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Counting  Distributions  and  Error  Probabilities  for 
Optical  Receivers  Incorporating  Superlattice 

Avalanche  Photodiodes 

Abstract-Exact  gain  distributions  and  electron  counting  distribu- 
tions  are  presented  for  superlattice  avalanche  photodiodes  that  operate 
by single-carrier  transport  perpendicular  to  the  superlattice  planes. 
The  characteristic  shapes of these  distributions  are  compared  with  those 
of the  single-carrier  conventional  avalanche  photodiode  and  the  pho- 
tomultiplier  tube.  The  electron  counting  distributions,  which  assume 
Poisson  photocarrier  injection,  are  used  to  calculate  the  error  perfor- 
mance of a  simple  optical  communication  system.  This  performance is 
compared  with  that  achievable by  a  single-carrier  conventional APD 
receiver of identical  quantum efficiency and  gain. For simplicity of cal- 
culation,  the  system  consists of a  transmitter  emitting  light  pulses  con- 
taining  a  Poisson  number sf photons  and  a  maximum-likelihood  inte- 
grate-and-dump  receiver.  It  makes  use of binary on-off  keying  and is 
subject  to  noise  events  arising  from  multiplied  background  radiation 
andlor  multiplied  dark  noise.  The  performance of the  superlattice  pho- 
todiode  receiver  turns  out  to  be  always  superior  to  that of the  single- 
carrier  conventional  photodiode  receiver,  for  all  values of the  gain. 
The  advantage  can  attain  several  orders of magnitude (even  though  the 
excess  noise  factors for the  two  devices  lie  within  a  factor of two).  The 
superlattice  receiver  with  high  impact-ionization  probability  is  shown 
to  behave  like  an  ideal  photon  counter  with  the  same  quantum effi- 
ciency,  even if the  device  has  many  stages.  The  deleterious  effects of 
receiver  thermal  noise  on  probability of error  are  examined. 

I. INTRODUCTION 

A VALANCHE photodiodes (APD’s)  are important 
devices, in large part because of their use as  detectors 

in fiber-optic communication  systems [l]. They operate 
by converting clusters of detected photons, associated with 
information-carrying pulses of light  in  a digital commu- 
nication system,  into  cascades of electrons.  These  cas- 
cades have sufficiently high charge to be readily detected 
by the  electronics following the  APD.  The multiplication 
process’ introduces noise because  the number of electrons 
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created per detected photon varies from trial to trial. 
Nevertheless, this noise is tolerated as liong as it is small 
in comparison with the  additive thermal noise of the am- 
plifiers and other  electronics following the  APD. 

One way of characterizing multiplicative noise in a 
photodetector is by means of the excess; noise factor 17,. 

Expressions for F, have recently been ]presented  in uni- 
form notation [2]  for several kinds of photodetectors: 
the  double-carrier  conventional  avalanche photodiode 
(CAPD), the double-carrier  superlattice  avalanche pho- 
todiode (SAPD),  and  the photomultiplier tube (PMT). In 
all cases,  the  multiplicatior was assumed to be instanta- 
neous. 

The noisiness of both the  CAPD and t.he SAPD is min- 
imized under single-carrier-initiated/sin,gle-carrier multi- 
plication (SCISCM)  condition^.^ The  excess noise factors 
for both devices then lie below 2  for  all values of the  aver- 
age multiplication { M ) . This can be seen  quite clearly in 
the graphical representation provided in [2,  Fig. 31. Al- 
though the theoretical excess noise factor  for  the SAPD 
is always lower than that of the CAPD [;!I, the differential 
is never very large  since F, < 2 for both cases.  The  ex- 
cess noise factor  for  a high-gain first-dynode (Gap)  PMT, 
with Poisson secondary-emission  multiplication, is also 
presented in [ 2 ,  Fig. 3].4 F, for  the ?NIT can fall below 
that for  the  SAPD,  but,  again,  the range is restricted to 1 
I F, c 2. 

CAPD’s with high quantum efficiencies and near-ideal 
noise behavior have, in fact, been fabricated. At KCA, Si 
devices have been made that operate in the wavelength 
region from 0.4 to 0.95 pm, with quantum efficiencies q 
= 0.8. Some of these exhibit excess noise factors as low 
as F, = 2.6, corresponding to kc (ratio of hole- to elec- 

2 

’Instantaneous multiplication  means  that  the  detector  integration  time is 
sufficiently long so that the  entire  current  pulse  is  captured  as a charge. 

3The  designation  SCISCM  means that  a only single kind of carrier  (viz., 
either  electrons  or holes) initiates  the  avalanche  process and  that  only this 
kind  of  carrier  creates  new  carrier  pairs  by  impact  ionization.  This is to  be 
distinguished  from  the  designation  “single  injected  electron,”  used  later, 
which  means that only one electron is injected. 

41n the  example  presented  in [ 2 ,  Fig. 31, it is  assumed  that  all  dynodes 
of  the PMT  have  Poisson  secondary-emission  multiplication  and  that  the 
first dynode  has  a  gain  that  is 10 times as  large as that of the  following 
dynodes ( A  = 10). The average  multiplication of the one- and four-stage 
(m = 1 ,  4)  GaP  PMT  is  approximately  the  same  as  that of the five- and 
ten-stage (m = 5, 10) SAPD,  respectively. 
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tron-ionization coefficients) = 0.006 at ( M )  = 100 , ?]. 
Even quieter  devices, with F, < 2.2 corresponding 1.1,) kc 
.< 0.002 at ( M )  = 100,  are possible [4]. Si CAPD de- 
vices with essentially SCISCM properties are therei ctre 
currently available  for use at wavelengths below abol 1 1 
pm. 

However, in the wavelength region X = 1.3 to 1.6 I .  ~ n ,  
which is of interest for fiber-optic communications [ 11 Si 
i,s inadequate and  CAPD's  are generally fabricated ftzlm 
quaternary 111-V materials. Unfortunately kc = 1 in t h e  
materials so that F, is substantially greater than 2 [5]. 1) u k  
current and leakage  current may also present difficulties 
in such devices [SI. 

As a  result,  there  have recently been a number of pro- 
posals suggesting the use of novel heterostructure  devi :es 
that reduce tunneling currents and enhance  the ionizati1.m- 
coefficient ratio (i.e., render the multiplication more si'n- 
gle-carrier-like) [SI, [ 6 ] .  This would open the way to sr6 d l  
high-quantum efficiency low-voltage  low-noise  detecti)rs 
in the near infrared.  The first such proposal, by  Chin et 
al. [7], suggested the use of a multiquantum-well super- 
lattice  avalanche photodiode (SAPD) consisting of an 31- 
ternating series of wide- and narrow-bandgap layers. It 
has been shown both experimentally [SI-[lo], and tly 
means of many-particle Monte  Carlo simulations [ 1 ! 1, 
[ 121, that such a structure can indeed provide an enhanc:ed 
ionization ratio.  Since  the  carrier transport is perpend.1,:- 
ular to the planes of the  superlattice,  the  carriers gain ( . ] I -  

ergy at the heterointerface potential discontinuity at each 
period of the multilayer structure. 

Other superlattice configurations that  have been cons.& 
ered include the  graded-gap  staircase  SAPD devised :~y 
Williams,  Capasso, and Tsang [13]-[ 151 and investigal2d 
by Matsuo et al. [16];  the  doped-quantum-well SA1 I3 
conceived by Blauvelt et aZ. [ 171 and studied by  Brenn an 
[ ls] ;  and the  stored-carrier multiquantum-well SAPD of 
Smith et al. [19] (see also  Chuang and Hess [20] and C a- 
passo et d .  [21]). There is currently an effort underwy 
at AT&T Bell Laboratories to fabricate  a  staircase SA1 113 
for operation in this longer wavelength region [22].  Hcv\~- 
ever, residual hole ionization can be a serious source cuf 
unwanted noise in all of these structures and it  is  impt 1'- 

ative to minimize  this effect [2], [ 1 13, [ 121, [ 181. 
Although PMT's are precluded by their  large  size from 

candidacy as components in modern fiber-optic system! s , 
their excellent noise characteristics  serve as a benchma -:I< 
for  other  detectors.  It is for this reason that a discussic1111 
of their properties is included here.  Other  desirable  pro 1- 

erties exhibited by PMT's include low dark  current, hil, 11 
gain, good pulse  resolution, and ease of operation in t l ~  
photon-counting mode. On the negative side,  aside  fro 11 
their large  size,  are limited quantum efficiency, high-vol t -  
age  requirements,  luminescence  noise, and the presen1.x: 
of afterpulsing due to H+ ions  or  inverse photoemissi'c 11 

Although the  excess noise factor is a useful statistic fi,br 
characterizing the noisiness of detectors, it has its lim i .  
tations.  It  represents, in a compact way,  the lowest ordi,:.l* 

~ 3 1 .  

statistical properties of the gain fluctuations introduced by 
the multiplication process.  However, it does not provide 
a complete statistical description of the electron  current. 
Although it is useful for the calculation of quantities such 
as the signal-to-noise ratio (SNR) for analog detection,  in 
general it is inadequate for describing the performance of 
a digital-signal information transmission system [24], 
[25]. Appropriate measures for  the performance of such 
systems are probability of error and probability of detec- 
tion.  These quantities require a more complete statistical 
description of the  electron  current, such as the electron 
counting distribution.  Indeed,  these performance mea- 
sures are especially dependent on the tails of the counting 
distributions which are generally only weakly reflected in 
the excess noise factor.  Certain photodetectors will have 
more favorable shapes for minimizing error probabilities 
than will others. 

The purpose of this paper is twofold.  First we calculate, 
and graphically display, representative exact gain distri- 
butions (single-electron injection) and electron counting 
distributions (Poisson electron injection) for single-car- 
rier CAPD's,  single-carrier SAPD's, and PMT's.  The 
characteristic shapes of these distributions are compared 
and contrasted for  the three detectors.  Second, we use the 
electron counting distributions to calculate the probability 
of error  achievable by a  simple digital optical communi- 
cation system.  The performance of optical receivers in- 
corporating CAPD's and SAPD's with the lowest possible 
noise (i.e., single-carrier devices) are  compared.  For sim- 
plicity of calculation,  the system is assumed to consist of 
a transmitter emitting light pulses containing a Poisson 
number of photons (e. g., a  laser  or LED) and a maxi- 
mum-likelihood optical receiver  [26],  [27]. It makes use 
of binary on-off keying (OOK) and is subject to noise 
events that are assumed to arise from multiplied back- 
ground radiation and/or multiplied dark noise [27]. Al- 
though inter-symbol interference, fiber noise, and detec- 
tor l /f  noise are  all assumed negligible, the deleterious 
effects of receiver thermal noise on performance  are  ex- 
amined for  these  two  detectors. 

11. DETECTOR EL.ECTRON COUNTING STATISTICS 
Consider  a point process representing the primary (pho- 

ton-generated) carriers. Let the number of these carriers 
generated within the  time interval [0, 2'1 be described by 
the  discrete random variable a. Let  each of these primary 
carriers, in turn, independently produce M secondary (or 
daughter) carriers. M is  the  discrete gain random variable 
representing the  carrier  multiplication.  The total number 
of electrons n produced at the  output of the  device in [0, 
TI is the quantity of interest. 

If a and M are statistically independent, which is safe 
to assume, then the overall electron count mean and 
variance are given by [2],  [23], [28]-1311 

( n )  = ( M ) ( a )  (1) 

Var (n) = ( M > 2  Var (a> + (a>  Var ( M >  (2) 
and 



TEICH et al.: COUNTING  DISTRIBUTIONS  AND  ERROR  PROBABILITIES 1477 

respectively.  The  angular brackets ( - ) represent ensem- 
ble averages.  Equation (2) can  be written as [2] 

Var (n) = ( a )  ( M > ~ [ s ,  + (F, - 111 (3) 

where F, represents  the  excess noise factor  for  the  detec- 
tor 

Fe = ( I V ~ ) / ( M ) ~  (4) 

and 5, represents the  Fano  factor  for  the photogenerated 
carriers, 

5, = Var (u ) / (u ) .  (5 )  

When the  device  is  illuminated by Poisson  photons, 5, = 
1, whereupon (3)  reduces  to the familiar  expression  [2] 

Var (n) = ( u ) ( M > ~ F , .  (6) 

The principal interest  here is the  entire  electron  count- 
ing distribution q ( n ) ,  rather than just its mean and vari- 
ance  as  described  above.  This is most easily obtained via 
the moment generation  functions (mgf 'sj [32] 

ex($> = (exp ( - 4 )  (7) 
for  the  counting processes x = a ,  M ,  and n. The general 
relationship among the mgf's under cascading is well 
known [30]-[33] 

Qn(s) = &,[-In Q ~ ( s ) l *  (8) 
Under Poisson illumination,  the mgf for the Poisson pho- 
tocarriers (primary events)  is  [32], [33] 

Qa(s> = exp [ ( a )  (e-s - I)], (9) 
whereupon (8) becomes [32], [33] 

Q,G> = ~ X P  [ ( a )  (QM@) - 111. (10) 
Equation (10) represents  the moment generating function 
for  a so-called generalized Poisson distribution [32]. The 
count mean and  variance, (1) and  (2), follow immediately 
by differentiation [32]. 

The  electron  counting  distribution q(n) is contained in 
(10). The  most  direct way to obtain it is by replacing e-' 
by z ,  which converts (10) to  a probability generating  func- 
tion (pgf) Gn(z), i.e., 

G,(z) = (2") = Q,(s = -In z ) .  (1 1) 

The  electron counting probabilities q(n) may then be ob- 
tained  from  the pgf  by means of the formula [34] 

The gain distribution p ( M ) ,  representing the response to 
a single injected e l e ~ t r o n , ~  is obtained  in  the  same way 
but QM(s)  and GM(z) are used rather than (10) and (1 1) 
1161. 

In the following sections, we present formulas  for  the 
electron  counting  distributions  for  the single-carrier 
CAPD,  single-carrier  SAPD, and PMT, respectively. The 
gain mgf QM(s), representing the  response to a  single in- 

jected  electron, is, of course, different for each case. To 
distinguish the results,  all  quantities  are labeled with the 
designations y, m, and u for  the  three  detectors, respec- 
tively. It is assumed that absorption takes place outside 
the multiplication region. Instantaneous multiplication is 
assumed in all casesa2 

111. COUNTING  STATISTICS FOR THE SINGLE-CARRIER 
CONVENTIONAL APD 

The gain distribution for  the single-carrier CAPD, 
p y  ( M ) ,  is obtained from  the Yule-Furry lbirth process [2], 
[32],  [34]-[36].5  The result is the shifted Bose-Einstein 
distribution,  as was established independently by Person- 
ick [33, Eq. (25)] and  McIntyre  [37,  Eq.. (16)]. McIntyre 
also showed that, given an arbitrary (deterministic) num- 
ber of photocarriers,  the  increase in the electron popula- 
tion is described by the negative-binomial distribution. 
This is in accord with well-known results for the Yule- 
Furry  process  [32]. 

The shifted Bose-Einstein probability distribution is 
1331 

i o ,  1M = 0 

(134 
where the mean electron number (average gain) ( M y )  is 

< M y )  = exp ( Y )  (1 Jb)' 

var (My) = exp (Y) [exp ( Y )  - 11. (13c) 

and the  variance is 

This distribution is plotted versus the gain random vari- 
able Min Fig.  1 fory = 0.55, 1.76, and 2, corresponding 
to ( M y )  = 1.73,  5.83, and 7.41, respectively.  The  dis- 
tributions are monotonic decreasing and become progres- 
sively broader  as  y  increases.  The excess noise factor,  ob- 
tained by using (4),  (13b), and (13c), is 

F, = 2 - exp ( - y ) .  (13d) 

If the number of initial photocarriers is instead Poisson, 
the  electron counting distribution q,,(n) is the Poisson- 
driven shifted-Bose-Einstein distribution [34:], [33, Eq. 
(35)].  Its  statistical properties follow from the mgf  of the 
Yule-Furry process with a Poisson hitial population 
QAY, S) [34, Eq. (2411 

1 - exp (-s) 
1 - [ 1 - exp (: -y)] exp (-x) 

- -1. 
5Yule [35] was  concerned  with  the  growth of species in some genus of 

animals or plants.  Furry [36] considered the development of an  idealized 
cosmic-ray  shower from a single  initial  particle. 
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ChPD: SINGLE INJECTED ELECTRON 
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Fig. 1. Gain  distribution p , (M)  versus  gain M for  the single-carrier-irlil:i- 

ated/single-carrier multiplication CAPD.  This is the  electron counl Irg 
distribution in response  to  a  single  detected  photon.  The  characteriktic 
branching  parameter of the  device  is  denoted y; the  average  gain  is (i t l , . )  
= exp ( y). Theoretical  gain  distributions  are  shown  for y = 0.55, 1. 715,  
and 2 ,  corresponding  to  average  gains of 1.73, 5.83, and  7.41, respx-  
tively.  The (shifted  Bose-Einstein) distributions, which are  monotc'lic 
decreasing,  become  progressively  broader  as y increases. 

The quantity n represents the number of electrons at  :lhe 
output of the  device, ( a )  is the  average number of 1~1ri- 
mary Poisson photocarriers, and y is the characteri:s:i.c 
branching parameter associated with the Yule-Furry null- 
tiplication process in the  detector (i.e., the product of 1.he 
impact-ionization probability a or p,  and the width of 1 t-le 
depletion region w [2]). 

The  electron count mean and variance may be obtain :d 
in several  ways: by direct differentiation of (14), from ( 1 ) 
and (2) using (13b) and (13c), or from [34]. They are 

(n,) = (0) exp ( y )  (1t:a) 

and 

Var (ny) = ( a )  exp ( y )  [%exp ( y )  - 11 (15,kl) 

respectively. 
The probability q,(n) of observing n electrons at tile 

detector output follows from (14) with the help of (:I 1) 
and (12), or directly from [34, Eq. ( 2 8 ) ] .  It is writl.,:I? 
most directly in terms of the recursion relation 

CAPD: POISSON INJECTED ELECTRONS,<a>=l 

- E 0 . 4 1  

W 

y=. 55 

y = l .  76 

Y"2.0 

NUMBER OF COUNTS n 
Fig. 2.  Electron  counting  distribution qJn)  versus  number of electrons n 

for the  SCISCM  CAPD, in  response to a  Poisson-distributed  number of 
injected electrons  with mean  value (a) = 1. Theoretical  counting  dis- 
tributions  are  shown  for y = 0.55, 1.76, and 2, corresponding to average 
gains of 1.73, 5.83, and 7.41, respectively.  The results  differ  from  those 
illustrated in  Fig. 1 for a single  injected  electron,  although  the  means 
are  identical.  The  detection of a  Poisson  number  of  photons  causes  the 
counting  distributions  to  become a  weighted  repetition  of the  distribu- 
tions  shown  in Fig.  1.  The registration of zero  events  becomes  possible 
and the variance of the  distribution is substantially increased. 

where 

~ , ( k )  .= (k  + 1) exp (-2y) 11 - exp ( - y ) l k .  

This distribution is shown in Fig. 2, for y = 0.55, 1.76, 
and 2, corresponding to average gains of 1.73, 5.83, and 
7.41, respectively,  since the mean number of Poisson in- 
jected electrons has been chosen to be ( a )  = 1. The dis- 
tributions q, (n) differ substantially from those illustrated 
in Fig. 1 for  a single injected electron p y  (n) ,  even though 
the means are identical ( (n ,}  = ( a )  ( M y )  = ( M y ) ) .  The 
detection of a Poisson number of photons makes it pos- 
sible to register zero events and also broadens the distri- 
butions considerably.  Webb et al. [24, Eq. (20)] have 
provided an approximation to (16) under certain restric- 
tions. 

To provide a basis for comparison with the  SAPD (for 
which double-carrier distributions are not available), only 
SCISCM electron counting distributions have been pre- 
sented for  the  CAPD.  More general electron counting dis- 
tributions, applicable for  a  CAPD with Poisson initial 
population and double-carrier  multiplication,  are  avail- 
able.  These  have been obtained by Personick [38], Con- 
radi [39], and in approximate form by Webb et al. [24, 



TEICH et a l . :  COUNTING  DISTRIBUTIONS AND ERROR  PROBABILITIES 1479 

SAPD: SINGLE INJECTED  ELECTRON 
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Fig.  3. Gain  distribution p , (M)  versus  gain M for the  single-carrier SAPD. 

This is  the electron  counting  distribution in  response  to a  single detected 
photon. The  parameter m is  the  number of stages  in.the device  and P is 
the electron  impact-ionization  probability.  Theoretical gain distributions 
are  shown  for m = 3 with P = 0.2, 0.8,  and 0.95, corresponding  to 
average gains of 1.73,  5.83, and 7.41, respectiVely.  Nonmonotonicities 
in  the distributions reflect failures  to multiply  early in the chain.  The 
average  gain  is (M,,,) = (1 t P)m; it  is limited  to a maximum  value of 
2". Higher values of the gain  random  variable  achieve  greater  probabil- 

and  the distribution narrows  to a delta function  at M = 2". The  results 
ities  as P increases. As P approaches unity,  the  multiple peaks disappear 

presented  here are decidedly  different from those  for the  CAPD  shown 
in Fig. 1 (after  Matsuo et al. [16,  Fig. 41). 

Eq. (20)] .6  A method for  calculating  the  tail probabilities 
with arbitrary accuracy has recently been provided by 
Helstrom [4 11. 

IV. COUNTING STATISTICS FOR THE SINGLE-CARRIER 
SUPERLATTICE APD 

Matsuo et al. [ 161 recently derived the gain distribution 
p , ( M )  for  a  single-carrier instantaneous-multiplication 
SAPD  in  terms of the number of stages of the  device m 
and the  impact-ionization probability per stage P. Al- 
though the analysis was explicitly presented in terms of 
the graded-gap staircase SAPD, it is in fact  applicable  for 
any SAPD in which the  carrier  trans oh takes place  per- 
pendicular to the  superlattice planes! The result is given 

'Similar stochastic  counting processes have been dealt with in the con- 
text of cosmic-ray cascades  where high-energy electrons and  gamma  rays 
play  the  roles of electrons and  holes  in the  APD, respectively [40]. 

'The  results in  [16]  were  derived  for  a  single injected electron.  What is 
called the gain distributionp,(M) in this paper (where M is  the  gain  random 
variable)  was  called  the  electron  counting distribution p,(n) (with  random 
variable N,) in  [16].  Since  the  analysis in  [16] is  valid only for perpendic- 
ular-carrier-transport SAPD's,  it will  not  apply  to the channeling APD  [42], 
[43], nor to  other  devices  in  which  the  carriers  are spatially  separated by 
means of a  transverse field with  transport  taking  place  in  the  plane of the 
layers. 

SAPD: POISSON INJECTED  ELECTRONS,<a>=l  
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Fig. 4. Electron counting distribution q,(n) versus n for the single-carrier 

SAPD, in  response to  a Poisson-distributed  number of injected  electrons 
with  mean value ( a )  = 1. Theoretical  counting  distributions are  shown 
form = 3 with P = 0.2, 0.8, and 0.95, corresponding  to  average gains 
of 1.73,  5.83, and 7.41,  respectively.  The results are quite  different from 
those  illustrated  in  Fig. 3 for  a  single-injected  electron, although  the 
means  are  identical.  The  detection of a Poisson  number of photons  causes 
the  counting  distribution  to  become  a weighted  repetition of the  distri- 
butions  shown  in  Fig. 3 .  This  is  most  evident  for P = 0.95. The  regis- 
tration of zero events  becomes  possible  and  the  variance of the  distri- 
bution is substantially increased.  The  maximum allowed  count  number 
is no longer restricted to 2". 

by the recursion relation [16, Eq. (12)] 

p , ( W  = (1 - P) P m -  l ( W  

M 

+ P P m - l W  - k ) p m - l ( k ) ,  
k = O  

M r 1 , m z l  

p,(O) = 0, m 1 1 

POW) = L 4 4 .  ( 17a) 
The mean and variance of the gain are 

(M,)  = (1 + P)" ( 17b) 

and 

Var (M,) = (1 - P) [(I + P ) ~ ~ - ~  - (1 + P)"-~I 

(17c) 
respectively. This  distribution is shown in Fig. 3 for  a 
three-stage  device (m = 3 )  with P = 0.2, 0.8, and 0.95.  
These  correspond to average gains of 1.73, 5.83, and 
7.41,  respectively. Nonmonotonicities in the distributions 
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reflect failures to multiply early in the chain [ 161. Higher 
values of the gain random variable achieve  greater prob- 
abilities as P increases. As P approaches unity, the IT ul- 
tiple peaks disappear  and  the distribution narrows to a 
delta function at the maximum allowed gain M = 23. 
These results are decidedly different from those for che 
CAPD shown in Fig. 1, which continue to broaden as y 
increases.  The narrowing reflects one of the potential b1:n- 
efits of the  SAPD.  The excess noise factor is obtained 
with the help of (4), (17b), and (174 

F, = 1 + [(l - P)/(1 + P)] [1 - (1 + P)-"l.  (l'ld) 

If the number of initial photocarriers is instead Poisson, 
the moment generating function  for  the  electron count 
Q,(m, s) follows from (10) together with the recursion 
relation for Q,(m, s), which is given by [16,  Eq. (4)] 

Q M ( ~ ,  s) (1 - P) Q M < ~  - 1, s) 

+ P[QM(m - 1, s)I2, m z I 

Q M ( O ,  s) = e-'. (1 8) 

The  electron count mean (n,) and variance Var (n,) 
are most readily obtained from (l), (2), (17b), and ( 1 7 ~ ) ;  
they are 

( n m )  = ( a )  (1 + P)" (19) 

and 

Var (12,) = ( a )  ((1 -t 3 ~ )  (1 + P ) ~ - '  

+ 2(1 4- P)" [(l + P),-' - I]} (20) 

respectively. 
Finally, using (lo)-( 12) and (18) we obtain the electron 

counting distribution q,(n) at the output of the SAPD, in 
response to a Poisson number of photocarriers at the input 

q m ( 0 )  = exp (- (0)) 

where 

A,(O) = 0, for all m 

A,(1) = 1. 

This distribution is presented in Fig.  4  for  a  three-stage 
SAPD (m = 3) with P = 0.2, 0.8, and 0.95, and ( a )  = 
1, corresponding to average gains of 1.73,  5.83, and 7.4 I ~ 

respectively. The results differ substantially from those 
illustrated in Fig.  3  for  a  single injected electron, al- 

though the means are  identical ( ( n 3 )  = ( a )  ( M 3 )  = 
( M3)). The detection of a Poisson number of photons 
causes the counting distribution to become  a weighted 
repetition of the distributions shown in Fig. 3. This is 
most evident for P = 0.95.  The registration of zero events 
becomes possible and the variance of the distribution is 
substantially increased.  The maximum allowed count 
number is no longer restricted to 23. 

When P is sufficiently large, the character of qm(n) il- 
lustrated in Fig.  4 is distinctly different from the character 
of qy (n)  for the CAPD illustrated in Fig. 2, even though 
the means are  again  identical.  This reflects the more de- 
terministic character of the multiplication process in the 
SAPD.  It is also worthy of mention that q,(n) is distinctly 
non-Gaussian and remains so for arbitrarily large mean 
count number. Indeed as P -+ 1, q,(n) becomes the fixed- 
multiplicative Poisson distribution, which is highly scal- 
loped [44]. As will become evident in the  sequel,  this 
characteristic admits the possibility of improved system 
performance. When P is small,  the  SAPD results are not 
dissimilar from those of the  CAPD,  for reasons that have 
been discussed elsewhere  [2]. 

V.  COUNTING STATISTICS FOR THE PMT 

For comparison purposes, we also present the counting 
statistics at the output of a u-stage PMT where all dynodes 
have identical Poisson secondary-emission statistics with 
average multiplication 6. The moment generating func- 
tion for  the gain QM(u, s) is obtained by successive .gen- 
eralization of the Poisson mgf with itself, i.e., [45, Eq. 
(2>18 

Q M ( ~ ,  = Q d 1 ,  -In QM(U - 1, s)), u > 1 

(22a) 
QM(l, s) = exp (6 [exp (-s) - l]}, u = 1 

(22b) 
Q,(O, s) = exp (-s). (22c) 

The probability distribution of the gain pu (M), along with 
its mean and variance, can be found in a variety of sources 
[45]-[48]. The excess noise factor is also well known 
[23],  [2, Eq. (44) with A = 11. 

The gain statistics  for  a single-stage (u = 1) PMT, 
pl(M), are illustrated in Fig. 5 for 6 = 1.73,  5.83, and 
7.41. This represents the Poisson secondary-emission 

'Equation ( 2 )  in [45] should  read 

Qm(s)  = Qd-ln Q>%-l(s)) 

Q&) = Ql(-ln Qd-ln Ql(-ln Q, . . . -In Q,(s)))) 
L v I 

m tunes 

Qds) = exp (-s) 

Q,W = exp  Ia[exp (-s) - 11). 

The  error  was  in transcription; all calculations  and results in [45] are cor- 
rect. In this  paper u plays the  role of m. 
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Fig. 5 .  Gain  distribution p J M )  versus  gain M for  the  single-stage PMT 
with  Poisson  multiplication. This represents  the  secondaty-emission 
electron  counting  distribution  in  response  to a single  detected  photon. 
The  parameter u is  the  number of PMT stages and 6 is the  average  number 
of secondary-emission  electrons  per  photoelectron.  Theoretical  Poisson 
gain  distributions  are  shown for 6 = 1.73, 5.83, and 7.41. There  is a 
finite  probability of observing  zero  secondary-emission  electrons  result- 
ing from  the  failure of the  dynode  to respond to  the  photoelectron.  The 
character  of  the  gain  distribution  is  rather  intermediate  between  that  of 
the  CAPD  (Fig. 1) and  the  SAPD  (Fig. 3). 

electron  counting  distribution  in  response to a  single pho- 
toelectron. Results for  the  single-stage  PMT  are illus- 
trated because the  average  gain values can realistically be 
made the  same as those of the  CAPD and SAPD  for com- 
parison purposes.  Unlike the gain distributions for  the 
CAPD  and SAPD, there is a finite probability that sec- 
ondary emission will result in zero  output  electrons.  The 
character of the gain distribution is rather intermediate  be- 
tween that of the  CAPD  (Fig. l )  and the  SAPD  (Fig. 3).  

For  a Poisson number of initial photoelectrons,  the mo- 
ment generating function  for  the number of electrons at 
the output of the PMT, Q, (u ,  s), is obtained by the use 
of (10) and (22).  Since  the  secondary-emission multipli- 
cations are assumed to be Poisson, the result is simply an 
additional generalization of (22a) with one more Poisson 
moment generating  function. 

The mean ( n u )  and variance  Var (nu) of the output elec- 
tron count are readily obtained  [23], [45]. For  identical 
dynodes, these quantities turn out  to be 

(nu> = (a>6" (23) 

and 

Var (nu) = ( a )  6"[1 + 6( 1 - 6')/(1 - S)] (24) 
respectively. 

6 =7. 41 

NUMBER OF COUNTS n 
Fig. 6. Electron  counting  distribution q,(n) versus  number of electrons n 

for the  single-stage PlMT with  Poisson  secondary-emission  multiplica- 
tion, in  response  to  a  Poisson-distributed  number of injected electrons 

distributions  are shown  for 6 = 1.73, 5.83, and 7.41. The character  of 
with  mean  value ( a )  = 1. The theoretical (Neyman type-A)  counting 

this  distribution  is  somewhat  intermediate  between  that of the Poisson- 
driven CAPD (Fig. 2) and the  Poisson-driven SAPD (Fig. 4); some  evi- 
dence of nonrnonotonicity  can be discerned. 

Finally,  the  electron counting distribution at the  output, 
in response to a Poisson number of carriers at the input 
qu (n)  is given by the recursion relation in 145, Eqs. (16) 
and (17)l. For  a  one-stage PMT, the result is the well- 
known Neyman type-A distribution 1441, [49]. This is 
presented in Fig. 6 for ( a )  = 1. Theoretical counting 
distributions are shown for ( n l >  = 1.73, 5.83, and 7.41. 
Again these distributions differ from those shown in Fig. 
5 even though the means are identical, much as  Figs. 4 
and 2 differ from Figs. 3 and 1, respectively, The char- 
acter of these distributions are also somewhat intermedi- 
ate between those of the Poisson-driven CAPD  (Fig. 2> 
and the Poisson-driven SAPD (Fig, 4); some evidence of 
nonmonotonicity can be  discerned. In the limit as ( a )  in- 
creases with 6 held fixed, it can be shown [44] that the 
Neyman type-A converges in distribution to the Gaussian 
with mean ( n , )  = ( a ) 6  and Var (n l )  = ( a )  6(1 f 6). 

VI.  COMPARISON OF CAPD AND SAPD OPTICAL 
RECEIVER  PERFORMANCE IN THE MULTIPLICATION- 

NOISE-LIMITED  REGIME 

The  electron counting distributions for  the single-car- 
rier CAPD and SAPD  are now used to numerically cal- 
culate  error probabilities for  the simple maximum-likeli- 
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hood integrate-and-dump optical receiver. This will Fer- 
mit a performance comparison to  be made between sys- 
tems incorporating CAPD's  and  SAPD's in the multipli- 
cation-noise-limited domain. Operation in this regime: is 
achieved when the gain is sufficiently high to overcome 
preamplifier thermal noise. 

Let hypotheses Ho and HI represent the  absence of sig- 
nal (noise alone),  and the presence of signal (noise-plus- 
signal),  respectively.  The noise events,  as well as the sig- 
nal,  are assumed to undergo random multiplication in 1 he 
APD. Under these  hypotheses,  the mean number of Pois- 
son injected photoelectrons per pulse are taken to be ( G ~ )  
and ( al ) , and the conditional count probabilities are taken 
to be q(n  1 Ho) and q ( n  1 H I ) ,  respectively. Equations 
(16) and (21) provide the counting distributions qy (n) and 
q,(n) for the CAPD and SAPD, respectively. 

To forge  a reasonable comparison between the two :"e- 
ceivers, the quantum efficiencies q and mean gains ( M )  
of the CAPD and SAPD  are taken to be  identical.  The 
identity of the  quantum efficiencies provides that the same 
mean numbers of photons per pulse fall on  the devices 
under the two hypotheses (i.e., ( a o ) / q  and ( a l ) / q  uncler 
H, and HI, respectively). Equality of the mean gains i s  
provided by equating (13b) and (17b), which gives 

e y  = (1 + P)". (2 5 )  

In maximum-likelihood detection  the observation s p a x  
Z is divided into two parts, 2, and Z1, in accordance with 

zo = CnIq(nlH0) 2 q(nIH1)) (26 4 

z1 = blq(n lH0)  < 4(nIH1)1. (26b) 
When an observation falls in Zo, we  say Ho; when it falls 
in Z1, we say H I .  The  error probability P ,  is then 

P ,  = i(PF + PM) (2 7) 

where the  false-alarm  and miss probabilities are given by 

pF = q ( n l H O )  (2 8:) 
Zi 

and 

PM = q(n  (2 9 )  
ZO 

respectively. 
System performance is determined by the  eiror prob,a- 

bility P,, as specified in (27)-(29). In Figs.  7 and 8 we 
plot P,  versus the Poisson driving (signal-to-noise) rat:.o 
( a l ) / (  ao)  for  the  CAPD (dashed curves) and SAPD (dot- 
ted curves) with several sets of parameters.' The m e a  
number of injected photoelectrons per pulse under hy- 
pothesis Ho was chosen to be exactly ( a o )  = 1.0 for  all 
cases.  Thus,  Figs. 2 and 4 represent precisely the noise 

'The Poisson  driving  ratio ( a l ) / ( a o )  is  sometimes  specified  in  terms of 
the extinction  ratio [l] E = (ao)/ (a l )  or the  modulation  depth 1241, [25]  
D = 1 - ( a o ) / ( a l ) .  For  example,  when (a , ) / (ao )  = 50, E = 1:50 and 
D = 98 percent. 

electron counting distributions for  Fig.  7. In calculating 
the curves, the optimal decision regions (specified by the 
solutions to (26))  were redetermined for each value of 
( al  ) /( ao)  . lo  Error-probability curves are also presented 
for  the ideal Poisson photoelectron counter without mul- 
tiplication noise (solid curve labeled Poisson). This cor- 
responds to the shot-noise-limited receiver. Results are 
displayed for  the  three-stage  SAPD in Fig.  7 and for the 
ten-stage SAPD in Fig. 8. The electron ionization prob- 
ability P used to compute each SAPD  curve is indicated 
beside it. Similarly,  the  value of y used to compute each 
CAPD curve is indicated. Every value of y is accom- 
panied by a  value of P (in parentheses) that provides 
equivalent gain in accordance dith (25). 

Figs. 7 and 8 illustrate  that,  for multiplication-noise- 
limited operation, the performance associated with the 
single-carrier SAPD improves As P increases. This result 
is true  for both values of m, as expected. Indeed, the error 
probability approaches that of the ideal Poisson photon 
counter as P moves close to unity. In this limit  the super- 
lattice  device behaves as  a noiseless electron multiplier so 
that shot-noise-limited operation is attained.  For P = 
0.95, little noise is introduced by the  device.  A compar- 
ison of the dotted curves in Figs.  7 and 8 shows that,  for 
fixed P ,  performance is degraded as m increases.  The  deg- 
radation is negligible,  however,  for P = 0.95. This is 
important since high values of m provide large  gain. 

The performance of the SCISCM SAPD receiver is al- 
ways superior to that of the SCISCM CAPD receiver in 
the multiplication-noise-limited regime.  Indeed, perfor- 
mance becomes identical in the  limit P -+ 0 (with (1 + 
P)" finite) [2].  The  performance of the CAPD system is 
seen to degrade as y increases.  This reflects the behavior 
of the Poisson-driven Yule-Furry process; it becomes 
progressively noisier as the branching parameter (and 
therefore the gain) increase.  The  superlattice  device,  on 
the other hand, becomes progressively less noisy as P ap- 
proaches unity.  The improvement provided by the super- 
lattice  device  therefore widens as P increases (for fixed 
m). There is also an increasing advantage for. the SAPD 
as m increases (for fixed P )  and as ( a l ) / (  a,,) increases 
(for fixed m and P) .  Although probability of error curves 
for  a multiplication-noise-limited OOK system incorpo- 
rating a  PMT  are  available [51] , they are not included 
here because  our principal emphasis  is on a compari'son 
of the  CAPD and SAPD  receivers. 

Another way of presenting the performance results re- 
ported above is in  terms of receiver  sensitivity.  The most 

"The Poisson-driven  Yule-Furry  counting  distribution  is  not  always 
monotonically  decreasing (this  depends  on  the  parameters ( a )  and y ) ,  al- 
though  the  three  specific  examples  illustrated  in  Fig. .2 do have  this  prop- 
erty.  When  the  logarithm of the  noise  counting  distribution  does  not  con- 
tain  a  point of inflection, as in Fig. 2, comparison  with  a  unique  threshold 
comprises  optimal  processing 1501. The SAPD noise  log-probability  dis- 
tributions (Fig.  4), on the  other  hand,  display points of inflection so that 
the unique-threshold  theorem 1501 cannot  be  applied.  Nevertheless,  for  all 
of the SAPD signal  and  noise  distributions  calculated in this  paper, it  was 
empirically  determined  that  comparison  with  a  single  threshold  was  indeed 
optimal. 
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Fig. 7.  Error probability P, versus  Poisson  driving  ratio ( u l ) / ( u o )  in the 
multiplication-noise-limited regime.  The  mean  number of injected  noise 
photoelectrons per  pulse (a,)  = 1.0 for all cases.  Curves  are presented 
for the  ideal  Poisson  photoelectron counter without  multiplication  noise 
(solid  curve labeled Poisson),  for the CAPD (dashed curves), and for the 
three-stage  SAPD (dotted curves).  The  electron ionization  probability P 
used  to  compute  each SAPD  curve is  indicated beside  it.  Similarly,  the 
value of y used to  compute  each  CAPD  curve is indicated. Every  value 
of y is  accompanied by a value of P (in  parentheses)  that  provides equiv- 
alent  mean gain.  The  performance of the  system  incorporating  the three- 
stage  SAPD  is  seen to be  nearly  ideal for P = 0.95. 

commonly used sensitivity measure is the  averge number 
of photons per bit ( N )  required to achieve  a given bit 
error rate (BER = P,), conventionally lop9.  When ( a o )  
= 1, the  average number of detected photons/pulse ( a , )  
required to achieve P, = low9 may be estimated  from 
extended versions of Figs.  7 and 8. For maximum-like- 
lihood detection with binary OOK, ( N )  = ( a l ) / 2 q .  Re- 
ceiver sensitivities for SAPD and CAPD optical receivers 
are presented in Table 1 for  various values of the  average 
gain ( M ) when (ao)  = 1 and q = 1. For  the  shot-noise- 
limited (Poisson) receiver, ( N )  = 22.5 (this result is at- 
tained by the SAPD receiver with P = 1). Also shown 
are values for  a normalized sensitivity measure ( N )IFe 
similar to that used by Webb et al. [24]. ( N ) / F ,  is seen 
to be more or less constant over  the  range of parameters 
presented, lying between 22 and 23.  However, its value 
is strongly dependent on ( ao)  . 

In  the  absence of background radiation and  dark noise 
( (ao)  = 0), and when there is no thermal noise  present, 
q (n I Ho) = 6(n). False alarms are not possible in this case. 
The sensitivity of the unity-quantum-efficiency binary 
OOK receiver is then limited only by the quantum fluc- 
tuations of the  signal  light. It is immaterial whether mul- 
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Fig.  8.  Error probability P ,  versus  Poisson  driving  ratio (ul)/(ao) in  the 
multiplication-noise-limited regime.  The  mean  number of injected  noise 
photoelectrons per  pulse ( a , )  = 1.0 for all cases.  Curves  are presented 
for the  ideal  Poisson  photoelectron counter,  for the CAPD (dashed 
curves), and for the ten-stage  SAPD  (dotted  curves) with  the same  mean 
gain  as  the CAPD.  System  performance  with  the  ten-stage  SAPD  is  seen 
to  be  just  about  as  good as that for the three-stage  SAPD  for P = 0.95 
(see  Fig. 7). 

TABLE I 
RECEIVER SENSITIVITY ( N )  (AVERAGE  NUMBER OF PHOTONS PER BIT) 

REQUIRED TO ACHIEVE P, = 1 0 - ~  WHEN (a , )  = 1 AND 7 = 1 
(The binary OOK optical receiver is assumed  to  be  multiplication-noise 

limited.  Values  for the  figure of merit ( N ) / F ,  are also shown.) 

APD < N >  
gain SAPD 
< M >  n=3 m = 1 0  galn n=3 m = 1 0  gain 

CAPD c n m  

< N >  <N>/Fe 
Equivalent- SAPD 

<N>/Fe 
Equivalent- 

1.73  29.5 33 23 23 

5.83 24 41.5 22 23 

7.41 23 42.5 23  23 

6.19 34.5 41.5 

357. 25  45 

22 23 

23 23 

795. 23.5 45 23 23 

shot- 
nolse 

recelver 
lxmrted 22.5 22.5 

tiplication noise is  present:  a miss can only be achieved 
by the  absence of photons at the input and there  are no 
false  alarms. From (26a),  the  only  integer element lying 
in 2, is zero. Using (27) and (29), together with (16) or 
(21),  the probability of error becomes" P, = Pw = 

"The  prefactor  is sometimes (improperly) omitted, resulting  in a  di- 
rect-detection  quantum limit quoted  as 10.5 photondbit instead of the cor- 
rect  value of 10 photons/bit. 
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i q ( 0 ( ~ 1 )  = exp (- ( ~ 1 ) )  = 4 exp ( - - 2 ( ~ ) ) .  Setting 
P ,  = in accord with convention, gives rise to !:he 
so-called direct-detection quantum limit of 10  photons/bit 
for OOK. In  the  presence of noise specified by ( a o )  = I., 
on the other hand,  the  best  that can be achieved is ( 1V) 
= 22.5 photondbit,  as  is apparent from Table I.  ?he 
presence of noise increases ( N ) . From an experimental 
point of view, the state-of-the-art sensitivity for  a 0 . S -  
pm Si APD receiver, operating at a speed of several 
hundred megabits per  second,  lies roughly at 300 pho- 
tonslbit.  In  the 1.3-  to  1.6-pm region, on the  other  hand, 
it is about 1000  photonslbit [52]. 

In the next section, we consider  the  deleterious effects 
of thermal noise on receiver  performance. 

VII. COMPARI~ON OF CAPD AND SAPD OPTICAL 

RECEIVER  PERFORMANCE IN THE PRESENCE OF THERM.4L 
NOISE 

The effects of thermal (Johnson) noise are  incorporatld 
into the  receiver model by means of an  additive indepen- 
dent zero-mean Gaussian random variable j representing 
the thermal-noise current fluctuations [ 11, [27],  [33],  [38], 
[53]-[56]. Its probability density is 

p ( j )  = ( 2 ~ 2 ) - ’ / ~  exp (-j2/2a2> (30) 

with mean 

( j )  = 0 (3  1) 

and variance (thermal noise power) 

Var ( j )  = o2 = 4k0B/RL.  (3 2) 

The quantity RL represents the effective load resistance’? 
at temperature 0, k is Boltzmann’s constant, and B is tllr: 
effective electrical bandwidth of the  system.  For ideal1 
photon counting 

B = 112T (3 3) 

where T  is  the counting (observation) time [23] so that. 
(32) can  be rewritten as 

o2 = 2k01RLT. ( 3 4  

The probability density of the total current (multiplied 
shot noise plus thermal noise) under hypotheses Ho arid 
H1 is then described by the convolution 

1 
4( i  I Ho, 1) = (2Ta2)1/2 

”The  value of RL depends  significantly  on  the  nature  of  the  preamplifim, 
e.g.,  whether  it is a  high-impedance  integrating  front  end  or  a  transimped-. 
ance  amulifier 111. 1531.  1541.  1571. 

tor  (e/T) converts count number to  current.  The  variance 
0 2 ,  which arises from the Gaussian thermal noise, is the 
same independent of which hypothesis is  true.  Again,  the 
mean numbers of Poisson injected photoelectrons per 
pulse are  taken to  be (ao)  and ( a l  ) under hypotheses Ho 
and H1, respectively. 

Using (15a), (19), and (3 l), the mean values of the total 
current are then 

( i I Ho, 1 ) = (e/T) (ao, 1 ) exp ( y )  (364 

( ~IHo,~) = (e/T,l ( ~ 0 , ~ )  (1 + PI” (36b) 
for  the  CAPD and SAPD, respectively. The variances of 
the total current for  the  CAPD and SAPD  are obtained by 
multiplying (15b) and (20) by (e2/T2) (to convert count 
number variances to current variances) and then adding 
the thermal noise current  variance  (34).  The results are 

Var (i 1 Ho, = (e2/T2) Var (n,, I (ao, )) + 2 kf3/RL T 

(374 
Var (i 1 Ho,l) = (e2/T2) Var (n, I ( u ~ , ~ ) )  + 2k0/RLT 

(37b) 
for the CAPD and SAPD,  respectively. It  is convenient 
to define R as the ratio of the  thermal-noise current vari- 
ance to the multiplication-noise current variance under Ho, 
i.e. 

R,, = 2 kf3T/e2RL Var (ny 1 (ao))  (384 

R, = 2k0T/e2RL Var (n,  I (ao))  (38b) 

for  the  CAPD  and  SAPD, respectively. 
To implement maximum-likelihood detection, in anal- 

ogy with (26),  the observation space Z is divided into  two 
parts, Zo and Zl, such that 

z, = {ildiIHo) 2 4(ilHl)) (394 

ZI = {il4(i\Ho) 4 ( i \ H l ) ) .  (39b) 
When an observation falls  in Zo, we say Ho; when it falls 
in Z1, we say H1. The  error probability P ,  is given by 
(27), in terms of the false-alarm and miss probabilities. 
In analogy with (28) and (29) these  are 

pF = Jz, 4(i  I HO) di (40) 

and 

pM = 1% q(i I Hl) di (41) 

respectively. Using (35),  these probabilities can be writ- 
ten explicitly as 

m 

pF = 4 - 4 C q(n 1 H ~ )  erf [(a - e n / ~ ) / ( 2 a ~ ) ” ~ l  
n = O  

(42) 
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m 

pM = t + 1 C q(n 1 H , )  erf [(a - e n / ~ ) / ( 2 o ~ ) ” ~ ]  
n = O  

(43) 

where 

9 = ~ ~ . ( 9 ( ~ I H o )  = q(@IH1)) (44) 
and 

erf (x) = -m exp ( - t 2 )  dt. 
a 0  2 r  (45) 

The bit error  rate P, is determined by (27), using (42)- 
(45). In  Fig. 9 we  lot Pe versus  the  Poisson driving (sig- 
nal-to-noise) ratio F ( al >/( ao) for  the  SAPD (rn = 3, P 
= 0.95) and the  CAPD of the  same mean ( y = 2.0). As 
previously,  the mean number of injected photoelectrons 
per pulse,  under  hypothesis Ho, is chosen to be exactly 
(ao> = 1 .O for  all  cases.  In  calculating  the  curves,  the 
optimal decision regions (specified by the solutions to 
(39)) are redetermined for  each  value of ( al)/(ao) . l o  The 
parameter R represents the  thermal noise power, in terms 
of the  ratio specified in (38). System  performance is de- 
termined by calculating the  value of R for  the components 
in the system and then consulting  the  appropriate  curve 
for R, or R, in Fig. 9. 

The R = 0 curves  represent  the  absence of thermal 
noise; they are  therefore  the  same  as  those shown in Fig. 
7. As expected, the probability of error increases as  the 
thermal-noise ratio  increases.  For R = 500 (which is  eas- 
ily achievable  for  the  gain values considered  here),  the 
deterioration in performance is enormous.  In  the  extreme 
case of thermal-noise-1i.mited operation ( R  -+ m), the 
SAPD and CAPD  curves will coincide  since  the multipli- 
cation-noise  contribution is then  negligible.  The perfor- 
mance of the  SAPD  receiver is superior to that of the 
CAPD  receiver  for R, = R,. This is expected since  the 
current variance of the  SAPD  always  lies below that of 
the equivalent-gain CAPD. l3 Again,  the probability of er- 
ror curve for  the ideal shot-noise-limited Poisson photo- 
electron counter, with neither multiplication nor thermal 
noise, is displayed in  Fig. 9 as the solid curve  labeled 
Poisson. 

There  have been numerous studies of the performance 
of optical receivers incorporating  double-carrier  CAPD’s 
in  the  presence of thermal noise.  Some of these  have in- 
volved exact numerical calculations or Monte  Carlo sim- 
ulations [ S I ,  [59]. More  often,  because of the complex- 
ity  of the  calculations, researchers have resorted to 
approximate  solutions.  These  have included the use of di- 
rect mathematical approximations [24], Chernoff bound- 
ing [%], and  the  use of the  Gaussian approximation [58]. 

13For convenience of presentation,  the effect of thermal noise has  been 
incorporated into the  ratio of its  current  variance  to  the  multiplication-noise 
current variance. If the  thermal-noise  variance  were  instead  assumed  to  be 
a fixed  quantity determined by the  characteristics of  the  preamplifier, the 
appropriate comparison  would be between  different  values of R, and Ry,  
and  the performance  advantage of the  SAPD  would then  not be  as  great. 
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Fig. 9. Error probability P, versus Poisson  driving  ratio (u l ) / (u , , )  for  the 
SAPD (m = 3,  P = 0.95) and  the CAPD of the same  mean ( y = 2.0) 
in  the  presence of  thermal noise.  The  mean  number of injected  noise 
photoelectrons per  pulse (ao) = 1.0 for all cases.  The parameter R is 
the  ratio of the  thermal-noise current variance  to the  multiplication-noise 
current  variance  under Ha. Performance  is determined by calculating  the 
value of R for the  system components  under consideration  and consulting 
the  appropriate  curve  for R,= or Ry.  The R = 0 curves represent the ab- 
sence of thermal noise and correspond  to  those  shown  in  Fig. 7 .  Increas- 
ing thermal noise  causes  a  deterioration  in  performance. 

This  latter  approach has the  advantage of ease of com- 
putation [53], [54], but can suffer from substantial inac- 
curacies [24], [%I, [60]. Other methods have included 
use of the  Gaussian  quadrature rule [61], the Gram- 
Charlier  series [62], and the  saddlepoint approximation 
~ 3 1 .  

VIII. DISCUSSION AND CONCLUSION 

Exact gain distributions  and  electron counting distri- 
butions (under Poisson carrier  injection) have been cal- 
culated and displayed for  single-carrier  CAPD’s, single- 
carrier  SAPD’s, and a single-stage PMT.  The  shapes of 
these distributions have been shown to differ in charac- 
teristic ways for  the three devices. In particular, the  SAPD 
counting distribution  can  become  quite scalloped for even 
moderate values of P and m. This could be  a useful fea- 
ture in providing good pulse-height resolution. The elec- 
tron counting distributions  were used to numerically cal- 
culate  the probability of error  achievable by a  simple 
digital optical communication system. A performance 
comparison was carried out  for  a maximum-likelihood in- 
tegrate-and-dump OOK optical  receiver incorporating 
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the lowest-possible noise (single-carrier) CAPD’s 2nd 
SAPD’s,  under conditions of identical quantum efficim- 
cies and  gains. 

System performance with the superlattice  device is al- 
ways superior to that attainable with the conventional 
APD for all values of the  gain.  The  advantage, which 
grows with increasing P ,  m, and Poisson driving ratio 
( a l ) / ( a o ) ,  can  attain  several  orders of magnitude,  erren 
though the  excess noise factors  for  the  two devices differs 
at most by a  factor of two.  The  single-carrier  SAPD with 
high impact-ionization probability behaves like  a shot- 
noise-limited detector with the  same quantum efficiency, 
irrespective of the number of stages of the device m. The 
performance degradation caused by thermal noise is: if 
anything,  less  severe  for  the  SAPD. 

Our comparison has been restricted to the SCISClM 
CAPD and SAPD  since only single-carrier counting dis- 
tributions are  available  for  the  SAPD.  The advantages of 
the SAPD optical receiver presented here follow from its 
discrete-branching mechanism, which provides decreased 
noise. The  presence of double-carrier multiplication 
would degrade both CAPD  and  SAPD receiver perfar- 
mance substantially [2]. 

From an experimental point of view, multiquantum-h ell 
SAPD’s  have been fabricated and are being tested [I$]- 
[lo] and the first attempts are now under way to constmct 
staircase  SAPD devices using molecular-beam epits: xy 
[22].  From  a theoretical point of view, there are  a number 
of extensions of the theory that  are  possible.  The effects 
of additive non-multiplying and multiplying dark noise 
could be incorporated into  the performance calculations. 
Account could be taken of double-carrier  multiplication. 
Other signaling formats  and  receiver  structures could be 
investigated.  Intersymbol  interference could be incluc.ed 
[64].  The consequences of non-Poisson photon excitation 
could be  calculated. The effects of nonuniform APD gain 
[65] could also  be  considered. 

Finally, we point out that it may be of interest to  con- 
sider  the possibility of constructing a high-speed SAI?D 
photocounting receiver. In receivers of this  type,  charge 
pulses arising from individual injected electrons are sulf- 
ficiently well separated in time  that they can be individ- 
ually counted.  The  PMT has long been used in this mode 
[23],  and more recently so have  CAPD’s [3], [37], [6(i]- 
[72]. Operating the  SAPD as a photon counter may pre- 
sent difficulties, however,  since lo4 electrons/photon  ;ire 
generally required to overcome pre-amplifier Johnson 
noise [4].  The gain of the  single-carrier  SAPD is limil.ed 
to 2”, so that a  high-P  single-carrier  device with some 15 
stages of gain would be required [4]. 
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