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ABSTRACT

Two-dimensional fractional Brownian motion (2D
FBM) is a non-stationary random process that dis-
plays fractal (or self-similar properties). Its correla-
tion function and power spectral density both follow
power-law forms. Its fractal nature is characterized
by a self-similarity parameter, termed the Hurst ex-
ponent H [1]. We first demonstrate how a power-law
spectral density arises from the definition of 2D FBM.
We then consider the wavelet transform of 2D FBM,
and show how it can be used to estimate H. Finally,
we consider the converse problem and demonstrate
how wavelets can be used to synthesize processes with
power spectral densities close to those of 2D FBM.

I. INTRODUCTION

Fractional Brownian motion (FBM) in one dimen-
sion has proved useful for describing a range of phe-
nomena with long-range dependence [2]. FBM ex-
hibits a power spectral density (PSD) proportional to
1/w?, where w typically represents the temporal an-
gular frequency, and v is a fractal exponent related to
the Hurst exponent H.

We consider two-dimensional fractional Brownian
motion with a 2D PSD that assumes the form

Cy

S@) =S ) = Gy gy

(1)

the vector & (with components wy and wy) represents
spatial frequency in the z and y directions, respec-
tively, and C; is an arbitrary constant. This is an
isotropic PSD, since it is a function only of the radial

This work was supported by the Office of Naval Research
under Grant No. NO00014-92-J-1251, by the Joint Services
Electronics Program through the Columbia Radiation Lab-
oratory, and by the Whitaker Foundation under Grant No.
CU01455801.

0-7803-3200-8/96$5.00©1996 IEEE

213

spatial frequency |w| = /(w2 + w2). The motivation
for this generalization is provided by the many kinds
of processes displaying this type of PSD. Applications

include:
e models of natural (fractal) landscapes [3],
o texture discrimination [4, 5]
e human discrimination of fractal images [6].

Furthermore, since the fixed-pattern image noise in
some focal-plane array cameras exhibits a power spec-
tral density that obeys Eq. (1) [7, 8], we expect that
9D FBM will provide a robust framework for modeling
the noise properties of these devices as well.

The development of techniques for combating this
type of fractal image noise requires not only a plausi-
ble noise model but also reliable methods for estimat-
ing the value of v (as has already been demonstrated
for the one-dimensional case [9, 10]). The work pre-
sented here lays the groundwork for exploring such
approaches. In particular, we show how wavelet the-
ory can be used in the estimation of the self-similarity
parameter of 2D FBM [4, 11].

Moreover, 2D FBM processes provide useful mod-
els for synthesizing natural looking landscapes [2, 3,
12], and a variety of techniques for generating such
processes has already been developed [3]. In this pa-
per, we also show how wavelets and wavelet theory can
be used in the synthesis of 2D processes with power-
law spectra.

II. DEFINITION OF TWO-DIMENSIONAL
FRACTIONAL BROWNIAN MOTION

The generalization of Brownian motion to more
than one dimension was first considered by Lévy [13];
the generalization of fractional Brownian motion fol-
lows along similar lines. Let B(#&) be a fractional



Brownian motion (also called a fractional Brownian
surface [2]), where @ denotes the position vector
(tz, uy) of a point in the process. The properties of
FBM can be characterized as obeying the following
rules [3]:

1) The process increments A B(#@) = B(d+Ad@)—B(#)
form a stationary zero-mean Gaussian process;

2) The variance of the increments A B(%) depends only

on the distance Au = ,/uZ + uZ so that

E[AB(#)%] = 2C;Au" )

where E is the expectation operator, H is the Hurst
exponent, and Cy is a function of H [2];

3) The two-dimensional correlation function of FBM
1s defined as

r5(8,7) = E[B(2)B()]

= C2 UmzH + W‘ZH _ h-z_ 1-)12}1] . (3)

Since the correlation function in Eq. (3) is not sim-
ply a function of (¥ — ¥), 2D FBM is nonstationary
and the PSD no longer has a clear definition. Rather
it depends on the techniques used in its construction.
The Wigner-Ville spectrum (WVS) has proved to be
a useful time dependent spectral analysis tool in one
dimension [14, 15], and it may readily be extended to
two dimensions:

Wg(#@,d) =
S22 3 vn (@4 8/2,0 - E72) exp(—j3 - deodey,
- (4)
where £ is a position vector of the form (&,&y), § =
v/—1, and ‘-’ denotes the standard vector inner prod-

uct. Substituting Eq. (3) into Eq. (4), we obtain for
the WVS of 2D FBM:

Wg(#,&)/Cy =
+00 400 |- ~ |2H .
P |+ érn| exe(—ia - §dede,+

o L. |2H o= 5
jre e fa-enf” en-io- Hagag, - ¥
+oco 4o 2H P
I exp(—io - §deade,
By carrying out the substitutions
F=d+ 2,
§=1i-£/2, ©)

and using
+oo too 2 H . oy
I= / / (53 -+ fy) exp(—Jjd - €)dé-dEy, O]
-0 J-oo
we can obtain an analytical result for the WVS. After

a series of substitutions, Eq. (7) becomes:

Cs

= —— 8
(w2 + w2)EH ®

in the range where the integral converges (—1 < H <
—1/4), and where Cj is a function of H. Finally, we
obtain

C>C3
(w2 +w2)H+ ’
9
valid in the range —1 < H < —1/4. A meaning-
ful average power spectral density can be obtained by
averaging Wp over i, whereupon we reach

Wg(@,@) = [2'%H cos(2@ - @) — 1]

5(@) limg oo (1/L2) [ [ Wa(i,&)du,duy

Cu/ (] +wy)*

(10)
which is a power spectral density of the form given in
Eq. (1) with H + 1 = /2. Since H lies in the range,
[~1,—1/4], 7 is restricted to the range 0 < vy < 3/2.

In practice, the power spectral density estimate
obtained from any finite sample of B(@) will approach
the limit given in Eq. (10), provided the sample is suf-
ficiently large. Accordingly, 2D FBM with a correla-
tion function in the form given by Eq. (3) provides
a possible model for processes in which an isotropic
power-law PSD with 0 < v < 3/2 is observed.

III. WAVELET TRANSFORM OF 2D
FRACTIONAL BROWNIAN MOTION

Wavelet-based techniques have emerged as a natu-
ral framework for the analysis and synthesis of multi-
scale processes, since wavelet theory itself is built on
the notion of scaling (i.e., the wavelet series represen-
tation uses the same basis function, taken at many
different scales, to approximate a target function).
An excellent overview of wavelet theory can be found
in [16]. Properties of the wavelet transform of 1D
FBM have already been considered by several authors
[11, 17].

Let us first define the continuous wavelet trans-
form (CWT) of a function in two dimensions [18}, and
show how it can be used in the analysis of 2D FBM.
The two-dimensional CWT of the function B(%) is
defined as

CWT§(a,b,6) = 2/\1: (R" [“ ; b}) B(i)dd,
(11)

where ¥(#) is the two-dimensional spatial wavelet ba-
sis (or function), the asterisk denotes complex conju-
gation, a is a scaling (or dilation) factor, bis a two-
dimensional translation vector, and R? denotes a ro-
tation by the angle 6 in the two-dimensional plane.

In general, all wavelet bases obey the admissibility
condition [16]

ﬁ U(@)dd = 0. (12)
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If we are considering an isotropic signal (or isotropic
wavelet), the two-dimensional continuous wavelet trans-
form of B(#@) will have no functional dependence on ¢
and can be simply written as CWT‘I, (a, b) As noted
previously by Peyrin et al. [4], it is not difficult to
demonstrate that the CWT of 2D FBM retains the
scaling properties of the original signal, and can be
conveniently used to estimate those properties.

Specifically, if we consider the expected value of
the square of the wavelet transform (which is equal to
its variance since the expected value of the transform
itself is zero), we obtain:

E [|CWT§(a, E)P] =
b Sy (B)w (2F) E[B(@ B(7)) ditd.
(13)

Using the expression in Eq. (3) for E[B(#)B(¥)] in
conjunction with Eq. (12) leads to

E[lcwT(a,B)P] =
(Ca/a?) [, [; 9" ’7;5) ¥ (‘7 5) |@ — ¥)*H did?.
(14)

The substitutions p = (& — ¥)/a and § = (¥ — I;)/a
lead to

E[lcwTd(a,5)P] =

" [N ¢ 1)
Coa?H+2 [ [0 (5+ P ¥(q)| 71*7 dpdg

which can be conveniently rewritten as

E [|CWT5(a,E)|2] = CgaZH“z/CWTq‘f'(l,ﬁ')lmwdﬁ
i3

(16)
where CWT{ represents the wavelet transform of the
wavelet itself. Since the integrand in Eq. (16) is inde-
pendent of a, the variance of |[CWTE (a, B)| varies as a
power-law in a, and can be used to estimate the self-
similarity parameter of the process. This approach
therefore provides an alternative to the power spec-
tral density for estimating H. As shown in [4], it does
so reliably.

IV. SYNTHESIS OF 2D FRACTIONAL
BROWNIAN MOTION USING WAVELETS

It is apparent from the foregoing that wavelet-
based techniques can be readily used to analyze 2D
FBM. The wavelet framework also provides an alter-
native to existing methods for constructing such pro-
cesses. We proceed to show that wavelet functions can
in fact be used to generate processes with nearly 1/w”
spectra in two dimensions. The relevant theory for or-
thonormal wavelets in two dimensions is outlined in
[19]. We follow the approach outlined by Wornell for
the one-dimensional case [20]; implementations of this

approach have already been successfully used to syn-
thesize 1D FBM [11, 21]. We call a two-dimensional
power spectral density “nearly 1/w?” if it satisfies

K < S(wg,wy) < (17

[
with 0 < K; < K, Consider the case with separable
scaling and wavelet functions in two dimensions,

IXg
= el

e Ta
\Ilz(u::uz) = 9( w)¢( .'/) (18)
W(ug,uy) = P(us)(uy)

where () and ¢(-) are admissible one-dimensional
wavelet and scaling functions, respectively. Further-
more, let us define ¥ wp(ug,uy) as

U™ (ug, uy) = 2720 (2™ up — 0, 27wy — ) (19)
fori=1,2,3.

Consider now the construction of a random process
X (uz,uy) from the sequence

XM(“:D) uy) =
ZmZM Zn,p d:‘lnyp [\I,}blzl

\I’?n,r;? (ul‘v Uy )] ’

(uz,uy) + ‘I’rzz’,';(“m“y)'*‘

(20)
where d', and dm; are wide-sense stationary 2D se-
quences that are uncorrelated for m # m’. The power
spectrum of d’, is defined in the usual way for dis-
crete sequences, as Pp(wg,wy). Let our candidate
1/w? process equal the limit of Xas(uz, uy) as M goes
to negative infinity,

X(ug,uy) = (21)

Since the d}}’,, are uncorrelated across m, we can define

the power spectrum of X (uz, uy) in the limit as:

S(wg,wy) =
lmpf oo 9 Pm(ux,wy){hlll(? Mg, 27wy )2+
[§2(2 e, 277w, + (927w, 27wy ) |
N (22)
where ¥* (o:;z, wy) is the two-dimensional Fourier trans-
form of ¥'(us,uy). Let us choose sequences d’, to

have spectra Pp(we,wy) which vary as a power-law
function of m:

lim XM(uw,uy).

Pr(wg,wy) = 2" 1Mg2, (23)

where we set the variance ¢ = 1 with no loss of gen-
erality.
We now exploit the relations that exist among the

two-dimensional wavelet and scaling functions,
building on the fact that in one dimension [16]
d(w) = H(w/2)d(w/2) o)
P(w) = G(w/2)p(w/2)
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where ¢(w) and 9)(w) are the one-dimensional Fourier
transforms of ¢(z) and ¥(z), respectively, and H(w)
and G(w) are the filter functions relating $(w) and
P(w) to d(w/2). Note that H(w) and G(w) satisfy
(16, 20]

G(w) = exp(—jw)H*(w + ) (25)
[HW)P + [H(w +m)? = 1.

Applying these relations to the two-dimensional case
gives the relations

P(wz,wy) = H(“’rﬂ)H(Wy/z)‘?(wc/Q:"-’y/2)
P (wig) = Hlwn/D)G (g /DB(wr/2,0,/2)
Vo (wnsy) = Glon/DH(wg/Db(wa2,0,/2)
Vwe,wy) = G(wz/2)G(wy/2)P(ws/2,wy/2).

(26)
Substituting Egs. (25) and (26) into Eq. (22) yields,
after some algebra:

S(we,wy) = (27 =1) > 277 (B(27wg, 27wy %

(27)

The problem is now to show that there exists K

and K, such that Eq. (17) is satisfied. We use the
identity

S(wg,wy) = 27" 5(27 " wg, 27 wy) (28)

for all values of n, which can be easily verified. As-
suming a specific w, and wy, we can always choose
ng, Ws,0, and wy o such that the following conditions
are satisfied:

Wy = 2Mwg o
1 < yJwiotwl, <2

Using Eq. (28), we obtain

S(we,wy) = S(2"°wg,0, 2™ wy,0) = 277 S(wyz,0,wy,0)
(30)

with 1 < (/w2 + W;,o < 2, whereupon our problem

is reduced to establishing that

[inf15|wu|$z S’(wx,o,wylo)] |w|=" < S{wz,wy)

and

S(ws,wy) < 27| [5UP1 gpugic2 S(wa,0,w1,0)

(31)
with |w| = | /wZ + w2 = 27 |wo|.

To prove Eq. (31), therefore, it is sufficient to find
upper and lower bounds for S(wz,0,wy,0) on 1 < jwg| <
2. First we consider the upper bound of Eq. (31).
Assume that |®(0,0)] = 1 so that [®(ws,wy)] < 1.

From the properties of the one-dimensional scaling

function, it is not hard to show that there exists a
number K3 > 1 such that

K

[®(wz, wy)| < T

(32)

Using this, we can rewrite Eq. (27) as

S(ws,0,wy,0)/(27 = 1)

= T 27 B2 0,2y o)

= [ 1B(27mwe,0, 27wy 0)
oo 82700, 270y 0) 7]

S [Z::O 27

+ 2 PR e 0, 27wy )
< [Com=0 2™ + X 0oy 27 K3/ (14 27 |wol )]

< [Cmeo 2™ + Ty K320797] < o0
(33)

for 0 < 4 < 2, where we have used the fact that
|wg| € 2 in the defined range. Thus, the supremum
of S(wg,0,wy0) exists, proving the upper bound of
Eq. (31).

To show that the lower bound also holds, we invoke
the continuity of ®(wy,wy) at (0, 0). Since &(0,0) = 1,
there must exist an ng such that

]‘i)(wmwy” 2 1/2

for w, <277 and wy < 2770, (34)

Hence
[®(270 Wy 0,270 wy 0)| > 1/2,  (3)

since the largest values of wz o and wyo = 2. There-
fore

S(wa,0,wy0) = (27— 1) 3, 277™|(27 Mw,, 27w, )|
> (20 = 1)277(0=D)|§(27 0~ by, o, 270wy o)

> (27 — 1)277(ro—19=2 5
(36)
so that the lower bound in Eq. (31) exists. Accord-
ingly, two-dimensional sequences d}’, satisfying Eq. (23)
can be used to synthesize processes with power-law
spectral densities such as 2D FBM.

V. CONCLUSION

We have shown how one-dimensional fractional
Brownian motion is readily extended to two dimen-
sions (it can, in fact, be generally extended to n di-
mensions). Even though this is a non-stationary pro-
cess, we can calculate a meaningful power spectral
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density, and we have shown that isotropic 2D FBM
has an isotropic power-law spectral density. Processes
with such densities arise in a variety of settings; ex-
amples include models of fractal landscapes, texture
recognition, and spatial noise in infrared focal plane
arrays.

Wavelet theory has already been shown to provide
an appropriate tool both for the analysis and synthe-
sis of long-range dependent processes in one dimen-
sion. The results here demonstrate that it is similarly
useful in two dimensions. From an analysis point of
view, the wavelet transform of 2D FBM retains the
self-similar properties of the original signal, and can
be used to estimate the self-similarity parameter of
the process. This parameter is important in texture
recognition, and as a measure of the roughness of a
fractal surface. We have also shown how wavelets can
be used in the synthesis of 2D processes with power-
law spectral densities.

This work provides an appropriate framework for
the development of detection and estimation algorithms
to combat the effects of power-law fixed-pattern noise.
Such techniques have already been considered in one
dimension [9, 10].
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