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ABSTRACT

We have carried out a study on a collection of elec-
- irocardiograms from patients who suffer from conges-

tive heart failure, heart-transplant patients, and nor-
mal subjects, using wavelet-based multiresolution tech-
niques and receiver-operating-characteristic (ROC) anal-
ysis. The scale-dependent wavelet-coeficient standard de-
viation OW,V(m) is found to be superior to two commonly
used heart-rate-variability me~ures for diagnosing cardiac
dysfunction, the interbeat-interval standard deviation ~nt
and the spectral scaling exponent 6. A recent Israeli-
Danish study of diabetic patients that confirms our oh-

‘\ servations is discussed.

I. INTRODUCTION

The interbeat-interval (R-R) time series of the human
heart exhibits scaling behavior, as evidenced by the power-
law” form of its spectrum, which decreases as f-~ for suf-

.&ieDtly low frequencies j [1, 2]. However other features,
associated with physiological markers, are also present in
the power spectrum at pmticular frequencies [3]. More-
over, it is well known that the heartbeat time series is
nonstationary, reflecting biological adaptability.

Multiresolution wavelet analysis [4, 5, 6, 7, 8] provides
an ided means of decomposing a signal into its compo-
nents at different scales, and at the same time has the
salutary effect of eliminating nonstationarities [97 10, 11].
WTecarried out a study [12] in which wavelets were used
to. analyze the sequence of interbeat intervals from a stan-
dard electrocardiogram (ECG) database [13], and discov-

-ered a critical scale window over which it was possible to
perfectly discriminate heart-failure patients from normal
subjects. The presence of this scale window has been con-
firmed in a recent Israeli-Danish study of diabetic patients

who had not yet developed clinical signs of cardiovascu-
lar disease [14]. These two studies [12, 14], in conjunc-
tion with our earlier investigations involving the count-
ing statistics of the heartbeat [15, 16, 17] (as opposed

to the time-interval statistics considered here), lead to
the conclusion that scale-dependent measures (such as the
wavelet-coefficient standard deviation) outperform scale-
independent ones (such as the scaling exponent 6) in dis-
criminating patients with cardiac dysfunction from nor-
mal subjects. It should be pointed out, nevertheless, that
wavelet analysis provides an excellent technique for esti-
mating the scaling exponent.

II. METHODS

The multiresolution-analy sis procedure consists of trans-
forming the discrete-time sequence of R-R intervals s =
{~i} into a space of wavelet coefficients. The transformed
signal can be thought of in terms of a landscape over a
two-dimensional plane whose axes are interbeat-interval
number i and scale m. Smaller scales correspond to more

rapid variations and therefore to higher frequencies. The “
height is the value of the corresponding wavelet coefficient.
With such a three-dimensional construct it is possible to
simultaneously trace the behavior of the R-R sequence at
multiple scales, M it proceeds in time.

Technically the coefficients are obtained by carrying out
the discrete wavelet transform [4, 7, 12]

&f–l

Wy;(s) = 2-m/2~ ,2~(2-mi - n) (1)
a=o

where the scale variable m and the translation variable
n are nonnegative integers, and M represents the total
number of R-R intervals analyzed. The discrete wavelet
transform is evaluated at the points (m, n) in the scale

interval-number plane. Because certain wavelets + have

-.
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vanishing moments, polynomial trends in the signal are

automatically eliminated by the process of wavelet trans-
formation [9, 10, 11].

An example of applying multiresolution analysis to an

interbeat-interval time series, using the Haar wavelet, is
provided in Fig. 1. The left panel shows the original

-‘wavelet, a function which is, by definition, +(x) = 1 for
x-= 0, ... ,0.5; ~(z) = –1 for x = 0.5,...,1; and 4(z) = O
elsewhere. The middle panel shows an example of the
wavelet scaled by a factor of m = 4, which makes is last
for 16 samples rather than 1, and delayed by a factor of
~ = 3 times the lengthofthewavelet (hence it’s beginning

at x = 48). In the right panel, the signal is multiplied by
the wavelet, then all remaining points (i.e, those between
48 and 63 in this example) are added, and the result is

the wavelet coefficient for the time i = 48 (beginning of
the wavelet) and the scale m = 4. This is tantamount to

adding the eight RR intervals between intervals 48 and 55
inclusive, and then subtracting the eight subsequent RR
intervals between intervals 56 and 63, inclusive. Moving

. this window across time allows us to see how the coeff-
icient changes according to time, and varying the scale of
the window yields finer or coarser resolution. We have pre-
viously shown that results for the wavelet coefficients are
reasonably independent of the form of the wavelet func-
tion; we use Daubechies 10-tap wavelets [4] here.

Since the signal s fluctuates in time, so too does the
sequence of wavelet coefficients at any given scale, though
their mean is zero. A natural measure for this variability
is the wavelet-coefficient standard deviation, as a function
of scale:

‘\

awav(m) =
[ 1

+N~l(wy;(s) - (w~;(s)))’ 2, (2)
n=o

where N is the number of wavelet coefficients at a given
scale m [N = int(M/2~)] [12].

1.11. RESULTS... -
We have established [12] that, at scales m = 4 and 5,
aWaV(m) completely separates 15 heart-failure patients
from 12 normal subjects in a standard ECG datab~e [13], -
despite the presence of atrial fibrillation in three of the
heart-failure patients. As shown in the left panel of Fig. 2,
this scale window lies between 24-25 = 16-32 heartbeat
intervals (roughly 0.2 -0.5 rein).

The depression of the wavelet-coefficient standard devi-
ation for the heart-failure patients, a well as for a sudden
cardiac death (SCD) patient, at these particular scales is
likely associated with the impairment of autonomic ner-

--VOUSsystem function. Baroreflex modulations of the sym-
pathetic or parmympathetic tone typically lie in the range

0.04-0.09 Hz (0.2 -0.5 rein), which corresponds to the
time window where OW,V(m) is suppressed.

The most severe depression of the wavelet-coefficient

standard deviation is exhibited by heart-transplant pa-
tients, for whom innervation by the autonomic nervous

system is reduced, as is evident in the bottom-most curve
in Fig. 2. Whether re-innervation ultimately ameliorates
this suppression is, as yet, unknown.

This window of separation ha also been observed by
Ashkenazy et al. [14], as shown in the right panel of Fig.
2. Their data set comprised 10 diabetic patients who were

otherwise healthy, one patient who had suffered a myocar-
dial infarction, and one heart-transplant patient. In all
cases, including the heart-transplant patient, they found
that the same range of scales is useful in distinguishing
normal subjects and patients with cardiac dysfunction. In

their analysis of 12 patients and 21 normal subjects, only
one normal standard-deviation curve fell among those of
the patients.

The perfect separation between the heart-failure pa-
tients and normal subjects observed in our study endorses
the choice of aWav(m) as a useful measure. The results

of most studies are seldom so clear-cut, however. In cir-
cumstances where there is incomplete separation between
two classes of subjects, as observed for other measures us-
ing these identical data sets [18, 19], or in applying our
measure to large collections of out-of-sample data sets,
the relative abilities of different measures for determin-
ing the presence of dise~e is best established by the use

of receiver-operating-characteristic (ROC) analysis [20].

Overlap between the two classes of subjects can also be
increased by reducing the durations of the ECG record-
ings. We recently used ROC analysis to quantitatively
compare the tradeoff between data length and discrim-
inability provided by nWav(m) and by two other widely

used heart-rate-variability measures of cardiac dysfunc-
tion, the interbeat-interval standard deviation w,nt and the

spectral scaling exponent d [21]. Moreover, we developed a
mathematical model for heartbeat tim~series generation
for both heart-failure patients and normal subjects [21].
We discuss -these two analyses in turn.

IV. ROC ANALYSIS.

ROC analysis is a useful and general method for estab-
lishing the tradeoff between reduced data length on the
one hand, and misidentifications (misses and false posi-
tives) on the other. The ROC curve is a plot of sensitivity
us specificity as the threshold parameter is swept. Unlike
the determination of the pvdue for statistical significance,
ROC analysis relies on no implicit ~sumptions about the
statistical nature of the data. The area under the ROC
curve serves as a well-established index of diagnostic accu-
racy [20]; the minimum value (0.5) arises from ~signment
by pure chance whereas the maximum value (1.0) corre-
sponds to perfect assignment. ROC calculations permit
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Figure 1: Example of the estimation of a wavelet coefficient using the Haar wavelet. LEFT: Original Haar wavelet. 
MIDDLE: Delayed and scaled version of the wavelet. RIGHT: Time series multiplied by the wavelet. 
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Figure 2: LEFT: Wavelet-coefficient standard deviation u,, versus scale m for our preliminary study (12 normal 
subjects indicated by grey circles; 15 heart-failure patients indicated by black circles, one SCD patient indicated by 
white squares, and one heart-transplant patient indicated by grey squares). RIGHT: CT waV for an Israeli-Danish study 
conducted by Ashkenazy et al. [14] (21 normal subjects indicated by grey circles; 10 diabetic patients indicated by white 
squares, one myocardial-infarction patient indicated by white diamonds, and one heart-transplant patient indicated by 
white triangles). In both studies the best separation of the two groups is achieved at scales 4 and 5, corresponding to 
24 - 25 heartbeats, despite the differing pathologies and wavelets bases. For the two heart-transplant patients shown, 
awav is severely depressed over a substantial range of scales. 
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a quantitative comparison to be made of the abilities of
different measures todiagnose thepresence of disease.

In Fig. 3 we present the ROC area, as a function of data
length (number of beats), using the three different mea-

sures. The solid curve in Fig. 3(a) shows ROC area when
.tiscriminability is determined by the wavelet-coefficient

s~ndard deviation aWav(m = 5) given in Eq. (2). Figure
3(b) represents the area when the interbeat-interval stan-

dard deviation qn~ is used instead. The importance of this
measure has long been known [22] and it is now commonly
used in heart rate variability analysis [23]. Figure 3(c)
provides the ROC area for yet another well-known mea-

sure, the spectral scaling exponent 6 estimated at ultra-
low (< 0.003 Hz) and at very-low (< 0.04 Hz) frequencies
[2, 23].

It is clear from Fig. 3 that a~av (m = 5) is the only
measure of the three that, for the ECG recordings in our
study, ever achieves an ROC area of unity, thereby in-
dicating perfect ability to separate the heart-failure pa-

- tients from the normal subjects, and it does so with as

few as 20000 heartbeats (corresponding to 4 or 5 hours
of data). It is equally evident from Fig. 3 that the mea-

sure of choice for ECG recordings with fewer than 3500
heartbeats (corresponding to about 45 minutes of data) is

(-not oWav m — 5) but rather ~i~t. This transition occurs
. .

because ai.t depends only on the short-term behavior of
the R-R sequence [12, 16] whereas the wavelet me~ure
depends on both the short- and long-term behavior.

\ It” is also apparent from Fig. 3 that a~av (m = 5) and

~i~t always outperform the scaling exponent d, what-

ever the data length. Moreover, because d reflects the
long-duration properties of the interbeat-interval sequence

[12, 16], its error brackets become unacceptably large as
data length decreases [see Fig. 3(c)] so that it can only
be reliably calculated for long data sets. Since the scal-

ing parameter introduced by Peng et al. in 1993 [18] is
‘tionotonically related to 6 by 2 – 6 [16], and since the R-

R recordings were identical in that study and in this, the
ROC curve for their scaling parameter is in fact identical
to that for 6 given in Fig. 3(c). More generally, scaling ex--

ponents derived from the R-R sequence, the spectrum of
the generalized heart rate, and the Allan factor (denoted

6, ~, and ~, respectively, in [16]) are all essentially the
same [161; this is also expected for the scaling exponent
a derived from the wavelet-coefficient standard deyiation
[24].

We therefore expect that the use of scale-dependent
-me~uresl such as uWav(m = 5) and ff,,,t, is likely to prove

superior to the use of scale-independent measures such as
d, ~, T, a, as well w those derived from detrended fluctu-
ation analysis [19] and other related methods.

V. GENERATING A MATHEMATICAL
HEARTBEAT

The generation of a mathematical point process that faith-
fully emulates the human heartbeat has importance in a
number of venues, including application to pacemaker ex-
citation. Integrate-and-fire (IF) models, which are physi-
ologically plausible, are well-known in cardiology [25, 26].
In the paper by Berger et al. [26], for example, an

integrate-and-fire model WM constructed by integrating
an underlying rate function R(t) until it reached a fixed
threshold 0, whereupon a point event was triggered and

the integrator reset. The occurrence time for the (k+ l)st

beat is then implicitly given by 6 = ~~~+1 R(T) dr. Model-
ing the stochastic component of the rate function s band-
Iimited fractal Gaussian noise (FGN), which introduces

scaling behavior into the heart rate, and setting 6 = 1,
results in improved agreement with experiment [16]. This
fractal-Gaussian-noise integrate-and-fire (FGNIF) process
requires four parameters: the scaling exponent, the rela-

tive strength of the FGN spectrum, and lower and upper
limits for the noise band. The FGNIF has been quite suc-
cessful in fitting a whole host of interval- and count-based
measures of the heartbeat sequence for both heart-failure
patients and normal subjects [16]. It could not, however,
accommodate the differences observed in the behavior of
aW.v(m) for the two clmses of data [21].

To remedy that defect, we constructed a jittered version

of this model which we called the FGNJIF [21, 27]. The
process is generated as follows. Preliminary event occur-

rence times t~r’are generated by the FGNIF; a Gaussian
jitter distribution of standard deviation J is then con-

volved with each of the t~rito. determine the times of
the final points t~ [27]. Increasing the jitter parameter
imparts additional randomness to the R-R time series at
small scales, thereby increwing a~av at small values of m
and, concomitantly, the power spectral density at large
values of j.

Simulations for the wavelet-coefficient standard devia- -

tion u$~ versus scale m using the FGNJIF model have
been carried out (see Fig. 2 in [21]). For J = O, the results -

reduce to those for the FGNIF model, and the shape of
the simulated curves is in reasonably good accord with ex-
perimentally observed curves for normal subjects. As the

jitter standard deviation J incre=es above O, the curves
bend upward at small values of the scale m, and begin to
mat ch those for heart-failure patients. The increased jitter

also gives rise to a whitening of the spectrum at high fre-
quencies, as expected, so that the distinctions in the spec-

tra between heart-failure patients and normal subjects are
properly mimicked by the FGNJIF model (see Fig. 3 in

[21]). Typical values of J that accommodate the data lie
in the range 0.01 to 0.06 for heart-failure patients and in
the range O to 0.02 for normal subjects [21]. Values of this
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Figure 3: Diagnostic accuracy (area under ROC curve) vs data length (number of heartbeats). A maximum area of

unity corresponds to the correct assignment of each patient to the appropriate class. The solid curve in the left panel
(a) is obtained by using the wavelet coefficient standard deviation at scale 5 (similar results are obtained at scale 4);
the middle panel (b) arises from using the interbeat-interval standard deviation; and the right panel (c) emerges when
using the spectral scaling exponent. The areas are based on averages of the first 10 data segments for 64, 128, 512,

-1024, 3500, and 7000 events (the leftmost six data points in (a) and (b)), and on 5, 3, 2, and 1 segments of 14000,
20000, 35000, and 70000 events, respectively (the rightmost 4 data points). uW.. is the only measure of the three that
achieves 100% sensitivity at 100% specificity for the data in our study, and it does so with as few as 20000 heartbeats
(corresponding to 4 or 5 hours of data). For data lengths less than 3500 events (corresponding to about 45 minutes
of data), the best performance is provided by a,nt. The dashed curve in (a) is derived from 27 simulations of the

fractal-Gaussian-noise jittered integrate-and-fire (FGNJIF) model (see text).

magnitude result in only a modest (approximately 12Yo)

increase in the value of m,”t (for comparison, the mean
value of ai.t for normal subjects is more than twice as

\ large as it is for heart-failure patients [16]).

The FGNJIF simulation does a rather remarkable job
of reproducing individual data sets for a number of key
memures used in heart-rate-variability analysis (see Fig.
3 in [21]). However, the global performance of the
fractal-Gaussian-noise jittered integrate-and-fire (FGN-

J~) model for the entire collection of data sets, presented
,W the dashed curve in Fig. 3(a), does not do as well [21].
Though the simulation follows the trend of the data [solid

curve in Fig. 3(a)] quite nicely, there is clearly room for
improvement. It will be of interest to examine modifica--
tions of the model that will serve to bring the simulated
ROC curves into better accord with the data-based curves.
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