CMOS, the thicknesses of the upper and lower buried-oxide
layers, formed by '®*O* implantation, were 0-47 and 0-43 um,
respectively. The active Si and Si shield layers were epitaxially
grown, controlling the thicknesses to 0-4 and 0-23 um, respec-
tively. The gate oxide thickness was 50 nm. The gate lengths of
the high-voltage CMOS and low-voltage CMOS were 5 and
2 um, respectively. The offset-gate length L, was 5 or 12 um.
The channel impurity concentrations for the tMOSFET and
the pMOSFET were 5-3 x 10'® and 3-7 x 10*®cm "3, respec-
tively. Turning to the UMOS, the gate oxide thickness was
100 nm. The depths of the n*-source and p-body regions were
1 and 3 um, respectively. The width of the rectangular trench
was 1-5 um and its repeat spacing was 7-5 um.

Electrical characteristics: Fig. 2 shows the substrate voltage
Vsyp dependence of the threshold voltage V,, for the Jow-
voltage CMOS. When the voltage of the Si shield layer V,,, is
equal to the source voltage V. Vpy is independent of Vg,
varying from —100 to 100V. However, when Vg, = Viup,
Vry is greatly affected by Vgyp because Vi, is applied to the
upper buried-oxide layer. In this case, the tMOSFET changes
from normally-off operation to normally-on with V., in
excess of approximately 18 V. For the pMOSFET, the same
change occurs with a Vg, of less than approximately —20V.

2

T T T T T

nMOSFET

s = Vsus

>

o .
o

2

°

>

©

2 pMOSFET

v

I -
S

-2

L 1 | 1 1
-100 -50 o] 50 100
substrate vcltage v

LR

Fig. 2 Dependence of threshold voltages on substrate voltages for low-
voltage CMOS/SIMOX
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These results indicate that the CMOS can be implemented
with the UMOS on one chip when Vg, = V.

Fig. 3 shows the source-drain breakdown voltage BV for
the high-voltage CMOS as a function of the length of the field
plate connected to the gate. These characteristics showed
almost no change even though Vg, was varied from — 100 to
100V, A BV of more than 80V is obtained by optimising
L rr and the field-plate length.

Fig. 4 shows the gate voltage V;; dependence of the specific
on-resistance as a parameter of V;, for the UMOS with
BV)gs = 82 V. The specific on-resistance is affected by ¥; and
Viy, but is realised with 2-3-5mQcm? at a V; of more than
15V.

2
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Fig. 4 Dependence of specific on-resistance on gate voltage for UMOQS

Conclusion: A new SIMOX isolation structure aimed at the
realisation of a completely latch-up-free IPLSI has been
demonstrated. The electrical characteristics of the CMOS/
SIMOX were not degraded even varying the substrate voltage
from — 100 to 100 V. Furthermore, the breakdown voltages of
the high-voltage CMOS/SIMOX and the vertical power
UMOS/bulk were more than 80V. From these results, it is
anticipated that an 80 V. SIMOX IPLSI fabricated with a one-
chip process will soon be realised.
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GENERALISED 1/f SHOT NOISE

Indexing terms: Semiconductor devices and materials, Noise

We define a generalised form of 1/f shot noise, which can
serve as a source of 1/f* noise for x in the range 0 < x < 2,
and present its first-order amplitude probability density func-
tion. For some parameters of the power-law-decaying
impulse-response function, the amplitude has a Lévy-stable
probability density function.
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Introduction: 1/f noise is present in many semiconductor
devices under a variety of experimental conditions. One
widely used theoretical approach to this problem makes use of
a superposition of relaxation processes of different time-
constants.!~> An alternative approach, suggested by
Schénfeld* and considered further by van der Zeil,” entails the
use of shot noise with an impulse-response function that
decays as t~'/2.

In this letter, we obtain explicit results for the power spec-
tral density associated with generalised 1/f shot noise, in
which the impulse-response function decays as t78, with
0 < f < 1. Generalised 1/f shot noise exhibits a power spec-
tral density that varies as 1//* (0 < a < 2) with a = 2(1 - B).
Finally, we consider the amplitude probability density func-
tion for 1/f shot noise.

Definition: 1/f shot noise I(t) may be expressed as an infinite
sum of power-law impulse response functions

=Y hit—1t) )
Jj=—x
where
Kt™? 0<i1<B
= 2
hit) %0 otherwise @

and the times ¢; are random events from a homogeneous Pois-
son point process of rate u. The parameters B, K and B are
deterministic and fixed. We focus on the range of § between 0
and 1; the behaviour of this shot noise for § > 11is fundamen-
tally different and will be considered elsewhere.® For all calcu-
lations we assume that ¢ is finite, so that the shot-noise
process has reached a steady state.

Power spectral density: The power spectral density S,(f) of the
shot-noise process I(t), obtained from Carson’s theorem,’ is
given by

2

SN = D) + u. J h(t)e 2~ di
= <KD?(f) + uK?
x | F(a/2) — T(2/2, j2nfB) |*(2nf)~* (3)
where (.) is the Dirac delta function, T'(., .) is the incomplete
gamma function defined by

I(a, x) = J\e”t"’l dt )

and the angular brackets ¢.) represent ensenble averaging
with respect to I. In the limit f— 0, by definition the power
spectral density approaches a constant value

—a

@© 2 B
S,(ﬂ-*u[ f h(t) dt] = pK? f=0 (5

(/2
In the limit f— oo, the incomplete gamma function in eqn. 3
approaches zero, so that
Sif) = uK>T *a/2)2nf) f=o (6)

Thus, for high frequencies f the power spectral density does
indeed behave as 1/f¢, with a defined as above.

If we set the cutoff of the impulse-response function B to o,
we obtain the same 1/f* behaviour for all frequencies, the
power spectral density being

510 = <D + uCKPT Ha/2)2nf) M

This form of the impulse-response function was previously
considered only for the special case @ = 1, by Schénfeld.*
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In this limit, however, the power spectral density has infin-
ite energy. This poses a problem that can be solved in one of
three ways. First, the impulse-response function may be trun-
cated at a finite value B, as we have suggested by the defini-
tion in egn. 2. Second, the area of the impulse-response
function may be made finite by multiplying it by an exponen-
tially decaying function

h*(l) = Kt Bewot (8)
as considered by Buckingham,” which yields
SHS) = {I?(f) + pK T/ 2)[w] + 21f)*] ™2 ]

Again the power spectral density is bounded in the neighbour-
hood of f=0 and behaves as 1/f* for high frequencies.
Finally, the physical limitations of any real experiment used to
measure the power spectral density may be imposed on the
system. Since the experiment must be conducted in finite time,
those components of the power spectral density with fre-
quencies lower than the reciprocal of the duration of the
experiment will be excluded. Similarly, since any measuring
apparatus has a finite frequency response, those components
of the power spectral density at high frequencies will also be
excluded. Since the power spectral density is effectively trun-
cated at both low and high frequency limits, the total energy
will be finite for any value of a: 0 < « < 2 and any possible
experimental measurement.’

Fig. 1 shows the shot-noise power spectral densities
obtained with @ = 1 for three types of 1/f impulse-response
functions: no cutoff (eqn. 2, B = oc), abrupt cutoff (eqn. 2,
B < o) and exponentially decaying power law (eqn. 8). The
power spectral densities all take the form of 1/f* with expo-
nent a = 1 for high frequencies. Note that the abrupt cutoff in
the time domain gives rise to ringing in the frequency domain.
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Fig. 1 Power spectral densities for 1/f shot noise with different cutoffs:
A=0and B= 0, A=0 and B = 1000, and exponential cutoff with
we = /4000
Note that power spectral densities are power-law with exponent
for high frequencies, and that abrupt cutoff in impulse-response
function gives rise to ringing in frequency domain

Amplitude probability density function: We now consider the
first-order amplitude statistics of the shot-noise process I. The
first-order moment generating function Q,(s), calculated from
the definition,’ is given by®

ey
=exp [—uB + u(sK)"I'(— 1/, sKB?)/f]  (10)

Q,(s)

First-order amplitude statistics may be numerically computed
from this moment generating function.

When B — oo, the shot-noise process I not only has infinite
energy, as stated above, but is also infinite with probability
one. In that case, the moment generating function Q,(s) in eqn.
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10 becomes

1 s=0
Qi) = {0 2o (an

whereon

Pr{l<x}=0 for all x < oo (12)
However, for other infinite-area impulse-response functions
the resulting shot noise does not have trivial amplitude
properties.® For B = oc and f > 1 the resulting shot noise has
a (finite) Lévy-stable amplitude probability density (and there-
fore does not converge to Gaussian form, even in the limit
u — o). In that case we integrate the incomplete gamma func-
tion in eqn. 10 by parts and use "Hépital’s rule to obtain

Q4fs) = exp [ —p(sK)'"*T(1 — 1/B)] (13)
This moment generating function is of the form
Q(s) = exp [—cs”] (14)

where ¢ is a constant, and therefore for all u the shot noise I is
a Lévy-stable random variable with extreme asymmetry® of
dimension 1/8: 0 < 1/8 < 1. Thus an infinite-area impulse-
response function may be used to construct a shot-noise
process which has nontrivial and non-Gaussian amplitude
properties for all driving rates u.

The difference between trivial and nontrivial amplitude
properties appears to lie in the nature of the infinity in the
impulse-response function. For § < 1, the infinite area is in
the tail, which lasts for infinite time. Since the tails of previous
impulse-response functions are always present, the process is
always infinite. However, for f > 1, the infinite area is con-
tained in the infinitesimal neighbourhood of ¢ = 0, and there-
fore only manifests itself at the times ¢ = ¢; corresponding to
the events of the driving homogeneous Poisson point process.
The remainder of the time the process is finite.

Conclusion: We have defined a generalised form of 1/f shot
noise, for which the associated impulse-response functions
assume a decaying power-law form with power —f. For
0 < B < 1, the 1/f shot-noise process can serve as a source of
1/f* noise, for any « = 2(1 — f) in the range 0 < « < 2. The
first-order moment generating function is given for 0 < 8 < 1,
from which first-order statistics may be numerically com-
puted. Finally, for # > 1 and B —» oo we show that the ampli-
tude has a Lévy-stable probability density function.
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CMOS CIRCUIT DESIGN OF
PROGRAMMABLE NEURAL NET CLASSIFIER
OF 'EXCLUSIVE’ CLASSES

Indexing terms: Neural networks, Artificial intelligence, Net-
works, Pattern recognition

A circuit implementation of a pattern classifier based on the
Hamming net is proposed. The circuit classifies pattern con-
figurations representing the digits 0, ..., 9; it is based on a
standard CMOS technology and it allows a simple and reli-
able implementation. The circuit has been simulated by using
SPICE; it exhibits notable robustness, since its functionality
is not affected by parameter variations in a wide range.

Introduction: The possibility of implementing electronic
neural networks has recently received considerable attention
from the VLSI designers’ community. Among the various sol-
utions,'™* the possibility of implementing these systems
through standard CMOS processes seems particularly appeal-
ing. A major requirement for any implementation lies in the
possibility of adapting synaptic strengths to the specific
problem considered. To this end electronically programmable
synapses® should be used.

In this letter we study a neural network implementation (at
the transistor level), of a programmable exclusive classifier (the
meaning of ‘exclusive’ will be clarifed in the following). Being
interested in scaling up the complexity of the neural network,
this study considers a simple implementation of both neurons
and synaptic links. The approach proved successful, as the
architectural specifications for the classifier were only margin-
ally affected by these choices.

Principles: A classifier determines which of M classes is most
representative of a given input pattern. Using bit-maps of the
pattern, the minimum error classifier® calculates the Hamming
distance of the input pattern to the exemplary pattern of each
class (i.e. the number of input bits which do not match the
corresponding exemplary bits), and selects the class at the
minimum Hamming distance. A two-layer neural net imple-
mentation of this classifier is shown in Fig. 1: it is called a
Hamming net.® The input-output characteristics of neurons
are of the threshold logic type and exhibit a finite gain. The
jth node (1 <j< M) of the lower subnet calculates (1
— HDj/N), where HD; is the Hamming distance of the input
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T
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Fig. 1 Hamming net classifier
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