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Abstract

We investigate the properties of fractal stochastic point processes (FSPPs). First, we define
FSPPs and develop several mathematical formulations for these processes, showing that over
a broad range of conditions they converge to a particular form of FSPP. We then provide
examples of a wide variety of phenomena for which they serve as suitable models. We proceed
to examine the analytical properties of two useful fractal dimension estimators for FSPPs, based
on the second-order properties of the points. Finally, we simulate several FSPPs, each with
three specified values of the fractal dimension. Analysis and simulation reveal that a variety
of factors confound the estimate of the fractal dimension, including the finite length of the
simulation, structure or type of FSPP employed, and fluctuations inherent in any FSPP. We
conclude that for segments of FSPPs with as many as 10° points, the fractal dimension can be

estimated only to within +0.1.

1. DEFINITION AND PROPERTIES
OF FRACTAL STOCHASTIC

POINT PROCESSES

1.1 Fractal Stochastic Processes

The definition of a stochastic process involves a
complete description of all possible joint probabili-
ties of the various events occurring in the process.
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Different statistics provide complementary windows
into the process; no single statistic can in general
describe a stochastic process completely. One def-
inition of a fractal stochastic process is a stochas-
tic process in which the sample paths of the pro-
cesses have non-integral dimensions; the expected
measure of the sample path included within some
radius scales with the size of the radius.! Since this
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is but, one statistic of the process, we call a stochas-
tic process fractal if several of the relevant statistics
exhibit scaling.?™3

Such scaling leads mathematically to power-law
dependencies in the scaled quantities. Consider a
statistic f which depends continuously on the scale
x over which measurements are taken. Suppose
changing the scale by a factor a effectively scales
the statistic by some other factor g{a}, related to
the factor but independent of the argument:

flaz) = g(a}f(z). (1)
The only non-trivial solution of this scaling equa-
tion is

f(z) = cg(z) with g(z) =", (2)

for some constants ¢ and D.%7 Thus fractals and
power-law forms of their statistics are closely re-
lated. Each statistic which scales will therefore pro-
vide a dimension; for a (mono-) fractal process all
are simply related, yielding a single dimension for
the process.

In general, fractal scaling in one statistic does
not necessarily imply fractal scaling in other statis-
tics. Consider a stationary, continuous-time process
with a power spectral density which scales with fre-
quency, so that S(w) o< w—? for some range of fre-
quencies {or, equivalently, times) and some positive
exponent D. For 0 < D < 1, the autocorrelation
function will indeed scale with delay time over the
same range of times, yielding R(7) o< 77~1.6 How-
ever, for D > 1, the autocorrelation approaches a
constant value in this same range of times, and in
fact does not scale with the delay time 7. Therefore
we do not call this process fractal.®

1.2 Fractal Stochastic Point
Processes (FSPPs)

Some random phenomena occur at discrete times
{or locations), with the individual events largely
identical, such as the detection of particles from
radioactive decay. A stochastic point process is a
mathematical construction which represents these
events as random points in a space. Such a process
may be called fractal when a number of the relevant
statistics exhibit scaling with related scaling expo-
nents, indicating that the represented phenomenon
contains clusters of points over all (or a relatively
large set of) time or length scales.!*® In this paper
we consider point processes on a line, so that the

associated dimension must lie between a lower limit
of zero (the dimension of a point), and an upper
limit of unity (the dimension of a line).!

Relevant statistics for an FSPP are the power
spectral density (PSD), coincidence rate (CR), Fano
factor (FF), and interevent-time survivor function
(ISF). The PSD S(w) is much the same as for
continuous-time processes; it provides a measure of
how the power in a process is concentrated in vari-
ous frequency bands.® The CR measures the cor-
relation between pairs of events with a specified
time delay between them, regardless of intervening
events, and is related to the autocorrelation func-
tion used with continuous processes.? It is defined
as

m Pr{€(0, A) and E(r, 7+ A)}

G(r) = lim N ; (3)

where £(s, t) denotes the occurrence of at least one
event of the point process in the interval is, t). A
particularly useful statistic is the Fano factor F'(T),
denoted FF, which is defined as the variance of
the number of counts in a specified time window
T divided by the mean number of counts. Finally,
the ISF highlights the behavior of the times be-
tween adjacent events, but reveals none of the in-
formation contained in relationships among these
times, such as correlation between adjacent time
intervals.

For relevant time and frequency ranges, and with
0 < D < 1, any one of the following relationships

PSD:  S(w)/So = 1 + (w/ug) ™2
CR:  G(r)/Gom 1+ (r/m)P! (4)
FF: F(T) =1+ (T/T))?,

implies the other two, with

Go =53
WP TP = cos(nD/2)T(D + 2) (5)
Sora~PTP = D(D +1)/2.

In principle, any of the three statistics in Eq. (4)
could be solved for the dimension I of an FSPP,
and in some cases the form of the ISF also permits
the determination of a value of the fractal dimen-
sion. When applied to a real data set, each would
yield a different number, thus giving rise to a fam-
ily of dimensions. For practical estimation of the
dimension, however, we focus on the FF and the
PSD, rather than on the CR and the ISF. We do this



because the CR involves essentially a double deriva-
tive in its definition, and therefore its estimates are
particularly noisy. Furthermore, for typical FSPPs
the CR exceeds its asymptotic value at 7 — oo by
only a small fraction at any practical value of 7,
so that determining the fractal dimension with this
small excess presents serious difficulties. We reject
the ISF because most FSPPs contain interleaved
fractal clusters, so that the fractal structure is not
evident in the first-order interevent-time statistics.
Thus for general FSPPs, the ISF does not scale over
a significant range of interevent times, the salient
exception being the fractal renewal point process
(see Sec. 2.2).

For this particular case only, another family of
dimensions becomes relevant: the well-known gen-
eralized fractal dimension.!%712 If a data segment of
length L is divided into intervals of length T', with
Z, representing the number of points in the nth in-
terval, then the generalized dimension D), of a point
process is defined as

1 .. log(} Z8)
g—17=0 log(T) ’

D,

|

(6)

where the sum extends over all non-empty intervals.
Particular cases are the capacity or box-counting
dimension limg..o4 Dy, the information dimension
limg—; Dy, and the correlation dimension Dy. The
sum is a form of time averaging; for a stochastic
point process, it is convenient to replace the sum
by the product of L/T and the expected value of
Z9. For a general fractal point process, analytical
values of the Dy will not equal analytical values of
the dimensions obtained from the PSD or FF, and
in fact the Dy will often assume integer values.

2. MATHEMATICAL
FORMULATIONS OF
FRACTAL STOCHASTIC
POINT PROCESSES

In previous work we defined several FSPPs and de-
rived a number of their statistics.3® We briefly sum-
marize these here, together with the clustered
Poisson point process model of Griineis and
colleagues.'®> We then proceed to demonstrate that
under a broad range of conditions, superpositions
of arbitrary FSPPs converge to a particular pro-
cess, the fractal-Gaussian-noise-driven Poisson pro-
cess. For all of the processes considered, the scaling
relations in Eqs. (4) and (5) hold.
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2.1 Fractal-Shot-Noise-Driven
Poisson Point Process

The one-dimensional homogeneous Poisson point
process {HPP} is perhaps the simplest stochastic
point process.'* The HPP is characterized by a sin-
gle constant quantity, its rate, which is the num-
ber of events expected to occur in a unit interval.
A fundamental property of the HPP is that it is
memoryless; given this rate, knowledge of the en-
tire history and future of a given realization of an
HPP yields no information about the behavior of
the process at the present.

Other point processes do not share this memo-
ryless property and therefore cannot be described
in terms of a constant rate. An important example
of a nonhomogeneous point process is the doubly
stochastic Poisson point process (DSPP).!® For this
point process, the rate itself varies stochastically.
Thus the DSPP displays two forms of randomness:
that associated with the stochastically varying rate,
and that associated with the underlying Poisson na-
ture of the process even if its rate were constant.

The fractal-shot-noise-driven Poisson point pro-
cess (FSNDP)? is a special case of the DSPP. The
rate of the Poisson process is determined by frac-
tal shot noise, 21617 which is itself a filtered ver-
sion of another homogeneous Poisson point process.
Figure 1 schematically illustrates the FSNDP as a
two-stage stochastic process.!® The first stage is an
HPP with constant rate p. Its output M(t) be-
comes the input to a linear filter with a power-law
decaying impulse response function

k/t'=P/r for A<t< B,
h(t) = { (7)

0 otherwise,

where D is the dimension, A and B are cutoff pa-
rameters, and k is a normalization constant. This
filter produces fractal shot noise I(t) at its output,
which then becomes the time-varying rate for the
last stage, a second Poisson point process. The
resulting point process N(t) is not homogeneous,
but rather reflects the variations of the fractal-shot-
noise driving process. Thus the two forms of ran-
domness inherent in the DSPP are, in the particular
case of the FSNDP, two separate Poisson processes,
linked by a power-law-decaying linear filter.

2.2 Fractal Renewal Point Process

Perhaps the simplest FSPP is the standard frac-
tal renewal process (FRP).%!%22 For the standard
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Fig. 1 A primary homogeneous Poisson point process M{t} with constant rate p serves as the input to a linear filter with
impulse response function h(t). The continuous-time stochastic process I(t) at the output of this filter is shot naise, which
serves as the random rate for another Poisson point process, whose output is N(¢). N(t) is a special doubly stochastic Poisson
point process (DSPP), known as a shot-noise driven Poisson point process (SNDP). If A(t) decays in a power-law fashion, then
I(t) is fractal shot noise and N{t) is a fractal SNDP or FSNDP.

FRP, the times between adjacent events are inde-  decays essentially as a power law

pendent randO.rIIL varl.ablt'as T. dra,wn. from the same S(t) = Pr{T > t}

fractal probability distribution. Figure 2(a) pro- D D

vides a schematic representation of this point pro- _ kftY —k/BY for A<t<B, (8)
cess. In particular, the survivor function S(t) 0 otherwise ,
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a) STANDARD FRACTAL RENEWAL PROCESS

b) ALTERNATING FRACTAL RENEWAL PROCESS

Fig. 2

Sample functions of fractal renewal processes. Interevent times are power-law distributed. (a) The standard fractal

renewal process (FRP) consists of Dirac 4 functions and is zero-valued elsewhere. (b) The alternating FRP switches between

values of zero and unity.

with D, A, B and k defined as following Eq. {7).
The FRP exhibits fractal behavior over time scales
lying between A and B. This process is fully fractal:
the power spectral density, coincidence rate, Fano
factor, and even the interevent-time survivor func-
tion all exhibit scaling as in Eq. (1) with the same
power-law exponent D (or D —1 for the coincidence
rate). Further, for this process the capacity or box-
counting dimension Dy assumes the value D;® since
the FRP is ergodic, the generalized fractal dimen-
sion D, becomes independent of the index g¢,'% so
Dy = Dy = D for all ¢, and all fractal dimensions
coincide,

A different point process results from the super-
position of a number of independeni FRPs; how-
ever, for this combined process, and indeed for any
FSPP besides the FRP, the interevent-time survivor
function no longer scales, and the generalized di-
mensions Dy, no longer equal D, although the PSD,
CR, and FT retain their scaling behavior.

The standard FRP described above is a point
process, consisting of a set of points or marks on the
time axis; however, it may be recast as a real-valued
process which alternates between two values, for ex-
ample zero and unity. This alternating FRP would
then start at a value of zero (for example), and then
switch to a value of unity at a time correspond-
ing to the first event in the standard FRP. At the

second such event in the standard FRP, the alter-
nating FRP would switch back to zero, and would
proceed to switch back and forth at every suc-
cessive event of the standard FRP. Thus the al-
ternating FRP is a Bernoulli process, with times
between transitions given by the same interevent
distribution as in the standard FRP, as portrayed
in Fig. 2(b).

2.3 Fractal-Binomial-Noise-Driven
Poisson Point Process

A number of independent, identical alternating frac-
tal renewal processes may be added together, yield-
ing a binomial process with the same fractal dimen-
sion as the single alternating FRP.* This binomial
process can serve as a rate function for a Poisson
process; the fractal-binomial-noise-driven Poisson
point process (FBNDP) results. It is schematized in
Fig. 3. The FSNDP {(see Sec. 2.1} and the FBNDP
thus both belong to the fractal DSPP family, com-
prising a real-valued fractal rate function driving a
Poisson point process. They differ only in how the
fractal rate functions are constructed.

2.4 Cluster Poisson Point Process

Other important formulations for FSPPs exist.
Griineis and colleagues defined a clustered Poisson
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A sum of several independent and identical alternating FRPs (top) are added (center) to produce a fractal binomial

noise process which serves as the rate function for a Poisson point process (bottom). The result is the fractal-binomial-noise-

driven Poisson point process {FBNDP), a fractal DSPP.

point process in which each member in a sequence
of primary events from an HPP gives rige to a train
of secondary events (as in the FSNDP), but where
the events in the train form a segment of a renewal
process {usually also an HPP, but often with a dif-
ferent rate}, with a fractal (power-law distributed)
duration.!® The resulting process indeed exhibits
power-law scaling in the same statistics as other
FSPPs.23 The cluster Poisson point process is there-
fore a Bartlett-Lewis-type process, whereas the
FSNDP and FBNDP are processes of the Neyman-
Scott type.??

2.5 Fractal-Gaussian-Noise-Driven
Poisson Point Process

Under suitable conditions, the underlying fractal
shot noise of the FSNDP converges tc a Gaussian
probability density, as provided by the central limit
theorem, and therefore becomes fractal Gaussian
noise.? The resulting point process then becomes
a fractal-Gaussian-noise-driven Poisson process
(FGNDP).> The superposition of many inde-
pendent standard FRPs, mentioned above, also
converges to a FGNDP for certain ranges of



parameters, as does the FBNDP constructed from
many alternating FRPs.® Finally, the Poisson trans-
form of fractal Gaussian noise (FGN) provides a di-
rect route to the FGNDP. FGN, in turn, may be
obtained by any number of methods.*5-28

We proceed to demonstrate that this convergence
to the FGNDP applies for superpositions of large
numbers of arbitrary FSPPs as long as they are
well behaved. Consider a set of independent point
processes {/N,,(t)}, with identical statistics, and de-
fine their superposition Nr(t) = 3, Na(t). Let
the power spectral density of these processes Sy (w)
scale with w as in Eq. (4), so that the constituent
point processes N, (t) are fractal. Then the super-
position Nr(t) is also fractal. Finally, we require
that the individual point processes have finite sec-
ond counting moments. For the FSNDP this means
that the impulse-response function A{t) has finite
area, whereas for the clustered Poisson process the
clusters must have a finite expected length. Un-
der these conditions, for an arbitrary set of point
processes { Nn(t)}, the superposition process Np(t)
converges to a DSPP in the limit of a large number
of component processes.?® Since Nr(t) may be rep-
resented as a DSPP, then it must have a stochastic
rate function A(t) with the same scaling power spec-
tral density as in the component processes (except
for a constant term). Since the second counting
moments of the component processes are finite, the
first and second counting moments of Np(t) must
also be finite, and therefore so are those of A(t).
Therefore the Central Limit Theorem applies, and
A(t) must converge to a Gaussian distribution in
the limit of a large number of component processes.
Thus A(¢) converges to a Gaussian process with
a fractal power spectral density: fractal Gaussian
noise. Since A(t) serves as the rate for the DSPP
Nr(t), then Np(t) converges to the FGNDP.

The FGNDP is important because Gaussian pro-
cesses are ubiquitous, well understood, and may be
completely described by their means and autoco-
variance functions; thus comparison with experi-
ment is facilitated. In particular, the dimension
of an FGNDP is identical to the dimension of the
FGN process which serves as the rate function of the
Poisson process.

3. APPLICATIONS OF
FRACTAL STOCHASTIC
POINT PROCESSES

Many phenomena are readily represented by FSPPs.
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We provide several examples drawn from the phys-
ical and biological sciences.

3.1 Trapping Times in
Amorphous Semiconductors

A multiple trapping model has been used to show
how traps which are exponentially distributed over
a large range of energies lead to a power-law decay
of current in an amorphous semiconductor.¢-33 If
a pulse of light strikes such a semiconductor, the
many carriers excited out of their traps will be avail-
able to carry current until they are recaptured by
a trap, which happens relatively quickly. At some
point each carrier will be released from its trap by
thermal excitation and become mobile for a time,
and then be recaptured by another trap. For ex-
ponentially distributed energy states with identi-
cal capture cross sections, the electrons tend to be
trapped in shallow states at first, but the probabil-
ity of being caught in a deep trap increases as time
progresses. This leads to a current that decreases
as a power-law function of time,

The multiple trapping model may be usefully re-
cast in terms of a standard FRP.5%0 Consider an
amorphous semiconductor with localized states
(traps) that are exponentially distributed with pa-
rameter Ep between a minimum energy Fp of the
order of K7, where x is Boltzmann’s constant and 7
is the absolute temperature; and a maximum energy
Ey determined by the bandgap of the material. For
a particular trap with energy £, the corresponding
mean waiting time is

T =19 exp(€/kT), (9)

where 7y is the average vibrational period of the
atoms in the semiconductor. If we define charac-
teristic time cutoffs 4 = 7g exp(E/xT) and B =
10 exp(Eg/kT), and the power-law exponent D =
kT /Ep, then the mean waiting time 7 has a den-
sity which decays as a power law between these two
cutoffs. Each trap holds carriers for times that are
exponentially distributed given the conditional pa-
rameter 7, and averaging this exponential density
over all possible values of 7 yields the unconditional
trapping time density, which is itself approximately

power law:
p(t) = DT(D + 1)APt=(D+1) | (10)

for A <« t < B. Thus each carrier will be trapped
for a period that is essentially power-law distributed.
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Upon escaping from a trap, the carrier can con-
duct current for a short time until it is again cap-
tured by another trap. Thus each carrier executes
a series of current-carrying jumps well described by
a standard FRP. Assuming that each carrier acts
independently of the others, the action of the carri-
ers as a whole can be modeled as the superposition
of a collection of such component processes, which
converges to the FGNDP in the limit of a large
number of carriers. Again, both experimental®* and
theoretical®®3 results point to a power-law or frac-
tal decay in the power spectral density, while other
statistics also show scaling behavior.

3.2 Noise and Traffic in
Communications Systems

Burst noise occurs in many communications sys-
tems and is characterized by relatively brief noise
events which cluster together, separated by rela-
tively longer periods of quiet. Mandelbrot?!22 long
ago showed that burst errors in communication sys-
tems are well modeled by a version of a fractal re-
newal process, and in particular that the interevent
times were essentially independent of each other for
time scales determined by the resolution and the
duration of the observation.

Furthermore, the rate of traffic flow itself dis-
plays fractal fluctuations on a variety of high-
speed packet-switching networks conducting differ-
ent types of traffic.37-39 This has been demonstrated
for time scales greater than about one second in
both the power spectral density and the Fano fac-
tor. Over these time scales, the FSNDP has been
successfully employed to model the traffic,*C as well
as a broad range of other phenomena.?

3.3 Biological Ion-Channel
Openings

Ion channels are embedded in cell membranes,
permitting ions to diffuse in or out.*! These chan-
nels are usually specific to a particular ion, or group
of related ions, and block the passage of other kinds
of ions. Further, most channels have gates, and thus
the channels may be either open or closed. In many
instances, intermediate conduction states are not
observed. Some ion channels may be modeled by
a two-state Markov process,*? with one state repre-
senting the open channel, and the other represent-
ing the closed channel. This model generates ex-

ponentially distributed dwell times in both states,
which are, in fact, sometimes observed. However,
many ion channels exhibit power-law distributed
closed times between open times of negligible
duration,**** and are well described by a standard
FRP.1® Count moments of all orders, coincidence
rates, and power spectral densities then all vary as
power laws, indicating fractal behavior. In other
cases, both open and closed times have distributions
following power-law forms, so that one such channel
has a conduction pattern well modeled by the alter-
nating FRP.!? Superpositions of independent ver-
sions of these elemental processes give rise to frac-
tal binomial noise (see Fig. 3), which can in turn be
approximated by fractal Gaussian noise. Even for
dependent ion channels, in fact, evidence exists that
the overall effect will be the same, although with a
higher variance than for the independent channel

case.®?

3.4 Auditory-Nerve-Fiber
Action Potentials

Many biological neurons transmit information by
means of action potentials, which are localized re-
gions of depolarization traveling down the length
of an axon. Action potentials on a given axon are
brief and largely identical events, so their recep-
tion at another neuron (or at a recording electrode)
may be well represented by a point process. FSPPs
have been shown to describe the action potentials
in primary auditory-nerve fibers in a number of
species. #444648 Qver short time scales, nonfractal
stochastic point processes prove adequate for repre-
senting such nerve spikes, but over long time scales
(typically greater than one second) fractal behavior
becomes evident. In particular, both the Fano fac-
tor and the power spectral density vary in a power-
law fashion over these long time scales. Further-
more, estimators of the rate of the process converge
more slowly than for nonfractal processes, display-
ing fluctuations which are self-affine over varying
time scales greater than one second.® With the
inclusion of the refractory effects of nerve fibers,
the FGNDP provides an excellent approximation
for modeling the behavior of nerve spikes in audi-
tory fibers in several species over all time scales and
for a broad variety of statistical measures**6-4850,
only three parameters are required. This process
may well arise from superpositions of fractal ion-
channel transitions in inner-ear sensory cells (see
Sec. 3.3).19:%0



3.5 Human Heartbeat Times

The sequence of human heartbeats exhibits consid-
erable variability over time and between individ-
uals, both in the short-term patterns of the indi-
vidual beats (contractions) and in the long-term
patterns of the times between beats. To study these
long-term effects we focus on the times of maximum
contraction, thus forming a point process of heart-
beats. A particular FSPP, similar to the FGNDP
but with an integrate-and-reset (rather than a
Poisson) substrate, has been constructed and shown
to successfully describe these events.’!*? In many
respects the heartbeat process resembles the process
formed by auditory-nerve action potentials. Over
short time scales nonfractal point processes model
the pattern of times between contractions; for times
longer than roughly ten seconds, only fractal mod-
els suffice. Both the power spectral density and
the Fano factor exhibit scaling, and estimates of
the rate exhibit variances which decay only slowly
with the averaging time. Further, parameters of the
FSPP used to model the data may have applicabil-
ity for the diagnosis of various disease states.

4. ESTIMATION OF FRACTAL
DIMENSION: THEORY

By their nature, fractal processes display fluctua-
tions over a broad range of time scales, including
long ones, so that estimating the properties of a
segment of data presents more difficulty than es-
timating those of a nonfractal process. For exam-
ple, the estimate of the mean rate of a fractal pro-
cess has a variance which decreases only slowly with
the length of the data segment.**” For a nonfrac-
tal stochastic point process, such as the HPP, the
variance decreases as T~!, where T is the length
of the segment; for an FSPP, such as the FGNDP,
the variance decreases more slowly, as TP~!, where
D is the fractal dimension of the point process.*4?
This slow convergence derives from the fractal na-
ture of the process, implying long-range correlations
which do not average out as quickly as independent
fluctuations. As a result of these long-range varia-
tions, detecting a change in a property of a fractal
process often requires a prohibitively large quan-
tity of data, and in fact often cannot be practically
achieved. Therefore, in this paper we only consider
the case in which the data segment under study de-
rives from a stationary process, whose properties
therefore do not change over time.
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Given a segment of an FSPP, we wish to esti-
mate the fractal dimension, D, of the entire process
from which the segment was derived. Several ef
fects contribute to estimation error for finite-length
segments, regardless of the method used. First, for
an FSPP with a relatively large fractal dimension,
the energy is concentrated more in longer time scale
fluctuations than for an FSPP with a smaller frac-
tal dimension. Any data segment obtained from
this first FSPP, however, has a non-zero probabil-
ity of lacking many of these fluctuations and there-
fore appearing to be from a process with a smaller
fractal dimension.?® This phenomenon provides an
appreciable bias for shorter data segments, and of-
ten a surprisingly long set of data is required before
reliable estimates of the fractal dimension may be
obtained. Similarly, in other cases a data segment
will contain a surplus of fluctuations, leading to an
inflated estimate of the fractal dimension. Second,
finite data lengths introduce windowing errors, as
will be considered more fully in the next two sub-
sections. It is generally appreciated that cutoffs
in the time domain give rise to oscillations in the
frequency domain, confounding the pure power-law
behavior of the fractal PSD and introducing bias; a
similar effect occurs with the FF. Third, cutoffs in
the definitions of the FSPPs themselves result in the
fractal-dimension estimates being biased towards
the median value of 1/2, and away from the ex-
treme values of zero and unity in some cases, as has
been shown for continuous processes.’* Explicit or
implicit cutoffs occur in any practical FSPP, since
otherwise the process would be unnormalizable. For
example, integration of the form for the power spec-
tral density in Eq. (4) over all time scales would
lead to infinite power, while a fractal renewal pro-
cess without cutoffs would exhibit & survivor func-
tion [Eq. (8)] with infinite probability. Finally, the
physical limitations of the equipment employed in
measuring a process impose practical limits on the
range of time scales available. Although algerithms
exist for accurately compensating for these cutoffs,
this presupposes a detailed knowledge of the process
a priori, which is not in the spirit of estimating a
completely unknown signal. Consequently, we do
not attempt to compensate for these cutoffs in this
manner.

Many statistical measures may be applied to a
point process, but some, such as the interevent-
time histogram (closely related to the survivor
function), often only provide information over
short time scales,>® and are therefore not useful
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in determining the character of long-term fluctua-
tions except in the special case of the fractal renewal
point process. We consider in more detail the power
spectral density (PSD) and the Fano factor (FF) as
a function of the counting time, because they eluci-
date the clustering in FSPPs particularly well. The
coincidence rate theoretically also exhibits fractal
scaling, but in practice noise obscures this scaling
behavior much more than for the FF and PSD, as
mentioned previously. (See Sec. 1.2.)

4.1 Power Spectral Density

For a fractal process, the PSD decreases as an in-
verse power-law function of frequency, with the ex-
ponent equal to the fractal dimension. Often the
PSD of an FSPP will approach an asymptotic value
at high frequencies, and assume the form of Eq. (4):

S(w) = Soll + (w/wo)~P], (11)

where wq represents the white-noise cutoff fre-
quency. The PSD for a representative recording
of auditory-nerve action potentials is provided in
Fig. 4. [Throughout the text of this paper we

employ radian frequency w (radians per time unit)
to simplify the analysis, while figures are plotted in
common frequency f = w/2m (cycles per time unit)
in accordance with common usage.]

To estimate the fractal dimension D, we begin
by partitioning the data segment into N adjacent
windows of equal length, and counting the number
of points that falls in each window, resulting in a
sequence of counts {Z,}Y=}. For least error, we
choose IV large enough so that the bias introduced
by the finite data is small; and small enough so that
the counting windows are large compared to the av-
erage time between points, reducing the variance of
the estimate. Then by the Central Limit Theorem
the number of counts in each window approximates
a Gaussian distribution. We then compute the dis-
crete Fourier transform of this sequence, yielding
the (unsmoothed) estimate of the power spectral
density S(k). Each of the values of 5(k) provides in-
formation independent of the other values (for large
N), and has an error which is also independent of
the other errors.’®

A typical estimate will have the form

S(k) = Solt + (k/ko)~Plexp[n(k)]  (12)

PSD FOR AUDITORY ACTION POTENTIALS
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Fig.4 Doubly logarithmic plot of power spectral density estimate of the point process recorded from a primary cat auditory-
nerve fiber under sinusoidal stimulation. The data segment has a duration of 1800 s, with an average time between events
of 14.11 ms. The estimate was smoothed with a triangular window in the time domain (autocorrelation) of length equal to
1/8 the duration of the data segment. Over long time scales (low frequencies) the curve follows a straight line of slope —0.72
indicating fractal behavior. The Fano factor for this same data set is displayed in Fig. 5. After Ref. 57.



for k > 0, where D is the dimension of the FSPP,
and ko represents the white-noise cutoff frequency
in the integer-frequency space indexed by k. To ob-
tain the best estimate of D, we further require that
the number of windows N be chosen to be greater
than kg. The random variable n(k) represents the
error in the kth value in the power spectral density
estimate, and does not depend on S(k).*® We then
have

E{exp[n(k)]} =1
E{[exp[n(k)] — 1][exp[n(})] — 1]} = bu,

where &y, is the discrete (Kronecker) delta function.
Given these two relations, we expect an approxi-
mate value of unity for the variance of n(k). The
exact value of the variance depends on the proba-
bility density function of n(k), but only weakly, and
does indeed lie near unity for three representativej

(13)
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two-parameter densities, the results of which are
presented in Table 1. To estimate D, we perform a
least-squares fit on the logarithm of the power spec-
tral density estimate (less the asymptotic value for
high frequencies Sy) vs. the logarithm of the index
k, using the first ko values. For k > kg there is
essentially no additional information, so we ignore
these values. Since each value in §(k) for 1 < k < ko
provides essentially the same amount of informa-
tion, and all are independent, there is no reason
to weigh any one of them more than the others in
estimating D. Define

z = In(k),
vk = In[S(k) — So]
= In(So) + D In(ko) — D In(k) + n(k).

Then the estimate of D is simply the covariance of
{2} and {y} divided by the variance of {z}:5

(14)

ko ko
(ko — 1)~ Zxkyk—ko o—1)‘1<§:xk) (Eyz)
=1

Zj__ k=1
. - ko 2
(ko - 1 Z Ty — kO (ko - 1) (Z .’L‘k)
k=1 k=1
ko ko ko
k2 Y In(k) = Al Y In(l) — kg D [n(k) — @) In(k)
_ k=1 =1 k=1
=D+ ko) , (15)
where
1< 1< 2
fi)= I Y In’(k [7 >~ In( ] (16)
k=1 k=1

is the variance of In(/). The function f(!) rises monotonically to an asymptotic value of unity as [ — oco.

The variance of D is given by®7
Var[D] = E

_ Var[n(k))
kof (ko) =

As the length L of the data segment increases,
the effective white-noise cutoff frequency ko will
increase proportionately, and the variance of the
estimate D will decrease as L~!. This contrasts
with the variance of the estimate of the mean, which
decays as LP~1! for an FSPP.44°

The second term on the rhs of Eq. (15) con-
tains sums of zero-mean random variables, so that

ko 2
8;:1[71 —ﬁ]gln( ——Z[n — i) In(k ] Filhe)

1

(17)

E{D} = D, and D appears to be an unbiased
estimator.’” However, this calculation for the statis-
tics of the power-spectral-density-based dimension
estimate does not explicitly account for the finite
length L, of a practical data set. Consider a fully
fractal stochastic point process with a CR which
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Table 1 Variance of n(k) for three representative two-parameter
densities, where a and b are the two parameters, adjusted so that

Eq. 13 holds.

Probability Density Function

Name

Formula

Variance of n(k)

Noncentral Laplacian
Gaussian

Uniform

(2a) ! exp[—|n — b|/a]
(2r) 1 %a" exp[(n — b)?/247)
(b—a) !, withe<n<b

V40 — 6 = 0.325
In(2) = 0.693
1.222

assumes the form
G(1) = Spb(7) + Go[L + (7/7)" 7], (18)

similar to that of Eq. (4). To illustrate the effects
of finite data lengths, we use a rectangular window

{1 for0<t<L,

Wit) =
® 0 otherwise.

(19)

Sw(w) = /:Z Gw(r)exp(—jwr)dr

The estimated CR Gw (7) will be the product of the
true CR and the window convolved with itself
Gw(7) = Sob() + Go(1 — ||/ L)1 + (7 /7))
(20)

in the range |r| < L, and zero otherwise. We obtain
the estimated PSD by Fourier transform:

= Sp + 2GoL[1 — cos(wL))/(wL)? + 2Gord  Pw™PRe{;PT(D, jwL)}

wl
— 2Gory PP / z? cos(x)dz/wL
0

& 2Go7g ~PwPleos(rD/2)T(D) — (wL)P~" sin(wL)]

so that
In[Sw (w)]
2 In[2 cos(rD/2) (D) Gora~P] — D In(w)
— [cos(xD/2)T(D) " (wL)P~? sin(wL)
(22}

where Re{} refers to the real part of the argument,
['(,} is the incomplete gamma function

oo
T(a, z) = f oLty (23)
x
and we employ approximations valid for 1/L <«
w K Wwy.
To estimate the fractal dimension, a straight line
is fitted to a plot of the logarithm of the PSD in

Eq. (22) vs. the logarithm of the frequency; the
slope becomes this estimate. The last term will

(21)

contribute a bias, and for a least-squares fit the
Appendix provides a method for estimating this
bias. Equation (62) returns the estimate

D = D — 6[cos(nD/2)T(D)) "  (wy,L)P~2

x cos(wy L) In"%(wy L), (24)

where wy, and wy are the lower and upper limits of
the range of w used to estimate D. As expected,
the bias vanishes as the data length L approaches
infinity.

For a fixed L, a larger value of wy (and there-
fore a smaller range of w over which the estimate is
computed) yields a smaller bias, concurrent with
an increase in the variance. As is often the case,
this estimation problem exhibits a bias-variance
tradeoff, and some intermediate value of wz will
yield the best overall performance. However, if



wrL = (n+ 1/2)w, where n is any positive integer,
then the bias [as shown in Eq. (24)] vanishes for fi-
nite L. For this frequency range the smaller terms
in Eq. (22), which are otherwise unimportant and
were therefore neglected, will dominate, and the ac-
tual bias will be small but non-zero. Other windows
will vield other biases, but all will decrease with in-
creasing L. For example, an exponential window

W (t) = exp(-[t|/L) (25)
yields the biased estimate
D =D -6D tan(nD/2)(wr L) In™3(wy L)
x In{wy /e’w? L) (26)

which also decreases with increasing L, although
more slowly than for the rectangular window.

4.2 Fano Factor

For an FSPP, the FF has the functional form of
Eq. {(4):

F(T)=1+(T/T,)?, (27)

where D is again the dimension of the FSPP, and
To is an intercept time. Thus another estimate of

Fractal Stochastic Point Processes 195

D may be obtained by performing linear regression
on n[F(T) — 1] vs. In(T), as in Eq. (15). An FF
constructed from the same recording of auditory-
nerve action potentials as in Fig. 4 is provided in
Fig. 5.

The properties of this estimator are considerably
more difficult to derive. Since the estimate of the
mean will have the same proportional error for all
counting times T, this will have no effect on the
estimate of D and can be ignored. However, the es-
titmation of the variance, particularly for long count-
ing times, will suffer from the same slow conver-
gence problems as the determination of the mean.
Heuristically, estimates of the power-law slope are
restricted to counting times less than one tenth of
the length of the data segment.

The FF-based estimate of D also differs from that
of the PSD in having a maximum possible value of
unity, while the PSD may have any slope. This
may be seen by considering a data segment divided
into 2N intervals of length 7', with z,, representing
the number of events falling within the mth inter-
val. The data segment may also be divided into N
intervals of length 27, with Z, events in the nth in-
terval. Then estimates of the mean values of z and
Z are related simply by (Z) = 2(z) by construction,

FF FOR AUDITORY ACTION POTENTIALS
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Fig. 5 Fano factor estimate vs. counting time for the same spike train as used for the PSD in Fig. 4. Over long time scales
the shape of the curve follows a straight line of slope 0.84 indicating fractal behavior with a similar dimension to that of the
PSD. The dip near T = 30 ms derives from refractory effects in the neuron. After Ref. 57.
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and for the mean square

N- -
2y _ ar—1 1 2 _ ar—1 g 2
(25 =N"1 3" ZZ=N"13" (200 + 22041)

n=Q n=0
N-1
— ar—1 2 2 2
=N Z (22271 + 2'22'n+1 = %5
n=0

2
= Zin41 + 22 22n+1)

2N-1 N-1

=oN~! Z zfn - N7t Z (zom — 22m+1)2
m={ m=0
2N -1

<2NTL N 22 =407, (28)
m={

For the estimates of the variances of z and Z, and
assuming a large value of N, then

Var(Z] = (2%) ~ (Z)? < 4(2%) — (2(2))? = 4Var[2],

(29)
and for the estimates of the Fano factor
Var{Z] _ 4Var(z|
F(2TY = =2F(T). 30
(T) = ~p= s GrE =2k @). (30)

Therefore, the estimate of D obtained from the FF
must be less than unity.5”

Indeed, in practice the PSD yields an estimate
greater than that of the FF.5® This maximum value
of the FF-based estimate effectively skews the esti-
mate towards lower values when D is close to unity.
The skew and the slow convergence of the vari-
ance estimate yield qualitative information about
the statistics of the FF-based estimate, but more
quantitative information requires the use of numer-
ical simulations.

The FF and the PSD are uniquely determined
by each other through the coincidence rate G(r),
defined in Eq. (3). The coincidence rate and PSD
are Fourier transforms of each other, and the FF
may be obtained from the coincidence rate by an
integral transform:

F(T) = A—Qf fo T = (G Adr,  (31)

where A is the average rate of events of the point
process. These relationships assure us that the frac-
tal dimensions obtained from the PSD and the FF
must indeed be the same number,* and they pro-
vide a relationship between the intercept time Tj
and the white-noise cutoff frequency wy [Eq. (5)].

Since the two estimators of D employ information
over roughly the same time scales, and derive from
the same underlying value, we expect their statistics
to be similar.

Indeed, the Fano-factor-based dimension esti-
mate also yields a bias for data of finite length. To
see this, divide the data segment of total length L
into NV intervals of length T each, with Z,, repre-
senting the number of events falling within the mth
interval. The estimate of the mean of Z becomes

E[Z]=N"1 Nf Zn, (32)

n=0

and that of the variance is given by

Var[z] = (N — 1)1 NZ_I{ZH - E[Z]}?

=(N-1)1 Ni z?

n=0

N-1~N-1

-NIWN-1DTY N z,.2,

=0 n=0

N=1
=N S ZE-oN"HN —1)7!

n=0

N-1N-1

x Z Z Z‘mZna (33)

m=0n>m
with expected value

E{Var[Z]}=N"1 Nz‘l E[Zf]-2N~Y(N-1)!

n=0

N-1N-1

X3 El{ZoZn—m]

m=0n>m

N-1
=N"1 3" E[Z}]-2N"YN-1)"!

=zl
N
x> (N-k)E[ZoZk), (34)
k=1

where we have used the stationarity of the point
process. For a general FSPP, the expected values
above become??

E[ZoZ;]) = SoT 6 + SET?
+ Q—ISOTO—DTD+1[(k + 1)D+1
— 2kPH 4 (k- 1)PY], (35)



where 6 is the Kronecker delta function. Dividing
by the mean produces the Fano factor.

The estimate of the Fano factor is simply the
estimate of the variance divided by the estimate of
the mean; however, computing the expected value
of this estimate presents analytical problems. We
instead employ the true mean rather than its esti-
mate, which for two reasons does not appreciably
affect the result. First, the error so introduced re-
mains a constant factor for all counting times, and
so cancels in power-law slope calculations where log-
arithms are used. Second, the estimate of the vari-
ance exhibits much larger variations than the esti-
mate of the mean, so the fluctuations in the Fano
factor estimate are dominated by the estimate of the
variance. Since the variations in the estimate of the
mean therefore play only a minor role in the result-
ing Fano factor calculations, we may set them equal
to zero and simply use the true mean. Therefore,
for the expected value of the Fano factor estimate
we obtain

E[F(T)| =B{Var[Z]/E(2]}
~E{Var|Z]}/E[Z]

N
+(T/Th) { E
>([(k+1)D+1—2kD+l+(k—1)D+1]}

N T
+(T/To)P {1—/z=1 ———N?Nfl)

x[(x+1)P+1 _2.’6D+1+($—1)D+1]d$}

= 1+(T/To)P[1-NP71

=1-+(T/To)°[1—(T/L)'" 7] (36)
where we have employed the relation N = L/T.
The method used in the Appendix now provides

Da~D-6(1-D) Y (Ty/L)P n~*(TL/L), (37)

where Ty, and Ty are the lower and upper limits
of the range of T used to estimate D and Ty <
T;, < Ty < L. Again, the bias vanishes as the data
length L approaches infinity, and again for a fixed L,
a smaller value of Ty (and therefore a smaller range
of T over which the estimate is computed) yields a
smaller bias and an increased variance. Thus this
estimate also exhibits a bias-variance tradeoff.
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4.3 Example: Cantor Set

Despite the close relationship between the PSD and
the FF, the FF sometimes reveals fractal behav-
jor where the PSD does not. An example is the
Cantor set C, which, although deterministic, nev-
ertheless illustrates the utility of the FF. We con-
struct a specific Cantor set from the unit interval by
removing the middle third, and then removing the
middle thirds of the two remaining segments, and
continuing this an infinite number of times. Con-
sider the sequence of sets

zo(t) = 6(¢)
z1(t) = [6t) + 8¢ — 2/3)/2 (3)
zo{t) = [6(t) + 6(t — 2/9)
+6(t—2/3)+6(t - 8/9)]/4,
which may be generated by the rule
Zn (1) = hn(t) % 2n-1(t), (39)

where §() is the Dirac delta function, * represents
the convolution operation, and the filter function
hn(t) is defined by

ha(t) = [6(2) + 6(t — 2/3™)]/2. (40)
If we define
_[3 for0<t<1/3",
gn(t) = { 0 otherwise, (41)

then we may represent the (unit measure) Cantor
set as

C=nlll{.1°h1*h2*"'*hn*9n- (42}

In the Fourier domain we have

Fic} = Jim Float T] Flm)
k=1

= ﬂli_’rrc,l° exp(—j37"/2)sinc(37"Q/2)

X H exp(—j3*Q) cos(37%0)
k=1

IF{C}* = lim sinc2(37"/2) [ cos*(37%Q)
k=1

= H cos?(37%Q).
n=1

(43)
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Fig. 6 Doubly logarithmic plot of the power spectral density of the sixteenth-generation approximation to the Cantor set,
formed by starting with the unit interval and removing the middle third segments. Although fractal structure is evident in
the form of the graph, scaling regions, which would appear as straight lines on this plot, cannot be seen.,
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Fig. T Doubly logarithmic plot of the Fano factor of the sixteenth-generation approximation to the Cantor set, formed by
starting with the unit interval and removing the middle third segments (solid curve). Scaling is evident over many decades,
and the asymptotic form F(T') = (T/To)” (dotted line) fits the FF curve well with the dimension D = log(2)/ log(3), and Ty
set to the smallest interval in the approximation.



This result has also been obtained by somewhat dif-
ferent methods,??

Figure 6 shows the PSD of z4(t), which exhibits
no discernible scaling region despite x;6(¢) being
self-similar over more than seven decades. In con-
trast, the FF of the Cantor set does indeed show
scaling, and with the correct scaling exponent. Con-
sider the mth stage in the construction of the
Cantor set, which consists of 2™ intervals or points.
Now divide the original unit interval into 3 equal
segments, with 1 € n < m, each of length T = 37™;
of these a proportion p = 2™/3" will contain M =
2™ /2™ points each of the Cantor set approximation.
By the binomial theorem, the resulting Fano factor
will be

F(Ty=M(1-p)=(2"/2")(1 -2"/3")

= 2™(TP - T), (44)
where D = log(2)/log(3) is the fractal dimension of
the Cantor set. Since n is large, then T <« TP, so
that

F(T)~ MT? = (T/Ty)", (45)

which is indeed scaling with the correct scaling ex-
ponent. A plot of the FF of x4(2), displayed in
Fig. 7, shows an extensive scaling region. Thus the
FF highlights some forms of fractal behavior which
the PSD fails to show.

5. ESTIMATION OF FRACTAL
DIMENSION: SIMULATION

The analytical results presented in Sec. 4 provide
an indication of the expected performance of the
PSD- and FF-based dimension estimators. How-
ever, for statistics such as the variance of the esti-
mate derived from the FF, and for a picture of the
overall behavior of these estimators, we turn to sim-
ulations of various mathematical models of FSPPs.
We simulated superpositions of standard fractal re-
newal (point) processes, sums of alternating fractal
renewal processes driving a Poisson point process
(the FBNDP), and fractal Gaussian noise driving
a Poisson point process (the FGNDP), as well as
a homogeneous Poisson point process which serves
as a check on our theory. We also simulated sums
of alternating fractal renewal processes driving an
integrate-and-reset process (see Sec. 3.3). In con-
trast to the sum driving a Poisson point process as
illustrated in Fig. 3, the sum was integrated un-
til the result attained a value of unity. A point
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was then generated in the output point process, the
integrator was reset to zero, and the process was
repeated over the length of the simulation. This
process lacks the additional randomness of the
driven Poisson process; since this forms only a rel-
atively small component of the total fluctuation in
the process, however, the integrate-and-reset pro-
cess yielded nearly identical results to those of the
FBNDP. We therefore do not discuss it further ex-
cept to note that it exhibited a slightly more posi-
tive bias in the PSD-based dimension estimate for
all values of the fractal dimension D compared to
the FBNDP.

All simulations were designed with an average
time between events of unity and a total length of
10%, so that the expected number of events was also
10%, and with fractal intercept times T near 10. For
each type of FSPP, 100 simulations were performed
for each of three values of the fractal dimension:
D =0.2, 0.5, and 0.8.

The following procedures were employed to
compute the dimension estimates. For the PSD-
based estimate, the absolute event times (not the
interevent times) were quantized into 2'® bins,
which therefore formed a rate estimate of the pro-
cess with counting window 10%/216 ~ 15.259 time
units. Then a discrete Fourier transform was per-
formed, followed by replacing the Fourier compo-
nents with their square magnitudes. Finally, a least-
squares fit was obtained on the logarithm of these
quantities vs. the logarithm of the frequencies for
a selected range of frequencies. As expected, for
all three FSPPs simulated, increasing the range of
frequencies included in the least-squares fit reduced
the variance of the fractal-dimension estimate at the
expense of the bias; a range of 107% < f = w/27 <
10~3 provided the best overall tradeoff and was se-
lected for all three FSPP simulations, although a
lower limit of 107% yielded similar results. A to-
tal simulation length of 10% produces a frequency
resolution of 1079, for a total of 10° values of the
PSD. Equation (17) predicts a standard deviation
of 0.027 for this case, while the negative bias due
to a finite data length as predicted by Eq. (24) is
presented in Table 2 for the values of D employed.
The derivation of the bias requires the assumption
wL >» 1, but over the range of w used this quan-
tity falls as low as wyL = 27. This value ap-
pears to exceed unity by a sufficient quantity in
practice however, since employing wr ., = 207 re-
sulted in a nearly identical bias calculated from the
simulation.
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Table 2 Expected fractal-dimension
estimator bias due to finite data size.
The PSD-based estimate exhibits a
smaller magnitude of bias than that
of the Fano factor.

D =0.2 D=05 D=08
PSD: -0.001 —0.004 —-0.024
FF: —0.006 -0.020 —0.099

Note: FF Fano factor
PSD power spectral density

For the FF-based estimate, the variance and
mean were calculated for a number of counting
times, with the times determined by geometric
series of ten counting times per decade. As with
the PSD-based estimate, a larger range of count-
ing times yielded increased bias and decreased vari-
ance. The best overall performance was achieved
for a range of 10° < 7' £ 105, Equation (37) pre-
dicts a negative bias for the FF-based estimate, also

presented in Table 2. The simulation results are
displayed in Figs. 8-11 and Tables 3-5.

5.1 Superposition of Standard
Fractal Renewal Point Processes

As indicated in Sec. 2.2, perhaps the simplest FSPP
is a single standard fractal renewal point process,
with an interevent-time survivor function following
the abrupt-cutoff power-law form of Eq. (8}, Em-
ploying an exponent d = 2 ~ D, which falls in the
range 1 < d < 2 for fractal dimensions D between
zero and unity, results in fractal behavior in the
PSD, FF, and CR with the same fractal dimen-
sion D, but provides a more quickly decaying tail in
the survivor function which renders the outer cut-
off B unnecessary. Thus it may be eliminated and
still result in an interevent time with finite mean.
Eliminating the outer cutoff yields better power-law
behavior in the PSD and FF, and simplifies simu-
lation. A point process in one Euclidean dimen-
sion must have a fractal dimension between zero
and unity, and employing a power-law exponent d
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Fig. 8 Scatterplot comparing PSD- and FF-based estimates of the fractal dimension for the superposition of standard fractal
renewal processes. Estimates of the fractal dimension computed from a least-squares fit of a doubly logarithmic Plot of the
power spectral density over the frequency range 107° < f =w/27 < 10~2 (or time range 10°-10%) form the abscissa, while
the ordinate consists of estimates from a doubly logarithmic plot of the Fano factor over the time range 10° < T < 10%. The
large circles mark the points corresponding to zero error in estimating the fractal dimension for the three values of D used to
simulate the process; D = 0.2, 0.5, and 0.8. The line connecting the circles indicates where the two estimates would coincide.



FF D ESTIMATE (10°-10°)

1.0 :
0.5} Q . ]
;o
D=0.5
0.0 :
0.0 0.5

Fraetal Stochastic Point Processes 201

FRACTAL DIMENSION ESTIMATORS
FRACTAL—-BINOMIAL-DRIVEN POISSON

PSD D ESTIMATE (10°-10°%)

1.0

Fig. 9 Scatterplot comparing PSD- and FF-based estimates of the fractal dimension for the sum of alternating fractal renewal
processes driving a Poisson point process (FBNDP). Estimates of the fractal dimension computed from a least-squares fit of
a doubly logarithmic plot of the power spectral density over the frequency range 107 < f = w/2r < 107 (or time range
10*-10%) form the abscissa, while the ordinate consists of estimates from a doubly logarithmic plot of the Fano factor over the

time range 10° < T' < 105,

FF D ESTIMATE (10°—10°)

FRACTAL CIMENSION ESTIMATORS
FGN-DRIVEN POISSON

1.0 i
o | O
* +,
D=0.5
& D=0.2
0.0 '
0.0 0.5 1

PSD D ESTIMATE (10°—10°)

.0

Fig. 10 Scatterplot comparing PSD- and FF-based estimates of the fractal dimension for fractal Gaussian noise driving a
Poisson point process, Estimates of the fractal dimension computed from a least-squares fit of a doubly logarithmic plot of the
power spectral density over the frequency range 107% € f = w/2r < 1072 (or time range 10%-10°8) form the abscissa, while
the ordinate consists of estimates fram a doubly logarithmic plot of the Fano factor over the time range 10° < T < 105.
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Table 3 Superposition of ten standard fractal renewal
point processes: Statistics of fractal-dimension estimators
for 100 trials. For this FSPP, the PSD-based estimate ex-
hibits bias towards the median value of D = 0.5. The cor-
relation coefficient was computed between the PSD- and
FF-based estimates of the fractal dimension.

D =02 D=05 D=08

PSD: Bias +0.114 —0.001 —0.119
Bias {Theory) +0.044 -0.002 —0.099
Standard Deviation 0.063 0.057 0.048

FF: Bias +0.002 —0.142 —-0.262
Standard Deviation 0.047 0.052 0.043
Correlation Coeflicient 0.708 0.633 0.422

Note: FF Fano factor

PSD power spectral density

in the range 1 < d < 2 indeed leads to an FSPP

with dimension D = 2~ d.% The probability density

function then assumes the form

0
p(t) = { dAdt"-(d+1)

fort< A,
fort > A.

(46)

However, the resulting Fano factor F(7T') has a dip
near T' = Tp, caused by the abrupt cutoff in the in-
terevent time density; furthermore, the power spec-
tral density exhibits excessive oscillations for the
same reason. Improvement results from employing
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Table 4 Sum of ten alternating fractal renewal point pro-
cesses driving a Poisson point process: Statistics of fractal-
dimension estimators for 100 trials

D =02 D =05 D =08

PSD: Bias +0.070 +0.042 —0.006
Bias (Theory) +0.027 -0.009 —0.039
Standard Deviation 0.062 0.051 0.045

FF: Bias —(.018 —0.124 —0.258
Standard Deviation 0.048 0.044 0.043
Correlation Coeflicient 0.692 0.625 0.477

Note: FF Fano factor
PSD power spectral density

Table 5 Fractal Gaussian noise driving a Poisson point
process: Statistics of fractal-dimension estimators for 100

trials
D=02 D=05 D=08
PSD: Bias —0.056 —0.064 —0.076
Standard Deviation 0.036 0.041 0.038
FF: Bias —0.093 —0.211 —0.335
Standard Deviation 0.017 0.024 0.032
Correlation Coefficient 0.412 0.341 0.201

Note: FF Fano factor

PSD power spectral density

a smoother interevent time density
dA~le~d/A fort < A,
p(t) =

de A%+ for¢ > A, (47)

which is continuous for all interevent times ¢.
Other fractal probability density functions were
also considered, in an attempt to reduce the effects
of the transition at T = A, and to extend the region
of power-law behavior in the PSD and FF to still
higher frequencies and shorter time scales. In par-
ticular, the three other analytic forms considered

_ d(d - 1) d —t/A\2—(d+1)
= A -
(1) = o [A7 + BT)P - B2
X (1 — e=t/A)et/By=(D+1) (49)
p(t) = _L_Ade—A/tt—(d+1) (50)

- I(d)

resulted in no improvement over the form in
Eq. {47). All would have added considerable
complexity to the simulation, and were therefore
rejected.

We simulated a superposition of ten identical in-
dependent standard FRPs, utilizing the smoother
interevent-time probability density function in
Eg. (47). With an average interevent time of unity
for the superposed process, the fractal intercept
time Ty became Ty = 3.89, 8.10, and 9.98 for D =
0.2, 0.5, and D = 0.8, respectively.

Figure 8 presents the values for the fractal di-
mension estimated from the 100 simulations of each
value of D used, with the estimates derived from
the PSD forming the horizontal axis and those from
the FF the vertical axis. Table 3 presents the
associated bias and standard deviation for both
estimates. Also presented are the theoretically
expected values of the bias for the PSD-based
estimates, which arise from two sources. First,
employing the interevent time probability density
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function in Eq. (47), exact rather than limiting
forms of the PSD were obtained numerically, and
used in calculation of an empirical dimension. Sec-
ond, including the estimated bias due to finite data
length from Table 2 formed the expected values of
the bias in Table 3. The last line displays the corre-
lation coefficients between the two estimates. Fig-
ure 8 displays a bias in the PSD-based estimate to-
wards the median value of 1/2, and in the FF-based
estimate towards zero. These effects are presented
quantitatively in Table 3, which further reveals an
almost linear form for both estimators based on the
three values of D simulated. The standard devia-
tions of the estimators appear not to vary between
estimators or across values of D.

5.2 Fractal-Binomial-Noise-Driven
Poisson Point Process

Again employing the smoother interevent-time
probability density function in Eq. (47), we sim-
ulated a collection of ten identical independent al-
ternating FRPs and utilized their sum as a stochas-
tic rate function for a Poisson point process (see
Sec. 2.3). All of the alternating renewal processes
were symmetric, so that the number in either state
at any given instant follows the binomial distribu-
tion with individual probabilities p = 1/2. This is
the fractal-binomial-noise-driven-Poisson point pro-
cess or FBNDP. For ten such processes, the sum
already follows the Gaussian amplitude distribu-
tion fairly closely, with a skewness of zero and a
kurtosis of 2.8; corresponding values for an exactly
Gaussian process are zero and 3.0. Thus the sum
indeed approximates FGN, and the resulting point
process approximates the FGNDP.

Since the rate function may be multiplied by an
arbitrary constant without changing the nature of
the process, an extra free parameter exists. We
chose to eliminate this parameter by setting the cut-
off time A equal to the Fano factor intercept time
Tp, to within the resolution of the number of al-
ternating fractal renewal processes (which must be
an integer). With an average interevent time of
unity for the superposed process, the fractal inter-
cept time Ty became 13, 20, and 15 for D = 0.2,
0.5, and D = 0.8, respectively.

Figure 9 presents the values from the fractal di-
mension estimated for the 100 simulations of each
value of D used, with the estimates derived from
the PSD forming the horizontal axis and those from
the FF the vertical axis. Table 4 presents the as-

sociated bias and standard deviation for both esti-
mates. Also presented are expected values of the
bias for the PSD-based estimates, computed using
the same method as in Table 3 but with formulas for
alternating FRPs. The last line again displays the
correlation coefficients between the two estimates.
This process exhibits different behavior than the
standard FRP in one respect; the PSD-based esti-
mate appears biased toward higher values of D in
Fig. 9, and Table 4 supports this with a near-zero
bias for O = 0.8. The bias in the FF-based esti-
mate and all standard deviations appear similar to
the results for the standard FRP, however.

5.3 Fractal-Gaussian-Noise-Driven
Poisson Point Process

We also simulated FGN directly and employed it
as a stochastic rate function for a Poisson point
process, Exact simulation of a FGNDP by obtain-
ing first passage times for the associated biased
fractal Brownian motion appears impractical;
rather, a discrete-time approximation of FGN typ-
ically serves as the rate function. We employed
the relatively simple method of forming a sequence
{X(k)} with an amplitude decreasing as k~?/? and
independent random phases uniformly distributed
in the interval [0,2n), and then taking the inverse
discrete Fourier transform. The resulting approxi-
mation to FGN, z(n), is periodic with period equal
to the length of the sequence, however, and does
not well represent a segment of a longer, aperiodic
process.

This problem was ameliorated by retaining only
half of the resulting sequence.®%61 Specifically, we
used an original sequence of length 2'6 = 65536
points and kept the first 2!5 = 32768, for a time
step between FGN points of 10°/21% ~ 30.518 time
units. Besides the necessity of approximating the
ideal, continuous-time FGN by a discrete-time se-
quence, the FGN rate function must be prevented
from assuming negative values, since a negative rate
function has no meaning for a doubly stochastic
Poisson point process. In practical simulations,
negative values are obviated by choosing param-
eters such that the probability of negative values
occurring is small. In contrast, the nonlinear
method of simply setting negative numbers to zero
introduces energy at higher frequencies and unac-
ceptably changes the fractal nature of the process.
We therefore chose to set Ty = 25 for all simulations
of the FGNDP; for this value of the Fano factor



intercept time, the mean rate exceeds the standard
deviation by more than a factor of five for all three
values of D used, so that the probability of any
specific point assuming a negative value becomes
(1/2)erfc[5/+/2] = 2.86652 x 10~7. With 100 simu-
lations of length 32 768 points for each of 3 values
of D, the probability of at least one negative value
among independent points would increase to ~ 0.94,
However, the 32 768 points in each simulation derive
from a fractal process (FGN); they therefore exhibit
a high correlation, and in fact the actual probabil-
ity is much smaller. Indeed, no negative numbers
occurred in any of the simulations, although lower
values of Tp, or finer detail (larger number of points)
in the discrete-time approximation to the FGN, led
to a mean value only 4.5 times the standard devi-
ation, and the consequent appearance of negative
values in the FGN.

Since only three parameters completely describe
FGN (the mean, the fractal dimension, and the in-
tercept time or frequency), no free parameters exist,
as with the standard FRP, but in distinction to the
alternating-FRP-driven Poisson point process.

Figure 10 presents the values for the fractal di-
mension estimated for the 100 simulations of each
value of D used, with the estimates derived from
the PSD forming the horizontal axis and those from
the FF the vertical axis. Table § presents the as-
sociated bias and standard deviation for both esti-
mates, and the correlation coefficients between the
two estimates. This process differs from both FRP-
based processes. The standard deviation of the es-
timates decreases, especially for the FF-based esti-
mate: Table 5 presents smaller values, and Fig. 10
exhibits tighter bunching. These values approach
those of the HPP. Further, the bias in all cases is
consistently more negative than for the FRP-based
processes.

5.4 Homogeneous Poisson
Point Process

A nonfractal stochastic point process must have
a dimension equal to zero. The homogeneous
Poisson point processes (HPP) has a PSD equal to
Sg for all frequencies, a Fano factor F(T) = 1 for
all counting times, and a CR of Gy independent of
the delay; thus all three fractal dimensions derived
analytically from these statistics are indeed identi-
cally zero. We therefore simulated a HPP as a test
of our theory and estimation procedures.
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Figure 11 presents the values for the fractal di-
mension estimated from 100 simulations of the
HPP, with the estimates derived from the PSD
forming the horizontal axis and those from the FF
the vertical axis. The PSD-based estimate returned
a mean of —0.001 with standard deviation 0.033,
while for the Fano factor the corresponding values
were —0.002 and 0.009. The correlation coefficient
between the two estimators was 0.470. As expected,
the means for both the PSD- and FF-based esti-
mates are nearly zero, the value for a nonfractal
process. Equations (24) and (37) approach values
of 0 and —0.003 for the PSD- and FF-based estima-
tor biases, respectively, which closely concur with
the simulated HPP data. The standard deviation
of the PSD-based estimate also agrees well with the
value of 0.027 predicted by Eq. (17). Thus sim-
ulation of the HPP verifies the performance of the
PSD- and FF-based estimators, showing that a non-
fractal process indeed yields estimated dimensions
of zero.

5.5 Discussion of Estimation and
Simulation Methods

The simulation results presented in Figs. 8-10 and
Tables 3-5 lead to a number of conclusions. Perbaps
the most important is that even with an average of
108 events per simulation, dimension estimation is
accurate only to within 0.1, Simulations with an
average of 10° events (not shown) yielded dramat-
ically worse performance, with standard deviations
roughly three times larger and with increased bias,
as expected. The relative paucity of information
available in an experimentally observed point pro-
cess evidently renders dimension estimation difficult
in comparison with continuous-time processes.

The PSD-based estimate proved superior to that
obtained from the FF in general. Although the
standard deviation from the PSD exceeded that
from the FF in all cases, the difference was small,
and was dwarfed by the superior bias behavior of
the PSD-based estimate, except for D = 0.2 in
the standard and aiternating FRPs. Both estimates
exhibited a bias which grew increasingly more neg-
ative as D increased in all cases, but much more so
for the FF; this probably stems from the FF-based
estimate having a maximum possible value of unity,
as shown in Eq. (30). That the FF-based estimate
yielded a more negative bias accords with the ob-
servations of other researchers,’® as does the ten-
dency of the PSD-based estimate to lie between the
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intended value D and 1/2, especially for the stan-
dard FRP.%* Correlation coefficients between the
two estimates ranged from +0.2 to +0.7, neither
statistically close to unity nor to zero, the latter
indicating that the two estimates suffer from simi-
lar sources of error; this holds for the HPP as well.
That the correlation coefficients do not approach
unity shows that the two estimates display some-
what different information, as expected, since the
PSD-based estimate uses the time range 10°-108
while that of the FF employs 10°-10°. Therefore
the FF-based estimate, while often inferior to that
of the PSD, presents information not readily avail-
able to the PSD), as was shown for the Cantor set
in Sec. 4.3. Thus for stochastic signals, as well as
deterministic sets, the FF plays an important role
in determining the fractal dimension.

One method for reducing the bias of the dimen-
sion estimators consists of constructing an exten-
sive table of simulation results, and compensating
for the bias accordingly. A particular result from
one or both of the estimators would then lead to
a distribution of possible values of I} which could
have generated the process under study. However,
the results for the three processes considered here
show that different processes, although fractal with
the same fractal dimension D over almost the same
range of times, yield different values for the bias
and standard deviation. Thus such an empirically
generated distribution would only prove useful for
a particular FSPP, and presupposes some a priort
knowledge of the process. As with the question of
cutoffs considered in Sec. 4, to which this is related,
such an approach does not follow in the spirit of es-
timating a completely unknown signal and we there-
fore do not attempt to compensate for the bias in
this manner.

Another candidate method for improving the per-
formance of the dimension estimators lies in remov-
ing the asymptotic value of the measure at high
frequencies or short counting times before estimat-
ing the dimension. For the PSD, the variance in the
PSD estimate precludes subtracting any fixed value;
the result would often be negative, and a power-law
fit becomes meaningless. The FF exhibits much less
variance, especially at the shorter counting times
at which the asymptotic value of unity is to be
subtracted. However, this becomes problematic for
many practical point processes, which have struc-
ture at time scales shorter than the fractal onset
time Tj; the simple standard FRP with an abrupt
cutoff in the interevent-time probability density

function was rejected in Sec. 5.1 in favor of one
with a smoother cutoff for precisely this reason.
Once again, this requires knowledge of the partic-
ular details of the process and fails for the gen-
eral case, so we do not attempt to compensate for
short-time effects in the FF. As an example, con-
sider the behavior of the FF of a single standard
FRP with interevent time probability density func-
tion p(t) given by Eq. (47). Within a time period
much smaller than the cutoff time A, the probabil-
ity of having two events almost vanishes, so that
we may approximate the coincidence rate G(r) by
a constant value of Sgp(0). Substituting this value
into Eq. (31) yields F(T) = 1+ p(0)T, so that after
subtracting unity from the Fano factor, the remain-
der yields a slope of unity on a doubly-logarithmic
plot. Indeed, all three FSPP simulation methods
employed exhibited such linear behavior in F(T)—1
for 1<T <3

For auditory-nerve recordings in particular, how-
ever, power-law behavior in F(T) — 1 does indeed
exist well below T = Ty, and a sophisticated algo-
rithm exists for eliminating confounding non-fractal
effects from the data.b? A smoothed hazard function
of the data is estimated, sometimes depending on
the previous interval as well, and a FF constructed
from it. Then this FF is subtracted from the FF ob-
tained from the data. Although an analytical proof
of the validity of this approach does not exist, the
method nonetheless works well in practice.

Finally, we note that in addition to the bias and
standard deviations of the fractal-dimension esti-
mators attaining large values, they do not closely
accord with the predictions obtained in Sec. 4. Val-
ues of the standard deviation for the PSD-based
estimate range from 0.036 to 0.063, with a mean of
0.049, while the predicted value remains constant
at 0.027. The bias for the two FRPs differs from
predictions by as much as 0.070. The question nat-
urally arises: what generates these differences? The
answer appears to lie in the fractal fluctuations of
the point processes themselves, and to be an inte-
gral part of fractal-dimension estimation. Fractal
behavior in a point process manifests itself in terms
of clusters of points on all (or a large set of) time
scales; for an FSPP, which is random, the relative
abundance of clusters will vary. Thus a particu-
lar section of an FSPP with a fractal dimension
D may be best described by a different number,
while an adjacent segment would result in yet an-
other value of the estimated dimension. This gives
an indication of another source of variance in the



estimates. Since dimension estimation is highly non-
linear, the average of a sequence of estimates from
sub-sections of a larger section will not in general
equal the estimate obtained by examining the larger
section as a whole; this systematic difference leads
to bias. Longer segments of data, such as 107 or
even 10® points, would presumably exhibit less bias
and variance in both estimators, approaching the
limit of D = D for an infinite-length process. There-
fore, without knowing more details about the FSPP
under study, for a data segment of 10° points the
fractal dimension may only be estimated to within
+0.1. This inherent fluctuation in FSPP highlights
the impracticality of detecting a change in the frac-
tal dimension over time in any but the longest data
sets. Even in a stationary process, estimators will
yield apparently different values for adjacent seg-
ments which derive from a single process with a
constant fractal dimension, so a putative change in
the estimated dimension cannot be attributed with
certainty to either a real changing dimension or to
fractal fluctuations. Also for this reason, the con-
cept of multifractals has only limited usefulness in
general fractal stochastic point processes, since the
information required to determine the multifractal
spectrum does not appear to exist.

6. CONCLUSION

We have investigated the properties of fractal
stochastic point processes (FSPPs). We developed
several mathematical formulations of FSPPs, and
showed that over a broad range of conditions su-
perpositions of large numbers of arbitrary indepen-
dent identical FSPPs must converge to the fractal-
Gaussian-noise-driven Poisson point process. We
presented in detail the analytical properties of the
PSD- and FF-based fractal-dimension estimators
for FSPPs. We considered the practical aspects
involved in simulating FSPPs, and simulated four
FSPPs with values of the specified fractal dimension
of D = 0.2, 0.5 and 0.8. As revealed in both the
theoretical properties of the estimators and in the
simulated results, we discussed factors which con-
found the estimation of the fractal dimension: the
finite length of the simulation, the structure or type
of FSPP employed, and the fluctuations inherent in
any FSPP. We conclude that segments of FSPPs
with as many as 10° points yield estimates of their
fractal dimension accurate to only within £0.1.
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APPENDIX:
MINIMUM-SQUARED-ERROR
SLOPE ESTIMATION OF A
FUNCTION

Consider a function f(x) for which a linear approx-
imation ¥y = mx + b is desired over the interval
A <z < B. The total squared error is given by

B
= /A [f(z) - (ma + 0P dz.  (51)
Partial derivatives with respect to both m and b
will assume a value of zero where the quantity x?
assumes a minimum. We focus on the slope, m.

Defining R
In zf " dz, (52)
A
the equation
Iodx%/om — LYt /ob =10 (53)
yields
B B
Iy / zf(x)dr — I / f(x)dz
m= 4 A . (54)

Iol, - I2

To find the exponent of a power-law function, we
use logarithms

I= fA ? 1o (2)dz /o

Fr)
~

B B
12[ln(B) — In(4)] /A In[f ()] In(z)dz/z — 6[ln?(B) — In(A)] /A In[f (z)|dz/z
In*(B) + In*(A4) '

=(n+1)"! [ln"+1(B)—1n"+1(A)] . (55)
so that for B >» A we have
1
2. 1 [1.4 4
Ll - It~ [ln (4)+m'(B)],  (56)
and
(57)
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For the PSD-based dimension estimate, the func-
tion has the form

flx)=ecz™P [1 —bx° sin(:r:)] (58)

where bx™° is small, so that

In[f(x)] = In(e) + D In(z) + In[1 — bz~* sin(z)]
& In{c) + D In(z) — bz~ sin(x).
(59)

The two integrals in Eq. (57) then become

B o0
/ x”? sin(z)dz/z = / =) sin(x)dz
A A

z A7) cos(4) (60)
fA ® 2% sin(z) In(z)dz/z
~ In(A) /A 7 2@ ginlr)de
~ A7) In(A4) cos(4). (61)

Since typically A = wi L is closer to unity than B =
wylL > 1, we may disregard the terms in In(A),
yielding

m =D D—6bA (D) cos(A)In"2(B). (62)

For the FF-based dimension estimate, however,
the function has a simpler form

fx) = czP(1 - bx®) (63)
where bz?® is small, so that

In[f(x})] = In(c) + D In(z) + In(1 - bz*)

~In(e) + D In(z) ~ bx®. (64)

The two integrals in Eq. (57) become

B B
/ ztdzjz =~ / z*ldr=a71B®

B B
f z* In(z)dz/z a‘:/ %1 In(z)dz
A 1

=a™'B%[In(B) - a™!] o

For the FF we have the reverse case as for the PSD,
in that typically B = Tyy/L is closer to unity than
A = Tp/L < 1; this permits us to disregard the
terms in In(B), so that

m=D=xD-6a"'bB% In"%(4).  (67)



