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Fractal Character of the Auditory Neural Spike Train

MALVIN C. TEICH, FELLOW, IEEE

Abstract—Long-counting-time pulse-number distributions (PND’s)
were measured from a broad variety of cat primary auditory fibers
using different tone and neise stimuli, counting times 7, and number
of samples N;. Whereas short-counting-time PND’s (7 ~ 50 ms) man-
ifest the presence of spike pairs (an enhancement of even- over odd-
count probabilities), the irregular shapes of the long-counting-time
PND’s (T = 0.1 s) reveal that the underlying sequence of action po-
tentials consists of spike clusters when viewed on a longer time scale.
For all units measured, the count variance-to-mean ratio (Fano factor)
F{T) varied little over some 90 dB change in the stimulus level. On the
other hand, F(T) increased substantially as 7 and/or N; were in-
creased, corresponding to the capture of larger and larger spike clus-
ters in the counting time. A relationship is developed between the Fano-
time function 7 (7T) and the normalized coincidence rate function, g (7)
versus delay time 7. A plausible form for g (r) leads to a Fano-time
function in good accord with the data. The observed power-law growth
of the Fano factor for large counting times [ F(T) ~ T“ where 0 < «
< 1] is accompanied by a power-law decay of the coincidence rate for
large delay times [g(7) ~ 7* '] and a power-law form for the power
spectral density at low frequencies [S( f) ~ f ~“1. The behavior of the
PND’s and the scale invariance implicit in these fractional-power-law
relationships suggest that the neural events on all primary auditory
fibers exhibit fractal behavior for sufficiently large times (sufficiently
low frequencies). The spike pairs and spike clusters in the PND’s are
natural consequences of this behavior. The fractal dimension D = « is
estimated to be in the range of 0.3 = D = 0.9 for counting times in
the range 0.1-10 s. The fractal dimension provides a measure of the
degree of event clustering, or irregularity of a sequence of events, that
is preserved over different time scales. PND’s from low-skew vestibu-
lar units, in contrast, do not exhibit fractal behavior. It is suggested
that auditory neural-firing patterns may serve to efficiently sample nat-
ural fractal noises.

1. INTRODUCTION

N a recent paper [1], we emphasized the importance of

characterizing neural activity in a peripheral auditory
nerve fiber in terms of a stochastic point process. The term
“‘point process’’ designates a sequence of times (e.g.,
neural~spike' registrations) at which events occur [2].
Identifying a point process from a stream of data is a dif-
ficult task. Because the number of occurrence times is
large, it is customary to begin the process by extracting
several kinds of partial statistical data from the sequence
of times. As examples, measures such as the pulse-inter-
val distribution (PID), poststimulus time histogram (PST),
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'The terms *‘neural spike,”” *“*pulse.”’ and ‘*action potential’” are used
interchangeably.

and pulse-number distribution (PND) may be constructed.
The PND is the probability p (n, T') of observing n neural
spikes in the counting time T, versus the number of spikes
n [1]. Other measures of interest include the joint and
conditional probability densities of multicoincidence; the
joint densities of forward-recurrence, backward-recur-
rence, and interevent (pulse-interval) times; and the joint
densities of numbers of events in a sequence of time win-
dows.

Each such measure provides its own partial information
about the underlying spike train. The PID, for example,
is a histogram formed from the times between successive
events [3]. As such, its statistical accuracy is greatest for
data close to the mean interspike-interval time. Interspike
intervals that are long compared to the mean appear in the
tail of the distribution. Thus, there are few of them and
their statistical accuracy is poor. The PST histogram (or
period histogram) is constructed by averaging the neural
spikes modulo a stimulus unit cell [4]. It is a measure that
is therefore phase-locked to (or synchronous with) the
stimulus. The PND, on the other hand, is an asynchro-
nous measure since the time 7T is related neither to the
stimulus nor to the spike train. The counting time T, which
is externally specified, determines the time over which
correlations in the neural spike train may be observed in
the PND [5].

Of the three measures most commonly used to investi-
gate a neural spike train (the PST, PID, and PND), the
PND lends itself most naturally to the study of long-time
spike correlations [1]. Ideally, it is desirable to experi-
mentally collect a sequence of PND’s, each with a differ-
ent value of 7, to provide the greatest detail about the
underlying structure of the sequence of action potentials.

In our initial investigation of this topic, we examined
the behavior of the PND from primary afferent auditory
fibers for a relatively short (T = 51.2 ms) counting time
[1]. The scalloped character of some of these PND’s led
us to recognize that closely occurring spike pairs were
often present in the underlying action-potential sequence.
This prompted us to examine the behavior of the spike
train over a longer time period. A follow-up study of the
PND [6], in which we used a counting time T = 204.8
ms, revealed rather irregular distributions indicating the
presence of clusters that often contained more than two
spikes. It became apparent that although the short-count-
ing-time PND’s [1] and the long-counting-time PND’s [6]
were constructed from the same underlying spike trains,
the different values of T provided complementary infor-
mation about the underlying neural spike train.
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The irregularities in the PND’s were found to increase
with increasing counting time, revealing a hierarchy of
correlated spike occurrences extending over multiple time
scales. The clusters manifested in short counting-time
PND’s turn out to be subclusters of larger clusters, which
appear in PND’s with longer counting times, and so on,
in nested fashion. The spike pairs evident in the short-
counting-time PND’s are the smallest subclusters that are
observable; the production of tighter subclusters is lim-
ited by refractoriness in the nerve fiber. The irregularities
in the PND’s were also found to increase with increasing
sample number.

These and other observations provide evidence that,
above the lower limit set by refractoriness (called the in-
ner cutoff), the auditory neural spike occurrences behave
as a fractal sequence of events. The fractal dimension D
is estimated to lie in the range 0.3 2 D = 0.9. The fractal
dimension [7] provides a measure of the degree of event
clustering [8], or irregularity of a sequence of events, that
is preserved over different time scales. As a counterpoint
to this behavior, it is shown that the neural spike train on
peripheral vestibular fibers does not exhibit fractal behav-
ior (D = Dy = 0).

An abbreviated version of the results reported here was
presented at the Annual Meeting of the Acoustical Society
of America in Honolulu, Hawaii in November 1988 [9].

II. REsuLTS
A. Methods

Pulse-number distributions (PND’s) were recorded from
primary afferent fibers in the auditory nerve of anesthe-
tized cats, using standard extracellular microelectrode re-
cording techniques. Pure-tone and broadband-noise stim-
uli were used. The methods used in our experiments,
including the surgical preparation and equipment, were
described earlier [1].

Various statistics of the PND, namely the count mean
(n(T)) = M, count variance ¢*(T) = V, count mean-
to-variance ratio, R(7T) = R, and its reciprocal the count
variance-to-mean ratio F(T) = 1/R, can be calculated.
M and F(T) [or R(T)] provide useful measures of the
PND in compact form. They are often more useful than
the individual probabilities that comprise the PND since
they are measures of the distribution as a whole. They
provide statistically significant evidence that the short- and
long-counting-time PND’s contain different information.

B. PND Statistics

A representative set of PND data for T = 204.8 ms is
provided in Fig. 1. PND’s for this high-spontaneous, low-
frequency unit are shown in Fig. 1(a)-(h) for pure-tone
stimuli with frequencies fr = 371 Hz [(a), (e)]; fr = 625
Hz at the characteristic frequency (CF) of the unit [(b),
()], and fr = 918 Hz [(c), (g)]. These represent the prob-
abilities p(n, T) of observing n spikes in the counting
time 7, displayed as a function of n. Each PND shown
consists of Ny = 250 samples. The sound pressure levels
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(relative to the frequency tuning curve [1], in (a)-(c) were:
—20 dB (solid curves), 0 dB (dashed curves), and +20
dB (dotted curves). The sound pressure levels in (e)-(g)
were: +30 dB (solid curves) and +50 dB (dashed curves).
For the noise stimuli in (d) the sound pressure levels were
approximately —50 dB (solid curve), —30 dB (dashed
curve), and —10 dB (dotted curve), and in (h) they were
approximately 0 dB (solid curve) and +20 dB (dashed
curve). Short-counting-time PND’s constructed from the
same spike train were presented in [1, Fig. 4]. The fre-
quency tuning curve (FTC) for this unit is shown in [1,
Fig. 3].

The conversion of the above-specified values of dB: re
FTC into values of dB SPL (re: 0.0002 dyne/cmz) re-
quires adding the sound-pressure value at the FTC. Since
the threshold for this unit (at CF) is 23 dB SPL, the ab-
solute stimulus levels for the data in (b), (f) are obtained
by adding 23 dB. Thus, in (b) the solid, dashed, and dot-
ted curves correspond to +3, 23, and 43 dB SPL, respec-
tively. In (f) the solid and dashed curves correspond to
+53 and 73 dB SPL, respectively. The absolute stimulus
levels in (a), (e), (c), (g) are yet 15 dB higher since these
frequencies were chosen at points on the FTC that are 15
dB above its minimum.

Experimental results for the long-counting-time PND
count mean (dotted curve, denoted M), count variance
(dash-dot curve, denoted V'), and count mean-to-variance
ratio (solid curve, denoted R) are presented in (i) for fr
= 371 Hz, in (j) for 625 Hz (CF), in (k) for 918 Hz, and
in (1) for noise. The abscissa represents dB : re FTC. The
point marked § represents the absence of external stimu-
lus (spontaneous counts) and the tic marks represent 10
dB increments (the left-most tic mark represents —20 dB,
except for a noise stimulus in which case it represents
—50 dB). The curves denoted M are proportional to the
usual spike rate function.

The mean of the T = 204.8 ms PND is precisely four
times the mean of the 7 = 51.2 ms PND for all stimulus
levels, indicating that the mean scales proportionately
with T in this counting-time region. The variance, how-
ever, does not scale in this simple linear manner. How-
ever, the count mean and variance for PND’s collected
with T = 204.8 ms both increase with stimulus level in
such a way that the variance-to-mean ratios turn out to be
remarkably independent of stimulus level and frequency
(the mean-to-variance ratio R is shown in Fig. 1). This is
true for all four of the stimuli. It is also the case for the
T = 51.2 ms results reported previously [1]. For both sets
of data, there appears to be a slight trend toward decreas-
ing F(T) (increasing R) with increasing stimulus level.
For short-counting-time PND’s, with Ny = 1000, we
found [1] that the typical range adopted by most (but not
all) primary fibers, over the 90 dB range of applied stim-
ulus level, was 3 < F(T=512ms) < 1(1 <R < 2).
Units generating visible spike pairs tended to fall toward
the higher end of this range of F. For long-counting-time
experiments, with Ny = 250, the range of F(T) extends
a bit higher; typically 4§ < F(T = 204.8 ms) < 2 (} =
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Fig. 1. Long-counting-time pulse-number distributions (PND’s) for a high-
spontaneous (63.9 counts/s), low-frequency (CF = 625 Hz) unit (no.
4/71715.PN) with a threshold of about 23 dB SPL. Data in rows 1, 2,
and 3 correspond to stimulus frequencies fr = 371 Hz (below CF), fr
= 625 Hz (at CF), and f; = 918 Hz (above CF), respectively. Data in
row 4 are for broad-band, periodically-reproduced Gaussian noise (with
period T = 51.2 ms). In column 1, solid, dashed, and dotted curves
represent stimulus levels of —20, 0, and +20 dB:FTC threshold, re-
spectively. In column 2 solid and dashed curves represent stimulus levels
of 30 and 50 dB : FTC threshold, respectively. For broad-band noise (row
4) the stimulus level cannot be related to the FTC threshold-values in a
simple way. Roughly, the lowest level for noise is about —50 dB the
FTC value at CF, and curves are presented in 20 dB increments. Plots
of the PND count mean M (dotted curve), count variance V (dash-dot
curve), and mean-to-variance ratio R (solid curve), versus stimulus level
(dB: FTC), are presented in column 3. The stimulus level is varied from
—20to +70 dB in 10 dB steps. S represents spontanecus counts. Each

PND shown consists of N = 250 samples, with 7 = 204.8 ms.

R < 2). The Fano factors for spontaneous PND’s (Fig.
2) also fall in this range. The dependence of F(T) on
stimulus level for T > 204.8 ms remains to be deter-
mined.

C. Spontaneous PND’s

The spontaneous 7 = 204.8 ms PND’s associated with
four units are presented in Fig. 2. They display the same
irregularities evident in the driven PND’s shown in Fig.
1. In this case the number of samples Ny = 500. The units
have the following characteristics: (a) high-spontaneous,
low-frequency unit (driven PND’s for this unit are shown
in Fig. 1); (b) high-spontaneous, high-frequency unit
(PND’s for this unit at CF are shown in [6, Fig. 6]); (c)
high-spontaneous, low-frequency unit exhibiting spike
pairs in the 51.2 ms PND; and (d) medium-spontaneous,
high-frequency unit exhibiting spike pairs in the 51.2 ms
PND (PND’s for this unit at CF are shown in [6, Fig. 8]).

D. Dependence of the PND Statistics on Sample Size

The role of the number of samples (repetitions) Ny on
the PND statistics is illustrated in Fig. 3 for a high-spon-
taneous, high-frequency unit with a CF of 12695 Hz. A
pure-tone stimulus at 20 dB:re FTC (equivalent to 61 dB
SPL) was applied to the unit at the CF. The upper-left
panel displays the T = 51.2 ms PND collected with Ny
= 1000 samples while the upper-right panel represents
the T = 204.8 ms PND collected with Ny = 250 samples.
The same neural spike train underlies both distributions.
The PND in Fig. 3(a) is similar to those presented in [1]
whereas the PND in Fig. 3(b) resembles those presented
in Figs. 1 and 2 above.

In the lower pair of panels, all experimental conditions
are identical except that Ny has been increased by a factor
of 10 by extending the duration L of the experiment (L =
N;T) from 51.2 to 512 s. The means decrease and the
Fano factors increase. In a separate series of experiments,
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Fig. 2. Spontaneous long-counting-time PND’s for four units. The num-
ber of samples Ny = 500 and T = 204.8 ms. In all cases the shapes of
the spontaneous PND's show irregularities similar to those of the driven
PND’s. (a) Spontaneous PND for high-spontaneous, low-frequency unit
No. 4/71715.PN. The driven PND’s and PND statistics for this unit are
displayed in Fig. 1. (b) Spontaneous PND for high-spontaneous, high-
frequency unit no. 8/52304.PN. The PND's for this unit at CF are dis-
played in [6, Fig. 6]. (c) Spontaneous PND for high-spontaneous, low-
frequency unit no. 7/72028.PN. (d) Spontaneous PND for medium-
spontaneous, high-frequency unit no. 44/81426.PN. The PND’s for this
unit at CF are displayed in [6, Fig. 8].
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Fig. 3. PND’s for a high-spontaneous, high-frequency (CF = 12695 Hz)
unit (no. 5/42202.P4/P5) with a threshold of 41 dB SPL. The stimulus
was a pure tone with level 20 dB: FTC at the CF (equivalent to 61 dB
SPL). (a) T = 51.2 ms PND collected with Nz = 1000 samples (L =
51.2's); (b) T = 204.8 ms PND collected with Ny = 250 samples (L =
51.2 s); (c) Solid curve is T = 51.2 ms PND collected with N, =
10 000 samples (L = 512 s) whereas dotted curve is simulated-Poisson
distribution with the same mean and same N; (d) Solid curve is T =
204.8 ms PND collected with N = 2500 samples (L = 512 s) whereas
dotted curve is simulated-Poisson distribution with same mean and same
N7. The PND’s in (a) and (b) were constructed from the same underlying
neural spike train, as were those in (¢) and (d). Experimental values for
the PND count mean M, count variance V, and variance-to-mean ratio F
are specified in each of the panels.
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we confirmed that for a given value of T (set at either 51.2
or 204.8 ms), M consistently decreased, and F(T) con-
sistently increased, as L increased from 512 ms through
5.12t025.6 s.

E. Accuracy of the PND Statistics

The expected variability of the PND resulting from the
finite number of samples cannot be computed without
knowledge of the underlying point process. For a homo-
geneous Poisson point process, with a sufficiently large
number of samples, we have previously shown [1] that
the standard deviation of the mean is A(n(T)) = [Var
(n)/NT]'/ % and the standard deviation of the mean-to-
variance ratio is AR(T) = (2/N;)'/%. The validity of
these estimates was experimentally verified by conducting
a laser-light experiment using a Langley-Ford model 1096
correlator/probability-analyzer to measure 50 photon-
counting distributions (N; = 250). Laser photon arrivals
are well described by a homogeneous Poisson point pro-
cess.

If the probabilities at different n are independent, the
standard deviation for any probability value in the PND
can be estimated by using the binomial probability law.
Under this assumption, the standard deviation of any value
of p(n, T) is given by Ap(n, T) = {[p(n, T)][1 -
p(n, T)1/Np}'/2,

The T = 51.2 ms PND presented in Fig. 3(¢), which
consists of Ny = 10 000 samples, is not very different
from the simulated-Poisson distribution with the same
mean and number of samples (dotted curve). This is by
chance of the choice of Ny. The short-counting-time
PND’s either have simple shapes, such as those shown in
Fig. 3(a) and (c), or they exhibit an enhancement of even
count-number probabilities. In either case, the shapes do
not depend substantially on the number of samples (al-
though the means do depend on Ny for runs in which the
unit exhibits “‘fatigue’’).

However, comparing the 7 = 204.8 ms PND with N,
= 250 and 2500, in Fig. 3(b) and (d), respectively, illus-
trates an increase in the irregular nature of the PND, evi-
denced by the substantial increase in the Fano factor, as
Ny increases. If the irregularities resulted from an insuf-
ficient number of samples, the Fano factor would de-
crease as Ny were increased. A simulated-Poisson distri-
bution, of the same mean and number of samples [dotted
curve in Fig. 3(d)], exhibits relatively small fluctuations
and is, in fact, in reasonably good accord with the pre-
diction of the independent-probability binomial rule,
which gives Ap(n, T) =~ 0.004. The irregularities in the
long-counting-time auditory-unit PND are substantially
greater than either those of the simulated-Poisson distri-
bution in Fig. 3(d) or the experimental PND in Fig. 3(a),
even though Ny is larger in Fig. 3(d) than in Fig. 3(a).

We conclude that the irregular nature of the long-count-
ing-time PND’s does not arise from statistical inaccura-
cies associated with insufficient data, but rather from event
clustering inherent in the auditory neural spike train.
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TABLE 1
EFFECT OF A LINEARLY DECREASING RATE ON THE PND STATISTICS FOR DATA PRESENTED IN FIG. 3!

Fyee (T) Freo(T)

T L Ny (n> F(T) Nnax Ninin Linear- Residual
Counting Experimental Number Experimental Experimental Maximum Minimum Decrease (true)
Figure Time Duration of Mean Fano Rate Rate Fano Fano
Number {ms) (s) Samples (M) Factor s™h (s™"h Factor Factor
(3a) 51.2 51.2 1000 5.64 0.63 112 108 0.001 0.63
(3b) 204.8 51.2 250 22.55 0.77 112 108 0.003 0.77
(3¢) 51.2 512 10 000 4.38 1.09 108 63 0.10 0.99
(3d) 204.8 512 2500 17.51 2.70 108 63 0.40 2.30

'Use of an exponentially decreasing rate leads to nearly identical results.

F. Effects of Fatigue on the PND Statistics

In going from Fig. 3(a) to (c), and from (b) to (d), the
count means decrease while the Fano factors increase. We
demonstrate that a gradual decrease in the instantaneous
rate of the spike train, usually ascribed to fatigue, cannot
be responsible for either the large increase in the Fano
factor or the irregularities in the PND’s.

A useful model for fatigue is provided by an instanta-
neous rate A, that linearly decreases from a maximum
value A\, to a minimum value N, [10]. We consider an
arbitrary counting distribution that has a Fano factor in-
dependent of its firing rate (this is representative of the T
= 51.2 ms and 204.8 ms auditory PND’s). The overall
count mean { n ), and Fano factor F(T), can then be writ-
ten as [11], [12]

<n> = %()\mux + >\m|’n)T (1)

and

F(T) = Feo(T) + (Amax = Amin) T/6(Aax + Nain) s

(2)

respectively. The residual (true) Fano factor, Frs(T), is
obtained by subtracting the Fano factor contributed by the
linearly decreasing mean, Fg.(T) {represented by the
second term in (2)], from the experimental Fano factor
F(T).

Results for the data illustrated in Fig. 3 are presented
in Table 1. The calculation was implemented by using the
experimental mean count values for the 7 = 51.2 ms data
represented in Fig. 3(a) and (c) (these data were collected
sequentially), assuming that the mean pursued a linear de-
cline through the two experiments. This enabled us to es-
timate the maximum instantaneous rate A, at the begin-
ning of each experiment (after about $ s of stimulus
application), and the minimum instantaneous rate Amin at
the end of each experiment, and thereby the ‘‘fatigue’
contribution to the Fano factor Fy..(T). We also carried
out the same procedure for an exponentially (rather than
linearly) decaying rate [13] and obtained numerical values
virtually identical to those reported in Table I. Our cal-
culations carry forward for an arbitrary direction of change
in the instantaneous rate, including an increase, which
often occurs if the measurement extends over a suffi-
ciently long duration.

The results in Table I show that Fy. . (T) is negligible
for the experiments with duration L = 51.2 s; this is also
the case for L = 102.4 s. The residual Fano Factor F.(T')
is essentially identical to the experimental Fano factor
F(T) . We conclude that the irregularities in these PND’s
do not result from a systematically decreasing mean.

For the 512 s duration experiments, the values reported
in Table I show that the linearly decreasing mean contrib-
utes ~ 15 percent to the Fano factor. Thus, the decreasing
instantaneous rate accounts for only a small part of the
increase in F(T). The trend of increasing F(7T) with in-
creasing T and Ny, manifested by the raw data, is left
intact after corrections for the decreasing rate are incor-
porated, as evidenced by the behavior of F . (T).

Nevertheless, the hallmark of a linearly changing mean
is visually apparent in the PND illustrated in Fig. 3(d).
The smearing of the rate flattens the counting distribution
at its top, much in the same way that a Poisson counting
distribution with a linearly decreasing mean is flattened
(see [11, Fig. 11 and [12, Fig. 4]). The high-count tail,
on the other hand, reveals the presence of large intrinsic
neural-spike clusters that are sufficiently rare to elude cap-
ture in experiments with a small number of samples but
appear when Ny is sufficiently large.

G. Dependence of the Fano Factor on Counting Time

In Fig. 4(a) we present experimental results for the Fano
factor F(T) , as a function of counting time 7, for a range
of counting times extending from 1 ms to 20 s. These data
extend to greater counting times than those reported
above. Values for the Fano factor versus counting time,
like the variance-time curve [2], reveals information about
correlations in the underlying sequence of events.

The very-short-duration data (7 = 1 and 5 ms) were
collected by Westerman [14]. He measured the evolution
of the PND in gerbil primary auditory nerve fibers for 300
ms after the onset of a tone burst. The number of samples
was Ny = 40. Although Westerman found that the instan-
taneous firing rate went through large changes during this
300 ms adaptation period, the Fano factor of the distri-
bution for any given unit was found to either increase
slightly during the adaptation (e.g., from F(T) = 0.6 to
F(T) = 0.8) or to remain relatively constant. In this lat-
ter case, F(T) ranged as low as 0.75 for some fibers and
as high as unity for others.



TEICH: FRACTAL CHARACTER OF SPIKE TRAIN

10l 5
(a)
A
c
Y
G
S
> ~J7
S 100 4
~
o
<
u ® Westerman
2 A Teich & Khanna
g ® Kumar & Johnson
— Theory
1071 R R — A MM —————
1074 1073 1072 10! 109 10! 102
COUNTING TIME T (sec)

I

S 1.03

g2 ®

=

w 1.01 A

2

g ooz

o

Zz

o

o

o

w 1 /

N J

3 /

% ] / — Theory

S o T — — —rrr— S
z 4 3 10" 100 107 102

DELAY TIME < (sec)

Fig. 4. (a) Fano factor F(T) versus counting time T drawn from the data
of Westerman [14], Teich and Khanna [1], [6], and Kumar and Johnson
[15]. The solid curve is a plot of the theory represented in (5), which
appears to properly characterize the data. F(T) ~ ~/T for large T. (b)
The dashed curve represents a plausible model for the normalized coin-
cidence rate g (7) versus delay time 7. It incorporates relative refracto-
riness at short delay times, independent neural firings at intermediate
times, and power-law correlations at long delay times. g(7) ~ 1/vVr
for large 7. The solid curve, which is the idealized version of g(7) rep-
resented in (4), gives rise to the solid curve in (a).

The data with counting times between 51.2 and 563.2
ms were drawn from cat auditory-nerve-fiber PND’s col-
lected by Teich and Khanna [1], [6]. Typical values are
indicated. The behavior of F(T) for spontaneously firing
and driven units apparently differs little. For units with
CF’s below a few kilohertz, where phase locking occurs,
F(T) was found to be relatively constant for T between
51.2 and 204.8 ms. (Phase locking may reduce the Fano
factor slightly [1].) For units with CF’s above several
kilohertz, F(T) increased in the characteristic way illus-
trated in Fig. 4(a).

The data with counting times between 1 and 20 s were
recorded by Kumar and Johnson [15] from a sponta-
neously firing cat fiber (CF = 31.6 kHz, A\ = 24 s™', L
= 1132 s). Their study comprised only high-CF fibers,
and the values of F( T) varied from fiber to fiber. For this
particular unit, the Fano factor increases in proportion to
the square-root of counting time in the range 1.0s < T
=< 20 s. Kumar and Johnson did not calculate the Fano
factor for T > 20 s because of the low sample number.
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III. DiscussioN

A. Evidence for Fractal Behavior in the Auditory
Neural Spike Train

A number of experimental observations support the no-
tion that auditory action potentials occur at fractal times,
as indicated below.

1) Anexamination of Figs. 1-3 and [6, Figs. 6, 8, 9(a)]
shows that all of the driven and spontaneous PND’s with
T = 204.8 ms have a rather irregular structure. The lo-
cations of the subpeaks differ in unpredictable ways for
each experiment, including experiments conducted under
identical conditions. This is true regardless of the spon-
taneous firing rate and CF of the unit, the stimulus fre-
quency and intensity, the form of the stimulus (pure tones
and reproducible Gaussian noise), and the number of sam-
ples. These subpeaks indicate that the probabilities of cer-
tain numbers of events are enhanced in any given exper-
iment, i.e., that spike clusters of those sizes appear.

Berger and Mandelbrot [7], [8] long ago showed that
random pairs and clusters of events appear in self-similar
fractal point processes. These processes may be generated
by randomizing a Cantor dust arranged in time (the dust
then becomes a point process), or by a Lévy dust [7],
[16]. The Brownian zeroset is the simplest Lévy dust, of
fractal dimension D = }. A point process with fractal di-
mension between 0 and 1 may be generated in any number
of ways.

2) The largest spike clusters exhibited in short-count-
ing-time (T = 51.2 ms) PND’s are spike pairs, mani-
fested as an enhancement of even-count probabilities over
odd-count probabilities [1, Figs. 8, 9, 12, 13]. As the
counting time is increased, however, larger clusters ap-
pear in the PND’s. This is reflected in an increase of the
variance-to-mean ratio F(T), which takes on a power-
law form for sufficiently large 7. The maximum cluster
size appears to be limited by the counting time itself. The
spike pairs, which are surely present since the short- and
long-counting-time PND’s are constructed from the same
underlying spike train, disappear as T increases.

Random fractal point-processes exhibit a hierarchy of
correlated spike occurrences that extends over multiple
time scales, limited only by the duration of the sample.
The pairs manifested in short-counting-time PND's are
subclusters of larger clusters which appear in PND’s with
longer counting times, and so on, in nested fashion. Pairs
are the smallest subclusters that are observable since re-
fractoriness in the nerve fiber limits the production of
tighter subclusters, i.e., refractoriness provides a lower
limit for the inner cutoff [7], [8] of the fractal behavior.
The presence of response correlations of long duration is
also indicated by the results of Makeig et al. [17] on the
evoked-response potential in the auditory system.

3) The number of large neural spike clusters increases
not only with 7, but also with the number of samples Ny,
as is evident in the high-count tails of Fig. 3(b) and (d).
The Fano factor therefore increases with increasing sam-
ple size, and does not appear to stabilize.



156 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. VOL. 36. NO. 1, JANUARY 1989

Large, but relatively rare, events contribute dispropor-
tionately to the variance and Fano factor of fractal pro-
cesses. These contributions are associated with the long
tails of the relevant probability distributions. The outlying
events are sufficiently rare so that they elude capture in
experiments in which Ny is small but they become in-
creasingly evident, and indeed dominant, as the data col-
lection time is extended.

4) The short-term average firing rate of spontaneous
(and driven) activity is discontinuous and highly variable
(see e.g., [15, Fig. 1]). The rate may follow a trend in
which it consistently decreases, for example, only to sud-
denly reverse direction and consistently increase for a pe-
riod of time.

Although behavior of this kind is often ascribed to a
nonstationarity in the underlying process, this is proper
only when the Gaussian central limit theorem is opera-
tive. This is not always the case. Fractal phenomena may
be characterized by stationary nonGaussian (Lévy-sta-
ble) random variables and processes [7]. These distribu-
tions have long tails (that cause their variances to diverge)
and provide excellent models for many diverse phenom-
ena (e.g., price changes in economics) [7]. The trends
that appear in such data can persist for very long times,
but they can vanish as quickly as they set in. Mandelbrot
[7] refers to the phenomena of persistence and disconti-
nuity as the Joseph and Noah effects, respectively.

5) For low frequencies, the power spectral density of
the short-term average firing rate takes the form 1/f*
where f is the frequency and 0 < « < 1. Experimental
spectral densities also exhibit sharp peaks at frequencies
close to the inverse of the sample duration (see, e.g., [15,
Appendix 2, Table II}).

A power spectral density of the form 1/f% (so-called
1/f or 1/flike noise) is a signature of the presence of
multiple scales. The sample spectra of fractal random pro-
cesses are broad but have sharp spectral peaks at frequen-
cies close to the inverse of the duration of the data set
[18].

B. Relation of Fano-Time Function and Normalized
Coincidence Rate

We demonstrate that for an arbitrary stationary point
process, power-law behavior for the Fano factor implies
power-law behavior for the spike coincidence rate. We
provide a plausible form for the coincidence rate that
yields a Fano-time function which accords well with ex-
periment. In the following section it is shown that the
power spectral density of the spike train also assumes a
power-law form in this case.

The Fano-time function is related to the probability
density for event-pair coincidences )\zg(r) by [2], [5],
[19]:

T
F(T)=1+ 2\ SO (1 =1/T)[g(r) — 1] dr (3)

where A is the mean rate of the point process and 7 is the
delay time. The normalized coincidence rate g(7) plays

the role of the correlation function for continuous pro-
cesses.

A hypothetical, but plausible, normalized coincidence
rate is indicated by the dashed curve in Fig. 4(b). The
slowly rising portion of the curve represents the effects of
relative refractoriness [20]; spikes cannot occur more
closely than the absolute refractory period (= § ms).
After the refractoriness period is over, the curve spends a
brief time in the vicinity of unity, where the event occur-
rences are uncorrelated. For delay times longer than =40
ms, the coincidence rate increases above unity, repre-
senting correlation of the spike occurrences for long delay
times. These long-delay correlations are responsible for
the appearance of spike clusters in the PND.

The solid curve in Fig. 4(b) represents an idealization
of these effects that enables us to readily calculate F(T)
from g (7) using (3). A Poisson process modified by fixed
nonparalyzable dead time 7, [2], [5], [19] exhibits a nor-
malized coincidence rate that is zero for 7 < 7, and ap-
proximately unity for 7 = 7,. Excess coincidences ( g ()
> 1), representing fractal behavior, set in at delay times
of the order of the fractal characteristic time of the system
7;. The idealized normalized coincidence rate is chosen
to be

0 T < 7y
g(r) =41 Ty < (4)

1+ 5(7/7’[)7]/2

T= 1T
T > Ty

where § is a constant and the inverse square-root-law is

selected to provide agreement with the Fano-time func-

tion, as indicated below. The solid curve in Fig. 4(b) is a

plot of (4) with the neurophysiologically plausible values

74=15ms,\ =98s"', 7,=0.1s,and 6 = 0.02.
Using (4) in (3) leads to

1 = N\T

1 - )\Td[z - Td/T]

=9, _ N2 = 7/T) + E e [(T/ 7))

+

%(Tf/T) — %], T> 14

(5)
which is shown as the solid curve in Fig. 4(a). The Fano-
time curve calculated from the coincidence rate in (3) is
seen to agree well with the data. The theoretical curve
takes on the value unity at 7 = 0; as T increases it pla-
teaus at a constant value below unity, as for a dead-time-
modified Poisson process. The square-root growth of the
Fano factor for large T, F(T) ~ (T/Tf)l/z, follows from
the delay-time dependence of the coincidence rate for
large 7, g(7) ~ (T/Tf)“/z, as promised.

*The approximation is satisfactory for values of A7, appropriate for
neural refractoriness. The exact formula, which is provided and plotted in
[5, (A29). Fig. 11(b)]. reveals the presence of damped oscillations in the
coincidence rate for 7 = 7,.



TEICH: FRACTAL CHARACTER OF SPIKE TRAIN

More generally, if the Fano factor increases with T in
fractional-power-law fashion with exponent o (0 < o <

1),

F(T) ~ (T/Tf)a, n=T< g (6)
it is clear from (3) that
g(r) ~ (T/Tf)c‘iI =T < 7. (7)

Thus, fractional-power-law behavior for the Fano factor
and coincidence rate accompany each other.

C. Spectrum of the Auditory Neural Spike Train

The frequency spectrum (power spectral density) of a
random process S( f) is determined from its coincidence
rate by means of the Wiener-Khinchine theorem. When
g(7) takes the form indicated in (7), S( f) behaves as

S(HY~f frsf=f (8)

in the low-frequency (large delay-time) regime. The
quantity f;is the cutoff frequency associated with 7r. When
a =1}, asin(4)and (5), S(f) ~ f'/*(0.05Hz < f <
10 Hz). At yet lower frequencies, the spectral density of
the spike train may move toward an approximately 1/f
character [21], with & approaching unity in that region.

D. Fractal Dimension of the Auditory Neural Spike
Train

The fractal dimension D is a measure of the degree of
event clustering, or irregularity of a sequence of events,
that is preserved over different time scales [7]. It falls be-
tween the topological dimension Dy = 0 and the Eu-
clidian dimension E = 1 [7]. We therefore take D for the
auditory neural spike train to be the exponent « in the
Fano factor F(T) as given in (6). As indicated above, «
therefore uniquely determines the power-law falloff of the
coincidence rate and the spectral density of the process.

If values for the Fano factor are known at two counting
times, T, and 75, D may be estimated from (6) as

D =~ log [F(T:)/F(T))] /log (T,/T}).  (9)

We have used this formula to calculate D for several pri-
mary auditory nerve fibers and found values lying be-
tween 0.3 and 0.9, for counting times in the range 0.2 s
< T = 0.55 s. These values are similar to those appli-
cable for the German federal telephone network (D =~
0.3) and other similar channels (0.2 < D < 1) [7]. For
the data presented in Fig. 4, D = S for0.1s < T < 20
s.

E. Comparison of Auditory, Optic, Vestibular, and
Poisson PND’s

Neural spike clusters are also known to be present in
cat optic-nerve fibers at low light levels [22]-[26]; in
striate cortex neurons [27], {28]; in the nervous system of
crustaceans [27], [29, and references therein], [30]; and
in preparations such as the squid giant axon periodically
forced by a sinusoidal current [31].
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The fractal dimension D of the retinal-ganglion-cell
spike train can be estimated from two dark pulse-number
distributions published by Barlow and Levick [23, Fig. 5]
for a particular fiber. The probability density function in
[23, Fig. 5] yields the following values for the means and
Fano factors of the two distributions: M, = 0.32 and
F(Ty) = 1.2425 for Ty = 0.1 s; M, = 3.23 and F(T))
= 1.441828 for T, = 1.0 s. Using (9) gives D = 0.06.
From a number of indications, temporal fractal behavior
appears to be less prevalent in optic-nerve fibers than in
auditory nerve fibers: optic-nerve firings often exhibit ex-
ponential tails in the PID [26] and their firings become
progressively more regular as the luminance increases.
Unlike auditory-nerve firings, at high stimulus levels
F(T) becomes independent of T [22] so that D = 0. The
spontaneous firings of some striate cortex neurons [28,
Fig. 1], on the other hand, appear to be fractal, at least
from visual inspection.

As a distinct counterpoint to the clusters that appear in
the neural spike trains of all primary auditory fibers, the
data for a spontaneously firing low-skew vestibular unit
is illustrated in Fig. 5. It is well known that such units
fire in a far more regular pattern than do auditory units
[32]; their firing pattern is similar to that of optic nerve
fibers at high luminance levels. In Fig. 5(a) and (b) we
present short-counting-time (7 = 51.2 ms, Ny = 2000)
and long-counting-time (7 = 204.8 ms, N, = 500) spon-
taneous vestibular PND’s, respectively, for one such unit.
Both of these PND’s were constructed from the same
neural spike train. They exhibit PND count means M(51.2
ms) = 1.95 and M(204.8 ms) = 7.81, respectively, and
(very low) Fano factors F(51.2 ms) = 0.04 and F(204.8
ms) = 0.03, respectively. The small values of F(T) in-
dicate that these vestibular nerve firings tick along with
the near regularity of a clock.

In Fig. 5(c) we present the PID for this same unit. This
PID is the usual unscaled version P! '(1) [3] which rep-
resents the probability density of the time intervals be-
tween adjacent events. The number of samples is 2000
and the resolution of the time axis is 0.2 ms (8 bins). The
large narrow peak indicates that the time between adja-
cent spikes is almost always 27 + 3 ms (note the ex-
panded abscissa). The sample mean interspike interval
(1'") = 26.9 ms and the interspike-interval coefficient
of variation CV'") = 0.0449. Based on the classification
provided by Walsh et al. [32], this spike train arises from
a low-skew vestibular unit.

Finally, in Fig. 6 we present a comparison of the PND’s
for vestibular, auditory, and simulated-Poisson data with
the same approximate spike rate (A =~ 40 s~ 1. Short-
counting-time PND’s (T = 51.2 ms) are shown in Fig.
6(a) and long-counting-time PND’s (T = 204.8 ms) are
shown in Fig. 6(b). The vestibular data (denoted VES)
are the same as those shown in Fig. 5. The auditory data
(denoted AUD) are drawn from Unit 7/72028.PN, stim-
ulated by a pure tone of frequency 1445 Hz and of level
—20dB:re FTC [1, Fig. 8]. This particular data set was
chosen because its spike rate was quite close to that of the
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Fig. 5. Short- and long-counting-time PND’s, and PID, for a low-skew
vestibular unit (No. 14/72027.P4). All three distributions are very nar-
row, illustrating the regularity in the firing pattern. (a) T = 51.2 ms PND
collected with N;- = N = 2000 samples: (b) 7 = 204.8 ms PND collected
with Ny = 500 samples: (c) PID collected with 2000 samples (note ex-
panded abscissa). The PND’s in (a) and (b) were constructed from the
same underlying neural spike train. Experimental values for the PND
count mean M, count variance V, and variance-to-mean ratio F are spec-
ified in the PND panels. Experimental values for the sample mean inter-
spike interval (1 'y and the interspike-interval coefficient of variation
CV'" are specified in the PID panel.

vestibular unit. The simulated-Poisson data (denoted POI)
were calculated by means of a C language program writ-
ten for the AT&T 3B2 computer and a Basic-language
program written for the IBM PC. The vestibular PND’s
are clearly the narrowest and the simulated-Poisson PND’s
the broadest. However, it is the auditory PND’s that are
the most irregular.

IV. CONCLUSION
A. Nature and Usefulness of the PND

The behavior of the PND is most readily captured by
its count mean M and variance-to-mean ratio F (7). The
count mean is directly proportional to the usual rate func-
tion for the unit. The form and magnitude of F(T) pro-
vide measures for the regularity of the underlying spike
train. If events are generally well organized along the time
axis, the Fano factor will be small (as it is for the vestib-
ular unit) since the numbers of events in successive inter-
vals of duration T are relatively constant. If random pairs
or spike clusters appear, the Fano factor will be large since
a cluster will sometimes be captured in an interval of du-
ration T and sometimes not. For the zero-memory ho-
mogeneous Poisson process, F(T) = 1 for all T whereas
for the highly regular pulse train, F(T) — 0 for suffi-
ciently large T [5]. Very-short-time PND measurements
tend to cut apart both clusters and regularity, and result
in a low-mean. Poisson-like distribution. This is because
refractoriness restricts the possible outcomes to be either
0 spikes or 1 spike in this case, which gives rise to the
Bernoulli distribution [5].

There are a number of practical reasons why the PND
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Fig. 6. Comparison of PND’s for vestibular, auditory, and simulated-
Poisson data with the same approximate spike rate ( =40/s). Short-
counting-time PND’s (T = 51.2 ms) are shown in (a); long-counting-
time PND’s (7 = 204.8 ms) are shown in (b). The vestibular data (de-
noted VES) are drawn from unit no. 14/72027.P4; see Fig. 5. The ves-
tibular PND count means in (a) and (b) are M(51.2 ms) = 1.95 and
M(204.8 ms) = 7.81, respectively, and its variance-to-mean ratios in
(a) and (b) are F(51.2 ms) = 0.04 and F(204.8 ms) = 0.03, respec-
tively. The auditory data (denoted AUD) are drawn from unit no. 7/
72028.PN, stimulated by a pure tone of frequency 1445 Hz and level
—20dB:re FTC (see {1, Fig. 8]). The auditory PND count means in (a)
and (b) are M(51.2 ms) = 2.01 and M(204.8 ms) = 8.03, respectively,
and its variance-to-mean ratios in (a) and (b) are F(51.2 ms) = 0.70
and F(204.8 ms) = 0.81, respectively. The simulated-Poisson (denoted
POI) count means in (a) and (b) are M(51.2 ms) = 1.92 and M(204.8
ms) = 7.85, respectively, and its variance-to-mean ratios in (a) and (b)
are F(51.2 ms) = 1.02 and F(204.8 ms) = 1.08, respectively. The
vestibular and auditory PND’s in (a) and (b) were constructed from the
same underlying neural spike train. N; = 2000 and 500 for the short-
and long-counting-time vestibular PND's, respectively, whereas Ny =
1000 and 250 for the short- and long-counting-time auditory and simu-
lated-Poisson PND's. The vestibular PND’s are clearly the narrowest,
the simulated-Poisson PND’s the broadest, and the auditory PND's the
most irregular.

is useful for compiling neural data [1]: 1) time jitter and
time quantization in the measurement system become un-
important so that PND data are not contaminated by these
instrumental effects (the PID and PST can suffer from such
limitations); and 2) it provides a statistically valid mea-
sure for studying units that fire at low rates. Under these
conditions it is difficult to collect a statistically significant
PID or PST histogram.

B. Fractal Nature of the Auditory Point Process

Probably most important, the PND provides the exper-
imenter with a useful window on the coding of informa-
tion. In primary auditory fibers it has revealed temporal
fractal behavior taking the form of nested sequences of
spike clusters.

1t is desirable to seek a mathematical model for the point
process that reflects the underlying physiological behavior
of the system. The PND’s are quite well fit by the re-
duced-quintinomial distribution [6], but this is principally
a phenomenological construct. A number of models would
appear to give rise to a fractal point process. We believe
that several of these merit further study: 1) models in
which the haircell gives rise to a fractal presynaptic sig-
nal, e.g., neurotransmitter release may be governed by
fractal ionic channel openings and closings®; 2) models in
which the diffusion of neurotransmitter across the synap-
tic junction obeys fractal dynamics; 3) random-walk
models involving excitatory and inhibitory steps at the

*We have found that a simple inverse power-law, p''’ ~ | /1, fits some
channel transition histograms remarkably well.
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postsynaptic junction, such as those considered by Ger-
stein and Mandelbrot [33}]; and 4) models in which cha-
otic oscillations of the membrane potential [34] may ini-
tiate action potentials [31] with fractal characteristics. We
are investigating the possibilities of casting some of these
models in the form of a sick-time-modified doubly sto-
chastic Poisson point process [35]. The stochastic rate
takes on a fractal character and exhibits a correlation
function that gives rise to the Fano-time function reported
in Section III-B.

Why would the auditory action potentials exhibit fractal
behavior and the vestibular units not? Since the auditory
neural spike train serves to sample slowly varying enve-
lope information [36], we suggest that these unusual au-
ditory neural-firing patterns may serve to efficiently sam-
ple natural fractal noises. Indeed, the instantaneous audio
power of music and speech, and the instantanecous fre-
quency (rate of zero crossings) of music, exhibit 1 /fnoise
over a substantial range of low frequencies [37]. An anal-
ogous argument for the visual system would suggest that
fractal neural firings might be present at loci where image
information is sampled, e.g., at the striate cortex. The
potential benefits to be gained from such sampling, such
as bandwidth compression, require examination from an
information-theoretic point of view. The vestibular sys-
tem, in contrast, does not sample an information-carrying
signal but rather estimates angular acceleration with high
accuracy. This task, it seems, would be best served by a
sequence of regularly firing nonfractal action potentials.

C. Fractal Behavior in the Nervous System

The presence of spike pairs and clusters in the nervous
system is greeted with skepticism by some and with en-
thusiasm by others. More than one auditory neuro-
physiologist has said that the pairs must be an artifact re-
sulting from recording near a node of Ranvier. Other neu-
rophysiologists, working with different preparations, have
ascribed significant signal processing significance to them
[28], [38]. Spike pairs and clusters can simply arise, as
we have shown, from action potential occurrences at frac-
tal times. Such behavior may be quite prevalent. Further
investigation of where fractal behavior occurs may lead
to further understanding of why fractal behavior occurs in
the nervous system.
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