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Photocounting Array Receivers for Optical Communication 
Through the Lognormal Atmospheric ChaMel. 3: 

Error Bound for M-ary Equal-Energy Orthogonal Signaling 

S. ROSENBERG AND M. C. TEICH 

Absrrucf-A bound on the probability of error is obtained for an 
Wary direct-detection optical communications system consisting of an 
amplitude-stabilized source, a lognormal atmospheric channel, and a 
photocounting detector array. Equal-energy, e&probable, orthogonal 
signaling, and flat independent fading at all detectors is assumed. The 
result reduces to that obtained previously in the absence of fading. A 
comparison is made with the analogous solution for the heterodyne array 
receiver. 

I. INTRODUCTION 

In Part 1 of this set of papers [l 1, we investigated the structure 
of various optimum and suboptimum photocounting array re- 
ceivers for lognormally-faded optical radiation. In Part 2 [2], 
a summary of receiver performance was presented (in terms of 
error probabilities), assuming both orthogonal and nonor- 
thogonal binary signaling formats. We now consider the per- 
formance of a D-detector receiver, under the assumptions of 
M-ary signaling and independent flat lognormal fading. An 
upper bound to the error probability is derived for orthogonal, 
equal-energy, equiprobable signal sets. The result is shown to 
reduce to that obtained previously in the absence of fading and 
is compared with the analogous solution for heterodyne array 
detection. 

II. THEORY 

The error probability P(E) for any one of M equiprobable 
waveforms may be written as [2] 
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For the usual Gaussian detection problem one can sometimes 
obtain the statistics of the likelihood functionals L,, and thus 
evaluate (1) directly. Often, however, this expression is intract- 
able for M > 2, and the usual approach is to obtain bounds to 
this quantity. Such bounds can generally be expressed in the 
form 

L?#t2-KE I P(E) 5 $922+ (2) 

where the quantity K = log, M represents the number of bits 
per message, E is the system reliability function, and g1 and Bz 
are slowly varying functions of K and other parameters such as 
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the log-irradiance standard deviation Q, the mean count signal- 
to-noise ratio y, and the number of detectors D. (Symbol defini- 
tions are the same as in Parts 1 and 2.) The system reliability 
function may usually be written in the form 

E = max 
oanal(%+) (3) 

where p is a parameter which maximizes the exponent (and thus 
provides the tightest bound on P(E)), fi is the total detected 
signal energy per information bit, and E,,(p) is a function which 
depends on the receiver structure. Specifically we will examine 
the upper bound to the error probability 

P(E) I 9i?*2--KE. (4) 

Using standard Chernoff-bounding techniques [3], and assum- 
ing equally likely equal-energy orthogonal signals, the upper 
error bound may be written as 

P(E) 5 MP ew [PC~(Q + tic- ~01. (5) 

Under the additional assumption of independent equal-strength 
(flat) fading at all D detectors [ai = oj; i, j = 1,. + . ,D], and 
using (1.18) from Part 1, the quantities <c(t) and cl(-pt) are 
easily identified as [4] 

to(t) = D In 2 NBr’ exr!(- NB) F(n,y,N,,a)’ 
PI=0 

rl(-pt) = oh g NB”ex~!(-NB)~(n,~,~B,~)l-~~ (6) 
n=o 

where the function F(n,y,N,,a) is defined as 

F(~,Y,NB,~) = 
s 

m (Zy + 1)” exp (-ZNsy)p(Z) dZ. (7) 
0 

The quantities Ns and NB represent the mean signal and noise 
counts, respectively, y E NsIN,, Z is the lognormal variate, and 
t is a parameter with respect to which the exponent in (5) must 
be minimized. The optimum choice for t can be shown to be [5] 
t = (1 + p)-‘, whereupon (5) reduces to 

P(E) 5 MP em [Cl + P)C~(P)I. (8) 
Converting (8) to the base 2, and recalling that log, e = (In 2)-l, 
we obtain 

(1 + PP - 
K In 2 

2 NBn expn!(- NB) F(t~,y,N,,a)~l’+P (9) n=o 

where the expression two {. } indicates 2’ ‘l. The error bound is 
now expressed in the simplified form 

P(E) i 2-KE. (10) 

Comparing (3), (9), and (lo), and with the definition 

/? f DN& (11) 
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we obtain the following relation for the quantity E,(p): 

E,(p) = -(c-$9 

B 

We can easily obtain explicit expressions for the quantities 
bmin and pcrit in (17) and (18) by differentiating the quantity 
E,(p) given in (13) 

2 NB” exp (- NB) F(~JN,,~)'~'+P GdP) _ 1 
II=0 n! 

. (12) 
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We may further simplify this expression by removing the factor 
exp(- Ns) to obtain 

+ 1 

E (p) = (’ ’ ‘) ’ 0 --- NBY(~ + P) . 
Y 
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(13) 
The quantity y = N,/N, may be thought of as the signal-to- 
noise ratio per diversity path and /I = DN,/lc as the total mean 
detected signal count per information bit. 

III. ERRORBOUND 

In order to obtain the tightest error bound, we must optimize 
the system reliability E given in (3) over the parameter p. This 
optimization is frequently difficult and sometimes not possible; 
nevertheless, some properties of E readily follow. Taking the 
derivative of E, we obtain 

.f?E B =o(P> 1 = o -c--- 
3P In 2 i?p 

and popI is therefore found from the relation 

~Eo(P> In 2 - = -. 
ap P 

In this case the system reliability becomes 

(14) 

(15) 

E = (Eo(P) ry)-’ - P) (l-oool (16) 

provided that [5] 
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We define the low and high endpoints of this inequality by 
&in/In 2 and &it/In 2, respectively, so that 

kin 5 P  i Bcrit. (18) 
In the situation where p > &,, we set p = 1, and (3) becomes 

E = BE,(l) 1 
In- ’ B ’ /Scrit 

which increases with increasing /3. 

The function E,(p) given in (13) can be shown to reduce to 
that given by Kennedy for counting receivers with Mary equal- 
energy orthogonal signals in the absence of fading [6], [7]. For 
u -+ 0, (7) becomes 

Although the system reliability function must be evaluated 
numerically, some insight into its variation with a number of 
parameters can be obtained. Thus the exponent ICE increases at 
least linearly with D for fixed y, NB, and IC as in the heterodyne 
case. Such an increase corresponds to increasing the number 
of detectors in the array and thus the receiver aperture. Further- 
more, it can be shown that for 0 > 0 and constant, E,(p) 
vanishes as y -+ co. Thus for fixed alphabet size 2” and number 
of diversity paths D, the error exponent KE will increase at less 
than a linear rate with B, that is, with total detected signal energy 
per bit. In addition, y must be manipulated independently of /3 
and IC in order to obtain a linear variation of KE with b. This 
implies an optimum value for D and thus for y, with DN, con- 
stant, as has been seen in the error probability curves presented 
in Part 2 [2]. 

h F(n,y,N,,a) = (y + 1)” exp (- yN,) 
a+0 

and we therefore obtain 

(23) 
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whereupon 
u = 0 (24) 

E (p) = Cl + p) _ (l + p) (y + l)‘/‘+~ + 1 0 , CT = 0 (25) 
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in agreement with Kennedy’s result. 

Evaluating this at p = 0 yields 

r 
&in = Y In 2 2 3 F(n,y,N,,o) 
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(21) 

This quantity represents the minimum total detected energy per 
bit for reliable communication and is seen to be a function of 
y and (T as well as of the noise level NB. Evaluation at p = 1 
yields 

a crit = Y  In 2 1 - $ In 
B 

nEo %  F(n,y,N,,a)“’ 

IO z F(n,Y9NB,u)1’2 In F(n,y,N,,c) -I 

so 5 F(~,Y,NBP)“~ il . 

(22) 

IV. RESULTSFOR G --f 0 
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Furthermore, for Bmin _ -C /3 5 pcritr the system reliability is 
obtained by means of (3) and (25), which give 

E= s2 [I + P + Y - (1 + PKY + wl+pl - P , 
P=PWt 

0 I pout 5 1. (26) 

The quantity poPt, obtained from (15) and (20) with 0 = 0, is 
given by 

b 2 aE0(P) -=-=- 1 _ In (Y + 1) 
’ B 

1 1 _ (y + I)lll+p 
ap Y i [ (1 + P> II 

u = 0. (27) 

For the case B > ficrit, in accordance with (19) we set p = 1 in 
(26) to obtain 

E= +2 KY + IF2 - 112 - 1, P ’ Bcrit. (28) 

Finally, setting 0 = 0 in (21) and (22), respectively, yields the 
quiescent-atmosphere expressions 

B 
y In 2 

min = 
-Y f (Y + l)h(Y + 1)’ 

a=0 (2% 

and 

Bcrit = 
y In 2 

1 - (y + 1)‘12[1 - 3 In (y + l)] ’ 
u = 0. (30) 

We note that (16a) of [6] is incorrect: a factor of 3 should 
appear before the logarithmic term in the denominator as 
obtained in (30). 

V. COMPARISON WITH HETERODYNE DETECTION 

The quantity analogous to E,(p) as represented in (12) and 
(13) has been evaluated by Kennedy and Hoversten [8] for 
heterodyne detection and is given by 

EON(p) = - LL2-d In 
(s 

m dy exp (-y)F,(0r,,y,0)“‘+~ 
1 

(31) 
s 0 

where Fr(~P,yro) is the “frustration” function defined as [9] 

F,(or,, ~,a) = 
s 

m Zo(2uJ~) exp (- su2)p(u) du. (32) 
0 

Here I,( .) is the modified Bessel function of order zero, GL~, is the 
signal energy-to-noise power density ratio, and p(u) is the log- 
amplitude density function. The frustration function is to be com- 
pared with the analogous direct-detection quantity F(n,y,N,,a) 
given in (7), where the correspondence between uP and y is 
aP tf yiy,. The quantity y in (31) and (32) corresponds to the 
magnitude of a field sample, whereas the analog in (7) is the 
photoelectron count n. 

The usual distinction is observed: (31) and (32) depend only 
on the signal-to-noise ratio, whereas (7) and (12) also depend on 
the mean signal energy. A detailed comparison of direct and 
heterodyne detection systems is difficult, however, because of 
the complex form of the error bound and the lack of quantitative 
error probability curves for the latter. Extensive numerical 
evaluation of the two error exponents should reveal in greater 
detail which of the two is larger under a given set of conditions. 

The basic distinction between the two systems is that in direct 
detection the choice of signal set and appropriate preprocessing 
of the field to reduce background noise is very important, while 

the spatial processing is not as critical. In the heterodyne case, 
the basic limiting factor in performance is the spatial processing 
-the object is to extract as much coherent signal as possible 
out of the faded wavefront. The latter generally requires a much 
more complex and critical receiver structure. A basic advantage 
of the direct detection system is its ability to gate out background 
radiation by using very high data rates [lo], [ll]. Thus we can 
conjecture that in the presence of turbulence, as well as in its 
absence, and in wavelength regions where photocounting can be 
performed, the direct detection system will be simpler to con- 
struct and perform better than the analogous heterodyne system. 
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Sampled Data Reconstruction of Deterministic Band-Limited 
Signals 

DONALD E. TODD 

Abstract--In obtaining a discrete set of data points to represent 
a signal, the problem of how to obtain sufficient information about the 
signal can become pronounced if the rate of obtaining samples of the 
signal is limited. The multiple-channel interpolation scheme presented in 
this correspondence uses periodic samples of the output of a set of pre- 
filters excited by a deterministic input signal to reconstruct the original 
input signal. The input signals considered are band limited, and the 
sampling rate proposed is less than the Nyquist rate. This procedure may 
have applications in the analysis of transient signals. 

INTRODUCTION 

An interpolation scheme based upon a rate of sampling less 
than twice the highest frequency component of a signal has been 
of interest to mathematicians as well as to engineers, Shannon 
[l], Fogel [2], Linden [3], and Kahn and Liu [4] are some of 
the authors who have presented schemes for obtaining informa- 
tion about a signal by using samples. 
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