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The photocounting statistics of radiation propagating through active, quadratic random
media and through passive media are considered on the basis of a recently developed quantum
dynamic theory. We show that the counting statistics for lossless random active media and those
for passive weakly-inhomogeneous random media are similar, although there are some differences.
The peak of the photocounting distribution shifts to lower count number # and is found to broa-
den with increasing turbulence level, as in the case of passive media. In lossy active media, the
shift of the peak to lower # is more pronounced, in pumped active media below threshold it is
less so, and in pumped active media above threshold, there is a shift of the peak to higher n as
a consequence of self-radiation. Severe broadening occurs in this latter case. Photocounting
statistics for special states of the incident field are also discussed.

1. INTRODUCTION

Recently the statistics of radiation propagating through an active quadratic
random medium have been systematically investigated in a series of papers [1 —4]
using the coherent state technique. The Heisenberg field equations have been solved
to obtain the quantum characteristic functions and quasi-distributions. This approach
was based on the Louisell-Yariv-Siegman formulation [5] in terms of real mode
functions, and includes the effect of the quadratic nonlinearity in the Hamiltonian.
While the results of papers [1,2] are appropriate for the case of undamping active
media, papers [3,4] take into account a loss mechanism in the medium. This provides
a more realistic description; moreover, pumped media may also be simply treated
within the framework of this theory.

The loss mechanism is introduced through a reservoir system of damping oscilla-
tors in interaction with the radiation. This formulation is, in part, equivalent to
including the coupling of radiative modes in the theory presented in [1,2]; this could
not be fully done because of mathematical difficulties, however. The results obtained
are appropriate for describing the radiation propagating through an active random
medium with a quadratic nonlinearity. If the damping of the radiation is smaller
than the self-radiation of the medium and the contribution of the reservoir, then there
is amplification of the incident radiation and we speak of pumped active media with
gain. If the damping is stronger than the self-radiation and the reservoir contribution,
then there is attenuation of the incident radiation and we speak of lossy active media.
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If the frequency of the incident radiation is such that it excites no transitions in the *

medium, then the medium behaves passively and the corresponding “passive”
descriptions proposed in [6] and [7,8] are appropriate (their interrelation is con-
sidered in [9]). A preliminary discussion of the relation between the “active” and
“passive” descriptions can be found in [2,4].

In this paper, we present a comparison of the photocounting distributions for
radiation propagating through both active and passive random media. We show
that in the lossless active medium, the “active” description provides results quite close
to those obtained using the Diament-Teich or generalized Tatarski “passive” des-
criptions for a weakly inhomogeneous random medium. The “passive” descriptions
therefore approximately describe self-radiation, damping, and the reservoir contribu-
tion. The “active” description for the lossless medium shifts the peak of the counting
distribution to Jower count number n and has the effect of broadening the distribu-
tion with increasing level of turbulence, as in passive media [6,9]. In lossy active
media, the shift toward lower n is more pronouriced, in pumped active media exhibit-
ing gain (below threshold) it is less so, while for pumped active media exhibiting
gain above threshold there is a shift of the peak to higher n as a consequence of self-
radiation. In this case, furthermore, very strong broadening of the distribution
(uncertainty) occurs.

We have also observed a tendency of the active medium to conserve Poisson
statistics, as in nonlinear optics in the case of second harmonic generation. Of course,
the “active” description is applicable to a broader variety of cases, including the
attenuation and amplification of incident radiation. We particularly consider photo-
counting distributions for incident radiation comprising a Fock state, a coherent
state, a chaotic state, and a superposition of coherent and chaotic radiation. Nume-
rical results for coherent and chaotic radiation are presented.

2. THEORETICAL RESULTS

Basic formulas for the description of the photocounting statistics of radiation
propagating through a random active medium have been obtained in [4]. In the
following, we provide a number of basic results necessary for a discussion of the
numerical data and give some additional comments pertinent to the general theory
and to the connection between the “active” and “passive” descriptions.

The normal characteristic function {10] takes the form of a product of two charac-
teristic functions for the superposition of coherent and chaotic fields,

(1) CP(is, 1) = <[1 s (% - 1)]_1”/2 [1 ~is C—i - 1)]%2.

iSA1 iSA2
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provided that we assume a weakly inhomogeneous medium (inhomogeneities are
much larger than the wavelength so that fluctuations of the direction of propagation
may be neglected [11]), and further provided that fluctuations are slow in compari-
son with the period of the radiation. All modes are assumed to be equally damped,
only a mean frequency is considered, and the phase of the incident complex amplitude
is assumed to be random. In (1), we choose

o)

— 1= [o] (Jo| + [u]) + <no> (1 — exp (~71)),

et | =

— 1= o ] = [u) + <> (1 — exp (=30

eI

A4, = ([u] T ]v])z Wo/2,
in which u and v are given by
u(f) = exp (—7t/2) [cos (A 2wt) — i ch (¢/2) sin (1 Pwr)],
v(t) = i exp (—yt[2) sh(e/2) sin (#'/2wt).

Since u and v are time-dependent functions with oscillating components ~ 1013 sec™ %,
and since the period is random [4], we must average the mean integrated intensity
(W3 over time. Thus {cos® @#**t) = (sin®> wA />ty = 1/2 and in this situation
we speak of the “average times™ case. Then

(3a) |ul* = exp (—y1) (1 + %shz%>, |of? = 4 exp (=) Shzg

are the observable quantities.

The maximum effect of the medium and maximum deviation from the free-field
statistics occur for “special times™ [3,4], such that cos? w# ™%t = 0,sin? w1/t = 1
(for times such that cos® X%t = 1, sin® w#"/*t = 0, the free-field photodetec-
tion equation with the Poisson kernel applies). Then,

(3b) [u[z = exp (—yt) ch? % , |v|2 = exp (—yt) sh? % .

In (1), (2) and (3) the quatity is is a parameter, the time ¢ = z/c, where z is the distance
travelled in the medium, ¢ is the velocity of light, M is the number of degrees of
freedom, y is the damping constant which is much lower than the radiative frequency
, Wy s the integrated intensity of the incident radiation, {n;» = (exp (Ay/KT) —1)~*
is the mean number of reservoir chaotic oscillators, # is Planck’s constant divided
by 27, K is Boltzmann’s constant, T is the absolute temperature of the reservoir,
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and ¥ is the reservoir frequency. The quantity ¢ = In ", where %" is a typical
quantity fluctuating in the medium as a consequence of fluctuations of permittivity
e(x,t) [1—4], such that {#) = {exp ¢) = 1. Assuming that the permittivity
fluctuations &'(x, ) are Gaussian (g(x, f) = 1 + &(x, 1), la'l < 1, we assume for
simplicity that {¢) = 1), we can show [4] that the probability distribution P(") is
lognormal,

2 2
@) Pt) = ——L exp _ (o + 22277
@2m)? e 202
i.e. P() is a Gaussian distribution centered at ¢ = —o?[2. Furthermore,
; . a® .. .
(5) ATy = (exp jo) = exp [?J(J - 1)], j=0%L...,

where ¢ is the standard deviation of In 2. The average in (1) is taken over W, (the
probability distribution of the incident radiation is P(W,)) and over " or ¢ with
P() or B(p). We see from (1) and (2) that the quantities (1/E — 1) and (1/F 1)
describe the vacuum contribution of chaotic radiation energy and the contribution
of chaotic energy from the reservoir into radiation, while the signal numbers Ay, are
connected with the incident radiation.

It is clear that (1) has the form of a product of two generating functions for La-
guerre polynomials; thus the photocounting distribution p(n, z[c) = d"C§"(is, z/c) :
- ' d(is)"|;,=— 1 and its factorial moments (W*) - = d“C{(is, z[c)[d(is)¥|;=o can be
expressed as a finite convolution of the well-known expressions for the superposition
of coherent and chaotic fields [4]. These are rather complicated expressions; fortuna-
tely, calculations using the exact expressions are not necessary. It turns out that if we
neglect the vacuum contribution of radiation in comparison with the contribution
of the reservoir and the signal component, assuming that {(W,) is sufficiently high,
we can obtain simplified equations which are sufficiently accurate.

From (1) we have

_ _ dC{(is, z/c)
(6) (ny =W, ———’d(is}

= ul* + [o]?> o> +
is=0

+ M([vi2> + M{ngy (1 — exp(—yz[c)).

Since from (3a,b), |u]* + [o]* = exp (—yz/e)(l + ch ®)[2 and exp(—yz[c)ch ¢
for the “average times” and “special times” respectively, we may use (5) to obtain

() <o = . = o (=) (B2T 2 Wy 4 FRT ) 5

+ M{ngy (1 — exp(—yzjc)),
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expo? + 1 expo® — 1
(7b) = exp (—yz/c) — (Wy> + T M)+

+ M{ngy (1 = exp (—yz[c)),

for “average times” and “special times” respectively. For the turbulent atmosphere
[6,12—14,9], we choose o = 1/2 as an intermediate level of turbulence, and 6 = 32
as the saturation value. The coefficients of (W, and of M in (7a,b ) are then

(8a)

for ““avérage times”, and

expo® +3  (1:071, expo’ —1 _ {00355, for o = 12,
4 3122, 8 1061, for o =32,

(8b) expo’ +1 _ (1-142, exp o> —1 _ (00710, for ¢ =1[2.
2 5-244, 4 2122, for o = 3/2 R

for “special times”.

We see from (7a,b) and (8a,b) that there are three kinds of contribution to {n) =
= (W> . The first term <lul2 + |v|2> {W,> represents the response to the incident
field, while the quantity exp (yz/c) <|u]> + ]vlz> provides the self-radiation enhance-
ment of the incident radiation which is subsequently diminished by the damping
factor exp (—yz[c) in lossy media. We observe that this enhancement is small for
¢ = 1/2, while it is quite large for o = 3/2. In lossy media Jul> + |v|2> (1, for
small z, o is small so that the enhancement is rather small; for high z, the self-radia-
tion enhancement is saturated but the damping is strong. In general, there always .
exists a z such that [u|> + iv]2> <1(y>0,ifeg y=3x 10" < © = 10" sec™?,
then z 2 1cm). The second term M([vlz> represents the vacuum contribution,
while the third term M<{n,> (1 — exp (—yz/c)) provides the contribution of the
chaotic energy from the reservoir into the field.

In the case of pumped active media, it is known (cf. e.g. [16, 17]) that the pumping
compensates the damping constant y/2. Thus /2 — g replaces y/2, where g is the
pumping gain parameter. At threshold, y/2 is just equal to g, while above threshold
92 — g < 0. If we allow y to include the pumping parameter, theny = 0 at threshold
for a non-damping pumped medium, while y < 0 for a pumped medium above
threshold. In this case, exp (—yz[c) > 1, with {(n,» = [exp (Ay[KT) — 1]7* <0,
since above threshold the medium has a negative temperature [18] (this entails the
existence of distributions). In general, including both the vacuum contribution of the
radiation and the reservoir contribution, we obtain {(n)> < {W;) for lossy active
media and an attendant attennation of the incident signal. For pumped active media
with gain, {n) > {(W,>, and there is amplification of the incident signal. Passive
weakly inhomogeneous media and lossless active media yield {n) = {A") (W) =
= {W,> [6—8], and provide a basis for comparing the “active” and “passive”
descriptions.
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The main assumption of the damping theory is that only those reservoir frequencies
]1//,] ~ o are strongly coupled to radiation frequencies w; [5,3], and M is given by
the number of degrees of freedom of the incident radiation. Measuruments are most
sensitive in the region I'T =1 (I is a half-width of the radiation spectrum and T
is the detection time), which corresponds to M = 1-5 [15] (for I'T— 0, M — 1).
For single-mode radiation, M = 1, choosing {W,)> =20 allows us to neglect
the vacuum contribution M (]v|2> in (6) (i.e. we neglect 1-061 in comparison with
62:5 for “average times” and ¢ = 32, etc.). The vacuum term corresponds to terms
o] (|o] % |u]) in (*/E, F — 1) of (1) (cf. (2)). Neglecting these terms, we obtain

9 CP(is, zJe) = [1 — is <ngy (1 — exp (—yz[c))] " .

‘ <°"p [1 - isizg;lz(i—‘vet)pv(%—vz/e)>]> '

Numerical results for the photocounting distributions which will be given in Sec. 4
indeed show that the vacuum contribution is negligible. In this case the signal compo-
nent is ([ulz + MZ) W, and is fluctuating in the medium. The noise component is
given by the reservoir noise <{n;> (1 — exp(—yz/c)), and is deterministic. Thus,
setting M = 1, the photocounting distribution becomes [10]

(10) p(n, z[c) = ;11_,(1 Y elxp (_YZ/C))>—n.
L+ o (1 = exp (=21 (o - (ju? + oF) o |

L+ <{ngy (1 — exp (—yz/c))

L°<— ([ + ) 7% >>
"\ <(n) (1 —exp (—yz[e)) [1 + (ng> (1 — exp (—yz/c))]
with factorial moments

I (P i el )

where L} is the Laguerre polynomial.

We have assumed for simplicity that the photoefficiency # = 1. For n + 1, we
make the replacement is — nis in (1), thus (1/E, F — 1) > 5(1/E, F — 1) and
A, , = nA, . For the most general exact formula for the photocounting distribution,
we again use the generating function for the Laguerre polynomials [2.4] (for n =1
we obtain results given in [2,4]). If the vacuum contribution can be neglected, it is
clear from (9) that it suffices to set W, — nW, and <{n;> — #{ny).

Furthermore, we note that the characteristic function (9) corresponds to the
Glauber-Sudarshan weighting function

o, t) = 1 exp | — ‘“_5(0!2
(12 2ufm) <nd>(1-exp(—yz/c))< p( <nd>(1-exp(—yz/c))>>’
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where £(t) = ué + v&*. The brackets indicate an average over the incident complex
amplitude &, and over ¢. This corresponds to the general quasi-distribution @ d(bc, 1)
associated with antinormal ordering (&,,(x, t) does not in general exist) obtained in [4]
and simplified by neglecting the vacuum contribution. These quasidistributions obey
Fokker-Planck equations with neglected rotating terms and quantities of the order of
the vacuum contribution, in fact. The propagation of radiation through a random
medium will be discussed from the point of view of the equivalent master and Fokker-

Planck equations in [19].
If {n,> = 0, in this case the damping is caused by the reservoir vacuum alone, 9

and (10) yield

(13). p(n, zJ¢) = <[( ul® + [v]?) Wo I exp [=(uf* + |o?) W0]> .

n!

This is the average of the Poisson kernel which foimally yields the Diament-Teich
description for |u]? + |o]> - exp . This is the effective value for |u* + o)* =
— exp (—7z/c) (1 + ch @)[2, and exp (—yz/c) ch ¢ for “average times” and ,,special
times™ respectively.

Before discussing the connection between the “passive” and “active” descriptions,
we express (10) and (13) in a form useful for numerical calculation. We have used (10)
for the incident Poisson (coherent) radiation in the form

w =) e e
.[;TFFBZ—)]kexp [— <i’—§%) + ?ﬁ‘; + %2)] (1 + exp 2x) exp (—x) dx,

witha = (npy (1 — exp (=y2[¢)), b = <ne) exp (—=yz/e) ((ney = (Wo) and F(x) =
— ¢h? x and ch 2x for “average times” and “special times” respectively.
Assuming the incident radiation to be in the form of a superposition of coherent

and chaotic fields [10] (Sec. 17.3), we obtain from (13) that

(152) o, 2fo) = (2>’ I + ) j ) o ().
where

(150)  f(x) = (a F(x) + )" (a F(x)) exp (_ M) .

a F(x) +1

L prrmlaraeal [ B

Here a = (n,> exp (—yz/c))M and b = (n exp(—yz[c). The quantities {n)
and {n,)> represent the mean photon numbers in the chaotic and coherent components

Czech. J. Phys. B 25 [1975] 489



J. Pefina et al.: Photocounting statistics in random media

respectively, and F(x) is given above. For Poisson (coherent) incident radiation,
{ngy =0 and we obtain a simpler expression. This also follows from (14) with .

{ngy =0.
In order to estimate more carefully the effect of the physical vacuum, we have
excluded damping (y = (n;> = 0) in the exact formula for p(n, zfc) given in [4]:

(16) p(n, zJc) = <]u1—M(U>"exp(_Wo)i (-1

lu| Ko I(k + M2)T(n — k + MJ2) "

7 ) = i)

By use of the characteristic function and the generating function for the Laguerre
polynomials, this can be written in the form

(17a) P(n, Z/C) = Z Cmipo(m - i)>

m:i/=2n
with i}
EMPR24+m—k h;]z"
17b C..= ,
(17p) mi kI;[I X <lulM+2m>

which is useful for computer calculation. Here Do is the photocounting distribution
of the incident radiation. Comparing the results obtained with the use of (13) and
( 16) ((nyy = 0) with y = 0, the difference caused by the physical vacuum is directly
obtained. To obtain further information, we set y=<n, =0in (6) and obtain
a value of {W,> < 20 such that {n) = 20. Within the framework of the theory in-
cluding damping, this is equivalent to the replacement {n) — exp ( —yz[e) {n)
which is approximately equivalent to (W,)> — exp (—yzfc) {(W,), neglecting the
vacuum contribution. The theory without damping can therefore be used approxim-
ately for calculations when damping is present. However, in the exact theory, the
ratio of the vacuum contribution to the signal term remains the same in the presence
or absence of damping, viz. 1-061 : 625 for “average times” and ¢ = 3/2 (with
both signal and vacuum noise damped). The approximate procedure leads to a
different noise-to-signal ratio of approximately to 1:19 (damped signal with un-
damped vacuum noise). But we shall see (Sec. 4) that curves for p(n, z/c) obtained
in this way, and those neglecting the vacuum contribution are similar; the exact
curves will be closer to those neglecting the vacuum contribution, as for y = 0.

3. RELATION TO “PASSIVE” DESCRIPTIONS

Although this point has been discussed in [2, 4, 9] where it has been generally
found that the “passive” descriptions neglect self-radiation, we provide a number
of further insights on the relationship of the “active” and “passive” descriptions
here. Some of these are contained in a preliminary form in [4].
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The “active” description proposed in [1—4] includes the effect of quadratic terms
in the Hamiltonian. It is therefore a quantum active nonlinear description. If we do
not account for the reservoir, which is not considered for a passive medium, then
the annihilation operator a () at t may be expressed in terms of the annihilation and
creation operators at t = 0 [1—4], i.e.

(18) a;(t) = u(t)a; + v(r)a] .

In the “passive” descriptions, one assumes that the radiation does not interact
actively with the medium so there is no exchange of energy between the radiation
and the atoms of the medium, between different modes of radiation, etc. In such
a “passive” description, complex mode functions ul(x) should be used, yielding
coefficients K’, = (w;w,)"?[16mc? . [u)(x). ux) e (x, 1) d>x ~ 0 for the nonlinear
terms a;3, in the Hamiltonian [3] (as well as for the coefficients of a}a;) since the
period of uj(x) is of the order of the wavelength A while the inhomogeneities are
assumed to be much larger than A. The self-radiative terms are therefore absent,
and the “passive” descriptions are appropriate. It has been shown in [4] that using
(18) in the vector-potential decomposition we can redefine a,(t) as

(19) a(t) = ua; + (vay)* = (u; +0)) a;.

This expresses a compensation of the self-radiation when the reservoir is not present.
The solutions for u and v are such, that for “special times” [3,4], Iu + v*{z =exp @
(for “average times” there is an additional smoothing effect caused by the average
over time). Thus

(20a) n(t) = Zaf(t) aj(t) = exp (o) Za}raj = exp (¢) no
J J
and the corresponding c-number equation (averaged in the coherent state) is

(20b) W(t) = exp (¢) W, .

A consequence of energy conservation (in a weakly inhomogeneous medium)
{n(1)> = <oy is that <a 1), a7 (1)]> = {exp (¢)) 6 = S

Equation (20a) is typical of the quantum passive linear generalized Tatarski
description, since from (20a) {n*) = (exp (k¢)> <nf> and consequently {exp(isn)) =
= {exp (isn exp @)> = {A exp [(exp (isexp ¢) —1) ny]> (A" denotes the normal
ordering operator). This leads to the modified photodetection equation with a shot
noise term [8,9]. Treating the medium between the source and the detector as a linear
passive filter [6], we can write {exp (isn)p = (A exp [(expis —1)n]>, based on
[a{(1), 3l (£)] = 8. Then, using (20b), we arrive at the Diament-Teich description [6],
as discussed in [9]. This is a semiclassical passive linear description (it is quantum
for the field; the effect of the medium is introduced through the c-number relation
(20b)). Of course, some quantum properties such as the shot noise are lost in this
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treatment. A comparison of both “passive” descriptions has been made in [9]. The
corresponding p(n, z/c) in the Diament-Teich and generalized Tatarski descriptions .
differ only by a normalization factor. As a consequence of the shot noise term?
Po(0) 8(r) in the modified photodetection equation, its regular part, which is non-zero
for n > 0, is normalized to 1 — po(0) in the generalized Tatarski description, while

in the Diament-Teich description ¥ p(n, z[c) = 1. Such small deviations are absent
n=0

if po(0) = 0, e.g. for Fock state ]N > both descriptions are identical.

4. NUMERICAL RESULTS AND DISCUSSION

We have calculated p(n, z/c) for a po(n) which is given by 6(n — 20) (Fock state
|20), for Poisson (coherent) incident radiation with po(n) = (n>" exp (—<(ny)/n!,
for the Bose-Einstein case py(n) = )" [(1 + <ngy)t e with (Wo> (= <(n.> or
{ngy) = 20, and also for the superposition of coherent and chaotic radiation with
the signal-to-noise ratio (n,) : (g =18:2 (Kn> 4+ <nyy =20), and I'T = 1.

For the Fock state |20> we have obtained results for an undamped medium with
? = {ngy =0 and we have found that for the state lN} it is generally true that
p(n,zfe) =0 for n < N and n = N + 2k + 1, k=0,1,... as a consequence of
the quadratic terms in the Hamiltonian [4]. Forn = N + 2k, p(n, z/c)is a decreasing
function starting from n = N ; it decreases more slowly for greater values of o.
We have also calculated a number of cases with y > 0 according to (13)[4]. However,
the Fock state is a typical quantum state having no classical analogue in which
vacuum fluctuations play an important role. Thus, neglecting the vacuum contribu-
tion, we qualitatively change p(n, z[c) (e.g. in this case p(n, z[c) is non-zero for all
n > N, which leads to its more rapid decrease) although for o = 3/2 and exp ( —yz/c)
= 2/(1 + exp o) (for “special times” and <n) = (W,> = N = 20) good agreement
with the corresponding “passive” curve (curve ¢ in Fig. 1 of [9]) has been found.
Generally, however, the exact equations should be used for this case. Fortunately,
the Fock state plays a minimum role in the optical region, the coherent state being
of far more importance.

In Fig. 1 we present p(n, z/c) for ¢ = 1/2 and ¢ = 3/2, for incident radiation
which is in coherent state with a Poisson po(n), y = {n> =0, and <(n,> = 20. The
full curves a, b’ and ¢’ represent the Poisson distribution with {n,y =20 (c =0)
and the exact p(n, zfc) for ¢ = 1/2 and ¢ = 3/2 respectively. These were obtained
using (16) [(17)] for “average times”. The dotted curves b” and ¢” are obtained
using (13) [(15)] (Knyy = 0) and neglecting the vacuum contribution for ,,average
times”. We see that the vacuum effect is indeed small, and, in general, leads to
a minimal broadening of the curves. The broken curves b’ and & represent the exact
p(n, zfc) for o = 1/2 and 3/2 obtained from (16) [(17)] for “special times”. The
case of the undamped medium provides a pure self-radiation effect for “special
times” while there is an additional smoothing associated with the average over time
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for “average times”. We see that, in this case, there is an amplification of the incident
radiation caused by the nonlinearity, e.g. (n) = 635 for ¢ = 3/2 and {(Wy> =20
(cf. (8a)). Furthermore, we observe that the peak of p(n, z/c) lies approximately
at n = (W, as it does for po(n); this is exactly valid for the Fock state!), but some
broadening with increasing ¢ occurs. More generally, the peak will occur approxim-

1

10

p(nzsc)

Fig. 1.
The photocounting distribution p(x, z[c) for
coherent radiation passing through a non-
damping active random medium. The full
curve a represents the Poisson distribution
with (> = 20; full curves b’ and ¢’ are
exact distributions p(n, z/c) for “‘average
times”, while broken curves 5" and ¢” are for
“special times” with ¢ = 1/2 and 3/2, respec-
tively. Dotted curves b” and c¢” present
pln, z/c) for o= 1/2 and 3/2 respectively,
and for “average times” if the vacuum con-
tribution is neglected.

0

ately at n = exp (—yz/c) {W,». This indicates that the contribution from self-radia-
tive photons caused an increase of the most probable count number in comparison
with the passive medium [9] Morcover we observe a tendency of the active medium
to conserve Poisson statistics (this is especially true for ¢ = 1/2), as is the case
of second harmonic generation in nonlinear optics [20].

In Fig. 2 we compare the photocounting distribution of radiation passing through
a passive medium and an active lossless medium assuming that the incident radiation

1y Some small shift to higher n is probably caused by an approximation used in obtaining
pln, z/¢) in connection with the average over the random phases of the incident radiation [4];
in this we neglect a number of small terms in p(n, z/c) which causes a small broadening of p(n, z/c)
provided that the first moments are the same. Thus the exact p(n, z/¢) must have its peak slightly
shifted to lower n.
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is coherent with ¢n,> = 20. We have used the first two factorial moments of (10)
(the first two derivatives of (9) for is = 0)

(213) Wony = <I”0l2 + lvo‘2> €Xp (—VZ/C) Woy + {ny (1 — Xp (—VZ/C» >

(21b) (W, =2(n»* (1 — exp (—yz[e)* + 4&nd(1 — exp (—yzfe)).
ALuol® + [vo]?> exp (—yz/é) (Wod + (|uol? + lvo]?)?> exp (—2yz/c) (W

for comparison with the “passive” moments (W}, = (W, and (W?),, = exp ¢°.
W2 (cf. (5)); {Wop? = (W3» = {n.>* holds for coherent radiation. The quan-
tities u, and v, represent u and v without the exponential factor exp (—vz/c). This
provides, therefore, that

exp (—yzfe) = 2w :
p(—v / ) <2<luolz T ‘U0‘2>2 — <(!u0|2 + IUO|2)2>>

(222) ~4 ( 2= expo )1/2

8 + 7exp o® + 2exp 207 — exp 30°

(22b) _ 2( 2 — expo? >1/z'

3exp 0% + 2exp 20% — exp 30°

The first expression holds for “average times” while the second is appropriate for
“special times”. The quantity <{n,> is simply obtained from (21a) (recalling that
(luolz + \v0l2> = (1 + ch)[2) = (exp o* + 3)[4 and that it is equal to {che) =
= (exp ¢ + 1)[2 for “average times” and for “special times” respectively. We
have obtained the factor exp (—yz/c) = 0:796 with (n,) = 14-4 for “average times”
and the factor exp (—yzfc) = 0758 with (n;> = 11-1 for “special times™ with
o = 1/2. For o = 3[2, the equations have the unphysical solution {ng» < 0 (or 1 >
> exp (—yz[¢) > {|uo|?* + |vo]*> '), and the test correspondence occurs for {ngy =0
and exp (—yz/c) = <|u052 + lv0l2>_1. In general a comparison of the two moments
provide good value of exp (——yz/c) and {n,> up to ¢ = 0-8; for higher g, {n;y =0
and only the first moment is to be considered for the comparison which gives rise
to the above factor exp (—yz/c). For ¢ = 32, this gives second moments of Wy, =
= 0-6 exp 6> W,>* and 0-8 exp o>(W,>?, in terms of the “passive” moments for
“gverage” times” and “special times” respectively. Similar conclusions are valid
for the superposition of coherent and chaotic radiation ({n,y : {(nyy = 18: 2)
when, for example for “special times” and ¢ = 1/2, we obtain exp (—yz/c) = 0-64,
(n,> = 15. For chaotic radiation ({(Wo> = {n), (WEY = 2{ny4>*) the best fit
is for <ny> = 0, and the second moment is about 0-8 of the “passive” moment.
Slightly different data are obtained within the framework of the generalized Tatarski
description [7, 8].
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The full curve @ in Fig. 2 represents the Poisson distribution with {(n.> = 20,
while the full curves b and c¢ are for the “passive” case with ¢ =1 [2and 0 = 32
respectively [9] The full curves b’ and ¢’ represent p(n, z/c) for “average times”,
while broken curves b’ and & are for special times”; b’ and b’ are obtained from
(10) [(14)] with ¢ = 1/2 and with the above-given factor exp (—yz/c) and {(ny).

107

p(nzs)

Fig. 2. -2
The photocounting distribution p(n, z/c) for
coherent radiation passing through a lossless
active random medium. The full curve a is the
Poisson distribution with (x> = 20, full
curves b and c represent the “passive” curves
obtained from the Diament-Teich description,
while full curves b” and ¢’ are “active” curves
for o = 1/2 and 3/2, respectively, and for
“average times”; broken curves b’ and ¢’ are
for ¢ = 1/2 and 3/2, respectively, and for
“special times” (the vacuum contribution is 107
neglected). Dotted curves ¢” and ¢” are for
¢ = 3/2 and for “average times” and “special
times”, respectively. They correspond to the j

theory with a damped signal and undamped
vacuum noise.

H 1
0 20 40 60
n

Curves ¢’ and ¢ are for ¢ = 3/2, and are obtained from (13) [(15)] with <n.> =0,
(> =0 and exp (—yzfc) = Juo|* + |vo|?>~*. The dotted curves c” and ¢ are
obtained from (16) [(17)] with ps(n) a Poisson distribution. They provide the distri-
bution p(n, z/c) for a damped signal and undamped noise with o = 3/2 and for
“gverage times” and “special times” respectively, as discussed above. The exact
curves should lie between ¢’ and ¢”, & and ¢’ but should be closer to ¢’ and ¢’, as is
seen in Fig. 1. Some additional shift of the peak of p(n, z/c) to the left and a slight
broadening may appear in connection with the approximation discussed in footnote 1,
providing a better fit between the “passive” and “active” curves.

Introducing the relative variance of n, B2 = ((4n)*>/<{n)* and using (21) with
{ng> = 0 for simplicity, we obtain f2 = BZ,un, + Bl in the same way as in [7.8],

where B2, = ((ul? + [PV [<ul> + [oP>? = 1 Bluane = (Cfu]* + [o]*> <ned)™H;
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Biune is equal to 1/(n)> in a passive medium, where Ju + oy =1
and to (Blus + 1) [ul? + [o?>[<ny <(u)? + [|*)?> in other cases. For o — 0,
Biass = 0 and B* — B2 = 1/{(n.>, which is valid for Poisson distribution. These
results are comparable with those discussed in [7,8].

p (nzx)

102

107 ' '
0 20 40 60

Fig. 3. The photocounting distribution p(n, z/c) for chaotic single-mode radiation passing through
a lossless active medium with {n,,» = 20. The full curve @ is the Bose-Einstein distribution,
while full curves b and ¢ represent the “passive” solutions obtained in the Diament-Teich de-
scription, with o = 1/2 and 3/2 respectively, Full curve ¢’ represents “active” curve for ¢ = 3 /2
and “‘special times” (the vacuum contribution is neglected). Dotted curves ¢” and &” are for
o = 3/2, and “average times” and “special times”, respectively, assuming that the signal is
damped and the vacuum noise is undamped. The “active” curves for o = 1 /2 are similar to the
’ Bose-Einstein distribution @ and are not shown.

We see that the “passive” descriptions applied to the propagation of radiation
through an active lossless medium can be understood as approximately describing
self-radiation, damping, and the contribution of chaotic energy from the reservoir
to the field. However, there are some variations reflecting, for “special times”, the
presence of the self-radiation (self-radiative enhancement and the vacuum noise) and
the exchange of energy between the radiation and the reservoir (i.e. damping caused
by the flow of energy from the field into the reservoir and the reservoir contribution
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to the field) in the active medium. For “average times”, there is an additional small
degree of smoothing. We observe that for ¢ = 1 /2, the main source of uncertainty is
the reservoir; fluctuations in the signal are insubstantial, while for ¢ = 3/2 the main
uncertainty arises from the signal fluctuations.

In Fig. 3 we present p(n, z/c) in a lossless medium for incident single-mode chaotic
radiation. The full curve a is simply the Bose-Einstein distribution with {n> = 20,
the full curves b and ¢ represent p(n, z/c) in accordance with the Diament-Teich
description as shown in Fig. 2, with ¢ = 1/2 and 3/2 respectively. The “active”
curves foro =1 / 2 are similar to the Bose-Einstein distribution a, and are not shown.
The full curve ¢’ and the broken curve & are obtained from (13) [(15)] with <(n.> = 0
for “average times” and “special times” respectively. The dotted curves ¢” and ¢"
 are obtained from (16) [(17)] with po(n) a Bose-Einstein distribution.

In the case of a superposition of coherent and chaotic radiation, the relation of the
“passive” and “active” curves in a lossless medium is similar to that of Poisson
radiation. The corresponding “passive” curves have been published in [9], Fig. 2b.
This is clear from the factor exp (—yz/c) and {n,)> for this case. The “active” curves
are slightly broader and the peak of p(n, z/c)is slightly shifted to the left in comparison
with the Poisson case.

Of course, if the required parameters (W), 0, 7, (nd>) are determined from the
first several moments, the theoretical distribution p(n, z/c) can be compared with
the experimental distribution. The theory will describe not only a lossless medium
where p(n, z/c) has a peak at approximately n = exp (30> [2) {W,> for the incident
coherent state?), but a variety of cases {(n) Z (W,». In some approximation the
position of the peak of p(n, z/ ¢) is given by the signal component of (21a), while the
chaotic component will serve to broaden p(n, z[c). Thus in lossy active media
with (n) < (W,>, the peak of p(n, z/c) will approximately lie between the origin
and the peak for a lossless medium (n = exp (—30?/2) {W,>), while for pumped
active media exhibiting gain below threshold (n) > (W), the peak of p(n, z/c) will
approximately lie between the peak for the lossless medium and the peak of po(n)
(or of p(n, z/c) for the non-damping medium, y = {n;> = 0). For pumped active
media exhibiting gain above threshold, y < 0 and {(n;» < 0 as has been shown.
Thus the peak of p(n, z/c) will occur at higher n than for py(n). An increase of {n»
generally leads to a broadening of p(n, z/c). Above threshold, there is strong expo-
nential amplification of the incident radiation, with the exception of the self-radiative
enhancement; strong exponential broadening of p(n, z/c) occurs because the chaotic
component is equal to {n,» (—1 + exp (—yz/c)), with {n;> > 0,7 < 0, in agrecment
with the theory of parametric amplification [21].

Finally we note that fixing ¢ = In " (# =1 + 4K'[w, where K' is the coeffi-
cient of the nonlinear terms in the Hamiltonian) and considering laser radiation

2y This value of n determines the maximum of the lognormal distribution (4); the shift

of ("), which is a response to the Fock state in the “passive” descriptions, characterizes shifts
of p(n, z/c) for all other statistics of incident radiation.
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with {(W,> > 1, allowing K’ to be understood as a c-number classical field replacing
the field operator, the theory also describes the quadratic phenomena of nonlinear
optics, such as second harmonic generation. As (W, > is high, the vacuum contribu-
tion can be neglected and for ideal laser light P(W,) = 5(W, — {(W,>). Thus (13)
directly yields the Poisson distribution, as has been verified experimentally [20]
for second harmonic generation.

The theory considered here, along with its consequences, may be useful for de-
scribing the laser and maser amplification process, particularly for long laser amplifiers
and high-pressure systems, and also for the detection of astronomical optical radiation
traversing a long path in a random medium with transitions at or near the radiated

frequency. They may also be useful for photocounting communications in turbulent
media [22, 23].

Received 17. 6. 1974,
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