From the slope of the curve in Fig. 1 the Raman gain
constant is calculated at 51 x 10~ '2cm/W. This is lower than
published values of 6-0 x 10~ '2 calculated at this wavelength?
which, in addition to experimental error, is thought to be due
to random walk-on and walk-off of the pulses arising from
small variations in the zero dispersion wavelength down the
fibre. This has not yet been confirmed experimentally but it
will be the subject of further study in the near future.

The effect of saturation is also evident from Fig. 1 where the
departure from linearity in the characteristic increases for an
increasing signal level. From Fig. 3 it is estimated that a gain
compression of —3dB is obtained at an output signal level in
excess of +25dBm.

Using the pulsed pumping technique described here for a
soliton system operating at say a 10% duty cycle in a disper-
sion shifted fibre of length 100 km, the loss (0-2dB/km) would
be equalised by Raman gain for a mean pump power of
40mW. This compares favourably with a pump power of 20—
30mW typical of the requirement for a line amplifier based on
the ‘special’ erbium fibre that is needed to achieve this gain.

For amplification at 1-56 um the pump wavelength would
be the same as that for erbium fibre amplifiers but the diode
lasers used in the Raman based schemes need to be mode-
locked with short external cavities to fix the required bit-rate.

Conclusion: Synchronous pumping of a Raman-fibre amplifier
has been experimentally demonstrated for the first time. In a
practical span length using soliton transmission the mean
power for amplification obtained in this way is comparable to
that required in erbium fibre amplifiers.

The immediate applications for this technique would be in

high bit-rate single hop communication systems. It is also
envisaged that a repeatered system could be feasible by
arranging for adjacent amplifier pumps to be time referenced
by synchronous pumping using the transmitted pump power
from the previous amplifier.
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BIT-ERROR RATE FOR A LIGHTWAVE
COMMUNICATION SYSTEM
INCORPORATING AN ERBIUM-DOPED
FIBRE AMPLIFIER

Indexing terms: Optical communication, Optoelectronics

The photon-number distribution at the output of an erbium-
doped fibre amplifier (EDFA) with coherent light at the input
is shown to obey the noncentral-negative-binomial (NNB)
distribution. The use of this distribution in a binary on/off
keying system gives rise to a lower bit-error rate (BER) than
the Gaussian distribution, because the tails of these distribu-
tions differ (even for large mean input photon numbers).

Introduction: Erbium-doped fibre amplifiers (EDFA) are
finding increasing use in optoelectronic systems. There are a
number of theoretical formulations of the laser amplification
process that are useful for dealing with amplifiers of different
configuration.!'? In the present paper we study the evolution
of the photon statistics of a coherent light beam as it passes
through an EDFA and the BER of a lightwave system incor-
porating such an amplifier. Each of the photons in our EDFA
configuration can be viewed as initiating its own BDI process.
In Section 2, we obtain the relationship between the input and
output probability distributions (and probability generating
functions) for a BDI process with coherent light at its input.
In Section 3, the bit-error rate (BER) of a binary on/off keying
system employing an EDFA optical preamplifier is calculated
using the probability distributions obtained in Section 2.

Theory: Following the early work of Shimoda et al.? the
amplifier’s photons are treated as a population governed by a
simple BDI process, with birth and death representing stimu-
lated emission and absorption, respectively, and with immi-
gration representing spontaneous emission. Let ¢t denote either
the time of traversal or the depth of penetration of a medium
characterised by a birth rate per particle a(t), a death rate per
particle b(t) and an immigration rate c(t) that is independent
of the current population size. By taking the limit of a differ-
ence equation that accounts for these three processes, it is
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readily shown? that the probability distribution P(n, 1), with n
particles present at time (or depth) 7, satisfies the equation

d—[—’%t—) = —[(a+ bn + c1P(n, ty + [a(n — 1) + ]

x P(n — 1,8) + bin + DP(n + 1, 1) 1)

Saturation is assumed to be absent. The probability gener-
ating function (PGF), given the initial condition P(n, 0) = &(1)
(which means that there is only one photon at the input of the
amplifier), satisfies*

Gypils, t) = z P(n, t)s"

_ [1 + g — CnadKs — 1)]
= <nadls — 1)
X [1 = (s = 7% @

where g(t) = exp {[§ [a(r) — b(1)] dr} represents the overall
gain of the amplifier, M = c(t)/a(t) represents the number of
degrees of freedom or modes and <n,> = g(t) [}, a(z) dr rep-
resents the mean spontaneous-emission population (n,)
divided by the number of modes M. The length L of the
EDFA specifies the time ¢ (which is equal to the ratio of the
amplifier length to the speed of light). Eqn. 2 can be written as
the product Ggp/(s) = Ggp(s)G,(s), where

Gyp(s) = [1 + (g — <nuXs — DI/ = (nudls — 1]

and
Gyls) = [1 — (nod/MXs — 1]

with {ng) = M{n,,>.

When the initial population of the BDI process is, instead
of one photon, a random number of photons N governed by
the distribution P(n, 0) = P,(N), with PGF G, (s), the output
PGF can be written in terms of the input PGF as® G,,(s) =
[G.{(Ggp)]G;. Coherent input light to the EDFA exhibits
Poisson photon counting statistics. Using the expressions for
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Gppls) and G(s) provided above, together with G,(s) = exp
[{NXs — 1)] for a Poisson of mean {N), we obtain a PGF at
the output of the EDFA given by

-M
Gm(s)=exp[ g6 =1 T _ oy ]

ey Ly val @

This is recognised as the PGF of the noncentral-negative-
binomial (NNB) distribution®

<" exp(_ g<N>>
A+ Cnyy ™ T+ (>

x LM~ 1)|: — —ng__:l @)

P(n) =

(g (1L + ()

where L™ ™1 is the generalised Laguerre polynomial L%~V
(=) =Y4-om X0+M—DY[k+M—1DIn—kkN.
This distribution can alternatively be derived from a wave
point of view by considering an interfering superposition of
coherent and thermal light.> The mean and variance of this
distribution are (n) = g{N) + M{n,> and Var (n) = g(N)
+ 2g{NY{ny> + M{n,>(1 + {n,>), respectively, which are in
accordance with the usually used expressions.?*®

Bit-error rate: Consider a binary on/off keying (OOK) system
and define P, and P, as the a priori probabilities that a ‘0’
and a ‘I’ are transmitted, respectively. The probability of
error, or the bit error rate (BER), is then given by’ BER = P,,
Y n=0, ) Ps(m) + Py Y uzo. by Psa(n), with D representing the
optimal detection threshold and P(n) and Pgy(n) the photon-
number distribution of the output of the system when a ‘0’
(the output is noise alone) and a ‘1’ (the output is signal-plus-
noise) is transmitted, respectively.

We now evaluate the performance of an OOK system using
an EDFA in the absence of extraneous background light, and
with a receiver of unity quantum efficiency and negligible dark
and electronic (thermal) noise. It is assumed that all of the
photons are collected in each bit and that there is no inter-
symbol interference. Pgy(n) is then the NNB distribution rep-
resented in eqn. 4. Taking {(N) =0 in eqn. 4 gives P\(n) =
(™1 + {nyd)** M, which is the well-known negative-
binomial (NB) distribution, a special case of the NNB. Substi-
tuting these two results into the equation for the BER allows
us to calculate the BER for various values of {(N). The results
are shown by the solid curve in Fig. 1.

The Gaussian distribution is often used to calculate the
BER for lightwave systems® using EDFAs.® For comparison
with the results using the NNB, we calculate the BER using
Gaussian distributions for Py(n) and Pgy(n), with the same

10 .

bit - error rate (BER)

10 : L n
0 20 40 60 80
mean input photon number <N >

Fig. 1 BER for a binary OOK system using an EDFA modelled by
NNB and Gaussian statistics. Convenient parameters were chosen to
generate the curves: g =158, M =1, {n) = 157 and P, = P, = 0-5.
M =1 implies that the spontaneous emission is filtered so that only
those photons emitted into the same mode as the stimulated photons are
detected
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means and variances as used in the NNB calculation. The
results are shown as the broken curve in Fig. 1. Use of the
Gaussian distribution overestimates the BER. The reason for
the difference is that, as shown in Fig. 2, the tails of the NNBs
differ from those of the corresponding Gaussian distributions.
In particular, they behave differently even in the limit of large
(N>, as shown in the Appendix. Note further that the NNB
curves cross at a higher photon number than do the Gaussian
curves so that the optimal value of D differs for these two
cases.

10° :
i I noise < E
a . Hgaussian) \\ ________
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50477
Fig. 2 Photon-number distributions for Pn) and Pgy(n). The solid
curves represent NN B distributions whereas the dashed curves represent
Gaussian distributions with the same means and variances as the NN Bs.

The parameters used to generate the curves are g =158, M = I,
{(n) =157 and N = 0 and 30
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Appendix: From the equation for the BER we know that it
depends on the right tail of Py(n) and on the left tail of Pgy(n).
If P\(n) is the NB distribution, as n — oo,

Pyin) = (ny > /(1 + <ng D) M oc [(1 A+ <)) <ng>1 7
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However, for a Gaussian with the same mean and variance as
the NB, as n - o0,

Py(n) = exp [—(n — {mud)?A2{ny > D))/ (2r)<ny))
o exp (—n?)
Thus, the right tails of the two distributions differ in form, as
is readily seen in Fig. 2.

As is also evident in Fig. 2, as n — 0 the left tail of the NNB
distribution decays more rapidly than the left tail of the equiv-
alent Gaussian. Indeed for n = 0, Psy(0) for the NNB is

Psn0) = exp [—g<NYAL + <y )] + ()™
~ exp (—3b{N>)[exp (=b{NY)nyy™]
with b = g/(4<{n,,>), whereas for a Gaussian with the same
mean g{N) and variance 29{N»{n,,> as the NNB (assuming
{N) very large),
Ps{0) = [{NY ™12 /(Ang<ny»)*] exp [ —g<N > /(4<ny))]
x (N> 2exp (—b{N))/(4ng<n,»)' 2]

Thus, even as (N) becomes very large, the left tail of the
NNB cannot be approximated by a Gaussian.

UNIFORM CNR DESIGN RULES FOR
COHERENT SUBCARRIER MULTIPLEXED
SYSTEM WITH MULTIOCTAVE FREQUENCY
ALLOCATION

Indexing terms: Multiplexers and multiplexing, Phase modula-
tion

For a CSCM system with multioctave configuration, the
CNR difference among channels is significant and needs to
be taken into consideration. Here we take ‘equal optimal
CNR of the first and central channels’ as a criterion, then we
derive a design rule to reduce CNR difference significantly.
The example shows that it can be lessened from 7 to 1-5dB
with lower received signal power to achieve the same CNR
requirement.

Introduction and system description: For a coherent subcarrier
multiplexed (CSCM) system as shown in Fig. t, the degree of
nonuniform CNR in a multioctave configuration may be large
as reported in Reference 1. Usually in a multioctave system,

N
channels

phase INA
modulator LO
laser 77301

Fig. 1 System block diagram of CSCM

the second-order intermodulation (/MD,) contaminates the
first channel mostly, but the third-order intermodulation
(IMD,) contaminates the central channel mostly.! In this
letter, we first obtain the optimal CNR expressions of both the
first and the central channel and use the criterion ‘equal
optimal CNR of the first and central channels’ to equalise the
CNR performance approximately. Then we can obtain the
phase modulation (PM) index in terms of channel spacing, the
total number of channels, and the ‘octave-number’ with corre-
sponding received power to meet the CNR requirement of the
first channel (worst case in a multioctave system). The optical
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CSCM system consists of N equispaced channels with signal
bandwidth B and channel separation Af. To reduce IMD,, we
locate the frequency of the ith channel (i=1,..., N) at f; =
(i — 1) Af + F,., Af + Afj2, where F,,, is an integer. The offset
frequency Af/2 is employed to let IMD, degrade the channel
signal least. The power spectra of IMD, and IMD; can be
taken as the convolution of the power spectrum of each
channel? and their magnitudes are determined by the signal
power level and the phase modulation (PM) index.

Derivation of CNR and optimum PM index: The CNR for
large local oscillator power which suppresses the thermal
noise can be derived by using the first-order approximations
of Jo(B) and J,(B) as’

CNR = (4gB/(RPs %) + h, K, f*/4 + hy K, 4/16) " (1

where ¢ is the electron charge, R is the photodiode
responsivity, Pg is the received signal power, and § is the PM
index (assumed equal for all channels). h, and h;, related to
the power spectra of IMD, and IMD; in the neighbourhood
of the signal band, are the fractions of the power within the
passband of the bandpass filter. Under the condition of equal
channel spacing, the value of h, for the ideal rectangular
signal spectrum can be expressed as h, = (3 — Af/B)*/8 for
Af < 3B, and h, = 0 for Af > 3B. The value of h; for the ideal
rectangular signal spectrum is 2/3. K,(i) and K,(i) represent
the numbers of IMD,s and IMD,s contaminating the ith
channel, respectively. They can be expressed for a multioctave
configuration as in References 3 and 4, case (A) (1 < X < 2):
K,)=N(1—1/X)—i+1 for 1<i<N—F,,, Ki(i)=0
for N—F,,+1<i<F,,+1and K,(i))=(— N/X —1)/2
for F,,, +2<i< Nj;case(B) (2 < X): K,(i) = N1 - 1/X) — i
+1for 1 <i<F,+1, Kyi)=[NQ - 3/X) ~ i+ 1]/2 for
Fpn+2<i<N-—F,, and K,(i) =( — N/X —1)/2 for N
— Fim+ 1 <i< N. For both cases (4) and (B), K;(i) = i{N
— i+ 1/2+[(N—3)?—5}/4, where X =N/F,, (the
‘octave-number’) and X =2, 3, ..., etc. represent the two-,
three-, ..., octave configuration.

Here we define the CNR difference, A(i, j), between channels
iandjfromeqn. 1 as

CNR()

CNR())

1 + [h; K,() + hy K3()B/43/[164B/RPs*)]

1+ [hy K,(i) + hy K4(i)8°/4]/[169B/(RPs *)]
2

A(i, j) = 10 log,,

= 101log,,

We can obtain the optimal PM index that maximises the
CNR of the ith channel as f,,=<05{—y+ /[y’ +
(64/3h, Ks(i)CNR)]}>”2- where y=[8h, K,(1)]/[3h, Kz(i)ll
The corresponding receiver sensitivity is Pg = (4¢B/R)/
[B2,/CNR — hy K (i)B2,/4 — hy K3(i)f5,/16]. Then we can
express this maximum obtainable CNR for this channel in
terms of f,,, as CNR,, = [h, K,()82,,/2 + 3h; K 5(i)B7,/16] .
The design rules: We usually have the same received power Pg
and unified system PM index S, for all the channels in the
CSCM system with total Ny, channels. We also need to keep
the CNR of all channels above a specific value. Therefore, we
may choose the appropriate Ps, f,,, and Af to meet the
requirement. Here, we are concerned about ‘uniform CNR
for all channels’ and will solve this problem as follows: first,
we take channels 1 and N, /2 as the worst channels under the
consideration of IMD, and IMD,, respectively. We apply
‘equal optimal CNR of channels 1 and N, /2" as a criterion,
that is, CNR, (1) = CNR, (N, /2), to obtain the correspond-
ing By =20~ ABIK,(1) — Ky(N,y/2)/N Ny — 21°°.
Then we may simplify it as B, = 2(3 — Af/BX1 — 1/X/N,,,
—2)%° (case (A), and P, =3~ AFB)(1 +2/X)/N,
— 2)]%% + 0-016 (case (B)). Hence, the unified system PM
index can be obtained from the given total channel number
and octave-number; together with the specified channel
spacing Af to achieve the required CNR value with the corre-
sponding Pg.
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