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ABSTRACT

Fractal stochastic point processes (FSPPs) are useful for modeling the long-
term correlations present in the firing patterns of sensory-system nerve fibers.
Such processes are characterized by a fractal exponent, which can be estimated
in a variety of ways, including a measure based on the statistics of the wavelet
transform of the point process. We demonstrate that theoretically, and also
in practice, the choice of the wavelet basis is not critical in calculating these
statistics, provided some light restrictions on the value of the fractal exponent
are satisfied. However, the Haar basis appears to be best as it simplifies cal-
culation, and provides numerical fractal exponent estimates with low standard
deviation.

INTRODUCTION

Information in neural systems is carried by trains of action potentials. For an
individual nerve fiber, the sequence of action potentials can be well modeled
as a stochastic point process. This mathematical construction represents each
action potential by its time of occurrence [as shown schematically in Fig. 1(a)].
The point process can alternatively be represented in terms of the derivative
of a counting process, N(¢), which augments by unity at every instant when
an event occurs.
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Several statistical measures can be used to identify the form of the point pro-
cess that describes a neuronal discharge. Two broad classes of statistics are
useful: interval-based and count-based measures. Interval-based techniques
rely on analysis of the interevent times 7, illustrated in Fig. 1(a); count-based
techniques involve the sequence Z,, generated by counting the number of events
in windows of length 7" [as shown in Fig. 1(b)]. ‘

By applying count-based measures to data obtained from primary auditory
nerve fibers and visual system neurons in cat (to name but two examples),
Teich et al. [1,2] showed that the pattern of firing could best be modeled as
a fractal stochastic point process (FSPP). To the experimental neurophysiol-
ogist, fractal nerve spike trains evince a high degree of irregularity in firing
(i.e., burstiness even in the face of a steady or absent stimulus), and a slowly
converging mean-firing-rate estimate.

Mathematically, such processes possess statistics with power-law behavior. For
instance, the count-based power spectral density S(f) of an FSPP varies as
f~% over a range of frequency f, where « is defined as the fractal exponent of
the process. This exponent provides a useful characterization of the FSPP. We
have made extensive use of two count-based measures, the Fano factor F(T)
and the Allan factor A(T'), as estimators of the fractal exponent. They are
defined as [3]:

E[(Zn+1 - Zn)Q]
2E(Z,] ’

Var[Z,]

F(T)= B[Z.]

(1)

and A(T) =

where the Z,s are the sequence of counts and E and Var are the expectation
and variance operators, respectively. For an ideal FSPP, the Fano and Allan
factors follow the forms

F(T)=1+(T/To)* and A(T) =1+ (T/T1)°, (2)

where Ty and T3 are defined as fractal onset times.

METHODS

It has recently been shown that the two count-based measures defined above
(the Fano and Allan factors) are specific examples drawn from a more gen-
eral class of multiresolution analysis techniques [3,4], which we have termed
the wavelet Fano factor (WFF) and wavelet Allan factor (WAF), respectively.
Specifically, the wavelet and scaling transforms of a point process dN(t) are
defined, in analogy with those of continuous signals [3,7], as

. N
(WyN)(a, k) = d[a, k] = a"l/z/_ Sla = F)a] dN (u) 3)
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and
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(S, k)= cla b =a /[ G- @, @
where 9(t) and ¢(t) are the wavelet and scaling functions respectively, a is
a scaling factor, k is a translation factor, N(t) is the counting process, the
overbar denotes complex conjugation, and (WyN)(a, k) and (S,N)(a,k) are
the wavelet and scaling transforms of the point process respectively. The WFF
and WAF are defined as [3,4]:

E{| cla, ¥] [} = E*{| c[a, k] ”) , (5)

E{l c[a, k] [}
E{| d[a, k] I}

w = o (Gigy) o

respectively. The use of the magnitude allows both real and complex valued
wavelets to be used.

Fw(a) = a'/? (

For the ideal FSPP these two measures vary as [3]:

Fw(a) = 14 (a/Ao)® and (7)
Aw(a) = 1+ (a/Ay)* (8)

where Ag and A; are constants whose values depend on the fractal onset time
of the process and the choice of wavelet basis. If the Haar basis [3] is chosen,
the WFF and WAF reduce to the ordinary Fano factor and Allan factor, re-
spectively. We proceed to investigate the performance of various wavelet bases
in estimating the fractal exponent of an FSPP.

RESULTS

In [3], we showed that the expected value of the WAF for an ideal FSPP is
given by

aw@ =1+ 2 (O gyt @

where (Wy)(1, 2) is the continuous wavelet transform of ¥(t) at unit scale,
and a; is defined in terms of the fractal onset time of the process. Exami-
nation of Eq. (9) reveals that log Aw(a) = alog(a) + Ci, regardless of the
choice of wavelet basis, since the integral on the R.H.S. does not depend on
a. Accordingly, the fractal exponent can be obtained from a plot of log Aw (a)
vs. log(a) using any wavelet basis. To ensure the existence of the integral, the
condition a < 2R + 1 must be satisfied, where R is the number of vanishing
moments of the wavelet. Since all admissible wavelet bases have at least one
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vanishing moment, the WAF will converge for a < 3. For the WFF there are
no vanishing moments so that the WFF can only be used for a < 1. Further-
more, numerical analysis indicates that its estimator has a higher variance 3].
Since the WAF proves useful over a broader range of fractal exponents, we do
not consider the WFF further.

The theoretical result embodied in Eq. (9) tells us that all bases are equivalent
for calculating the WAF provided that there is an infinite set of d[a, k] on
which to calculate the expectations. However, a significant practical issue is
how well the variance of a finite set of d[a, k] can be estimated for a fracta)
point process, given the large correlations in d[a, k] for nearby a and k arising
from the underlying correlation in the process. Estimating the variance from a
set of correlated samples proves difficult [5], since typical variance estimators
assume uncorrelated samples. However, a benefit of multiresolution analysis is
that the wavelet coefficients are decorrelated relative to the original signal, so
that E{d[a, k]d[a’, k']} decays as O(| ak/a’ — k' |*~1=28)  which is analogous
to the result as for fBm [6]. Accordingly, the higher R, the less correlation
between wavelet coefficients for a given pair d[a, k] and d[a’, k'], and the more
efficient the variance estimator becomes. Unfortunately, increasing the number
of vanishing moments is achieved at the expense of effectively widening the
support of the wavelet basis, which in turn leads to fewer reliable values of

d[a, k] at scale a.

Therefore, in choosing the basis, there is a tradeoff between increasing the
value of R to promote decorrelation, and maximizing the number of samples of
d[a, k] at a given a. In the numerical simulations reported below, we examine
the optimal value of R for certain values of a.

Choice of Basis: Numerical Simulations

The fractal exponents for a set of FSPP simulations were estimated using
the WAF calculated with four different wavelet bases: the Haar wavelet, the
Daubechies four-tap wavelet, the Daubechies twelve-tap wavelet, and the Mor-
let wavelet [7]. The first three are real-valued; the last is complex-valued.

In the numerical implementation, the denominator of Eq. (6) is replaced by
Aa'/2, the expected value of | ¢[a, k] | [3], where ) is the estimated mean firing
rate of the FSPP. The WAFs of a sample data set with a fractal exponent of
0.5, calculated using the four bases described, are shown in Fig. 2; the value
of a at which the fractal behavior begins is dictated by the regularity of the
wavelet, as well as by the fractal onset time of the underlying process. Figure
3 illustrates the variability associated with estimates of the fractal exponents
for a simulated fractal renewal process. This procedure was carried out for
three exponents: o = 0.2, 0.5, and 0.8. The dot indicates the mean and the
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bars indicate the standard deviation using the four different wavelet bases.
The bias evidenced in estimating the fractal exponent 0.8 is an artifact of the
simulation process. Using the student-¢ test, the values obtained from the four
different bases can be shown to be statistically similar; however the variance
of the estimates is higher for the higher-R wavelets. Accordingly, the Haar
basis appears to offer the best performance in terms of estimating a, as well
as providing the most straightforward implementation.

SUMMARY AND CONCLUSIONS

The wavelet Allan factor can be reliably used to estimate the fractal exponent
of an FSPP. The choice of wavelet basis is not critical in the estimation process,
provided the fractal exponent is less than 2R+1, where R indicates the number
of vanishing moments for the wavelet. Use of the Haar basis [corresponding to
the Allan factor in Eq. (1)] is recommended since its implementation is simpler
than for other bases and numerical results indicate that it produces the lowest
variance estimate. Use of the Haar basis is also recommended for computing
the wavelet Fano factor.

This work was supported by the Office of Naval Research under grant N00014-
92-J-1251, by the Joint Services Electronics Program through the Columbia
Radiation Laboratory, and by the Whitaker Foundation under Grant No.
CU1455801.
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Figure 1: Representations of a point process. (a) The events are denoted by idealized
impulses, occurring at times tn. (b) The sequence of counts {Zn} is formed from the
point process by counting the number of events in successive windows of length T'.
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Figure 2: Wavelet Allan factor estimates using four different wavelet bases, as
labeled on graph. The slope of the ideal wavelet Allan factor for this simulated data
set is the thin dashed line, which behaves as a®s.
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Figure 3: Mean and standard deviations of a set of WAF estimates for the estimation
of o using the four bases shown in Fig. 2. The dotted horizontal lines represent ideal

values.



