Scaling in Heartbeat Rate Variability

Malvin Carl Teich
Boston University and Columbia University
http://people.bu.edu/teich

Colleagues:
- Conor Heneghan, University College Dublin
- Steven Lowen, Harvard Medical School
- Robert Turcott, Stanford Medical School
- Markus Feurstein, Wirtschaftsuniversität Wien
- Stefan Thurner, Allgemeines Krankenhaus Wien

Wavelet and Multifractal Analysis Summer School 2004
After Lowen & Teich,
Fractal-Based Point Processes,
FRACTAL-BASED POINT PROCESSES

- Fractal point processes
- Fractal-rate point processes

ALMOST DONE!

M. C. Teich 2004

M. C. Teich 2004
INTERVAL-BASED MEASURES
CONGESTIVE HEART FAILURE

INABILITY OF HEART TO INCREASE CARDIAC OUTPUT IN PROPORTION TO METABOLIC DEMANDS

Symptom complex:
Many different presentations and etiologies

Typical symptoms:
- Shortness of breath
- Swelling in legs
- General fatigue and weakness

Clinical diagnostics:
- Ascultate heart
- Carotid pulse
- Electrocardiogram
- Chest radiograph

M. C. Teich 2004

\[S_T(f) \propto f^{-\alpha_{sr}} \]

\(\alpha_{sr} \) = scaling exponent

SCALE-INDEPENDENT
TIME-SCALE ANALYSIS
DISCRETE WAVELET TRANSFORM

EXAMINES ALL SCALES
MITIGATES AGAINST NONSTATIONARITIES

\[m = \text{scale index}; \ 2^m = \text{scale} \]

\[W_{\psi,\tau}^{\text{wav}}(m,i) = \sum_{k} 2^{-m/2} \psi(2^{-m} k - i) \tau_k \]

\[\sigma^2_{\text{wav}} \equiv \text{Var}[W_{\psi,\tau}^{\text{wav}}(m,i)] = 2^{-m} \sum_{k} \sum_{l} \psi(2^{-m} k - i) \psi(2^{-m} l - i) R_{\tau}(l - k) \]

\[A_{\tau}(k) \equiv \text{Var}[W_{\psi,\tau}^{\text{wav}}(m,i)] / E^2[\tau] \]

M. C. Teich 2004

M. C. Teich 2004
After M. C. Teich

HEART-FAILURE

\[\tau_k = (R-R)_k \]

\[\tau_{k+1} = (R-R)_{k+1} \]

(a)

INTERBEAT INTERVAL \(\tau_k (\text{sec}) \)

INTERVAL NUMBER \(k \)

(b)

WAVELET COEFFICIENT \(W \)

SCALE INDEX \(m \)

INTERVAL NUMBER \(k \)

(c)

\[\sigma_{\text{wav}} \]

\[m = 8 \]

\[m = 4 \]

\[m = 2 \]

d)

SMALLER VALUES OF \(\sigma_{\text{wav}} \) THAN FOR NORMAL SUBJECTS
\[\sigma^2_{\text{wav}}(T) \propto T^{\alpha_{At}} \]

\(\alpha_{At} \) = scaling exponent

SCALE-INDEPENDENT

M. C. Teich 2004
ROBUSTNESS WITH WAVELET FORM

M. C. Teich 2004
SPECTRAL ANALYSIS

GENERALIZED–RATE–BASED PERIODOGRAM

\[S_\lambda (f) \propto f^{-\alpha_s} \]
\[\alpha_s = \text{scaling exponent} \]

SCALE-INDEPENDENT VLF

HEART FAILURE

\[1/f \]

NORMAL

b) SHUFFLED INTERVALS

FREQUENCY \(f \) (cycles/sec)

M. C. Teich 2004
DISCRETE WAVELET TRANSFORM

a) CONSTRUCTION OF NORMALIZED VARIANCE $F(T)$

b) CONSTRUCTION OF NORMALIZED HAAR-WAVELET VARIANCE $A(T)$

M. C. Teich 2004

M. C. Teich 2004

M. C. Teich 2004
$A(T) \propto T^{\alpha_A}$

$\alpha_A =$ scaling exponent

SCALE-INDEPENDENT

M. C. Teich 2004

M. C. Teich 2004
IDENTIFYING PATIENTS WITH CARDIAC DYSFUNCTION

M. C. Teich 2004
MEASURES OF STATISTICAL SIGNIFICANCE

- **p VALUE, d’, AND VARIANTS** (rely on Gaussian assumption)

- **SENSITIVITY/SPECIFICITY**

MEASURES OF CLINICAL SIGNIFICANCE (distribution free)

- SENSITIVITY \(\equiv \) proportion of heart-failure patients that are properly identified

 e.g., Hypothesis that all normal patients are so identified \(\equiv 100\% \) SPECIFICITY

- **ROC CURVES & AREA UNDER ROC**

After Turcotte & Teich,

M. C. Teich 2004
ROC CURVES & AREA UNDER ROC

SCALE-DEPENDENT σ_{wav} (32)
SCALE-INDEPENDENT α_{Ar}

HAAR WAVELET

M. C. Teich 2004
\[16 \leq 2^m \text{ (scale)} \leq 32 \]

\[\frac{1}{32} < f \text{ (cycles/interval)} < \frac{1}{16} \]

After Heneghan, Lowen, & Teich
Proc. 1999 ICASSP (Phoenix, AZ)
paper SPTM-8.2.
M. C. Teich 2004
<table>
<thead>
<tr>
<th>Measure</th>
<th>Execution Time (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLF, LF, HF, and LF/HF</td>
<td>330</td>
</tr>
<tr>
<td>pNN50</td>
<td>40</td>
</tr>
<tr>
<td>SDANN</td>
<td>160</td>
</tr>
<tr>
<td>(\sigma_{\text{int}})</td>
<td>190</td>
</tr>
<tr>
<td>(A(10))</td>
<td>160</td>
</tr>
<tr>
<td>(\sigma_{\text{wav}}(32))</td>
<td>20</td>
</tr>
<tr>
<td>(S_\tau(1/32))</td>
<td>60</td>
</tr>
<tr>
<td>DFA(32)</td>
<td>650,090</td>
</tr>
<tr>
<td>(\alpha_Y)</td>
<td>650,110</td>
</tr>
<tr>
<td>(\alpha_{A\tau})</td>
<td>220</td>
</tr>
<tr>
<td>(\alpha_{S\tau})</td>
<td>920</td>
</tr>
<tr>
<td>(\alpha_A)</td>
<td>610</td>
</tr>
<tr>
<td>(\alpha_U)</td>
<td>570</td>
</tr>
</tbody>
</table>

M. C. Teich 2004

M. C. Teich 2004

M. C. Teich 2004
GENERALIZED-RATE-BASED PERIODOGRAM

\[S_\lambda(f) \]

\begin{align*}
\text{FREQUENCY } f \text{ (cycles/sec)}
\end{align*}

a) NORMAL

MODEL

DATA

b) HEART FAILURE

MODEL

DATA

M. C. Teich 2004

M. C. Teich 2004

M. C. Teich 2004
DOES THE HEARTBEAT REFLECT DETERMINISTIC CHAOS?

M. C. Teich 2004

M. C. Teich 2004

M. C. Teich 2004
GENERALIZED-RATE-BASED PHASE-SPACE RECONSTRUCTION

a) NORMAL

b) HEART FAILURE

M. C. Teich 2004
References

