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Abstract

Photocounting distributions, the decision threshold, and the prob-
ability of error are obiained for a binary optical communication
system in which both the signal and background radiation are
Gaussian processes. This would be the case, for example, when the
radiation source is a nonlocked multimode laser or when the
received radiation is scattered from a satellite. Dark current is
considered. The results indicate that when possible, counting times
should be adjusted to be large in comparison with the background
radiation coherence time, and optical amplification before detection
should be employed.
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I. Introduction

Consideration has been given by several authors to the
application of photocounting detection of laser radiation to
optical communications systems in the vacuum channel. In
particular, both Lachs and Jankowich [1] and Helstrom
[2] have treated maximum likelihood detection for a
communications system in which the source is a coherent
optical signal (ideal single-mode laser) and the noise is
thermal background radiation. Similar results for the ideal
single-mode laser in the presence of background radiation
for which all fluctuations have been averaged (counting
distributions for both the signal and the noise are then
Poisson) have been given by Bar-David [3], Pratt [4], and
Gagliardi and Karp [5].

In this paper, we present results for the maximum
likelihood receiver detecting radiation which arises from a
multimode laser with independently oscillating modes [6]
or from a scattering source such as a rotating satellite [7].
In these cases, the electric field has a Gaussian probability
distribution, while the intensity is exponentially distrib-
uted, as for a thermal or chaotic source [8]-[10]. For noise
arising from independent noninterfering background radia-
tion, with a correlation time considerably smaller than the
detection interval, Poisson noise counts will be observed in
the absence of signal. This case and the reverse, when the
detection time is much shorter than the background
radiation correlation time, are both treated.

The probability distributions of the signal intensity /g
and the background noise intensity /g may be written [8]

I
Ps(s) =<,LS) exp( - (—,-:7) u(ls) (1a)
o
Pg(lp) =T exp (- -(%—)) u(lg) (1b)

where u(x) is the unit step function, and (/g and (/) are
the intensity means of the signal and the background noise,
respectively. The radiation beam is passed through a binary
ON-OFF gate; the signal beam is transmitted during each
ON period and blocked during each OFF period. The
photocounter will receive the signal by appropriate time
synchronization. The probability p that the signal will be
transmitted is therefore proportional to the total ON
period, and the probability 1 — p that the signal will be
blocked is proportional to the total OFF period. If, on the
average, the total ON period and the total OFF period are
equal,we havep =1 —p =0.5.

Because the background radiation enters the receiver
from all directions rather than only parallel to the incoming
laser beam, interference will be assumed to be averaged.
Therefore, the total effective intensity / at the receiver is
just the sum of the signal intensity /g and the background
noise intensity I,

1(t) =15(t) + I5(?). )

This result is also obtained if interference occurs, but is
outside the bandwidth of the detector.
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In the following, we consider two cases: 1) the detector
counting time 7T is large compared to the coherence time 75
of the background intensity fluctuation, and 2) T is short
compared to 7g. However, in both cases, the coherence
time 7g of the laser signal is taken to be large compared to
both T and 7. This is a good approximation for a system
using either a multimode laser or scattering from a target
such as a satellite. If the Gaussian signal source is broad-
band, such that 7g is small compared to both T and 7,
then of course the signal fluctuations are averaged, giving
rise to a Poisson distribution of counts, treated previously

(1]-[5].

i1. Chaotic Source and Stable Noise

The coherence time of background radiation 75 is of the
order of 107'2 seconds for a photodetector shielded with a
narrow (= 1 A) interference filter. Thus for T > 75, the
photodetector cannot follow the background fluctuations
and sees only the mean background intensity {/g). In this
case, the probability density function for I is simply a
delta function,

Pg(lp) = 8(Ip —Ip)). €)

Since the laser signal and the background noise are

independent, to obtain the probability density function

P(I) for I, we merely take the convolution integral of Pg(/g)
and Pg(lg) to get [11]

P(/)='/ Ps(I = MPg(N) d\

1 (Ig)
= — _____B._ _
Ug) exp ( Ug) ) (1 Up))-

Since the coherence time of the laser signal 7g is large
compared to the counting time 7, we can obtain the
photoelectron counting distribution pgg(n, Ng, Ng) due to
the signal and background noise within a time interval T by
using Mandel’s formula [12]. Thus,

/ M exp (—aTl) p(l) dl
(}

Ngn exp (Ng/N N
el PN/ S)I‘[n+1,(1vs+1)j—v—‘5’-:]
S

T Wstip
1 P
L(N +1)_.. - ©

O]

psp(n, Ns, Ng) = (‘;!T)n

_ Ng"exp (-Np) r"—-
(Ns + 11
where Ng = aT (Ig) and Ns = aT {Ig) are the mean counts

due to background noise and signal, respectively, and a is
the detector quantum efficiency. The quantity

Cln+1,x] =/ v exp (—v)dv
X
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is the incomplete Gamma function. The dark current, on -
the other hand, gives rise to a Poisson distribution for the

photoelectron count,
n

pp(n, Np) = exp (~Np) (6)

where Np is the mean count due to the dark current noise.

Now, since the dark current noise is independent of both
signal and background radiation, the probability distribu-
tion of the total photoelectron count pgy(n, Ng, Ng, Np)
is given by the convolution sum of pp(n, Np) and pgp(n,
Ng, Np) [13]

psu(n, Ns, Ng, Np)

n

= Z psp(n — k, Ns, Ng)pp (k. Np).
k=0

(7)

After some algebraic manipulation, one obtains finally

psu(n, Ng, Ng, Np)
Ny
Cln+1,Wg+ 1) —=
Ng

Ny | ¥ 1
[(NSH)-NE-] &

)

_ _Ns"_ exp(Vu/Ns)
(Ng + 1) n!

>

k=0

Ng" exp (-Ny)
T (Vg + D

=psu(n, Ns ,Ng)

where Ny = Np + Np is the total noise mean count.
Equation (8) arises since the stable background noise alone
yields a Poisson distribution for the photoelectron counts
[8], and two independent Poisson distributions combine to
form another Poisson distribution with a mean given by the
sum of the two original means [13]. The addition of the
dark current therefore serves only to increase the noise
mean. The counting distribution py(n, Ng, Np) due o
both background noise and dark current noise is therefore

exp (—~Ny) =pp(n, Ny).
)

This equation, along with (8), is plotted in Fig. 1 for the
arbitrary value Ng = 30, with Ny as a parameter. Visual
comparison of these curves will be found useful in
physically understanding the likelihood detection which we
will discuss in a later section.

N n
pa(n, Ng, Np) = ,ﬂ

111. Chaotic Source and Chaotic Noise

If, on the other hand, the background radiation entering
the detector is narrow-band (7 < 7g) and still noninter-
fering and independent of the signal radiation, then

Palls) = 7oy o () ule)- (10
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Fig. 1. The counting distributions
pgyln, Ng Ny arising from chaotic
signal plus stable noise (solid curves)
and pyln, Ny arising from stable
noise alone (dashed curves) for the
regime rB<< T<<rg. Plots are given
for Ny =3, 15, and 60, all with mean
signal count Ng = 30.
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The probability density function for the total effective The dark current counting distribution is still taken to

intensity / for this case may therefore be written be Poisson. Following the same procedure as in the last
o section, therefore, we obtain
= Pg(I — NPs(N) dn

i /o; 5l — NEs() ‘ psu(, Ns, Np, Np)

n
_ e i) [ 11 = Y P~ k. Ns. Na)polk, Np)
- exp| M7= - =) ) an. -
dsip)  Jo dpy  dg k=0
(11) _ exp(_ND) NS n+1
Generally, (Ig) # (Ig), and (11) yields Ns—Ng Ng+1
_ 1
P(I) = (Is) —(Ig) (exp (1K) — exp (-1/UpN)ul), -i: __l'_ [(Ns oD Np ]k
) #Ug). (12a) =3 ¥ Ns
For the special case where (Ig) = {Ig), we obtain Ng \"*!
| I - ( Ng +1 )
Py = 755 exp (~1/UgN)u(d),
Ug)
n
() = g). (12b) 3 —,;,—‘-(Na + ‘)Tv%] ; | Ng#Ns
k=0 w -

Again, using_Mandel’s formula, one easily obtains the

counting distribution psp(n, Ns, Np), (14a)
l ‘ Ns \”+l NB n+l
pss( Ns. Np)= = (N.s'"‘ 7) "(‘]‘v;'_;'l’) * Np#Ns
(13a)
(, N, Ng) = (n + 1)' NS Np=N.
n, Ng, =(n e Npg =Njs.
PsB s Vs (s + 11 B=S (13b)
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the regime T<<7g, 7g. Plots are given
for Ny = 3, 15, and 60, all with mean
signal count Ng = 30 and mean dark
current count Np = 2.

and

Npg" exp (-Np)
psu(n, Ns, Ng, Np) = ———

(NB+1)n+2
n
Ng + 1\* Np*
3 (Hert) S ke vaen
k=0 B :

(14b)

The counting distribution which arises from background
alone is geometric or Bose-Einstein [8]-[10],
n

L. (15)

n’N I cm————
pe(n, Np) W+ 1y

while the counting distribution pg(n, Ng, Np) due to
background radiation plus dark current is given by

n

Pu(n, N, Np)= Y pa(n - k, Ng)pp(k, Np)
k=0
NB" exp (_ND) 2 ND k 1
T L Ng + 1) == .
wrrr g (MR

(16)

This equation, along with (14), is plotted in Fig. 2. The
mean signal count is once again taken to be Ng = 30, but
now the dark current count Np cannot be lumped with the
background count Ng since both have different distribu-
tions. The mean dark current count is arbitrarily chosen as
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Fig. 3. Decision threshold kD ver-
sus SNR for stable noise (solid
curves) and for chaotic noise
(dashed curves). Plots are given for
Ny = 3, 15, and 60 with p = 05
and Np = 2. Mean dark current
count need only be specified for
dashed curves.

Np = 2 for presentation in Fig. 2. Comparison with Fig. 1
shows that the counting distributions for chaotic noise, as
well as for signal plus chaotic noise, are broader and overlap
a good deal more than in the Poisson noise case. Further-
more, the most probable count occurs at lower count
number, as expected for the increased fluctuations.

IV. Likelihood Detection

Using the likelihood detection criterion, a signal is
judged to be present if [4]

Psu(n, Ns, Ng, Np) 5 1-p

PH (n’ N, B> N D) p
where p is the a priori probability that a signal is present.
The decision threshold kp is defined as the smallest count
number n for which (17) is satisfied. This quantity has been
computed for both cases considered previously and is
presented in Fig. 3. In this figure, k is plotted against the
signal-to-noise ratio (SNR), where SNR = Ng/Ny, with

N as a narameter We have chosen 1 = =
Ny as a parameter. We have chosen p = 0.5 and Np = 2.

We note that kp = 0 as SNR - 0, and kp —> *¢ as SNR
- oo_ The latter may be seen by noting that as Ng = o0, pgy
- 0 for all n, while py = 0 only for n - oo, The likelihood
threshold is observed to increase with SNR for all cases, but
with a greater slope for the chaotic noise source. This arises
from the broad nature of these counting distributions.
Using the likelihood criterion, a false detection occurs
either when the signal is present but the count number falls
below the threshold kp, or when the signal is absent and

a7
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Fig. 4. Probability of error P, versus
SNR for stable noise (solid curves) and
for chaotic noise (dashed curves). Plots
are given for Ny = 3, 15, and 60, with p =

05and Np = 2.

the count number falls above k5. Thus the probability of
error is defined as [4]

P, =p(1 — psu®) + (1 — p)pu® @18)
where
psu® = Z psu(n, Ng, Ng, Np) (192)
n=kD
and
puP= Y pu(n Np, Np). (19b)
n=kD

For the case p = 0.5 and Np = 2, we present curves for P,
as a function of SNR for several values of Ny. The results
for both stable and chaotic noise are presented in Fig. 4.
The maximum value achieved by P, is 0.5 for this binary
system and occurs at SNR = 0, as can be seen from (18)
and (19). This, of course, corresponds to complete lack of
knowledge as to whether a signal is or is not present.
Clearly, the probability of error decreases with increas-
ing SNR, and is, in all cases, lower for stable noise than for
chaotic noise. What is unexpected, however, is the depen-
dence of the probability of error on the mean noise count
for a fixed value of SNR. For chaotic noise with a small and
fixed dark current count, lower values of mean noise count
(and, therefore, proportionately lower values of mean signal
count as well, since the SNR is fixed) improve performance,
while the reverse is true for stable noise. In the limit as SNR
- oo, P, > O for all cases, which is expected; math-
ematically, this can be seen from (18) and (19). The curves
therefore indicate that P, depends strongly on the absolute
signal level as well as on the SNR, in agreement with the
results of previous authors [1], [2], [4]. By way of
comparison, Lachs and Jankowich [1], Helstrom [2], and
Pratt [4] all reported for their systems a decreasing
probability of error with increasing signal for fixed SNR.
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V. Conclusion

The photoelectron counting distributions due to signal
plus noise and due to noise alone are calculated and plotted
for counting times small in comparison with the chaotic
source coherence time. Curves for both T> 75 and T <71p
are given. In the latter case, new results for the intensity
distribution function P(/), and for the counting distribu-
tions pgp (1, Ns, Ng), pser(n,Ng,Np, Np), and py (n, N,
Np) due to signal plus background noise, signal plus total
noise, and due to noise alone are derived. Only noninter-
fering additive noise, such as might arise from the random
incoming direction of the background radiation or from
beats falling outside the detector bandwidth, has been
considered.

The decision threshold kp and the probability of error
P, have been evaluated and plotted for these cases, using
some typical parameters. For increasing SNR, kp increases
without limit, while P, always decreases asymptotically to
zero.

It is apparent from the probability of error curves (Fig.
4) that it is preferable to operate in the regime T > 7p,
whenever possible. That is, improved results are obtained
for the receiver which does not detect irradiance fluctua-
tions due to background radiation. This is the usual regime
for broad-band background radiation. In this case, further-
more, the probability of error is lower for higher signal
levels (at fixed SNR). Thus it may be profitable to provide
optical amplification before photodetection, provided that
this additional process does not itself introduce excessive
noise.
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