Gaussian density, we see from (41) that 
the logarithm of the Cauchy density has inflection points at 
p? (I, so that our single-threshold detector does not necessarily 
apply. (For example, assume that the N observations are identi- 
cally distributed, that psi(si) = S(s, - 2), and that pNi(ni) is the 
Cauchy density with p=Ct and (I= 1. Using (7) and (9), we find 
by direct calculation that 

*(X)=i~,(l+Xf)[I+(Xi-2)']-1 s  A 

HO 
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specifies the optimal processing. Calculation of dAi(xi)/dxi indi- 
cates that Ai has a peak and is nonmonotonic, so that 
single-threshold detection is indeed not optimal.) 

In both cases where the logarithm of the noise density con- 
tained a point of inflection (i.e., Cauchy, and beta with (Y > 1, 
/I < 1 or a < 1, p > I), we have shown by a specific example that 
single-threshold detection is indeed not optimal. This suggests 
that the sufficient conditions given in (10) and (11) may also be 
necessary. It is easy to show that (IO) and (11) are in fact 
necessary conditions for any class of signal distributions that 
includes psi(+) = S(s, - 1). 

For noise densities that cannot be expressed in closed form, it 
may be impossible to test for a point of inflection analytically. 
This would be the case, for example, if the noise density were 
expressed as a sum. In that case it may be possible to inspect a 
plot of the noise density with logarithmic ordinate for a point of 
inflection. 

Finally, we note that our result is more general than it may 
first appear because convolutions of distributions that are IFR 
(increasing failure rate) remain IFR [IO]. 

IV. SUFFICIENT STATISTIC 

It is apparent that our method is most powerful for the single 
observation case (N= 1). Here we have shown that the optimal 
receiver structure is completely specified by the single-threshold 
detector (see (2)), if the logarithm of the noise does not contain 
an inflection point. For example, if the Neyman-Pearson criter- 
ion [I, p. 331 is used, then x’ is the unique fixed solution to 

PF= * 
/ PNdXJ dx1 Ga (42) h’ 

where the false-alarm rate PF is constrained to be less than the 
constant (Y. Since h’ is a fixed solution to (42), (2) completely 
specifies the optimal processing. 

For N > 1, however, X is not necessarily fixed, so that (3) does 
not completely specify the optimal processing. Equation (42) 
becomes 

PF= 
/ hmPN(Y) 4 <a (43) 

where h= { y :y, > A”(r(y))} and X” is now dependent on the 
observation x. Therefore, although A” is a unique (single- 
threshold) solution to (43), it is not necessarily fixed for different 
values of x, so that y, is not necessarily a sufficient statistic. (In 
practice, however, the threshold might be set at some average 
level, ignoring the detailed dependence of X” on x.) As an 
example, we consider the exponential noise density with parame- 
ter p, which was shown to satisfy the condition for single- 
threshold detection (see (37)). Embedded in this noise is an 
exponential signal density with parameter a#/3. After calculat- 
ing and simplifying A(x), it is easy to see that ZEixi is not a 
sufficient statistic. Therefore Zys,xi alone does not contain all 
of the information necessary to make a decision, even though 
single-threshold detection is optimal. 

We may, however, obtain a rather restrictive sufficient condi- 
tion on A(x) for which Zy=ixi is a sufficient statistic. We begin 
by choosing the basis vectors E2, * * . , EN in (20) using the 
Helmert orthonormalization procedure [8, p. 5631. The compo- 
nents of Ei, for i> 1, are then 

[i(i- I)]-“*, forj<i 
eii= 

1 

;(i- l)[i(i- I)]-“*, forj=i (44 
, for j >i. 

We observe that 

jji, eg=4 foralli>l. (45) 

Now assume that the Ai are identically distributed with the 

Ai = ueb4, for all i (4) 
where a and b are real. Taking the derivative, we find 

aA,(x,)/ax, = bAi(xi), for all i, (47) 
and substituting in (26), 

aA(x)/ayi=n(x)b 5 ei. (48) 
i=l 

Using (45), it is apparent that 
afqx)/ayj = 0, forallj>l. (49) 

Therefore, if Ai has the form given by (46), A(x) is indepen- 
dent of yj, for all j > 1, so that y, = Zy= ,xi is a sufficient statistic 
in accordance with the discussion of Fig. 2(a). 

Equation (46) is satisfied, for example, by a constant signal 
(a) embedded in additive independent exponential noise, imply- 
ing that Xfm,xi is a sufficient statistic. Equation (46) is also 
satisfied by a constant signal (a) embedded in additive indepen- 
dent Gaussian noise, so that pi(xi]ZY0)=N(0,((Au)2)) and 
p(~,]iY~)=N((u),((Au)*)) [I, p. 271, and XE,xi is a sufficient 
statistic where N represents the normal density. 

If both (46) and the condition on the noise in (10) or (11) is 
satisfied, then processing is completely specified by (4), again 
provided that the conditions of additivity, independence, and 
positivity (or negativity) of the signal are obeyed. This is indeed 
the case for the above examples, which may therefore be repre- 
sented by Fig. 2(b). 
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Cl&Squared Distribution 
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Abstmct-The tnmcatetl form of the noncentral chi-squsred distribution 
arks ln eomxctlon with dynamic rangdlmlted spectra. A metbd of 
evaltmtlng the moments of this distribution is presented. 

Manuscript received October 18, 1977; revised June 29, 1978. 
The author is with Computing Devices Company, M S  l-lOD, P.O. Box 

8508, Ottawa, ON, KlG 3M9, Canada. 

0018-9448/79/0300-0218$00.75 01979 IEEE 


