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ABSTRACT

Fractal stochastic point processes (FSPPs) provide good mathematical mod-
els for long-term correlations present in auditory-nerve fibers in a number of
species. Simulations and analytical results for FSPPs concur with experimen-
tal data over long times. Refractoriness-modified Poisson point processes, in
contrast, model only the short-term characteristics of these data. Simulations
Incorporating refractoriness into FSPP models achieve agreement over all time
scales. We now present fully analytical results for a particular FSPP model
with refractoriness. Statistics of this model agree closely with computer simu-
lations and auditory data.

INTRODUCTION

Certain random phenomena are well described by essentially identical events
occurring at discrete times. One example is the registration of action poten-
tials recorded by an electrode near an auditory-nerve fiber [7,8,2]. A (one-
dimensional) stochastic point process is a mathematical construction which
represents these events as random points on a line. Such a process may be
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called fractal when a number of the relevant statistics exhibit scaling with re-
lated scaling exponents, indicating that the represented phenomenon containg
clusters of points over all (or a relatively large set of) time scales [6,3-5].

The power spectral density (PSD) and the Fano factor (FF) are two statistics
which reveal this clustering [5]. The PSD S(w) for a point process, as for
continuous-time processes, provides a measure of how power is concentrated
as a function of the angular frequency w. The Fano factor F/(T'), denoted FF,
is defined as the variance of the number of counts or events in a specified time
window T' divided by the mean number of counts in that window. For an
FSPP, over a large range of times and frequencies, it can be shown that [5]

PSD:  Sw)/A = 1+ (w/wo)™®
FF: F(T) =~ 1+ (T/Ty)*, S

with A the averaLge rate of the process, a the fractal exponent (0 < a < 1), wy
a cutoff frequency, Ty a cutoff time, and w§T§ = cos(ma/2)T'(a + 2) [5].

The homogeneous Poisson point process (HPP) is perhaps the simplest stochas-
tic point process, being fully characterized by a single constant quantity, its
rate. It is not fractal, but serves as a building block for other point pro-
cesses. With the inclusion of refractoriness (dead- and sick-time effects), the
refractoriness-modified Poisson point process (RM-P) proves successful in mod-
eling auditory-nerve spike trains over short time scales. For a fixed refractory
period, the RM-P predicts an interevent-interval histogram (ITH) of the form

= { P LT @

where ) is the original rate of events (before refractory effects), and 7 is the
refractory period. IIH plots for auditory-nerve fiber firing patterns are often
better fit by stochastic dead-time models [11] with exponentially distributed
deadtimes [12]; the corresponding RM-P model for this case yields

plt) = { A=A exp(-d) — et/ fort> 0

However, the accurate modeling of the self-similar or fractal behavior observed
in sensory-system neural spike trains over long times requires a fractal stochas-
tic point process. A number of FSPP models have been developed [5]; we
focus on a particular process, the fractal-Gaussian-noise-driven Poisson pro-
cess (FGNDP) [5]. The FGNDP is important because Gaussian processes are
ubiquitous, well understood, and are completely described by their means and
autocovariance functions. Thus, only three parameters (including the rate) are
required to specify an FGNDP, since, like all FSPPs, it follows Eq. (1). The
FGNDP describes the firing patterns of primary auditory afferents quite well



REFRACTORINESS-MODIFIED FSPPs FOR MODELING 449

over long time scales (several hundred milliseconds and larger) 8], although it
does not accurately model neural activity over short time scales.

Incorporating refractory effects into the fractal behavior of the FGNDP yields
the refractoriness-modified version (RM-FGNDP), a new model which does
indeed mimic auditory-nerve behavior over all time and frequency scales. For-
tuitously, for the parameter ranges employed in modeling these spike trains,
the effects of the fractal fluctuations are minimal over the time scales where
refractoriness dominates, and vice versa. Since these two effects may be decou-
pled, asymptotic expressions for small and large time scales remain accurate
at intermediate times, simplifying the mathematical results considerably. In
particular, the predicted IIH plots do not differ appreciably from those of the
(non-fractal) RM-P models and therefore resemble the data closely.

The FF and PSD for the RM-FGNDP, in contrast, do differ appreciably from
those of both the (non-fractal) RM-P and (non-refractory) FGNDP models.
For exponentially distributed stochastic refractory periods, the FF becomes

1+ (Ar)? 2A7?
- <
F(T) A+ Ar)2 T+ ATy [1 - exp(AT +T/7)] for AT <1 .
- 2A72 1 1+ ()2 T

m ot (14 A7)? (1+/\T)3T for AT > 1

for steady-state (equilibrium) counting. [For Eqs. (4-7) the parameters are as
in Egs. (1) and (2).] For a fixed refractory period, the FF assumes the form

( AT

1—1+/\T for A\t <1
AT 2
3 - — AT =AT) = (1+ A for 1< AT <2
F(T)~d © 14AT T [exp(Ar = AT) = (L4 A7) for 1< A7 <
AT2(6 4+ 4AT + N272) N 1 n s N
6(1+ Ar)3 (14+A7)2 (14 A7)3
0 for At > 2.

(5)
For the RM-FGNDP model with fixed refractoriness, the PSD becomes

S(w) ~ Aw?(1+4 A7)t

~ w2 4+ 2)wsin(wr) + 2A2[1 — cos(wT)] AT /)™ ()

over all frequencies, in accordance with results obtained by [1]. For stochastic
refractoriness, the corresponding PSD assumes the form

L (AF)2 4 (wr)?
~ 1+A AT ;1++(;\r;2 i EwT;Q + (14 A7) w/wo) 7. (7)

S(w)
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Eliminating the terms involving Ty and wg in Eqgs. (4-7) yields the correspond-
ing RM-P (non-fractal) results.

METHODS

A spontaneous recording of duration L = 600 sec was obtained from a cat
auditory-nerve fiber with a characteristic frequency of 3926 Hz, a threshold of
19.3 dB SPL, and a spontaneous firing rate of 75 spikes/sec. Data collection
methods have been described previously [2, and references therein]. The initial
100 sec of data was discarded to ensure stationarity of the remaining data. The
ITH and the FF were computed from this data. Parameters for the RM-P, the
FGNDP, and the RM-FGNDP models were fit to these experimental plots
using the Levenberg-Marquardt algorithm.

RESULTS

The IIH plot for the auditory data is presented in Fig. 1, together with the
predictions of the three models. The RM-P and RM-FGNDP models coincide
and closely follow the data, while the FGNDP model does not. The ITH reveals
information about shorter time scales only (on the order of an interevent time)
so short-time effects, such as refractoriness, are important for the ITH.

The FF for the data is presented in Fig. 2, together with the predictions of
the three models. Plots of the FF for the two fractal models (FGNDP and
RM-FGNDP) were multiplied by 1 — (T/L)!~%, where L is the duration of
the recording, to compensate for the finite recording length [5]. The RM-P
model follows the data for short times only; the FGNDP agrees with the data
over long times, but not short ones. However, predictions of the RM-FGNDP
model closely follow the FF for the experimental data over all time scales.
Thus the FF, which displays information over all time scales, indicates that
the RM-FGNDP model is superior to all previous models.

The PSD predicted by the RM-FGNDP model accords with that of the data
over all frequency scales, as do all other statistics examined to date. In contrast,
predictions of the RM-P and FGNDP do not. One particularly robust statistic
is the Allan factor A(T), denoted AF, which is defined as the variance of the
difference in the number of counts in adjacent windows of duration T divided
by the mean number of counts. The AF proves superior to the FF in some
respects, often providing superior estimates of a, for example [9]. The AF and
the FF are simply related by A(T) = 2F(T) — F(2T), so that expressions for
the AF may be obtained directly from Egs. (4) and (5).

Finally, the RM-FGNDP process with different parameters provides a fair fit to
data collected from neurons in the visual system of the cat, using these same
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Figure 1: Semui-logarithmic plot of the interevent-time histogram (IIH) for the
auditory neural data (solid curve), with least-squares fits from the RM-P and
RM-FGNDP (long-dashed curve) and FGNDP (medium-dashed curve) models.
Models incorporating refractoriness follow the data closely; the FGNDP does
not.
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Figure 2: Doubly logarithmic Fano factor (FF) plot for the auditory neural
data (solid curve), with least-squares fits from the RM-FGNDP (long-dashed
curve), FGNDP (medium-dashed curve), and RM-P (short-dashed curve) mod-
els. Only the RM-FGNDP accurately models the data.
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statistics. However, a similar process, based on a gamma renewal process
instead of a Poisson substrate, appears to fit the data extremely well [10].

SUMMARY AND CONCLUSIONS

Over all time scales, the statistics of the refractoriness-modified fractal-Gaussi-
an-noise-driven Poisson point process model with stochastic refractory periods
match those of experimental data collected from cat auditory-nerve fibers. A
close relative of the RM-FGNDP also performs well in modeling cat visual-
system neuronal firing patterns.
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