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SAMPLE SIZE 

Fig. 2. Variance on the estimate of the mean of p(xlO~), ensemble averaged over 
50 rlxs. 

irrespective of p, the effective value of B is reflected in the variance 
:lssociated with the estimators. A plot of the variance of the estimators 
(computed across the run ensemble) for three different values of p is 
shown in Fig. 2. This plot shows that as the effective value of B 
increases, the variance decreases. 

V. CONCLUSIONS 
We have looked at a parametric scheme for learning to recognize 

patterns with an imperfect teacher. The proposed scheme is com- 
putationally feasible since the reproducing properties of density func- 
tions are used in learning about the unknown parameters. All three 
different learning situations, namely, learning with a perfect teacher, 
learning with an imperfect teacher, and learning without a teacher, can 
be handled by the proposed scheme. 
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Channel Capacity and Maximum-Likelihood Detection 
for Atmospherically Disturbed Binary Photocounting 
Communications 

R. Y. YEN, P. DIAMENT, AND M. C. TEICH 

Abstrac&-A binary optical communication system, consisting of a 
laser transmitter, a log-normal atmospheric channel, a photocounting 
detector, and a likelihood-ratio decision box has been investigated. 
Background radiation and dark current have been taken into account. 
Curves are presented for the probability of error and the mutual informa- 
tion for varying levels of atmospheric turbulence. It was ascertained that 
optical preamplification could be useful in improving system performance. 

calculations [13], [14] have all been considered. In particular, Diament 
and Teich [5], [6], and Teich and Rosenberg [7] have obtained the 
photoelectron counting distributions for stochastic radiation after 
transmission through the turbulent atmosphere. Both Laths and 
Jankowich [8] and Helstrom [9] have examined the decision threshold 
and error probability using maximum-likelihood detection for binary 
communication systems in which the laser signal is coherent and the 
background noise is thermal. Similar calculations have been carried 
out by many other authors using various radiation models [lo], [ll]. 

Maximum-likelihood detection through the turbulent atmosphere 
has recently been treated by Solimeno et al. [12]. These authors pre- 
sented binary error probabilities for direct detection in the presence of 
log-normal fading. However, the case they consider is one in which 
the laser is ideal rather than noisy, and the fluctuations of the back- 
ground radiation are discernable. That is, the counting time is assumed 
to be much less than the background coherence time, and thus the 
counting distribution in the absence of signal is Bose-Einstein, instead 
of Poisson, as considered here. In view of the fractional bandwidth of 
available optical interference filters, the coherence time of the back- 
ground radiation is 5 10-l’ s, and their assumption that the back- 
ground statistics are resolved is unrealistic. Finally, Fillmore and 
Laths [13] have calculated the information rates for a laser binary 
channel using a stable laser source with and without additive Gaussian 
noise. These authors also treat the noiseless case with a Gaussian 
signal. Most recently, Jodoin and Mandel [14] have evaluated the 
information rates for an optical communication channel in which the 
light beam is amplitude-modulated at the source by a filter of con- 
tinuously variable transmittance. 

In this correspondence, we consider the maximum-likelihood detec- 
tion for a laser binary system in which the radiation, consisting of 
interfering coherent and chaotic components, is modulated by an 
on-off gate and passed through the log-normal turbulent atmosphere. 
The noise arising from background radiation and from dark current 
in the photodetector is considered to be independent and noninterfering 
and therefore leads to a Poisson distribution [5]. The basic counting 
distributions used in this work are obtained by the methods outlined 
by Diament and Teich [6]. In addition, we also calculate the mutual 
information and channel capacity for this atmospherically disturbed 
photocounting system, both with and without likelihood detection. 

We consider a radiation source that emits an interfering super- 
position of an amplitude-stabilized beam and a chaotic (Gaussian) 
noise beam. This is a suitable model for laser radiation, and under 
certain conditions, for scattered radiation [6] as well. In the absence 
of atmospheric turbulence and with a detector of adequate bandwidth, 
the counting distribution p&,y,N) is then given by [l], [4], [6] 

P&,Y,N) = wYw”H”+’ exp t-YNHM-YV + YIW, (1) 
where H = (N + 1 + y)-‘, N is the overall mean count, y is the ratio 
of average coherent-to-chaotic irradiances, L,(x) is the Laguerre 
polynomial, and II is the number of counts. 

After transmission through the turbulent atmosphere, as Diament 
and Teich have shown, the disturbed counting distributionp,(n,o,y,Ns) 
is PI, [61 

P&,Y,M exp [- h~‘q12tn,M)1 ps(,,u,y,l\‘s) = ---.-.------.-.--.-____- .--~- , 
[l - u2q2(n,M)]“2 

(2) 

where Ns is the overall mean count and r~ is the standard deviation of 
the logarithmic irradiance, which varies between 0 (quiescent atmo- 
sphere) and about 1.5 (saturation value for the very turbulent atmo- 
sphere). The quantity qj is given by 

With the advent of the laser, there has been a considerable amount @  In P&Y,W 
of effort involved in analyzing various optical communication systems q,(n,M) = ~___-~ 

a(ln M)j ’ (3) 

utilizing a photocounting receiver. Photoelectron counting statistics 
[l]-[7], maximum-likelihood detection [8]-[12], and information-rate the parameter M  being determined implicitly for each count number n 

from the stationarity condition 
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At the receiver, the independent, additive, and noninterfering noise 
generated by dark current and background radiation yields a Poisson 
counting distribution p&N,), which, in the absence of signal, is 
given by 

p&NH) = :f ewNw . 

Here NH is the total noise mean count. The overall counting distribu- 
tion pSH arising from both the atmospherically disturbed laser signal 
and the Poisson noise is then obtained from the convolution of ps 
and pH: 

PS&,W,Z,N) = 5 ps(m,w,Nzl[l + zlhdn - m, N/U + zl), 
?i= 0 

(6) 

where the total mean count is N = Ns + NH, and the final signal-to- 
noise ratio is defined by z = NS/N,. 

Now, using the maximum-likelihood criterion [lo], the decision 
threshold nD is determined by the minimum n satisfying the condition 
p&z)/p&z) 2 (I - Q)/Q, where Q is the a priori probability that 
the laser signal is transmitted. In terms of the parameter nD, the prob- 
ability of error P, is given by 

I 
+ (1 - Q) 2 PH@). (7) 

?i=ltn 

In Fig. l(a) the probability of error P, is plotted as a function of the 
final signal-to-noise ratio z for D = 1.0, with NH and y as parameters. 
The quantity Q is taken to be 0.5. It can be seen that for fixed y, in- 
creasing the value of signal NS and noise NH, while holding the ratio 
constant, reduces P, and therefore improves receiver performance. 
Furthermore, it can also be seen that increasing the coherent-to-chaotic 
ratio further improves performance. From Fig. l(b), with NH, y, and 
z held constant, it is apparent that increasing turbulence serves to 
degrade performance by giving a larger probability of error, as ex- 
pected. Thus, optimum performance is achieved by maximizing NS, z, 
and y, and by operating in channels for which 0 is minimum. This 
result is intuitively meaningful and implies that optical preamplification 
may be useful in improving the system performance, provided that it 
does not introduce excessive noise of its own. 

SIMPLE PHOTOCOUNTING RECEIVER 
Consider a binary system in which the input to the channel U is 

taken to be equal to I when the laser signal is present and 0 when the 
laser signal is absent. The output of the system V, is equal to the 
number of photoelectrons emitted; thus V1 can take on all nonnegative 
integer values 0,t ,2,. . . ,co. In this receiver configuration we exclude 
the likelihood-ratio test box. 

Letting p(u = 1) = Q, p(u = 0) = 1 - Q, and p(u = n) = r(n), 
the mutual information I( U; V) can be expressed as [15]-[ 181 

i(U; V) = 5 Qr(n / 1) log r(n 11) r(n IO> 
n=O 

uo + (1 - Q)r(n IO) log __ 
I r(n) ’ 

with 
(8) 

and the mutual information is given by the well-known formula 

r(n) = Qr(n ) 1) + (1 - Q)r(n IO). (9) 

If the likelihood-ratio test is excluded, we have r(n j 0) = p&N,) 
and r(n 1 I) = pSH(n,u,y,z,N), as given by (5) and (6), respectively. 
With r(n 1 0) and r(n 1 I), we can calculate Z(U; I’) for any given value 
of Q, and thus find the channel capacity C, which is given by 

Z(U;V)= i r(m 11) 
Qr(mIl)h~ 

r(m IO) + (I - Q)r(mIO)~og- . 
m=O r(m) 1 

In this case, r(u 1 u) is a function of the a priori probability Q, since 
T(U ( u) depends on nD, which is a function of Q. 

In Fig. 2 we present the results for Z(U; V) versus Q for both types 
of receiver. The solid curves refer to the simple photocounting receiver 
without the likelihood-ratio test, while the dashed curves represent the 
maximum-likelihood photocounting receiver. We have arbitrarily set 
NS = 8, NH = 2, and y = 10, and have plotted curves for various 
values of c from 0 to 1.5. The channel capacity, represented by the 
peak of the curve, occurs near Q = 0.5 and decreases with increasing 

C = max Z(U; V). 
P(U) 

(10) 

For the system considered here, this quantity is a function of the 
radiation statistics, the strength of atmospheric turbulence, and the 
various mean levels of signal and noise radiation. 
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Fig. 1. Probability of error P, ~ersw final signal-to-noise ratio z. (a) Q and d are 
fixed and NH and y are varied as parameters. (b) Q, y, and NH are fixed and (r is 
varied as a parameter. 
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Fig. 2. Mutual information I(U; V) Y~~SUS signal probability Q with turbulence 0 as 
a parameter. Ns, NH, and y are fixed. 

MAXIMUM-LIKELIHOOD PHOTOCOUNTING RECEIVER 
In this case, the output V, may take on only two values, 0 and 1, as 

determined by the likelihood-ratio test. Thus, 

r(OIO) = '~$~p"(n,NA rU IO) = 1 - r@IO), 

r(0 / 1) =“Et ps&,a,y,z,N), r(1 / 1) = 1 - r(0 ( 1) 
n=O 

(11) 
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turbulence. Similar curves are obtained by fixing NH, y, and 0, while 
varying Ns, and by fixing N,, NH, and 0, while varying y. In these 
cases the channel capacity increases with increasing Ns and y, respec- 
tively. In all cases, the mutual information achieves its maximum 
value near Q = 0.5. 

An obvious distinction between the two receivers is that the max- 
imum-likelihood receiver exhibits discontinuities in the Z(U; V) versus 
Q curves. This is because of the discrete nature of the decision threshold 
nD, which jumps from one integer to the next at certain values of Q, as 
Q varies. The likelihood receiver yields a lower capacity than the 
simple photocounting receiver in all cases. Since both the input and 
output take on values of 0 and 1 only with the binary photocounting 
likelihood receiver, it may be considered as an asymmetrical binary 
channel [18] with varying error transition probability, i.e., ~(1 IO) 
and r(0 1 1). Thus it is expected that the channel capacity will not 
exceed 1. 

The results presented here can be reduced to several special cases, 
including pure coherent radiation (y = co), pure chaotic radiation 
(y = 0), the vacuum channel (u = 0), the saturated turbulent channel 
(u N 1.5), and the noiseless system (z = 0). 
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The Systematic Selection of Cyclically Equivalent Codes 

I. S. REED AND C. T. WOLVERTON 

Abstract-A systematic procedure for constructing one member of 
each cyclic equivalence class of an (n, k + 1) Reed&Solomon code is 
presented. It is shown that if the procedure is modified to exclude those 
codewords that do not have maximum period, the resulting set of code- 
words constitutes a syncbronizable code having comma freedom of 
degree n - 2k. 
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I. INTRODUCTION 
In [l] kth-order near-orthogonal codes were developed. A code E’ 

in this class is constructed by choosing one member from each cyclic 
equivalence class of an (n, k + 1) Reed-Solomon (RS) code E. (The 
cyclic equivalence class of a codeword consists of all distinct cyclic 
shifts of that codeword; equivalence under cyclic shifts, subsequently 
referred to as p equivalence, divides E into equivalence classes.) 

To actually construct a code E’ requires that a procedure be de- 
veloped for selecting one codeword from each p-equivalence class. In 
principle one can use the following procedure. Choose a codeword 
from E and see if any of its cyclic shifts are equal to previously selected 
codewords of E’. If so, reject the codeword; otherwise select it as a 
member of E’. However, if the number of codewords in E is large, the 
computation time for this procedure may be prohibitive. Therefore, 
one would like to find a systematic procedure for selecting the members 
of E’. Such a procedure is presented in this correspondence. A simple 
modification of the procedure allows one to construct codes that have 
comma freedom’ of degree n - 2k and are therefore synchroniz- 
able [3]. 

Solomon [2] suggested a different technique for modifying RS codes 
to obtain synchronizable codes. His technique yielded codes with 
comma freedom of degree n - 2m, where m is the smallest integer 
greater than k + 1 and relatively prime to n. His codes are easier to 
implement than those developed in [l]. However, for some values of 
n and k the degree of comma freedom achievable with those codes 
may be significantly higher than that achievable with Solomon’s codes. 

II. NOTATIONS AND DEFINITIONS 
In this section we introduce the notation and definitions necessary 

for the exposition in the following section. 
Denote by (u,b) the greatest common divisor of the integers a and b. 

Then (a$) = 1 if and only if a and b are relatively prime. The notation 
a / b means a divides b. 

For any finite set of integers {Z} denote the least common multiple 
of the members of {I} by lcm {I}. 

Let a be a primitive element of GF(q), the finite field of q elements, 
and let pr be the period of c?, where 

q-1 
JQ=tq--l,i). 

For each i, 12 i5 q - 2, {(@‘,m = O,l,...,p, - 1) is a sub- 
group of the group H of nonzero elements of GF(q). Denote this 
subgroup by Hi and denote the distinct cosets of Hi in H by Hi,ctH,,’ , 
aciHi, where ci = (q - 1, i) - 1. 

Let k be any integer such that 1 5 k < q - 1, and define the sets 

P={i:lIi<kand(q-l,i)=l} 

and 

p={i:l(i<kandi$P}. 

In particular, if the number of integers in P is N, then let 

P = {iI = 1, i2;. .,iN} 

and let 

P = {iN+h ~N+z,.. ., iK, if~+~ = 01 

For any vector x = (x,,. . . ,x,) with components in an arbitrary 
field, define the index set of X, denoted by s(x), as 

s(x) = {I: x1 # 0). 

III. CONSTRUCTION PROCEDURE 
A kth-order near-orthogonal code E’ can be obtained from an 

(n, k + 1) RS code E as follows. Let a be a primitive element of 

’ Comma freedom of degree I means that if (at; . .a.) and (bl b,,) are two 
codewords, any subsequence of n consecutive digits of the sequence (~2’ . .a,,. 
01. . . b, - I) is at distance I or m”re from any codeword. 


