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Effect of Dead Space on the Excess Noise Factor and
Time Response of Avalanche Photodiodes
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Abstract—The effect of dead space on the statistics of the gain pro-
cess in continuous-multiplication avalanche photodiodes (APD’s) is de-
termined using the theory of age-dependent branching processes. The
dead space is the minimum distance that a newly generated carrier
must travel in order to acquire sufficient energy to cause an impact
ionization. We derive analytical expressions for the mean gain, the ex-
cess noise factor, as well as the mean and standard deviation of the
impulse response function, for the dead-space-modified avalanche pho-
todiode (DAPD), under conditions of single carrier multiplication. The
results differ considerably from the well-known formulas derived by
Mclntyre and Personick in the absence of dead space. Relatively simple
asymptotic expressions for the mean gain and excess noise factor are
obtained for devices with long multiplication regions. In terms of the
signal-to-noise ratio (SNR) of an optical receiver in the presence of
circuit noise, we establish that there is a salutatory effect of using a
properly designed DAPD in place of a conventional APD. Finally, the
relative merits of using a DAPD versus a multilayer (superlattice) av-
alanche photodiode (SAPD) are examined in the context of receiver
SNR; the best choice turns out to depend on which device parameters
are used for the comparison.

1. INTRODUCTION

VALANCHE PHOTODIODES (APD’s) operate by

converting a photo-generated carrier pair into a cur-
rent pulse with sufficiently large charge to be detected by
the electronic circuitry following the APD. The avalanche
multiplication process introduces noise as a result of ran-
domness in the positions at which secondary carriers are
generated (position randomness), and as a result of ran-
domness in the total number of carriers produced per ini-
tial photocarrier (gain randomness). This noise is in ad-
dition to the usual shot noise stemming from the Poisson
photon nature of light, and the electronic noise of the cir-
cuitry; like these factors it too contributes to the degra-
dation of optical receiver sensitivity. Expressions have
long been available for the mean gain, excess noise fac-
tor, and impulse response function for continuous multi-
plication (conventional) APD’s [1]-[7] and for multilayer
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(superlattice) APD’s, which are usually denoted as
SAPD’s [8]-[11].

A fundamental assumption implicit in most models of
the noise behavior of conventional APD’s [1]-[7] is that
the impact ionization probability of a carrier is the same
at all times, including the instant following its birth, so
that this probability is independent of the carrier’s his-
tory. From a physical point of view, however, a newly
generated carrier must travel some distance in order to
build up energy sufficient to enable it to initiate an ion-
ization. To accommodate this requirement, we formulate
a multiplication model in which the ionization probability
of a carrier is set to zero for a certain distance (called the
dead space) immediately following its generation. More
realistically, the ionization probability would be expected
to decline following birth and then gradually increase over
some distance (implying a sick space), rather than de-
creasing precisely to zero for a fixed space (implying a
dead space). However, the simpler dead-space model ad-
equately captures the essence of the effect while reducing
the mathematical complexity to a minimum.

Using the dead-space model, Okuto and Crowell [12],
[13] accounted for its effects by replacing the conven-
tional ionization coefficient with a nonlocalized coeffi-
cient incorporating memory. They calculated the mean
gain for a single-carrier injection (SCI) double-carrier
multiplication (DCM) APD by obtaining numerical solu-
tions to recursive equations. LaViolette [14] and LaVi-
olette and Stapelbroek [15] studied the statistics of SCI
single-carrier multiplication (SCM) APD’s in the pres-
ence of sick space. They described the multiplication in
terms of a non-Markovian binary age-dependent branch-
ing process. By using numerical techniques they deter-
mined the mean, excess noise factor, higher moments, and
probability distribution of the number of carriers, all as
functions of the multiplication region length.

In this paper, we examine the statistics of the multipli-
cation process for an SCI/SCM APD incorporating dead
space. We consider the multiplication process in terms of
an age-dependent branching process and use Laplace
transform methods to obtain analytical expressions for the
mean gain and for the excess noise factor. Analytical
expressions for the asymptotic values of the mean gain
and excess noise factor are also derived in terms of the
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Malthusian parameter of the branching process [16]-[18]
in the limit when the length of the multiplication region
is much greater than the dead space.

We demonstrate that the SNR of an optical receiver is
enhanced by the use of a DAPD rather than an APD. On
the other hand, the DAPD optical receiver may, or may
not, outperform the SAPD receiver, depending on the se-
lection of the SAPD device parameters used for the com-
parison. The operation of the two devices differs in a fun-
damental way: SAPD multiplication is locked to lattice
positions determined by the material structure alone
whereas DAPD multiplication is locked to locations de-
termined by the carrier births alone.

Finally, we examine the properties of the DAPD im-
pulse response as a function of the time following pho-
toexcitation. We derive an expression for the mean cur-
rent response which takes the form of an integral that is
numerically evaluated. In the asymptotic case, when the
length of the multiplication region is much larger than the
dead space, analytical expressions for the mean and stan-
dard deviation of the response as functions of time are
obtained.

The SCM assumption implicit in our calculations limits
the usefulness of our results to devices with large elec-
tron-to-hole ionization ratios. Certain continuous mate-
rials such as Si, and multilayer devices of certain mate-
rials [8]-[11], [19]-[25], effectively operate in this mode.
Though it may possibly be tractable, an analytic solution
of the problem of noise in DCM APD’s with dead space
has not yet been set forth. An analysis similar to that car-
ried out here can be extended to the sick-space model.

II. MobpEL

The device under consideration is a single-carrier injec-
tion single-carrier continuous multiplication (SCI/SCM)
avalanche photodiode. Let [ be the length of the multipli-
cation region and d the dead space. An electron is injected
at the edge of the multiplication region (x = 0). It travels
a distance d without ionizing, after which it may ionize
with probability density (per unit length) «, the electron
ionization coefficient. Upon ionization, an electron-hole
pair is created. The electron and hole travel in opposite
directions under the effect of the electric field, with fixed
velocities v, and vy, respectively. The original and newly
created electrons travel in the same direction and repeat
the same process independently and identically, and so
on. This process continues until all the electrons reach the
end of the multiplication region (x = [).

Let Z(x) denote the total number of electrons at posi-
tion x at time x/v,. By determining the statistical prop-
erties of the stochastic process Z(x), we will be able to
determine the statistics of the APD gain G = Z(!) as well
as the statistics of the stochastic impulse response func-
tion i(¢). Let i, (¢, x) be the electric current pulse, in the
external circuit, induced by an electron-hole pair created
at position x; then [10]

(1a)

i, (1, x) = i.(1, x) + i,(1, x)

1977

where

i1, x) = q';e {u <t - §> - u (z - Ui>} (1b)
and

i(t, x) = Tlﬁ {u <t - i) —u <t - 3)} (1c)

are the components due to the created electron and hole,
respectively, u (x) is the unit step function, g is the elec-
tron charge, and 1 /0’ = (1/v,) + (1/v,). The impulse
response function i(7) is then given by the stochastic in-
tegral

i(t) = SO i,(t, x) d(Z(x)). (1d)

III. STATISTICS OF THE GAIN

The stochastic process Z(x), that represents the num-
ber of electrons at position x, will be shown to be describ-
able by an age-dependent branching process. For conve-
nience, we begin with a brief review of these processes
[16]-[18].

An age-dependent branching process Y () represents an
evolving population of particles. The process is initiated
at time 7 = O with a parent particle. After a random time
T (the age), this particle gives birth to k offsprings with
probability P,, k =0, 1,2, - - -, and dies in the process.
Each of the offsprings behaves exactly in the same man-
ner. The ages of all particles are statistically independent
and identically distributed random variables with proba-
bility density function h(T). The ages are also indepen-
dent of the number of offsprings created at any stage.

The process Z(x) is a special case of the age-dependent
branching process with x replacing ¢. The process starts
at x = 0 with one electron, Z(0) = 1, which traverses a
random distance X, called the lifespan (analogous to the
age T), after which it dies in the process, giving birth to
two electrons with probability one. Thus P, = 1 fork =
2, and zero, otherwise. The two electrons behave exactly
the same way, and so on. The process terminates when
all electrons reach the end of the multiplication region (x
= [). The lifespan X, has a probability density function
h(x,). In the case of multiplication with a fixed dead space

o=

We now proceed to determine the statistical properties
of Z(x) drawing freely from the literature on age-depen-
dent branching processes [16], [17].

Oa

—alxg—d)
5

x,=d
(2)

X, > d.

A. Probability Distribution

Let P (k,x), k =1,2,3, - -+, denote the probability
that Z(x) = k. Since the multiplication region is assumed
to be homogeneous, the probability that an electron at po-
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sition x, produces k electrons at position x, > x, is P, (k,
X, — x;). If Z(x) = k, k > 1, and if the first ionization
(death) occurs at position ¢ < x, then the two electrons
generated at £ must produce k electrons in total in the
remaining distance x — £. Since each of the two electrons

-acts independently, the probability that the two produce a

total of k is the discrete convolution
k-1

§1 P.(k—i,x — E)P(i,x — £).

By averaging over all £ we obtain an integral equation for
P, (k, x), for k > 1, given by

-1

x k
P.(k, x) = Soh(g)l le(k"i’x_E)

) Pz(i’x - E)df,

k>1. (3)

Fork =1

Pz(k’x)=1 —H()C) (4)

where

HG) = | hin)

is the distribution function for the lifespan.
Equation (3) for P, (k, x) is solved by use of the gen-
erating-function (gf) technique. The mgf is defined by
F,(s,x) = El P.(k,x)s*, |s| =1 (5)
and will be used to determine the moments of Z(x). By
inserting (3) and (4) into (5) we obtain an integral equa-
tion which recursively defines F, (s, x)

X

F.(s,x) =s(1 — H(x)) + goh(s)Fg(s,x - §)dt.
(6)

We thus have a nonlinear integral equation involving no
summations, which we must solve for F, (s, x). Although
there is no explicit solution to this equation, it is readily
used to generate the moments of the process Z(x).

B. Mean Gain
The mean of Z(x), u(x) = E{Z(x)}, is the derivative
of the gf evaluated at s = 1

uix) = o)

s=1

Using (6), we obtain an integral equation for u(x)

W) =1 HE) 2 | ple = DR 28 ()

The mean gain G is simply given by u(/).
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Since the above integral is a convolution, the use of the
Laplace transforms

M(o) = L{n(x)} = SO p(x)e ™ dx

and
H(o) = L{h(x)}

allows us to express M(a) as
1 — H(o)

M g) = —T"—]" " <.
(o) o[l — 2H(0)]

(8)

In the fixed dead space case for which A is given by (2),
M (o) becomes

l+o0—e >

a(l +0—2e7)

M(o) = 9)
where we have used the scaled distance X = ax and the
scaled dead space D = ad. u(X) can be computed by
taking the inverse Laplace transform of M (o), which can
be carried out numerically. The expression for M(o) in
(9) matches the Laplace transform of the expression ob-
tained by Okuto and Crowell [12] using a recursive
method. Their method is applicable only to the mean,
however.

C. Variance and Excess Noise Factor

The second moment p, (x) = E{Z?(x)} can be deter-
mined from the relation

8%F,(s, x)

P~ (10)

po(x) =

+ p.(x).

s=

By using (6), it can be shown [16] that u; (x) satisfies the
integral equation

X

() = 1 - ) +2 | [0 - 8)

(11)

Using the Laplace transform M,(0) = L{m(x)}, (11
gives

+ pax — &) h(E) dt.

1 — A(o)[1 = 20m(0)]

M,(o) = - (12)
2(0) o[1 - A(0)]
where
(o) = L{#*(x)}. (13)
In the fixed dead space case, we obtain
R 1+o0+ e_D"[ariz(a) — 1]
M,(o) = (14)

o(1 + 0 — 27 ™)

which can be Laplace inverted numerically to give g, (X).
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The variance of the gain is then Var (G) = py(l) —
#*(1). The factor
pa(x)

F(x) = =5 (15)
w(x)
evaluated at x = [, is the excess noise factor of the APD.
The autocorrelation function

R(x, x3) = E{Z(x,)Z(xz)}

may also be derived using a similar approach. We provide
an expression for R(x), x;) only in the asymptotic case,
to be discussed next.

D. Asymptotic Results

In accordance with the theory of age-dependent branch-
ing processes, the first and second moments, w(x) and
2 (x), become asymptotically exponential functions of x
asx — oo [16]

p(x) ~ Ce®™ (x> d)

(16)
and

w(x) ~ G (x> d) (17)

where 8 is the Malthusian parameter of the age-dependent
branching process. The parameter 3 is the solution to the
Malthusian equation

2 SO e Ph(y)dy = 1. (18)
The constants C, and C, are given by
1
G = - (19)
28 SO ye Ph(y) dy
and
2¢t S e h(y)dy
0
G = (20)

1-2 g e Ph(y) dy
0

The asymptotic excess noise factor is independent of x,
and is given by

C
F(x) = 2 £ F,. (21)
o
The asymptotic autocorrelation function is
R(x;, x) ~ CeP™ ™2 (x; > d, x, > d) (22)

so that the random variables Z(x,) and Z(x,) are asymp-
totically fully correlated.
In the fixed dead space case

B +1

C -

"7 2B(DB + D + 1) (23)
HC:ESS

C={72-F (24)
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Fig. 1. Mean value of the number of electrons w(X) as a function of the
scaled distance X = ax, for different values of the scaled dead space
parameter D = ad. These functions are asymptotically exponential.

Excess noise factor F(X)

0.00 *.00 200 3.00

Scaled distarce X= ax

4.00

Fig. 2. Excess noise factor F as a function the scaled distance X = ax for
different values of the scaled dead space parameter D = ad. The dashed
lines represent the corresponding asymptotic values Fo,.

where B = 3/« is the scaled Malthusian parameter and
it is the solution to the equation

2¢ PP —B=1 (25)

and where the reader is reminded that D = od is the scaled
dead space.

We will discuss the results for the fixed dead space case.
The scaled Malthusian parameter B in (25) approaches 1
as D approaches 0. Figs. 1 and 2 depict the exact behavior
of u(X) and the exact and asymptotic behavior of F(X),
respectively, for different values of D. Convergence to
asymptotic values is faster as D approaches 0. For large
D, F is a nonmonotonic function in the vicinity of the
origin. This effect increases with increase of D. When D
= 0, the process is the usual Markovian (continuous)
branching process for which p(X) is exponential and
F(X) approaches 2 monotonically. It is also seen that both
p(X) and F(X) decrease in magnitude for all X as D
increases. In Fig. 3, the exact and asymptotic excess noise
factor F are plotted as functions of the mean gain G. Fig.
4 is a plot of the asymptotic excess noise factor Fy, as a
function of D. It shows that F,, drops from 2 to 1 as D
varies from 0 to oo.

E. Signal-to-Noise Ratio

Although the presence of dead space has the advantage
of reducing the excess noise factor, this is accompanied
by a reduction in the mean gain, so that it is not clear
whether dead space improves the performance of an op-
tical receiver. We proceed to show that it does indeed.
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Fig. 3. Dependence of the excess noise factor F on the mean gain G for

different values of the scaled dead space parameter D = ad. The dashed
lines represent the corresponding asymptotic values F,.
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Fig. 4. Dependence of the asymptotic excess noise factor F,, on the scaled
dead space parameter D = ad.

The simplest measure of performance is the signal-to-
noise ratio (SNR). Consider a digital communication sys-
tem receiving a photon flux ¢ (photons per second). As-
suming Poisson photon statistics, the SNR of the total
charge accumulation in the detection circuit in a time in-
terval T is given by [26]

TG*
sNR = —219
GF + —

oT

where o2 is the variance of the circuit noice charge (in
units of number of electrons) and the quantum efficiency
of the APD is assumed to be unity. If an analog receiver
is used instead, then (26) remains applicable provided that
T = 1/2B where B is the receiver bandwidth. The factor
¢T is the SNR for an ideal photon-noise limited receiver.
The performance factor

(26)

2
e (27)
2

G°F + oT
therefore represents the SNR reduction due to gain fluc-
tuations and circuit noise. The dependence of this factor
on the dead space is implicit in F and G, as discussed
earlier.

Fig. 5 displays the performance factor P versus the
mean gain G for fixed values of the circuit-noise param-
eter 0_2/ ¢T and for different values of D. For a given mean
gain G and a specified value of ¢?/¢T, the performance

improves, since F decreases, with increasing D. For D =
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Fig. 5. The performance factor P as a function of the mean gain G for
different values of the scaled dead space parameter D = «d. The dashed
lines represent the corresponding asymptotic (G = ) values P.,. The
circuit-noise parameter g2/ ¢T is assumed to be 1. The receiver signal-
to-noise ratio is proportional to P.

o
©

Performance factor P(D)

Scoled dead spoce D= ad

Fig. 6. The performance factor P as a function of the scaled dead space
parameter D = ad for different values of the scaled multiplication region
length L = al. The circuit-noise parameter o> /¢T is assumed to be 1.

0, P increases at first as a function of G, and then de-
creases reaching an asymptotic value of 3 since Fo, = 2.
For D > 0, P first increases with G, reaches a maximum,
and thereafter decreases, approaching an asymptotic value
P, = 1/F,. There is, therefore, an optimum value of the
mean gain G at which the performance factor P is maxi-
mized. This optimum value Eop, decreases as D increases
and increases as o> /T increases.

The above conclusion, regarding the dependence of P
on D, is based on the assumption of a fixed mean gain G.
Since G itself decreases with increasing D, it is perhaps
more useful to examine the effect of D on P for a device
with fixed multiplication-region length /. Fig. 6 is a plot
of P as a function of D for a fixed value of ¢*/¢T and
different values of the scaled length L = «l. It is clear
that for given values of L and 02 /T there is an optimum
dead space D, which maximizes P.

The role that F plays in the SNR is most important when
the circuit-noise parameter o /¢ T is small in comparison
with G since the decrease in F due to dead space has a
beneficial effect on the SNR. On the other hand, when the
ratio 62/$TG? is large compared to F, then the SNR is
mainly dependent on G and therefore deteriorates with in-
creasing D.

F. Comparison Between a Dead-Space-Modified
Conventional Device (DAPD) and a Multilayer
(Superlattice) Device (SAPD)

Dead space tends to localize the ionizations to positions
separated by at least the dead space. It is therefore of in-
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terest to compare the behavior of the dead-space-limited
conventional avalanche photodiode (DAPD) with the
multilayer (superlattice) avalanche photodiode (SAPD)
in which ionizations occur at specific positions deter-
mined by the structure [24].

Consider an N-stage SCM SAPD for which multipli-
cation with probability P can occur only at positions sep-
arated by distances §. The mean gain G;, and the excess
noise factor F,; are then given by [9]

(1+p

- <1 —P> Gy — L
1+ P Gy

To compare this device with a DAPD, we assume that the
two devices have the same length [ and that P = a4, i.c.,
the distributed multiplication in the conventional DAPD
is equal to the lumped probability of ionization in the dis-
crete device (SAPD). We further assume that the two de-
vices have equal mean gain (G,; = G) and compare their
excess noise factors F,; and F, as functions of G = Gy,.

By equating G, which is a function of L = aland D =
ad, to G,;, we obtain the value of & necessary for the
equivalence between the two devices. Since G;, varies be-
tween ¢ and 2%/ as & vanes from 0 to 1/, and since G
is upper-bounded by %! for any D, the comparison is con-
sidered only for gains G satisfying the inequality

G, (28)

and

Fs]

(29)

G = 2% (30)
The results are shown in Fig. 7 for D = 0.1. For all val-
ues of the mean gain G, Fj; is smaller than F. In partic-
ular, the asymptotic value of F; is given by

1-A
F,.=1+—1—"2 31
sl 1+ Am ( )
where A, is the solution, in the unit interval, of the equa-
tion

Aim(uAm):B (32)
and B is the scaled Malthusian parameter of the age-de-
pendent branching process. This gives F;;, = 1.42 as
compared to 1.71 for the DAPD with D = 0.1.

Instead of comparing the DAPD and SAPD with ad
equated to P as above, we now equate the separation &
between the stages of the SAPD to the dead space d of
the DAPD. As before, the two devices are taken to have
the same length and the same mean gain. Equating G with

Gy, =(1+ P)'/? gives the desired value of P

= (G)/" - (33)

Since in this case G,, varies between 1 and 2!/4 a5 P varies
from O to 1, the comparison will be considered only for
gains satisfying the inequality

G < 24 (34)

1981

Excess noise foctor F(G)

Mean goin G

Fig. 7. Dependence of the excess noise factor F on the mean gain G for i)
a DAPD with scaled dead space parameter D = ad = 0.1 and scaled
multiplication region length Lg = alg corresponding to a mean gain G
(solid curve); ii) an SAPD with ionization probability per stage P = b
and 15/6 stages, where 8 is chosen so that the mean gain G, equals the
mean gain of the DAPD G (dashed curve); iii) an SAPD with I5/d stag_es
and jonization probability per stage P chosen so that the mean gain G,»
= G (dotted curve).

The results are displayed in Fig. 7 for D = 0.1. For all
values of G,

_ 1-P\ /G, -1
&“*<1+J< az>

is greater than F. The asymptotic value of F, is given by
1 -P,
1+ P,

Fs2m: 1+

(35)

where
P, = e — 1. (36)

This gives Fy,, = 1.84 as compared to 1.71 for the DAPD
with D = 0.1.

In summary, the SAPD may or may not outperform the
DAPD, depending on the selection of the device param-
eters used for the comparison.

IV. IMpPULSE RESPONSE FUNCTION

The time course of the total current generated in the
external circuit due to all the electron-hole pairs initiated
by one electron at ¢ = 0 is related to the stochastic process

Z(x) by (1d). Using the scaled variables X = ox and
L = «al, (1d) gives
L
i(r) = SO i,(t, X) d(Z(X)) (37)
where
q . Y
em=ifole(-3) o)
‘v [ . Y . ¢ J
| U Vg u V'
V, = av,
and

1 1 1/1 1

— = =—(—+—=)

V' av' a\v, v
We now examine the statistics of i(¢) assuming that the
velocities of the carriers are everywhere the same.
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Fig. 8. Mean impulse response function E{i(¢)} for a DAPD as a func-
tion of time 1, assuming o = 5000 cm™', / = 10 gm, v, = 10’ cm/s,
v, = 5 x 10® cm/s, and different values of the scaled dead space pa-
rameter D = ad. The dotted curves represent the corresponding approx-
imate solutions E {i(7)}, valid for L >> D.

A. Mean
The mean of the impulse response function is given by
L
E{i(n} = go ip(1, X) d(E{Z(X)})
L
= SO (1, X)d(p(X)). (38)

Using the results obtained earlier for x(X), the integral
in (38) was evaluated numerically and the graphs in Fig.
8 were generated for different values of the scaled dead
space D = ad, using device parameters & = 5000 cm ™',
I =10 ym, v, = 10’ cm/s, and v, = 5 X 10°cm//s. The
results for the D = 0 case agree with those obtained pre-
viously [8, fig. 2, dashed curve]. We observe that as D
increases, the magnitude of E{i(r)} decreases every-
where, implying a reduced area (mean gain), which con-
firms our earlier results.

If L >> D, the asymptotic value for u(X) (see (16))
can be used in (38) to give the following analytic expres-
sion for the mean current:

IEEE TRANSACTIONS ON ELECTRON DEVICES. VOL. 37. NO. 9. SEPTEMBER 1990

cm/s, and v, = 5 X 10° cm/s. The agreement with the
solid curves representing the exact solution is gratifying.

B. Standard Deviation

The second moment of i(¢) is

E{i*(1)}

S: S: i(e, X))i(t, X,)
- E{d(Z(X,)) d(Z(X,))}

L pL 62
So So (e, XUt %) 53 5%,

: R(Xl, Xz) dX, dX,

(40)

where R(X,, X,) is the autocorrelation function of the
process Z( X ). Using the asymptotic expression for R(X;,
X,) given in (22), we obtain

. C , 2
E{r(n} = Z[E{in}] (> D). (41)
1
With the help of (21), the variance of i(¢) is then

var (i(1)) = (Fo — 1)[E{i(z)}]2 (L > D).

(42)

Thus the signal-to-noise ratio SNR, [E{i(f)} 1*/var
(i(1)), is a constant equal to ( F,, — 1)7', that is inde-
pendent of time. Fig. 9 is a plot of E{i(z)} when L >>
D for different values of D, with « = 5000 cm™', [ = 10
um, v, = 10’ cm/s, and v, = 5 X 10° cm/s, together
with its one standard deviation (SD) limits (shaded re-
gion), i.e., E{i(f)} + «var (i(#)). It is seen that as D
increases, the SNR increases everywhere as a result of the
decrease in F,, as discussed earlier.

0, t<0

qu’ 0<t=<r,

L

gC, BV, BD vV, ,

E{i(t)} = |:(Ve+Vh)(e e )+a ) T, <t =T (39)
C , V.
i [(Ve + Vet — v, e — v,e®’ + —"J , 1T <t=T,
i

C .

Y PI— i
| 0, t>T;

where 7, = D/V,, 7' = D/V', T, = L/V,, and T; =
L/V'. The dotted curves in Fig. 8 represent the approxi-
mate behavior of E{i(¢)} given by (39) for different val-
ues of D, with « = 5000 cm™', I = 10 pm, v, = 10’

V. CONCLUSION
Dead space has important effects on the noise properties
of continuous multiplication APD’s. Using an age-depen-
dent branching process approach, we found that dead
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Fig. 9. Mean impulse response function E{i(r)} for a DAPD as a func-
tion of time 1, assuming & = 5000 cm™', / = 10 pm, v, = 10" cm/s,
v, =5 X 10° cm/s, along with its one standard deviation (SD) limits
for different scaled dead space parameters D = ad: (a) D = 0, (b)D =
0.1, (¢) D = 0.5. The results are valid for L > D.

in ps

space reduces both the mean gain and the excess noise
factor. Dead space also affects the time dynamics of the
response, by reducing the mean and standard deviation of
the impulse response function for all times. Inasmuch as
real devices have an intrinsic dead space built into them,
the results reported here may therefore elucidate some
enigmatic results in the literature [27].

To evaluate the effect of dead space on the performance
of APD’s, we have determined the signal-to-noise ratio
(SNR) of an optical receiver that includes the effect of
photon noise and electronic circuit noise. The SNR was
compared for two receivers using APD’s of the same mean
gain, one without dead space and the other with dead
space. It was found that the presence of dead space im-
proved the SNR. For a given dead space parameter D =
ad, a being the ionization coefficient and d being the dead
space, there is an optimum mean gain for which the SNR
is maximized, if all other parameters are fixed. We also
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found that an optimum value of the dead space parameter
D exists at which the SNR is maximized for a device with
a fixed multiplication-region length. Apparently, the re-
duction in the noisy clusters achieved by the dead space
outweighs the attendant loss of carriers.

Two comparisons between a conventional APD with
dead space (DAPD) and a superlattice APD (SAPD) were
carried out based on the SNR. In the first comparison we
assumed that the two devices had equal multiplication-
region lengths and equal mean gains, with the SAPD hav-
ing an ionization probability of P = a8 per stage, where
6 is the length of each stage. In this case, the performance
of the SAPD was found to be superior to the DAPD. In
the second comparison we assumed again that the t vo de-
vices had equal multiplication-region lengths and equal
mean gains, but the stages of the SAPD were separated
by the distance d, the dead space of the DAPD. In this
case, the performance of the DAPD was superior to that
of the SAPD.

We conclude that the SAPD may or may not outperform
the DAPD depending on the selection of the device pa-
rameters used for the comparison.
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