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1
This paper is addressed to the information channel linking the ear
and the brain. It is one of nature’s most remarkable specialized
networks. We formulate auditory detection as a stochastic process
in which a sudden cascade of events in an alarm network signals the

occurrence of a transient stimulus.

1. INTRODUCTION

Auditory detection is interpreted nearly always as a stimulus
phenomenon. Transmission mechanisms are thought of primarily as
refining information passed from the inner ear. Decision centers
in the brain are assumed to operate with faithful copies of the
stimulus itself. The latter is said to be recovered in the same
way that image enhancement transforms noisy radio signals into
elegant photographs. There is no question that a great deal of
signal processing goes on in the auditory system. Convincing signs
of sharpening are found nearly everywhere in the frequency domain,

-as well as in the reconstruction of auditory space.

Intensity is a different story. Although the ear exhibits
extraordinary sensitivity near its threshold, increment detection
is not very acute, even with phase-locked pure tones at constant
frequency. The auditory system will sometimes have difficulty
penetrating energy differences between closely related sine wave

inputs. Why?

When weak inputs are amplified, the aim is to boost them up to



2

audible level, not to analyze small differences. Differences might
be rendered difficult to detect if the amplifier mechanism were
somehow infiltrated by random noise. How in fact do random

influences enter into auditory signal detection?

There are no easy answers to such questions. Internal noise is
dutifully acknowledged as a factor in audition, but it is
considered small compared with the impact of receptor mechanisms.
Occasional reference is made to the idea that weak inputs might be
amplified in transmission, generating a tell-tale internal noise,
but few researchers deem it important to examine the consequences.

We now raise the whole issue seriously.

Black~-Box Representations:

Cognitive scientists favor black-box diagrams for representing the
information flows characteristic of the major senses. These
complex representations are arguably more realistic than pure
receptor models. The latter, as we have noted, generally ignore
system elements that process information. A black-box approach
demands concern for all known stages of sensory communication. If
serious attention is given to data transmission, controversial
results are virtually guaranteed. Black-box analysis relies
heavily on computer simulation to provide empirical validation of
unorthodox outcomes, and more generally to convey a sense of how

these systems work.
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Despite much computer analysis, it is difficult to claim improved
understanding of auditory detection on the basis of simulations.
At key points, we are forced to rely on conjeéture for envisioning
obscure details of the system’s organization. Because of these
gaps, black-box diagrams remain vague and tentative as well as

unusually complex compared with mathematical models.

Approximations must be invented for poorly-understood black-box
components. For example, the branching chains developed in this
paper are stochastic amplifiers. Electronic amplifiers might then
be used as substitutes. The problem is that we seldom understand
the machinery well enough to calculate how closely a conventional
amplifier resembles a stochastic chain, or whether outcomes might
be subject to change when minor details of the chain are modified.
Only by comparing simulations can we tell whether diagrams are

really different.

Despite these weaknesses, black~box approaches are useful because
of the sheer complexity of the auditory system. Myriad connections
form billions of alternative routes. It is futile to attempt
signal tracing through systems of this size without some kind of
roadmap of the organization. Simulations, combined with new
knowledge of the underlying physiology, can suggest useful ideas
about organization. Yet, because sensory networks are so poorly

understood, the ideas remain vague. We need more than that.
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Poisson Transmission Models:

An important alternative to black-box analysis invokes probability
theory to deal with uncertainties posed by continuous branching in
neural pathways. The chain of events between ear and brain is then
expressible as a stochastic process. While this approach is more
precise than a black-box diagram, it has its own problems. By far
the most popular mechanism is the dead-time-modified Poisson point
process (see Teich, 1992). It turns up regularly in auditory
firing data. But detection as measured by listening experiments
does not seem to display Poisson origins. Moreover, Poisson
mechanisms lack memory, yet even at early transmission stages

firing patterns show interspike correlations (Teich, 1992).

A clever way around these 1localized memory effects treats the
auditory channel as an aggregate. Intensity information is then
said to be conveyed by volume activity in the channel. Nonrandom
bunching, even fixed spacing on any single line, diminishes in
importance as new lines are included. A Poisson process (or a near
miss) emerges whenever the aggregate is large, and pulses along the
separate lines are sparse so that they appear to be coming at
random. Memory loss is then a property of the collective, not the

separate transmission lines.

This type of aggregate randomization is very common. It occurs,
for example, whenever separate lanes of traffic are superposed. At

a given measuring point, superposition makes an event in any
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traffic lane indistinguishable from events in other lanes. A
monitoring system, aggregating data from independent pathways, will
lose key details of the flow; but since the task is to detect small
changes in overall traffic volume, jettisoning detail poses no real
problem. In any event, when intensity information is represented
via superposition, a Poisson-like aggregate flow results. This
argument was set forth originally in the now-famous Cox-Smith
(1954) superposition theorem, and was later proved rigorously in
Cinlar’s (1972) study of the mechanisms governing superposed point

processes.

Despite its appealing simplicity, superposition fails to account
for the major phenomena of auditory increment detection. Over the
years, experimental data have been distilled into a limited number
of key functional relations or laws. These same laws should emerge
from theoretical treatments of Poisson detectability, but it does

not appear to happen (McGill and Teich, 1991a).

At the other extreme, black~box representations are ordinarily too
complex to offer significant insights on detection. They fail to
explain why any of the empirical relations arise. We seem to
require transmission mechanisms more complicated than a Poisson

process and more explicit than a black-box diagram.

Markov processes offer such intermediate possibilities. When a

Markov operator is configured to produce message growth, repetition
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of the operator at successive stages of transmission generates
multiplicative increases in progeny. Both impulse count and the
level of internal noise tend to grow with chain length. Moreover,
a repetitive operator will propagate memory effects all through the

transmission chain.

Markov Transmission:

If the flow of information between receptor and brain is taken to
be a Markov process, what impact would that have on detectability?
Passage along an auditory <transmission channel with Markov
properties generates messages that evolve as they move. If the
chain is long, outcomes might be affected more by propagation noise
than by acoustic noise in the original signal. Repeated branching
will create random disturbances that grow as the chain lengthens.
Internal noise might then overwhelm acoustic noise. A conjecture
of this sort puts us at odds with most stimulus-oriented treatments
of detection where acoustic noise is seen as the only random
element, and where neural processing is thought to recover the

stimulus virtually intact.

Increment Detection In Branching Chains:

A branching chain is a ©pulse-driven stochastic process.
Information is passed along the chain as a constantly shifting
impulse count reflecting the fates of individual message-events

working their way up the chain to its final stages. Branching can
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occur in at least two ways. New message-events suddenly appear in
the original chain, or the latter itself branches, creating new

message—-events in separate pathways.

In the simplest branching chains, transmission is initiated by a
single start-up event. Hence, the number of start-up events is not
necessarily linked to the size of an increment. Instead, stimuli
modulate the growth of new message-events in the chain. There is
a single start-up pulse and a characteristic output counting

distribution corresponding to each stimulus increment.

A remarkable property of chains branching to the zero-state (i.e.,
chains in which message-events disappear) is that continuous
stimulation can render the chain nearly silent. This introduces a
possibility that such chains might serve as change-of-state
detectors. The auditory system is capable of creating not only an
internal reconstruction of the stimulus environment, but added
alerting signals triggered off only when changes occur. Increment
detection could be mediated by such alerting signals, requiring no

direct stimulus comparisons of any kind.

Difference discrimination, on the other hand, compares pairs of
stimuli, one having an added increment and the other without it.
Each member of the pair is separated from its counterpart by a
blank interval. Insertion of the blank shifts adaptation level to

zero so that single alerting signals can no longer be used to
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detect intensity changes. In effect, the format of difference
discrimination forces paired comparisons, whereas increment
detection does not. Laming (1986), who first looked at this
problem, argued that increment data imply some kind of alerting
signal. If branching chains are the transmission vehicle,

amplified alarm-signals can be fashioned easily.

Multicomponent Branching Chains:

It is difficult to envision a single Markov operator covering the
entire length of a branching chain from the inner ear to a terminus
near the brain. More plausible would be a mechanism with two or
more distinct structures: a feedback amplifier in the receptor
area, and a longer secondary transmission network leading back to
high-level decision centers. Amplifier circuitry would pick up a
minute change in ambient intensity and convert it to a cascade of
impulses at or near the receptor site. The cascade should vary in
average size depending on the magnitude of the stimulus change.
This initial alert-signal would then be injected into a chain with
fixed parameters, conveying an amplified noisy record of the
transient to a central registration point. Amplification
parameters of the first chain would be set by the size of the
stimulus increment, whereas the second operates with fixed

properties, transmitting any stimulus received at its input.

If a way can be found to combine these two components into a single

equivalent chain whose parameters are resultants of the separate
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components, we might then represent initial amplification and
subsequent transmission as a single branching chain with the same
parameters everywhere. Equivalent chains constructed via such
averaging prove to be "birth-and-death" stochastic processes of the

type described by Bharucha-Reid (1960, pp. 86-89).

Serial Processing:

Chain structures are serial processors. Auditory transmission is
easily formulated as a type of serial processing, because nature’s
task is to move stimulus information from the inner ear to a
central location. We learned long ago from studies of memory
storage that serial and parallel mechanisms, though conceptually
quite different, often produce indistinguishable outcomes (McGill,
1963, pp.344-347). Townsend (1976) and Vorberg & Ulrich (1987)
have demonstrated outcome-equivalence among a variety of serial and
parallel processors. No doubt parallel alternatives to branching
chains will be invented. Our object here is to understand the
mechanisms governing transmission noise, not to claim insights on

currently hidden details of auditory networks.

Ooutline Of The Paper:
We examine the proposition that key properties of auditory signal

detection are due to an internal transmission noise.

We construct a family of related chain-like processes to serve as

models of transmission. Then we make arbitrary cuts in such
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branching chains, leading to two-step or multi-step mechanisms with
rules that change at the cut. Multi-step chains are shown to be

equivalent in output to simple birth-death processes.

We consider immigrant pulses from sources external to the
transmitted message. They become incorporated into signals passing

up the network, adding another kind of noise.

We study how a single branching chain grows silent under continuous
stimulation, creating an adaptation level. What happens when such
adapted chains encounter sudden intehsity changes? Alerting
signals are generated, notifying higher centers of a change in
state. This important class of signals was overlooked prior to

Laming’s (1986) pioneering work on increment detection.

Finally we compare single-chain auditory alerting signals, with
stimulus representations, i.e., full-scale copies or mappings of

peripheral stimulus patterns.

2. BRANCHING CHAINS

Despite efforts to minimize contamination, information flowing from
one place to another is subject to unexplained perturbations.
These disturbances are random and can usually be traced to the
transmission process itself. In designing a communication systemn,

a critically important task is to minimize its internal noise.
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Nature’s systems pose a somewhat different problem. The design is
given. Our job is to figure out how it works. We cannot speculate
usefully about auditory internal noise unless we Kknow what
mechanism creates the noise. In the beginning at least, this
information is just what we do not have. Data on anatomy and
physiology are voluminous and growing rapidly, but transmission is
so complex that no single organizing principle has yet suggested
itself. Our chief guidance comes from discriminations made by the
intact ear. Research has pinpointed stimuli that differ
morphologically yet cannot be separated by the system. These
invariances reveal what kind of information is getting through,
Generally, the energy content of a brief acoustic stimulus defines

its detectability.

Discrimination data show also that a sizable internal noise exists,
although we do not understand its origins. The inferential leap to
a processing mechanism is not easy because input and output are
drawn from different measurement domains. Cross—correlations
between stimulus events and the data on which a decision center
acts, are a near-impossibility. Despite our growing knowledge of
auditory topography, we are forced to proceed obliquely in

conjecturing how noise might arise in transmission.

For instance, the internal noise accompanying a stochastic flow of
information might act as a signature helping to identify the

mechanism. A passive detection process in which message-events
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are simply aggregated and counted will typically obey a square-root
detection law. In vision research this type of detectability is
actually found. It is known as the DeVries-Rose law. (See Bouman,
1961.) Just-detectable increases are proportional to the square-

root of the background level.

As noted earlier, auditory detection does not seem to behave this
way. Detectable increments are either directly proportional to
background level, or show fractional exponents between .85 and
.95. Key auditory data are illustrated in Figure 1. Square-root-

law detectability is simply not in evidence.

FIGURE 1 HERE -

One possible explanation of the discrepancy is examined in this
paper: a multiplicative noise acting on neural messages fron
auditory receptors. This is typical of processes with repeated
staging. Noise created in early stages becomes subject to further
modification at later stages. Disturbances generated in this

sequential way are obviously larger than noise that is simply added

up.

The reasoning is indirect but still fairly easy to test. We know,
for example, that auditory reception and transmission add unwanted
noise to input signals. There is just too much difficulty detecting

brief intensity increases in pure tones . The latter have fixed
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Figure 1: Experimental data on auditory increment detection.
Abcissa is sensation level (db. above threshold) of background.
Ordinate is sensation level of test signal Jjust detectably
different from background. Plotted data are mid-points of
individual psychometric functions.

Unit slope depicts Weber’s law. It characterizes detectability of
noise increments over nearly entire range. Pure tone slope fitted
by least sqguares is actually .905. Data on certain pure tones
based on decrement detection: dark squares, dark circles, and dark
triangles. These are from McGill and Goldberg (1968a, b). Open
circles are based on 20 msc increments as determined by Campbell
and Laskey (1967). Open triangles taken from Miller‘’s (1947)
classic study of wide-band noise increment-detection. Also see
Green’s (1960) study of noise increment-detecticn, confirming and
extending Miller‘s findings.

Miller and Campbell-Lasky functions shifted horizontally for best
match to McGill-Goldberg data. Below 20 db SL, wide band noise and
phase~locked pure tone increment/decrement detection are reasonably
well-fitted by Weber‘’s Law. No indication of square-root
detectability.

Viemeister (1971), and Moore & Rabb (1974) showed that "near-miss"
to Weber’s law (.905 slope) for pure tones above 20 db SL, is
probably due to spread of excitation away from primary locus in
receptor. When spread is controlled experimentally, Weber’s law
reappears.
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energy. Fluctuations are negligible. Our inability to distinguish
small differences suggests not only an internal noise, but one that
varies with signal level (Green, 1967). We dannot be certain that

the noise arises in transmission, but it is a clear possibility.

Listening experiments do not confirm Poisson models of auditory
data-flow (McGill & Teich, 1991a, pp. 20-21). Pure tones and other
fixed~energy signals generate Weber’s law (Fig. 1) in controlled
experiments on increment detection; not a square-root law. Hearing
data, as we have already noted, are consistent with mechanisms
whose variance is proportional to the mean-squared, not the mean.

One such is a Markov transmission chain.

Markov Transmission:
Imagine a transmission system constructed in the form of a chain

with r stages as illustrated in Figure 2. At each stage all events

- FIGURE 2 HERE -
passing through are subject to the rule shown just below the chain.
The diagram depicts a Markov operator applied whenever a message-
event transits a given stage. We show the operator as having three
distinct outcomes. With probability p, the message-event
multiplies, becoming two separate events. It can also disappear
(be wiped out) with probability p, . Or with probability p, the
message-event passes through the stage unchanged, emerging exactly

as it entered.
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For each message-event at each stage:

P,tpy+p,=1.
In other words one of the three outcomes occurs at each stage.
There is no special magic associated with pair production. It is
one possibility. Multiplication might result in a distribution of
progeny. Our bread-and-butter question is whether we can solve for
the output count given any particular assumption about the Markov

operator. Later we consider chains with arbitrary progeny.

Our initial concern is limited to simple alerting signals such as
might occur when the background intensity undergoes a sudden, brief
transient. These alert-signals start with a single pulse or at
most a small number of pulses. We want to know how a long chain
modifies this initial count, and what type of noise is generated in
transit. Consider the following explicit formulation of amplified

transmission in a branching chain:

A single pulse appears at the first stage of a branching chain. It
i1s operated on according to the rule in Figure 2. At each
subsequent stage the same rule is applied to every message event
passing through. Some of these events (pulses) will disappear.
Others will multiply. Depending on the balance among the
conditional probabilities, progeny of the start-up event will tend
to increase in number with each application of the Markov operator.
Thus a probability distribution of message events is generated at

the final (output) stage. The mean of this output distribution
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measures amplification produced by the chain, while its variance

measures internal noise.

If input pulses are transmitted with perfect fidelity, the Markov

operator must have the following form:

Po = 0,
p. = 1,
p. = 0.

A chain following this rule is completely transparent to its input.
Delivery of the start-up pulse intact at the terminus of the chain

is guaranteed. No output probability distribution is found.

Generating Functions:

Branching chains are multiplicative. The number of message-events
operating at any given point is a random variable tending to grow

as information passes up the chain.

Beginning with a single start-up event, the process leads to an
output probability distribution. At every point in the chain,
message-events come and go. We use a generating function to keep
track of them. This function multiplies in an interesting way as
events move from stage to stage, and it decomposes in an even more
interesting way when a chain is cut. We can then alter propagation

mechanisms for information passing through such a cut.

The generating function of any discrete probability distribution
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p(k), where k is an arbitrary integer (including zero) is given by:

G(s)=p(0) s °+p(1) s+p(2) s2++p(k) 8 X+,
(1)
The variable s is introduced as an analytical device. The
coefficients of s* are probabilities constructed typically by
applying a simple multiplication rule as k changes. Choosing s
suitably small causes G(s) to converge, often on a closed
expression. If we now operate on G(s) and either expand or
differentiate the result with respect to s, we have neﬁ
probabilities reflecting the outcome of the operation. For
example, when the operation involves summing n samples drawn from
the same parent distribution, the generating function of the sum is

given by:

(G(s))™.

It is then easy to find the distribution of a sum via the
generating function of one of its components if the latter are all
independent with the same probability distribution. In the case of
a branching chain, the result shows how to move from a chain with
a single start-up event to one with n start-up events. We treat
each separate start-up as an independent chain and then consider

the generating function of the sun.

Unraveling A Branching Chain:

Our branching process is said to consist of r identical stages with

the same propagation operator applied at each stage. Because of
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this continued recycling, we are free to enter the chain at any
intermediate point, say stage h, and direct our attention to

whatever happens from then on.

The full r-stage chain begins with a single start-up event and
undergoes branching at each successive stage according to the rules
in Figure 2. Entering at stage h we expect to find a counting
distribution of events due to prior branching. This distribution
becomes an inpuﬁ for the subsequent r-h stages of transmission.
Any event passing through stage h is now a start-up event for this
shorter process. We label counting probabilities at stage h as
Pn(k), where k is the size of the count. It ranges from zero up to
a maximum where all message-events multiply at all prior stages.
The generating function of the entire chain, r stages long, can

then be reconstructed as follows:
G,(8) =Y p, (k) (G, ,(s))k,
k

(2)

In Eq.(2) G.(s) is the generating function of the full r-stage
transmission process, whereas G,,(s) is our analogous expression
for the shorter chain r-h stages long created by an arbitrary cut
at stage h. Summation extends over the possible counts recorded at
stage h. We see that G,.(s) is the expectation of the chains
resulting when the starting point is taken to be stage h rather

than stage zero, and when the single start-up event is replaced by
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a distribution of events.

In view of Eq.(1) defining a generating function:
GI(S) =G]](Gr_h(s))l
(3)
where the argument of the generating function on the right hand
side is now G,.,(s) rather than s. Evidently we can unravel G.(s)

step-by-step using only these simple rules. For example, let h=1.

Then:

G, (8) = G|(G,,(5)),
Dotp1G;; (8) +Dy(G,_; (8))2.

(4)
This is the relation between generating functions at successive
stages. It shows the transmission operator in Figure 2, one step
beyond start-up, working to produce the final generating function
at stage r. Evidently transitions between successive stages are
sharply constrained by the rules in Figure 2. As a convenience

when the subscript is unity, we usually omit it altogether. Hence:

G, (8) =GG,_, (8))=G,_(G(8)).

Now unravel G,,(s) using the same reduction scheme. We have:

G, (8) =QEG; -, ().

(5)

Recycling the same propagation operator over and over produces a
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multiplicative system of generating functions corresponding to the

growth of multiplicative noise inside the branching chain.

One final point on the properties of stage-by-stage message
evolution depicted as a nested sequence of generating functions:

let h=r. The partition in Eg.(3) then becomes:
G, (8) =G/G, (s)),

from which it follows that:

G,(8) =s.

(6)
The zero-stage generating function shows that all probability is
concentrated at a count of unity. In other words, the process

begins with a single start-up event as we have been claiming.

If the cut is made at h=0, Eq.3 partitions G.(s) from stage zero,

i.e., from the very front end of the branching chain:

G,(s)= oGz (8)).
We see that the zero-stage generating function is an identity
operator transforming the argument of the generating function into

itself,

Differential Equation of the Chain:

The analysis in the pPrevious section shows that cutting a branching
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chain at the first stage, one step beyond start-up, partitions the

generating function of the full chain:
G, (8) =GG,_, (8)).

If we then expand the right hand side as in Eq. (4), we find:

G, (8) =Dy +D,G;_y (8) +Py(G,_1 (8))?.

This linkage between successive generating functions is a
reflection of the Markov transmission operator depicted earlier in

Figure 2. Suppose further that each stage is At long and let:

t = rA¢t,
DBy = pAL,
p, = AAEL.

Then Eg. (4) becomes:

G, (8) =pAt+(1-pAt-AAL) G, 4, () +AA G, 4. (8))2.

Evidently the generating function is converging on a differential

equation if terms can be suitably defined:

G -G
L (S) Ag—At(s) =p— (B4A) Gopp (8) +A(Gpc (8))2.

(7)
We want the limit of this expression as r approaches infinity and
At approaches zero while the product rAt remains finite. The gain
and loss parameters, A and u, are taken to be fixed and finite.
Hence the products AAt and pAt must approach zero as At approaches

zZero. This means that as the process converges from discrete
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stages to a smooth flow in continuous time, the instantaneous

probability of any change (up or down) becomes vanishingly small.

An overwhelming tendency exists for message-events to remain
unaltered during the very brief time consumed by passage through

any given transmission stage. Accordingly:

1im Gt(S) -GC—AC(S)
At~0 At

)”Gé (s).

The expression on the right is the derivative of the generating
function at a point close to the input end of the branching chain.
Our parameter t measures the 1length of the chain since it
corresponds precisely to stage r, the last step of the discrete

transmission process.

Restrictions identical to Eg. (7) hold also for every intermediate
point along the chain following start-up. Accordingly, t can be
treated either as a fixed constant associated with the length of
the chain, or as a time variable expressing the current state of
the message. When both ideas are required in the same expression,
we use t for the (fixed) length of the process, and 7 for the time
variable. Ordinarily t will designate the interval during which a

counting process in a branching chain comes under observation.

In view of Eq. (7) and because the process behaves in the same way

at each point along its entire length, we are led to a
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characteristic differential equation for the generating function
governing the counting process at the output of the chain:

G{(s)
(B/A-G, (8))1-G,(8))

(8)
The generating function corresponding to an observation time t is
found by integrating Eq.(8) between limits G,(s) = s at start-up
and G,(s) = G.(s) at the chain’s output. Equation (8) shows the
original quadratic expression in Eq. (7) factored now into its two

roots.

One root is unity, an outcome mandated by the restriction that the
coefficients of Eq. (7) sum to zero. This in turn implies an even
more fundamental restriction, namely that message-events tend to
remain unchanged during the very brief time of passage through a
single stage. The second root, u/i, is an upper limit for G,(s) as
% approaches infinity. This root conveys important information on

the asymptotic behavior of the process. More on that shortly.

Generating Function of the Process:

The solution of Eq. (8) can be found in most tables of integrals.

Our notation produces:
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1—(_E_Z_A£)e-(l—u)t
1l-s

G.(s) =

(9)
This is the generating function for a branching chain similar in
character to Figure 2 but operating in continuous time rather than
discrete stages. If a way can be found to expand Egq. (9) as a
power series, the coefficients of successive powers of s will be
probabilities of all possible output counts produced by the

continuous process approximating our branching chain.

The development thus far parallels the generating-function analysis
of a linear "birth-and-death process". The latter is a stochastic
mechanism resembling an upward-drifting random walk on the positive
integers (and zero). It is described in many easily accessible
sources, notably Bharucha-Reid (1960, pp 9-56 and 86-89); and

Feller (1957, pp 407-411).

The limiting scheme we have used, moving from discrete stages to
continuous time, is a popular elementary argument employed, for
example, in going from a (discrete) geometric distribution to its
(continuous) exponential counterpart. It is, however, dquite
inelegant and ordinarily shunned by analysts. Elegant or not, we
persist in viewing the linear birth-and-death process chiefly as a
limiting form for multi-stage branching chains. Such chains appear

to be nature’s way of moving sensory data, but they are discrete
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and hard to analyze. A stochastic process is not only easy to
study, it is also more informative on the types of noise created in

transmission than discrete analyses tend to be.

Expansion of Eq.(9) in powers of s proves to be no great problem.

First subtract unity from both sides. This leads directly to:

Ge(s) -1 _ 1-p/A
s-1 (1-8) - (u/A-5) e A-pit’
G, (s) -1 _ 1-p,.(0)
s-1 1o 1-e-{A-ut s
1-p/re-A-pit

(10)
The numerator on the right hand side of Eg. (10) is the probability
of a non-zero count. We establish this point by calculating the
exact probability of a zero count (i.e., silence at the output),
using the generating function. The significance of zero-count is
that our mechanism constructs a detached spike of probability at
the zero-state. This is why the survival probability appears in
the numerator of Eq. (10). Zero-count probability is found by

setting s = 0 in Eg. (9):

y-B/A(1-e W)

p.(o T/ he OWE

(11)

Additional simplification occurs if we also define:
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ﬂ: (1_p/l) e"(l-‘u)t

l_p/Ae"(l‘}l)t !
(12)
and:
F (s)=—DBS___
e(S) 1-(1-P)s
(13)
The adjusted generating function in Eg. (10) then reduces to:
G.(s)-1 1-p.(0)
s-1 1-(1-B)s’
(1l0a)

All elements of B are fixed when chain parameters are established.

Hence 8 will be an important constant of any branching chain.

With these steps we have reconfigured the original generating

function, G.(s), into greatly simplified form:

G, (8) =p,(0) H1-p.(0))F.(8) .

(9a)
Evidently F.(s) in Egs.(9a) and (13) represents the survivors
probability distribution, i.e., message-events destined never to
jump to the zero-state. Its generating function tells us that this
survivors distribution is geometric and shifted one step to the
right of the zero-state. Further, the overall generating function,
G.(s), is shown to be the compound of a binomial (extinction or
survival), with a second generating function constructed only from

message-events in the survivor category. The latter prove to have



26

a geometric distribution because new message events are produced
via a fixed multiplication rule. As the process runs, each
additional survivor increases the output count by unity while its

probability is multiplied against that of the prior count.

Branching Chain Counting Distribution:

With Eg. (9a) it is now easy to extract the counting distribution
of the full branching chain based on the mechanism in Figure 2, and
assuming a single start-up event. We invoke Egs. (11), (13), and
(9a) in order to expand F.(s) as a geometric series in powers of s.
The probability of an output count consisting of exactly k message
events is identified as p.(k). This probability turns out to be
the coefficient of s* in the expansion of Eq.(9a):

w/A1-e-0-0)
1_p/le—(l—u) t

r

Pt(o) =

p. (k) =(1-p.(0))Ba-B)**,
k=1,2,3,4,...

(14)
Equation (14) is our sought-after counting distribution at the
output of a branching chain. Notice the detached spike of

probability at the zero count.

In stochastic-process literature this distribution is called a
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linear birth-and-death process. Our analysis characterizes it as
a noisy stochastic amplifier governing transmission of a single
input event from start-up to destination via repeated identical
stages. If stimulus magnitudes act on the chain’s growth
parameters instead of triggering independent inputs, the expected
number of output events will reflect any desired amplification of
the input pulse. Of course, this amplified output will also

contain an added noise associated with repeated branching.

Accordingly, geometric branching has a substantially larger
variance than its Poisson counterpart. This leads to Weber’s-law
increment detection as contrasted with square-root-law

detectability in a Poisson point process.

Mean and Variance of Counting Distribution:

1)Mean: Average output produced by continuous branching in the
counting distribution, Eq.(14), can be calculated in several
different ways. Note that only the non~zero states contribute to

the count. Hence:

1

5’

mean=(1-p.(0)) -

where 1/8 is the expectation of the shifted geometric distribution

corresponding to F.(s). In view of Egs.(11) and (12) we then have:

mean=e (A#t,

(15)
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Branching causes the average output to grow exponentially with the

difference between gain and loss parameters of the chain.

A second path to the same result uses our adjusted generating
function, Eg.(10a). The 1limit of this expression as s approaches
unity generates the average count. This property of Eqg.(10a) is
based on results obtained with so-called "tails generating
functions". (See Feller, 1957, pp 249 - 250, and our own analysis
a bit later.) Accordingly, set s = 1 in Eg.(10a) to find the mean

count. It is the value just calculated.

2)Variance: The variance of Eq.(14) can be calculated directly or
from its generating function. One of the best approaches uses our
adjustment in Eq.(10a) based, as we show later, on the tails
distribution of Eg.(14). Distributions with a detached spike of
probability at zero are actually somewhat easier to analyze in

tails form. 1In any event, let:

G.(s) -1

=) =0, (s).

(16)

The variance is found (see below in this paper) from:

variance=20£(1)+Qt(l)—Q§(1).

(17)
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where Q.(1) is the counting distribution’s mean value as we have
just calculated it, Q.,’(1) is the first derivative of Q.(s) taken
with respect to s, and s is set equal to unity. For the variance

of Eq.(14) we have then:

variance = 2 (1—e- Bty (g2(-Rt) 4o h-p)E_g2(i-p)t,
1-p/A
2 (A-p) (o (A-p) £
= [—2 1), et BiYaglA-RiIl 1},
(1—u/l ) ( )

= (._M !)_e(l"“)t(e(l'“) t_.l) R

(17a)
If the multiplier (gain) parameter A is appreciably greater than
the dropout (loss) parameter u, the variance of the output will be
proportional to the mean squared. As average output increases in
a branching chain, counting variance grows more rapidly than its
counterpart Poisson variance. The enhanced growth rate implies
that a branching chain will exhibit Weber’s-law detectability
rather than square-root-law detectability. Just-discriminable
increases in output should then be proportional to the background
level itself, not to its square root. This variance growth is
large. It is due chiefly to multiplier effects on individual
message-events passing through the branching chain. Whenever any
of these mnessage-events happens to drop out or to increase in

number, additional variance is created.
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If the parameters of the chain approach each other in magnitude,
the branching process becomes balanced, and the above arguments no
longer apply. We then have a baseline condition resembling an
adaptation level. The mean and variance in such circumstances are
obtained by letting A approach u in Egs. (15) and (17a). Hence, as

A-u - 0 so that the squared difference is negligibly small:

mean - 1,
variance - 2it.
(18)
The mean output count is just what we would expect from a symmetric
Markov process. A single start-up event begins the transmission.
Gain and loss parameters are perfectly balanced (see Fig. 2). A
single message-event should then be expected at the output. The
variance, on the other hand, is something of a surprise. It is
large, increasing with both the multiplication parameter and the
length of chain. When the output of a branching chain distribution
(Eq. 14) is examined under these circumstances, we find a dense
concentration of probability at the count of zero, together with a
long, very low geometric tail governing the non-zero states.
Hence, a balanced transmission operator will deliver a replica of
its start-up pulse on the average, but the output displays
substantial variance. Later, when we speak of a transmission
network as "virtually silent" under continuous stimulation, it is
this kind of silence we have in mind, a mostly silent but

occasionally noisy background rather than utter transparency. We
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return to this baseline distribution shortly. It is one of the
simplest and therefore most important examples of a branching
chain.

Tails Generating Function:

In the previous section an adjusted generating function was
employed to calculate the mean and variance of our branching-chain
counting distribution, Eg.(14). The significance of the adjustment
was passed over lightly, except for an observation that its basis

is the tails distribution of Eq.(14).

We now show how a tails generating function produces the adjustment
described in Eq.(10a). Our argument roughly parallels that given
in Feller (1957, pp.248-250). The matter is taken up in detail
here because of the peculiar character of the branching chain
distribution with its isolated spike of probability at count zero,
and its long geometric tail corresponding to non-zero counts. In
such distributions the tails generating function has an unusually
convenient form, making for easy recognition if it should turn up

as the result of some analytic operation.

The classical probability generating function defined in Eq.(1) is
only one of a variety of possibilities. Cconsider, for instance,

the following closely related expansion:

0,(8) =q, (0) +q, (1) s+g,(2) 82+, (3) 83+,
(19)

where:
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q. (k=Y p.(i).

i=k+1

(20)
The terms p.(i) in Eq.(20) are evidently counting probabilities
given by Eg.(14), and q.(k) is defined as the tail beyond p.(k}). We
label Q.(s) a "tails generating function" because it is constructed

from the tails associated with each counting probability p.(k).

Multiply both sides of Eg.(19) by s-1. We have:

k==
(5-1) 0 (8) =-g,(0) +} p (k) s ¥,
k=1

G (s)=(s-1)-0Q,(s) +1.

(21)
Accordingly, the tails generating function, Q.(s), defined in Eq.
(19) may be obtained directly from G.(s),the standard generating
function, without actually forming and summing the tails series:

G.(s) -1
s-1

Q.(s)=

This is exactly the form of our adjustment in Eq. (10a).

If both sides of Eq. (21) are differentiated with respect to s, we

find:
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Gﬁ(s)=(s—1)Q£(s)+Qt(s).

(22)
Set s = 1 and observe that G,”(1) is the mean of the branching
chain distribution. Hence:
mean=0,.(1),
as claimed in the preceding section.
A second differentiation of Eg. (22) produces:
Gl (s) = (s0l(s)+0l(s))-07 (s) +0L(s),
= (5-1) 0/ (s) +20{(9) .
(23)

Now set s=1 in Eq. (23), producing the second factorial moment on

the left hand side and 2Q.,”(1) on the right side. Thus:

2nd factorial moment=20.(1)
This leads immediately to Eqg. (17) for the variance of the
branching chain distribution in view of the relation between
factorial moments and central moments. (See, for example,

Bharucha-Reid, 1960, p. 20, Equation 1.36.)

A tails generating function is evidently valuable since it offers
an easy route to the moments of branching chain counting-
distributions, but as we have already suggested, convenience is not

our primary interest. Look back to Eq. (10a) and see that it has
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an unusually simple form compared with Eg. (9):

A
1-Bs

’

O.(s)=

(10b)
where now A = 1-p,(0), and B = 1~-B. These two constants yield the
zero count probability, and the key parameter of the survivors’
distribution. If several different branching chains are
constructed in sequence, and the tails generating function of the
output proves to have the form prescribed in Eg. (10b), we know at
once that a single equivalent chain must exist, and that its
distribution parameters are given by A and B. We can then infer
the rule by which components combine to produce the parameters of

the single chain.

Auditory transmission 1is a branching system so complex that
research has only begun to analyze its properties. An argument
such as the one in the preceding paragraph permits us to consider
the entire system as a single entity when the prescribed conditions
exist. We are not forced to identify and analyze each separate
component before a system can be pieced together. Branching chains
connected in sequence, are equivalent to a single chain. This
implies what we have always believed, that auditory psychophysics
must play a significant role in determining system structure as
well as in measuring what gets through. The description is vague
at first, in the way that a single chain is vague, achieving

greater specificity and detail as knowledge progresses.
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Extinction Probability:
The roots of the quadratic underlying the birth/death process
differential equation, Eq.(8), turn out to be unity and u/A
respectively. The first root emerges because the coefficients of
Eq.(7) sum to zero. Then if G.s) = 1, the derivative in Eq.(7)

becomes zero, and this defines a root.

We now show that the second root, u/A, is an asymptote for the
zero-count probability when the chain becomes infinite in extent.
Notice that to form a derivative from Eg.(7) the number of stages,
r, is allowed to approach infinity while the transit time per
stage, At, goes to zero so that the product rAt remains fixed and
finite. The asymptote under consideration here is the one that
develops as t itself goes to infinity. 1In order to get to this
asymptote, we require two separate limiting steps. 1In the first,
the number of stages in the chain goes to infinity but the time t
required to pass through them remains finite. 1In the second, t

itself approaches infinity.

Now consider the limit of the generating function for a branching
chain, G.(s) in Eqg.(9), following the second step. Evidently, as

t - o with A greater than u:
G (8s)=>p/A.

The only probability left in the generating function is located at

the zero count. Equations (11) and (12) reveal that as t -
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p-o,
p.(0) = p/A.
(24)
Zero-count probability grows with time, eventually reaching an
asymptote defined by the intensity parameters of the transmission

system. We label this asymptote:

n = lim p.(0),

R/A.

(25)

The limit is approached as t - .

In stochastic processes 7 is called an extinction probability.
Once message-events are lost, they cannot be recaptured. As the
transmission process runs, zero-count probability increases with
time (i.e., length of the chain) eventually reaching its maximum
value 7 when t - o. Simultaneously the survivors distribution,
although still geometric in form, becomes vanishingly small (see B
in Egq.(24) ) over all finite counts. When t - ®» and the multiplier
A is greater than the dropout parameter u, counts that are not zero
become infinite, indicating that the mean and variance of the

counting distribution, Eq.(14), must be infinite as well.

Certain applications of birth/death processes are centered on
extinction calculations - - studies of species survival, for

example. In our case no special role is played by extinction since
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neural transmission times are relatively short. Extinction
probability is best thought of as a handy constant of a
transmission system, serving to characterize its changing
resistance to input data at different intensities. Later, when we
attempt to relate system parameters A and uy to measurements of

stimulus intensity, the extinction constant will be quite useful.

What if the loss parameter should prevail, i.e., u > A ? Equation

(9) tells us that as t - oo
G.(s)=1,

from which it follows that extinction probability # = 1. Ultimate
extinction is virtually certain; hardly surprising since the

dropout parameter dominates transmission.

Finally, if parameters A and p are equal and the system is
perfectly balanced, we must first consider the limit of Eg. (9) as
i » A before letting t go to infinity. The simplest way to do this

is to turn to Egs. (11) and (12). As u = A:

AE
1+At’

1
B 1+At°

p.(0) -

Using these limits it is now easy to construct a generating
function and a probability distribution via Eq.(9a) for the special

case in which py = A. The extinction probability is evidently:
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n = lim p.(0) = 1.

Lo

Despite identical parameters and a balanced system equally likely
to multiply and decay with no net gain or loss, ultimate extinction

is still practically certain.

Gathering these results together, we have for the extinction

properties of a branching chain:

p/A, for u<a,
= 1, p=A.

4
1

(27)
The same generating function, Eq. (9), holds whether transmission

is headed for amplification or extinction.

Our experience here with A and u equal suggests that a family of
distributions will emerge as varying restrictions are placed on
transmission parameters. Pure multiplication occurs when p - 0;
pure erosion, whenever A - 0. Moreover, multiplication need not be
twofold. We might have any number of progeny, even a distribution
in which the number of offspring changes at random from instant to
instant. These differences are important but not fundamental. The
counting distributions are altered in detail but have a common
ancestry. All work in essentially the same way, and their

generating functions are close relatives.
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Log Transform:
As message—-events move through a branching chain, a rapidly
increasing flood of activity develops, ending with the chain’s
output discharge. We know from Eq.(15) that the average size of
this discharge grows exponentially with the difference between the
chain’s multiplication and dropout parameters. Powerful amplifier
effects are an important aid for detecting weak auditory signals
near ambient noise level, but when inputs are of even moderate
intensity, exponential growth also carries the risk of overload and

possible breakdown.

A transformation of the input signal can act as a counterbalance to
runaway amplification in a branching chain. In this section we
consider the effect of a particular log-transform relating stimulus
intensity to the chain parameters A and u. It exactly counters the
exponential growth of message-events created by the branching-chain
parameters, vyielding an average output proportional to input
intensity. The form of the output counting distribution is
unaffected by this transformation. Everything remains as it was,
save for a smaller mean output count and greatly diminished higher

moments. These are attractive linear properties.

The transform we consider is the following:

In (1+ax) = (Ao-ppt,

(28)

where x denotes a particular stimulus intensity.
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An expression similar to Eqg.(28) was proposed by Rushton (1961) as
a basis for visual coding. Working with the optic nerve of the
horseshoe crab (Fuortes, 1959), Rushton found that Eq.(28) produced
linear growth of neural responses over a wide range. He speculated
that log transforms should improve the coding of other modalities
as well. Sense organs are required "at the lower end of their
intensity range to detect signals .... approach(ing) the prevailing
noise level" whereas in the upper ranges the "task is not merely to
detect" but "to make fine discrimination with regard to time

course, spatial location, and quality" (Rushton, 1961, p. 177).

A log transform operating on net growth of message-events, offers
advantages at both ends of the intensity continuum. At the low end
where detections occur, the scale is spread out. It is also
foreshortened at the high end where overload threatens. Branching
chains become virtually silent under the stimulus of a continuous
‘background. Hence, increments are always detected as new signals.
In effect such detection implies log scaling since there is only

one process at all background levels.

In Eq. (28) subscripts appear on the multiplication and dropout
parameters because they are now taken to be functions of stimulus
intensity. The latter is treated as a variable labelled x. A
constant a matches units of intensity to the parameters of
transmission. As before, t measures the apparent length of the

branching chain. Chain length is assumed constant as intensity
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changes. Hence, the full effect of stimuli will be directed at the
pair of transmission parameters, or rather at the difference
between them. A momentary auditory signal.may increase A,, or

depress u, , or may change both simultaneously.

Equation (28) indicates that the log can be negative when u, > A,.
The argument of the logarithm itself must remain nonnegative. This
leaves a narrow range in which ax might go negative, but as a
practical matter, we deal here exclusively with positive (or zero)
intensities for which x 2> 0. No barrier exists prohibiting
symmetrical treatment of increments and decrements in a steady
background. Each poses essentially the same detection problem, but
for the moment we are 1limited to increments. Later, when
adaptation levels are developed, departures up and down can be

handled easily within the same branching-chain framework.

When stimulus intensity is =zero, multiplication and dropout
parameters are equal. This creates a "baseline" noise about which
we have spoken previously. We first consider our log transform for
nonzero stimuli. Then by allowing intensity to go to zero, we look

at the baseline noise.

Let:

(29)



42

and substitute Eq. (28) into the generating function for a

branching chain, Eg. (9). We then have:

n(x)_(n(x)—sx 1 ).

1-5 l1+ax

v

Gy(s) =

(30)
Now define:
- 8X
¥ (x)= 1-n(x)
(31)
Next, add and subtract unity from Egq. (30). It brings us to:
4. (1+ax) (s-1)
GX(S) _l+ 1-‘Y (X) (S—l) 7
- (1+ax)
%) TG (1)
(32)

This is the tails generating function corresponding to the
intensity-based branching chain produced from Eg. (30). We need
only isolate the coefficient of s in the denominator, and divide
out the term 1 + y(x) in order to put the tails generating function

into the form decreed by Eg. (10b). Accordingly:

0, (s)=S1rax) [ (A+y (X))

i)

(32a)
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Equation (32a) is now in proper tails format. Using Egs. (10b),
(11), and (12), we next write down the zero-count probability, as
well as the parameter B of the survivors distribution:

- Y (x)-ax
Pylo) 1+y (x)

= 1
B - 1+y (x)

(33)

As we have seen, these are the basic ingredients of every branching
chain. Evidently the geometric form of the survivors’ distribution
is not altered by a log transform mapping intensities into A and u.

Our output counting distribution, transformed by Eq. (28), is:

n(x)y (x)

px(o) = 1+y (%)

7

Dy (k) =(1-p,(0))B (1-P) ¥,

k =1,2,3,4---.

(34)
The shape of the distribution is identical with Egq. (14). Only
parameters change. The new mean and variance can be found easily

from Q,(s) in Eqg. (32).

As before, the mean is given by Q,(1):

mean = 1 + ax.

(35)

Similarly, the variance is constructed from Q,(s) and its first
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derivative in s, Q' (s):

it

variance 25&(1)+g&(1)-§§(1),

2y (x) (1+ax) +(1l+ax) - (1+ax)?,

=<1+n(x)

1_n(x))(ax)(lmx).

(36)
When stimulus intensity x is substantially above zero, variance is
again proportional to the mean squared; but now the mean is linear

in intensity rather than growing exponentially.

Suppose intensity is zero. We then confront the baseline noise
condition of this branching-chain transmission mechanism. In that
event u, = A,, and 7(x) = 1. Adjusted intensity vy(x), defined in
Eq. (31), approaches a limit because both numerator and denominator

go toward zero simultaneously:

limy(x)_  ax -y
X=0 1-w(x) °°

(37)
The limit here is taken to be a background intensity establishing
the rate at which 7(x) approaches unity as ax decreases. This
implies that our representation of a steady background signal will
be absorbed into the constant y. Intensities should then be
interpreted as increments above ¥ rather than zero. The system we
are uncovering describes incremental changes in steady backgrounds

instead of absolute signal levels referenced to zero.
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To develop the baseline counting distribution, insert Eq. (37) into

Eq. (32a). Then as x - 0:

Qo(s)z___lllﬂjL__

1+y
(38)

and in view of Eg. (10b):

p (o) = —1_

(39)
These expressions were worked out earlier for the general case.
They are cast now into their simplest form: a perfectly balanced
branching chain grown almost silent at its adaptation level. The

"almost" is reflected in a long, low tail across non-zero counts.

The output distribution is produced from the constants in Eq. (39):

= Y =
p,(0) Try’ k=0,
Yk—l
pO(k):W’ k=1,2,3,4--.

(40)
Mean and variance are easily obtained from Q,(s) with s = 1:
mean = 1,
variance = 2y.

(41)
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So the branching chain is not completely silent when no increment
is applied -- just virtually silent. There is variance. In fact,
the variance is found to be proportional to the level of the
background signal. It is easy to see how Weber’s law would emerge
from such a mechanism. Its resolving power declines systematically
as background intensity y increases. Any incremental change must
be large at high intensities in order to achieve discriminability
equivalent to much smaller changes near threshold level. This is

the heart of Weber’s law.

Our discussion sets the stage for the obvious next step in
simplification. It is easy to conjecture an "ultralinear"
branching chain in which:
y(x) = y+ax.

(42)
Internal representations of background intensity and incremental
intensities are assumed perfectly additive. 1In view of Eq. (31),
this means that the extinction constant can now be defined

explicitly in terms of stimulus measurements:

T {x) = Y .
y+ax

(43)
Apart from the operational simplicity of an ultralinear branching
chain, it possesses the great virtue that its parameters are given
by intensities used to stimulate the system rather than by unknown

internal constants. Our constant y becomes an adaptation level
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while the term ax denotes an increment above the adaptation level.
A detection theory cast in this form can easily be wrong, whereas
in the format established by Eq. (9), there is always a sense in
which the theory remains unchallengeable. It can never be quite

pinned down.

3. DISTRIBUTION FAMILY

The Markov process depicted in Figure 2 is an extremely simple
mechanism for amplifying weak auditory messages. Forces acting on
pulse~like message-events as they pass along a transmission line
are deemed to act in exactly the same way on all message-events.
This includes the original start-up pulse and all its progeny,
right up to the end of the line. Stable operators of this type
cause neural messages to evolve in very predictable ways during
transmission, creating a noisy amplified version of the input at

the output site.

Our argument has been that such transmission phenomena should also
affect the discriminability of output messages. In fact the
changing detectability of intensity increments above a steady
background signal may depend more on the changing statistics of
transmission than on the characteristic responses of auditory
receptors. We do not know this to be the case, nor do we assume
it. We simply deal with it as an important conjecture linking
internal noise with the transmission process. Something is

obviously missing from the traditional stimulus-based detection
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theory. Transmission may prove to be the missing link.

As a family of related counting distributions is identified, we
seek also to preserve the simplicity encountered thusfar. oOur
object is to illustrate the scope and power of very elementary
ideas about sensory transmission, rather than strive for the most
general formulation. This means that genuinely abstract family
members will be omitted from our compilation. We concentrate on
elementary forms as we develop our picture of the branching-chain

family in Table 1.

Most of the results in this section can be obtained by playing
changes on the parameters A and pg in Eq.(9). This is in fact how
we operated in our analysis of the log transform just presented.
Here, however, we return repeatedly to the basic differential
equation in order to display each different mechanism as an

independent solution worthy in its own right.

Pure Erxrosion:

Consider a transmission chain unable to multiply. Its propagation

diagram is illustrated in Figure 3a.

No progeny are created other than a reproduction of the initial
start-up pulse. At each successive stage, this single pulse is
either passed on to the next stage, or it is lost, terminating

transmission. Evidently there can be only these two output
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conditions: a count of zero when the start-up event is lost, or a
count of unity indicating successful passage through the chain.
The longer the latter, the greater the likelihood that a given
input fails to survive.

- FIGURE 3 HERE -~

To analyze output in such circumstances, start with our basic
differential equation in Eq. (7) and set A equal to zero. This
step eliminates any possibility of amplification. The chain is now
purely erosive. A given input is represented by at most one pulse
somewhere in the chain, and if that pulse should be lost,
transmission ends. Our process differential equation modified from

Eq. (7), sets up as follows:

Gl(s) = K(1-G, (8)).
(44)

We let:

Y=G, (s),
dy/dt=G.{s) .

(45)

Integrating the differential equation produces:

In(1-s)-1n (1-G.(s))=pt,
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1-G.(s) )
1n(‘—'1":§*)“ ke,

G, (8) =(1-e *t)+ePtg,

(46)

The generating function governing erosive transmission, Eq. (46),
has only two terms in its expansion. Coefficients of s° and s
correspond to the respective probabilities of the two possible
outputs (zero and unity). As the chain increases in length
(measured by t), survival probability (coefficient of s) drops off

exponentially, approaching zero when t grows large.

Suppose there are many start-ups instead of the single chain
depicted in Eq.(44). The summed output produced by multiple chains
can be obtained easily via Eq.(46). With n inputs, the generating

function of the sum will be given by :

Gl (s)= (1L+e*t(s-1))".
(47)
Equation (47) signals a binomial distribution. If the chain is
sufficiently long, survival probability will be small. With n

suitably large, a limit can be constructed in which the product:

0=ne ¥t



*ATTwey uoTyIngraAISIP
sues o3 buorsq saojeasdo anoj IV ‘uoTssTUsSURIY uteys-buryoueaq
uo suoTjlotalsax 1eotdLy burjlosiisa sxojeasdo uotryebedoad :¢ eanbiyg

Anwe uoninqinsiqg uiey buyoueag

Auaboid sidiyinpy 'p aul peouejeg o
0
X
| €«1pY-1-@ 1pA
/ \
1pY | €1phz-1-@
¥ pb»\
L+w P
4
. yuig eind °q uoisodg aind ‘e
O
| €—1pY-1-@ 2prd
4 \
pY | < 2pil- ~-@
K

siojeladQ uonebedoid




51
remains finite as its constituent terms go toward infinity and zero

respectively. Then:

th(s) =g0ls-1)
(48)
When output is summed across many branching chains, the limiting
distribution is Poisson. Hence, Eq. (48) is a neat little example

of Cox & Smith’s (1954) superposition theorem, cited earlier.

Hecht, Schlaer, and Pirenne (1942) employed a very similar
transmission scheme to account for photon losses as light flashes
make their way through the cornea, the ocular media, and surface
obstructions on the retina, to reach rod-receptors. This famous
paper draws attention to the Poisson character of visual detection
at absolute threshold. Threshold flashes entering a dark-adapted
eye are found to contain about 100 photons. Psychometric functions
measured under the same conditions suggest a count of 5-10 events
for determining whether or not a flash will be seen. Hecht et al.
estimate actual losses in the passage of light energy through the
eye, finding that 90-95% of the incident light is lost. They
conclude that the visual psychometric function probably displays
statistics of the 1light stimulus rather than the variable
sensitivity of visual receptors. The latter are viewed essentially

as a noise-free detection system. (See Sackitt, 1972.)

The argument centers on receptors but seems also to assume that the

entire visual detection chain is noise-free. Any number of
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psychometric functions can appear identical if signals happen to be
contaminated by an unmeasured internal noise. This point was
demonstrated by Barlow (1956). So a count of 5—10 events cannot be
established unless we also know the internal noise level.
Moreover, we have shown that a passive transmission system, in
conformity with the Cox-Smith theorem, produces a Poisson-like
process at its output. Output may thus be shaped as much by the

statistics of transmission, as by variations in input.

Since Poisson fluctuations arise so easily in transmission, it
becomes virtually impossible to determine the actual source of
threshold phenomena. Sensory analysis abounds in such paradoxes.
Experience teaches great caution in reasoning from the shape of
psychometric functions to the structure of sensory processes.
- TABLE 1 HERE -

Pure Birth:

This member of the branching-chain family provides an ideal
amplifier for weak input signals. Transmission in such cases is
protected from loss or dropout. A single start-up pulse builds
rapidly into a cascade of message-~events. The propagation operator

for achieving this buildup is depicted in Figure 3b.

Initial stages of auditory detection probably involve some form of
feedback amplification. The extraordinary sensitivity of the
auditory system suggests that it must have a good way to dig very

weak signals out of the ambient noise. Amplifier mechanisms should
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be located close to the receptor organ, and would probably deliver
their output into a conventional transmission network conveying
message-events to a decision center at much higher level. Our
ideal for this first amplifier stage of detection would be a pure
birth process. The problem of analyzing two different types of

transmission chain arrayed in sequence will be considered shortly.

In order to construct a chain with pure birth properties, we start
with our basic differential equation, Eg.(7) but now set u = 0.
This step eliminates all possibility of loss. A chain governed by
such propagation will retain every message-event it creates, and
the number will grow with successive stages. Our stochastic

process restriction then becomes:

Gl(8) = -AG,(s) (1-G.(s)).
(49)
Again we invoke the simplified notation of Egq.(45) to integrate the

differential equation:

(50)

An easy solution suggests itself if we note:
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1 .11
y(y-1) v-1 y’
G, (s) G.{s)
f __d_Z_ - f g = )‘t,
y-1 y

lr{ G, () '1)—1:1( Gt(s)) _ e,
5-1 s

Gt(S) -1 _ e“ gs-1
G, (s) ( s )'
(51)
In this form, Eq. (51) can be solved for G,(s) as a function of s.

We find:

-At
G,(s) = =,
1-(1-e*H) s
k==
= E e—lt(l_e—lt) kgk+l
k=0

(52)

Evidently the pure birth output distribution is geometric. It is
also shifted one step to the right so that it spans only the non-
zero counts. The process begins with a single start-up event.
Since u is set equal to zero, no losses are encountered in

transmission. Zero counts are excluded by these requirements.

In physics, Eq. (52) is known as a Yule-Furry process. It is an
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idealized model for electron-photon cascades. (See Bharucha-Reid,
1960, p. 247.) Sensory analysis uses birth processes such as
Eqg.(52) to model the early stages of transmission where focus is on
detecting a signal in ambient noise, or extracting it from a

continuing background.

Prior to any neural activity, we imagine that auditory receptors,
acting as transducers, set up excitation in the form of stimulating
events proportional to the energy of an auditory signal. The first
such event starts up the neural amplifier while the others control
its amplification parameter. With a local amplifier situated
immediately behind the receptor, even weak transients can produce
an impulse cascade. These impulses are thought to function as
input for a second branching chain leading away from the receptor
area. Additional boosting is probably required along this second
chain in order to bring stimulus information securely through to a
higher center where it can be evaluated. All these amplifier and
boosting operations should generate a tell-tale internal noise. The
latter will then affect the discriminability of auditory signals

differing slightly in intensity.

Balanced Transmission Line:

This member of our branching-chain family has A = y in Eq.(7). The
expected number of progeny for each message-event passing through
any given stage is then unity. No net gain or loss of message-

events occurs between stages. But new variance is created
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continuously as transmission branches up and down, altering the
total count from stage to stage. This point is evident from the
propagation diagram in Figure 3c. The longer the chain (measured

by t), the greater will be the output variance.

We derive our output distribution by modifying Eq.(8) to show i and

4 equal:

Gl (s) -
(1-G, (8))?

(53)

Equation (53) can be integrated directly:

Ge{s) t
f _-—qy_.é.:l f dt,
AR ER
1 1 AE
1-G,(s) 1-s )

The generating function for propagation based on equal gain and

loss parameters, must be:

s-1
G (8s)=1 + —— |
e(s) TAc(s D)
(54)
Equation (54) can be expanded as a power series in s. Output

counting probabilities governing perfectly balanced transmission
are then given as the coefficients of successive powers of s. This

particular generating function happens also to be set up ideally
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for transformation into tails form:
N S
1-At(s-1) "’
1/1+AE

1'(1i§t)s

it

0,.(s)

(55)
We see a large chunk of probability in the zero state. Following

Eg. (10a), the probability is shown to be:

p. o) =

(56)
We also see a low geometric tail extending over all non-zero
states. As expected in view of perfectly balanced propagation
parameters, the mean output count, given by Q.(1) in Eg. (55), is
unity. The input event reproduces itself on the average at
successive stages. This restriction carries straight through to

the chain’s output.

Except for notation, the tails generating function in Eg. (55) is
the same as the one developed earlier, characterizing our so-called
"baseline counting distribution®", Eq.(38). The latter emerged from
analysis of a log transform when incremental intensity ax is set
equal to zero. Hence, the output distribution generated by Eq.

(54) must be identical to one given previously as Eg. (40).
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Multiple Progeny:

Now consider a birth process creating more than one new event each
time it multiplies. We argued earlier that there is no special
magic about pair production. Pairs are easy to visualize and
convenient to handle, but they are not logically necessary in a

"jump" process. (See Rosenblatt, 1962, pp.124-133.)

Countless conflicting influences affect the momentary states of
sensory transmission. These influences create randomized data-flows
that ordinarily defy simple explanation. If multiplication occurs
repeatedly in order to boost transmission (as we believe it does),
no rule demands that the boost be limited to one new message-event,
or that the number created be constant. Perhaps the propagation
operator changes configuration as excitability shifts along the
network. Progeny might then have a characteristic probability

distribution generated by changes in the operator.

We should certainly consider what happens when the pair-production
restriction is relaxed. Consequently, turn now to a stochastic
amplifier that really amplifies, one creating exactly m new
message-events with each new multiplication. A single event enters
a given stage, and at random either that same event or m+1 events
emerge from it. Each of the latter becomes a vehicle for further
multiplication with the same properties. Buildup is rapid and, if

the multiplication factor m is sizable, buildup is also enormous.
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The propagation diagram for a birth process with m+1 progeny at
each multiplication is illustrated in Figure 3d. Classical pure-
birth (Yule-Furry), presented earlier in. this section, was
restricted to pair production. Now that restriction is relaxed,

and the Yule-Furry process becomes a case in which m = 1.

We begin by translating Figure 3d into an instant-by-instant

restriction on the time-dependent generating function:
G, (8) = (1-AAT)G,_,.(8)+AAT G, (s),

G;(s) = AG,(s) (G™(s) -1).
(57)
A single message-event enters a given stage. Equation (57) tells
us that with probability (1 - AAt) it emerges as the same single
event; or with probability AAt it emerges in the company of m new
events. These are the only allowable outcomes as message-events
transit a given stage. The dropout parameter u is assumed to be

zero. Nothing can ever be lost.

If multiplication occurs, the generating function is raised to the
power m+l, reflecting the summed effect of new chains created when
a message-event multiplies. Evidently when m = 1, Eqg.(57) above
reduces to Eq.(49), our earlier expression for the stochastic

restriction governing a Yule-Furry process.
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Set up the differential equation as before:

GE(S) t

d _
[ o -+ e

s
(58)
Recall that the chain of events begins with a single input at time
zero. Hence:
G.(s) = s.

This furnishes the lower 1limit of integration for the left-hand
side of Eq.(58). We can handle the integration itself easily via
a device, 1i.e., Eg.(51), used earlier with the differential

equation underlying pair production:

1
y(y™-1) yo-1 y

Gg(s) 1 Gt<5)
[Timema, o [Tl g
m  (y™-1) A v

s

s™-1 s

Gg;m(s) -1 _ em}.t_(sm_l)_
G (s) s

Z4n (_____Gt (s) "1)-1n(GC(S)) = At,

(59)

A few additional steps with Eq. (59) bring us to the generating

function of this birth process, but raised to the mth power. 1In
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other words we are looking at the sum of m distinct chains:

e—m).tsm

Gl =
e (8) 1-(l-e@t)gn,

(60)

When m = 1, pair production governs the multiplication depicted in
Figure 3d. Hence, Eq. (60) with m = 1 must be a classical pure-
birth process (and we see that it is). Similarly, if m is an
integer greater than unity, Eg. (60) remains geometric but data
points are spread out over spaced intervals: m, 2m, 3m, e,
Counts 1lying between these landmarks all have probability =zero

because they cannot occur given the multiplier.

Finally, the sought-after generating function corresponding to a
single chain with multiple progeny is found by taking the mth root

of Eg. (60):

~At
Gt(s) = s€ 17 Vs
(1-(1-egmity g mil/m

1

ko — k-1
= E m e—lt(l_e-m}.t) kgmk+1
k=o k

K =0,1,2,3,....

8
I

=1,2,3,4,40..

(61)
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Coefficients of s™' in the expansion of Eq.(61) are probabilities
of counts that actually appear in the output. Hence, the
coefficients are successive values of gk(mk+i). All other counts

must have probability zero in virtue of the multiplier.

Evidently Eq. (61) is a negative binomial distribution, constructed
over outputs at 1, m+1l, 2m+1, 3m+l, and so on. Unit count occurs
when an input manages to pass through the entire chain without
multiplying. As the chain lengthens, this "no-multiplication"
event becomes less and less likely, implying that p.(1) tends

toward zero as t grows large.

Fractional binomial coefficients such as Eq. (61) are not as simple
as they appear. However, if the multiplier m happens to be small,
the expansion of any particular coefficient can be worked out, and
several of the most useful are tabulated. For example, when m = 2
(three progeny at each multiplication), Jolley (1961, #166) shows

how to expand the generating function:

p.(1) = e-ul

p.(2k+1)

.3.5.7....(2k=1) (g _g-2aeyk,
4.6.8

k=l'2,....m.
(62)
Because Eg. (60) is a spaced out version of the geometric

distribution, there is also an easy way to calculate the principal
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moments of a multiple-progeny birth process. Results are given in

Table 1.

A remarkable thing happens when the multiplier becomes very large.
Equation (61) tells us that a limit exists:
lim G.(s) = se™*
m-oo

(63)
Only the unit state (the "no-multiplication" event) remains.
Nearest next count is infinitely removed. This implies that the
mean and variance of the counting distribution must both be

infinite.

We have an outcome very similar to extinction in birth-death
processes. The probability distribution in Eq. (63) fails to sum
to unity. Its higher moments are infinite. Significant portions of
the process lie beyond the reach of our analytical framework. In

a literal sense, if the chain ever multiplies, it explodes.

Immigration:

Distribution family-members cited thus far produce transmission
noise only by repeated branching. Single message-events passing
along a channel are continuously transformed by one of the
branching operators in Table 1. Input events will then generate an
output distribution whose variance embodies the noise created in a

branching chain. The process leaves a variety of clues to its
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structure because limits are imposed on our ability to detect small
intensity differences. Moreover, the limits change in different

test situations.

Classical branching theory also provides for a second type of
internal noise. Suppose an outside event, a random pulse with no
prior history in the channel, suddenly intrudes and mixes with
message events owing their origin to an input signal. Intrusions of
this type are illustrated in Fig. 2. The intruders, or immigrants
as they are called, constitute a secondary noise process
indistinguishable from message~noise, but deriving from non-message
sources. Once in place, immigrants become subject to the rules
governing passage of information in a branching chain. Mechanisms
incorporating intruders are known as birth-death-immigration
processes. The early work appears to have been done by Kendall
(1948). Theory is discussed in Bharucha-Reid (1960, pp. 173-74),
Bartlett (1955, p.112), and Diament and Teich (1992). There are

many other sources.

To formulate the intrusion phenomenon, begin with our rudimentary
differential equation, Eg. (7). A branching message-process
triggered by a single input event will continue to be identified
with the generating function, G.(s). Now, however, we introduce a
parallel and closely related process based on random immigration.
This secondary noise process will be designated as I,(s). We can

reconstruct the instantaneous behavior of I.(s) as follows:



65

I (s) = (1-vA1) I 4. (8) + VAT (I, ,.(8) * G, 4, (8)).

(64)

Immigration rate is given by v, and the product v4r is the
probability that a single immigrant will appear during Ar7.
Accordingly, Eg. (64) describes an instant-by-instant restriction
on I,(s). At A7 prior to 7, the process was either at I,,,(s) and
no immigrant appeared, or a single immigrant arrived adding a new
chain of events governed by the branching rules of the message-
event process. The product of generating functions on the extreme
right of Eq. (64) represents this new sum. We then have:

I': (s) -It—At (s)
Az

= VI, 2 (8)(1-G,p, (8)).

Going to the limit as A7-0, yields a differential equation:

I;(s) = -vI,(8)(1-G,(s)).
(65)
An output generating function for I.(s) is obtained by solving Eq.
(65) in the region between 7 = 0 and 7 = t, with G,(s) given either
by Eq. (9) or one of the simpler versions in Table 1. A precise
form of the general solution linked to Eqg.(9) is available in
several sources: notably Bharucha-Reid (1963, pp. 173-174), and

Diament and Teich (1992).

The general solution of Eq. (65) is fairly complicated, involving

rate parameters u, A, and v, in addition to a time parameter t.
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Table 1 offers a modest version of the solution for immigration

into a balanced-line (A = u). Here, we go the full distance toward

simplification by developing only the immigration noise. Let:
G,(s) = s.

This means that the message portion of the branching chain is taken

to be noiseless. Any start-up or immigration event is delivered to

the output without alteration.

Following Eg.(65) we then have:
L o _y(1-s)dr,
y

where y = I.(s). Recall that I,(s) depicts a secondary noise
source. When t = 0, all immigration noise must be concentrated at
zero. Hence, I,(s) = 1. Integrating both sides over values of 7

between zero and t, we find:

ln(lk(S)) = -(1-s8)vt,
1
It(S) — evt(s—l),
o evE(ve) k.
I.(s) = kX; LYo gk,

(66)

Our result in Eq.(66) signals a Poisson distribution caused by

random intrusions of immigrant pulses as the message-process runs
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its course from input to output. It follows that the product
G.(s)+I.(s) describes the mixture of message and immigration events
found in the output of branching chains subject to such secondary
noise. 1In this special case, message noise is absent altogether.
Accordingly:

Output

S'It(S) ’

Mean Output 1 + vt.

(67)
Shifting the Poisson one step to the right increases mean output by
unity. A component vt of the mean output is due to immigration

noise.

When machinery of this type is operating, immigrations occur with
constant probability as messages pass through a branching chain.
Evidently these extra pulses contribute a source of Poisson noise
to the internal noise generated by the message-transmission process
itself. But random intrusions do more than simply add a Poisson
component to the output. Immigration noise introduced at any stage
of the chain is subject to continuing modification by the

mechanisms governing passage of information through the chain.

Thus, random intrusions will be amplified or lost right along with
message-events. These interactions are typical of multiplication
noise. They define one of the key differences between additive and

multiplicative noise.
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4. SEQUENCES OF BRANCHING CHAINS

If transmission is portrayed correctly as a stochastic process, an
internal noise will accompany all output messages, making them less
discriminable than signals entering the network. Limits on
detectability might trace to this internal noise, especially if it
is linked to stimulus intensity. The importance of these linkages
was overlooked in early work on signal detection. Internal noise
was treated as fixed and small, a minor contaminant rather than an
integral part of the mechanism. We think it unwise to rule on such
issues until more is known about the inner workings of the auditory

system, particularly its handling of intensity information.

In this section we analyze transmission noise when stochastic
chains performing different tasks are connected in sequence. For
example, suppose receptor activity is processed by a neural network
just behind the ear. The network acts as an amplifier, boosting
weak signals by converting them into a pure birth process. A
cascade of impulses results. This initial output consists partly
of amplified signal and partly of noise created by the birth
process. No way is known for teasing the components apart. Hence,
each impulse is simply forwarded to a high-level decision center by
a second network. The output of the latter now contains at least
two distinct noise sources: 1) the noisy portion of the birth
process, and 2) noise generated in transmission. Assume this
transmission noise to come from a perfectly balanced branching-

chain. Immigration noise might be another possibility, but we
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neglect it here.

We know how to formulate a birth process and a balanced-line
separately, but how do we deal with their combined output when they

are arranged in sequence?

The problem is important because a two-step detection mechanism is
more realistic than a simple branching chain whose propagation
parameters would be the same everywhere. 1In this section we show
that such an equivalent branching chain exists, and can be
substituted for a two-step amplifier-transmitter. Properties of
the equivalent chain are not hard to calculate from the parameters

of its two components.

This principle of equivalence implies that auditory detection is
predictable from the properties of single branching chains as given
by Eq.(14), even when the mechanisms governing transmission are far
more subtle, involving sequences of processing networks performing

basically different tasks.

Arbitrary Cuts:

To analyze the two~-step transmission process, consider first an
arbitrary cut in a branching chain. The cut divides transmission
time into two distinct segments, one just prior to the cut and one
after it. A parallel version of such segmentation was touched upon

earlier when we sought to unravel discrete branching chains by
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making a cut at a particular stage. Here that earlier treatment is
updated to handle continuous time and a stochastic process rather

than successive stages in a discrete chain.

Call the time segment prior to the cut ¢t, where:

0 < =< 1.
Evidently the second, right-hand time segment must be (1 - ¢ )t .
An arbitrary cut will partition the generating function of the
overall process into two distinct components just as in the case of

discrete chains. The partition works out to be:

G (S) = CouGyg)(8))-

(68)

Notice that as ¢ - 0 we have:

Gy (8) = G\(G,.(8)) = G (s),

and as ¢ - 1:

G, (S) = GG, (s)) = G,(8) .

These last relations identify cuts at the very beginning and very
end of the chain. Such partitions were first encountered as we
unravelled discrete branching chains in Egs.(2) through (6). The
effect of a partition is to nest the generating function following
the cut inside the generating function prior to the cut. We have

then fixed on the cut as a reference point, calculating the spread
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of events prior to it, and the evolution of events after it.

Now suppose a transmission process undergoes a fundamental change
at the point of the cut. Equation (69) uses the nesting principle
to construct a two-step transmission mechanism. The first chain’s
output serves as an input to a second step subsequent to the cut.
This partition defines a two-step mechanism since the machinery
before and after the cut is not the same. Partitioning the overall

generating function, G.(s), via a cut at ¢t produces:

G (8) = HyfJ 1.9y (8))-

(69)
H,.(s) is our label for the generating function of the first step
in a two-step transmission mechanism. Its duration is ¢t, and its
output serves as input for a second step, labelled here J-eye(8).
We indicate that the two steps are basically different by altering
identities of the generating functions on either side of the cut.
From EJ.(69) we see that an equivalent overall generating function,
G.(s), also exists. It emerges whenever two such chains are
connected in sequence. The form of the overall function will not

necessarily conform to either of its components.

The critical point conveyed by Eq. (69) is that when H.(s) and J.(s)
are established, G.(s) becomes fully determined. Specifically, if
H.(s) is a pure birth process, and J.(s) is a perfectly balanced
transmission line, the output of the second step, J.(s) proves to

be equivalent to a single branching chain, G.(s) obtained by
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nesting a balanced-line generating function within a pure-birth-

process. We do not yet know what the equivalent chain is, but we

know how to find it.

Pure Birth With An Arbitary Cut:

To illustrate this reasoning, refer again

generating function for a pure birth process:

e *g
1-(1l-e*t) g

G.(s) =

Make a cut at ¢t and let:

D = e—(p}.tl

p2 = e"(l"@)lt.

to Eq.

(52), the

(70)

We label parameters in Eq.(70) as "1" and "2" in order to identify

two separate steps, one on either side of the cut.

The cut defines a probability distribution of output counts from

Step-1. For each possible count in Step-1, an identical number of

chains is formed in Step-2. Hence, a Step-2 chain is set in motion

by each Step-1 output event. Accordingly:
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(71)

The summation in Eg. (71) omits zero because the latter is excluded
from the pure birth process running in Step~1. Minimum count at
the point of the cut must then be unity. Equation (71) in fact
shows birth processes on both sides of the cut. The resulting

geometric series sums out as follows:

D5
1-g.5
G.(s) = %

p,s
1_
q{:“iﬁs)

(72)

The equivalent generating function, i.e., Eq.(72), displays a
nested structure decreed by the rationale underlying Egs. (68) and
(69). Step-2 1is sited neatly within Step-1, displacing the
operating variable s normally found in the same location. 1In this
case, both functions happen to be the same. Later we connect
processes that change at the cut. In that event the nested
generating function differs from its host, but the principle
governing linkage between two successive branching chains remains

the same.
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After reduction, Eq.(72) becomes:

G.(8) = by'D,S
¢ 1-(1-p,'D,) 8
(73)
where, of course:
p.*p, = € —eit - (1-e)it o g-it

We see that a birth process regenerates around a cut at pt.
Parameters of the successive time segments simply multiply against
each other, leading to easy recovery of the original birth
parameter. Evidently this type of division can be extended
indefinitely by cutting the time line over and over again. What we
have done here reveals the repetitive inner workings of a birth
process about as clearly as they can be shown. All branching

chains operate under essentially the same rules.

Equation (73) also shows that birth processes are reproductive

even when the parameter changes at the cut. If we set:

(74)
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the output of the second step will then be equivalent to a single-

chain birth-process with a birth parameter defined by:

A, = @A+ (1-@)A,.

This is a simple example of a branching chain equivalent to a

linked system with distinct components arranged in sequence.

Pure Birth Followed by Balanced Transmission:

Now turn to the generating function of a linked amplifier-
transmitter as described at the beginning of this section.

Incoming signals are processed first by a booster network yielding

a pure birth process. The resulting impulse cascade is then
transmitted to a decision center via a perfectly balanced

transmission line.

These components were chosen for ease of calculation, but they
offer a fairly realistic picture of sensory processing subsequent
to receptor activity. Calculation is easy because mean values
multiply when chains are connected in series. A perfectly balanced
line with its mean of unity gquarantees that overall output in the
vicinity of a decision center will have a mean value identical with

the local amplifier stage close to the ear.

On average, nothing is lost in transmission, although, of course,

a balanced-line wipes out message-events as often as it creates
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progeny. The principal impact of a balanced-line is seen in the
output variance. Noise created by events moving from the periphery
to higher centers, adds to noise carried over from the initial
birth process. The two sources seldom add up directly, due to
covariance. Despite these subtleties, the combined variance can be
found without difficulty . Just compute the equivalent single

chain and calculate the variance of its output.

Following guidelines provided by Eq.(69), we now consider the
generating function of a two-step detection-transmission device in
which Step-1 is a pure birth process, and Step-2 is a balanced-

line:

s-1
L aesAtEY
G, (s) = 1-y,(s-1)

C1-pyf1e—st )
1 (1_p0(1+ 1_Y2(S_l))

(75)

Parameters p, and y, are the transmission constants of the two steps
comprising the chain. Relative duration of each step is built into

its parameter as before:

Py = e-v}.t'

(1-@)vyt.

Y2
(76)

The "parent" generating function in Eq.(75) is a birth process
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whose functional form was originally developed as Eq.(52) (see also
Table 1). Nested within the parent is a balanced-line "offspring"
derived earlier in Eq.(54). This nested structure is decreed by
the logic underlying Eq.(69). It governs the construction of all

two-step generating functions.

Subtract unity from both sides of Eq.(75) and switch over to tails

form:
1
0.(s) .
i 1+D, Y, ~(1+P;Y,~P:)S
0,(s) = 1/1+p,Y,

1- 1___._21___ s
1+p1Y2

(77)

The expression in Eq. (77) signals a birth-death process for the
output of our two-step detector-transmitter mechanism. Its tails
generating function conforms expressly to the version developed
earlier in Egs. (10a ) and (10b ). Based on guidelines provided by

Eg.(10a), constants of the birth-death chain must then be:

PiY;

p.(0) = ——=—,
¢ 1+p,¥,
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(78)
We have established that this two-step detector-transmitter device,
a pure birth process feeding a perfectly balanced 1line, is
equivalent 1in output to a birth-death branching chain whose
propagation parameters can now be deduced from the constants in Eq.

(78). The output probability distribution is evidently:

Py,

p.(0) = .
: 1+py,

p. (k) = (1-p.(0))P-(1-p) ¥,
k=1,2,3,...
(79)
All that remains 1is to calculate the mean and variance of the
output in Eg. (79). The mean should be easy since output in a two-
step mechanism is always the product of its component mean values.
Balanced—-lines deliver their input unchanged in expectation. The
major alteration will be an increased variance. With a single
input going in, mean output of a balanced 1line is unity.

Accordingly, for the two-step process under consideration:

Mean Output = e®** . 1,

To confirm this intuitive argument, go to Eg. (77) and calculate
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the mean directly:

0,.(1) = L o et

(80)
The result confirms intuition. A variance also follows when we

differentiate Q.(s) with respect to s:

1-p;+D1Y,

0c(1) = -
b1

(81)

Now compute the variance via Eq. (17):

1-p,+2p,Y,
pP

Variance

’

ePrt(o®it_1) 12t (1-¢)yt.

(82)

If ¢, the fraction of the two-step mechanism devoted to pure-birth
detection, approaches unity, output variance approaches a birth
process. Similarly when ¢ - 0, we get back the variance of a
balanced 1line. Should immigrant pulses ever contaminate the
balanced line, a secondary noise will be added to both mean and
variance of the output. All the foregoing arguments are based on

the supposition that such intrusions are negligible.

The existence of a single chain, equivalent to a two-step or multi-
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step transmission process, indicates that we are dealing with a
robust device whose properties are not heavily dependent on details

of operation assumed in advance.

Moreover, the variance due to branching, i.e., the magnitude of
internal transmission noise, may easily become a dominant factor in
any accounting of noise sources. This possibility mandates caution
in adopting detection theories based exclusively upon stimulus
properties. Everything learned thus far in our study of branching
systems advises such caution. Problems associated with detecting
small intensity changes may arise largely in transmission, rather
than in acoustic signals, or auditory receptors. We should reserve
judgment until more is known of the actual mechanisms of auditory

transmission.

Our study of two-step detection mechanisms might well have
concentrated on erosive transmission of message-events following
initial amplification. This would not have altered our conclusions
about output significantly. Omitting periodic boosts to message-
events implies output-input ratios of less than unity in the second
step of the process (see Table 1). Since the mean values of the
two steps multiply against each other, central output after erosive
transmission must be smaller than the input provided by the initial
boost at the periphery. Such losses are possible, perhaps even
likely; but if they occur, transmission is invariably more complex

than with balanced lines at the second step.
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5. ADAPTATION LEVEL

Ideally, alerting signals are produced by a single chain that has
grown silent during continuing stimulation. The chain adjusts its
propagation parameters to minimize amplification when dealing with
a steady-state stimulus. This is accomplished by balancing gain
and dropout parameters against each other. The resulting condition
( A =upu ) is identified as a balanced-line. It was studied in our

earlier discussion of Eq. (38) through Eq. (41).

Balanced-lines establish a quiet baseline suitable for detecting
incremental changes. Any alteration of the balance causes the
chain suddenly to amplify, resulting in a cascade of impulses at
the output. Average discharge varies with incremental intensity,
but there is no necessary linkage between the shape of a discharge
and the time course of a stimulus increment. Mechanisms of this
type are not meant to be faithful copies of the input. They sound
an alert, a warning that something new is happening out there. The
format of increment detection relies on such warnings if the proper
machinery is built into the sensory channel. Laming (1986) offers
a variety of arguments suggesting that it is. Moreover, he shows
that difference discrimination (comparison of two distinct stimuli)
and increment detection (blip on a steady background) tend to

follow different detection laws.

The balanced-lines described in this section resemble perceptual

frames of reference that psychologists have traditionally
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identified as "adaptation-levels". (See Helson, 1947.) We first
consider adaptation-levels established near absolute threshold,
then turn to typical adaptation-levels involved in increment
detection. In each case detection is mediated by alerting signals

emerging from a two-step mechanism.

Ultralinearity in Two-Step Detection:

Two-step detection-transmission is the scheme described in our
argument leading up to Eg. (79): a brief auditory stimulus sets
off a peripheral birth process (Step-1); the latter then feeds a
balanced-line conveying amplified stimulus information to a central
decision region (Step-2). The mechanism is a branching chain
constructed from two elementary building blocks connected end-to-
end. Output is a brief warning signal pointing to a threshold

auditory event.

Our tails generating function governing central output in this

special case was developed in Eq. (77). It is:

0.(s) = —M/AtPa

1~ 1____p_1_ g
1+D1¥,

Where p, and y, are constants associated with each step:

b, = e_qﬂt/

Yz = (l*(P)YC:
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and ¢ is the fraction of the entire chain occupied by the first

step.

Evidently the energy level of a stimulus triggering this warning

influences the size of the response cascade produced in Step-1.

The balanced-line in Step-2 limits further amplification to an
amount just sufficient to compensate for losses in transmission.
An efficient transmitter boosts the emerging impulse count until it
is identical in expectation with the entering impulse count. This
prescription implies fixed propagation constants in Step-2. Hence,

Step~2 should be independent of stimulus influences.

This building-block approach to detection is based on a trio of
independent operations: amplification, transmission, and decision.
The approach is reminiscent of a black-box analysis, and is
illustrated in Figure 4.

- FIGURE 4 HERE -

These black boxes, however, are not vaguely defined. They are very
sophisticated. The manner of their connection has a decisive

impact on the additivity of information passing through them.

To clarify this point put auditory stimuli through a log transform
(see Eq. (28)) just prior to activating the pure birth process in

Step-1. The parameter associated with Step-1 then becomes:
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Y
Lt l+ax’

where A, now carries a subscript because it varies with stimulus
intensity x. Parameters ¢ and t are absorbed into the units-

constant.

Because Step-2 is functionally separate from the initial amplifier,
the transmission constant y, remains unaffected by this maneuver.

Accordingly:

1
0. (8) = l+ax

1/1+ax
-——t %" g
1+y,/1+ax

1+ax/1+y,+ax
-1
l1+y,+ax

O.(s)=

1-(1-

(83)
Our tails generating function for the two-step detector shows the
familiar form decreed earlier by Eq. (10b), signalling a birth-

death process. Distribution constants of the latter are evidently:
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Figure 4: Black box diagram showing two-step detection. Stimulus
energy activates receptor. Output of latter undergoes 1log
transform. Neural signal then builds up in 1local (i.e.,
peripheral) amplifier network. Output of amplifier varies with
input intensity. Amplifier is a branching chain triggered by a
single input event as shown in Step-1 diagram. Stimulus and
background-level combine to set control (A-p) on multiplication
characteristics of amplifier. This regulates size of output
cascade. Diagram shows equation parameters at output of processing
units in which they are generated.

Amplifier output fed to balanced-1line whose propagation operator is
illustrated in Step-2 detail. Balanced-line delivers noisy but
generally faithful version of amplifier cascade to decision center.
Sudden burst of pulses at this center constitutes alert-signal,
indicating change in background, and calling for response by
decision center. Included in such response is possible resetting
of adaptation level.

Operation of this mechanism is described in Egs. (83)-(97) in text
under section headed Increment Detection at Adaptation Level.
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Y2

0 —_—,
Py (0) 1+y,+ax

B = 1

1+y,+ax

(84)

With guidelines supplied by Eg. (84) it is now easy to construct
the output counting distribution of a two-step detector, as well as
the probability of exceeding any fixed output count as stimulus
intensity changes. We omit these proofs. They were presented
earlier in Egs. (79) and (77). Interest centers now on measuring

internal noise by connecting it with quantities we can measure.

The generating function in Eg. (83), as well as the constants in
Eq. (84), depict auditory detection in a self-contained alerting
device, working near absolute threshold. 1In view of Eq.(84), vy, is
seen to be an (unmeasured) internal noise accompanying
transmission. The effective intensity driving the mechanism must
then be:

y.+ax,

which is our so-called ‘“ultralinear" expression developed

originally as Eq. (42).
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Threshold intensity must be large enough to overcome the internal
transmission noise. The latter is then measurable as an intensity
added to any external signal, bringing it up to audibility. Noise
maghitude is deduced; not measured directly. It does not sound
like a noise. In most situations it is not audible at all. But
our arguments show it is there and also measurable. The two
stimuli, external signal and internal noise, are additive if the

detector is configured as two distinct mechanisms in sequence.

Additivity is also evident from analysis of the output variance.

Following Eq.(82) we have:

Output Variance = (l+ax) (2y,+ax).

(85)
A major component of the output variance is attributable to

survivors, i.e., non-zero counts. It is given by:

Survivors Variance = Eiji,

BZ
= (y,tax) (1+y,+ax)

(86)

Equation (86) portrays a shifted, geometric distribution whose mean
is 1 + y, + ax. Evidently ¥, corresponds to the adaptation-level
of the threshold detector. Incoming stimuli are added to this

level in determining the survivors’ counting distribution.
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Full output variance in Eq. (85) requires weighting Eg. (86) by the

survival probability:

Weighted Survivors’ Variance = (l+ax)(y.+ax)
(87)
Zero-count specifies a single state. It contributes no variance
except for its mean-square difference from the overall mean value
l+ax. There are two such mean-squares, one from the zero-state and
one from the distribution of survivors. Adding them up, each

weighted by its respective probability, we obtain:

_ Ys _ 2 l+ax _ 2
m.s.d. —-E:?;EEQK)(1+ax))+i:§;:E§“l+yz+aX) (1+ax))?,
= y,(1+ax).

(88)

Output variance will be the sum of these two components: Egs. (87)

and (88).

We see that transmission noise in Step-2 establishes the
adaptation-level against which incoming stimuli are detected.

Absolute thresholds are measured relative to this adaptation level.

Additive Balanced-Lines:

Adaptation-level concepts are wusually found with stimulus
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conditions far removed from absolute threshold. The background is
said to define a reference frame. Sensory, perceptual, and
evaluative systems are seen as adjusting to the frame. Stimuli are

perceived relative to the frame rather than directly.

An amplifier-transmitter mechanism adapts to high intensity
backgrounds by adjusting propagation parameters at the intial
amplifier step, neutralizing the background and converting
operation to a balanced-line (A=u). In that event, Step-1 cannot
be a pure birth process. There is no way of getting to balance

unless the mechanism can branch to the zero-state.

Accordingly, at non-zero background levels Step-1 must have a
birth-death configuration. With the log transform, the initial

amplifier step would be configured as follows:

(l+ax) (s-1)
1 -(y,+ax) (s-1) °

H(s) =1+

(89)

This generating function is adapted from Eq. (32). It describes
the first, amplifier step of our increment detection process. As
before, x symbolizes increment intensity, while ¥, is an
adaptation~level set by the reference frame in Step~1. Here we
make a further assumption that background and increment are

additive within the initial amplifier. Hence:



89

Y (X) =y, +ax.

Actually, nothing in this or subsequent arguments requires such
within-step additivity. We could get by without it, and in the
interest of generality perhaps should proceed that way. The
assumption is added here because it simplifies analysis and makes

our presentation much easier to follow.

Set ax = 0 in Eg. (89). The generating function now describes a
balanced-line, but it remains the amplifier step of a two-step
mechanism. Balance 1is created as the amplifier neutralizes a

steady-state stimulus by setting up an adaptation level at vy,.

Thus, with increment intensity at =zero, a two-step detector-
transmitter becomes two balanced-lines joined end-to-end.

Intuition suggests they should be additive. Can we prove it?

Proof is easy. Recall our theorem (Eq.(69) ) on arbitrary cuts in
a branching chain. Apply the nesting principle with increment
intensity ax = 0, while a second balanced-line displaces the

operational variable s in Eqg.(89):
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(1+ 1 S(_1 1) _1)
G (s) = 1+ Y (S

s5-1
1-y,(s-1) -y, (s-1) '

s5-1
1- (Yl+72) (S—l) '

(90)
Equation (90) is the generating function equivalent of the two-step
output. We see that sequenced balanced-lines are additive. At
zero increment, the two-step system is equivalent to a single
balanced-line with internal noise equal to the sum of noise

parameters associated with the two steps.

Notes on Notation :

With the introduction of two-step detection and its equivalent
single branching chain, our notation grows unavoidably complex. We
review it now in order to clarify current arguments as well as

subsequent discussion of increment detection.

Parameters of the initial amplifier (see Fig.4) are labelled A and
p respectively. When a branching chain is cut, parameters of steps

on each of the cut side carry an indentifying subscript. Hence:
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p1 - e"’?(l—}l) t

is a constant describing amplification in Step-1. An additional
parameter ¢ denotes the fraction of the full chain length t

allocated to Step-1.

Step-2 is a balanced-line transmission network receiving data from
the first detection step, i.e., the initial amplifier, and
delivering it to a high-level decision center. Balanced-lines have
only one propagation constant. Gains and losses offset each other

precisely. We label this single constant y. Hence:

¥, = (1-@)yt

is the gain/loss propagation constant and the fraction of the full
chain occupied by Step-2. A subscript on y., indicates that these
constants characterize Step-2, i.e., the transmission phase, of the
detection process. We also refer to y, as an "internal noise"

accompanying transmission.

When our Step-1 amplifier listens to a continuous background, it
adjusts gain and loss parameters to minimize amplification. We

label the noise in this near-quiet state y,, where:
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¥, = QAL,

and A = p. Accordingly, y, is the internal noise of the Step-1
amplifier working at an adaptation-level set by the intensity of a

steady-state background.

Finally, the sum of internal noise factors when two balanced-lines

are joined end-to-end, is identified as:
Yiz = Y1*Y2

= (@A+(1-@)Yy)t.
(91)
Thus, ¥,, is a noise constant characterizing a single balanced-line
equivalent to our two-step detector with the Step-1 amplifier at

adaptation level.

Increment Detection At Adaptation Level:

Earlier we showed that a two-step detector can neutralize steady-
state background stimuli by adjusting parameters of the initial
amplifier step so as to create a balanced-line condition. At this
baseline, the two operations constitute a connected pair of
balanced-lines with non-identical noise constants. The first, v,,
depends on the intensity of the background stimulus, whereas the

second, ¥,, is fixed by conditions within the auditory system. We
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have established that this pair of constants is additive if
balanced-lines are connected end-to-end. (See Eg. (90)). In that

event a single constant:

Yiz = ¥Y1+Y2

reflects the internal noise of a single chain whose output is

identical to that of the two-step detector.

Using such additivity, we can write down the generating function of
a two-step mechanism, detecting and transmitting increments above
a steady-state background. Equation (89) is our guide. Begin by
setting the initial adaptation level at y,, i.e., an arbitrary

background intensity:

(1+ax) (1+—2"1 1)
G,(s) =1+ 1—722i;?) .
1-(y,+ax) (1“'—,1—:7:(-5_—17"1)

(92)

Equation (92) shows a Step-2 balanced-line nested within the
initial birth-death process. Stimuli entering our Step-1 amplifier
are first put through a log transform (Eqg. (28)). The resulting
generating function was developed originally as Eq. (32). Within-
step linearity was added in Eq. (89). We then nest a balanced-line

corresponding to Step-2 in Eq.(89), producing Eq.(92), a single
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branching chain equivalent to our two step process.

Reduction of Eg. (92) yields:

(1+ax) (s-1)
1-(y,+ax) (s-1) '

G, (s) = 1+

(93)

where y,, is the sum of internal noise constants as shown in Eq.

(91).

Now switch over to tails form:

l+ax/1+y,,+ax

1 Y1273
1+y+ax

0,(s)

(94)

Equation (94) is again in the standard format established by Eq.
(10b). Except for the size of the internal noise, the expression
is identical to Eg. (83) developed for a pure birth process at the

initial amplifier.



95

Distribution constants of the two-step output are:

Yiz
0) = — 12,
Px(0) 1+y,+ax
f=— L
1+y,,+ax

(95)

Again, apart from the size of the overall internal noise, the
parameters in Eq. (95) are the same as those found earlier with a

pure birth process at absolute threshold. (See Eg. (84).)

Why should a two-step detector equate pure-birth at absolute
threshold with birth-death for backgrounds above threshold? A link
is built directly into the adaptation level. Differences between
pairs of amplifier parameters (A - u), contain a background setting
as one term. (See Fig. 4.) When the background u goes to zero,
¥, = 0, and y,, = y,. The equivalent branching chain (Eg.(94)), with
adaptation 1level ¥,,, then shades into a pure birth process
(Eq.(83)) as background intensity drops out. A birth-death process

limits on pure-birth when the background vanishes.

The probability that an alerting signal from this detector exceeds
any fixed number of pulses can be calculated by expanding Q,(s) in
powers of s. Equation (94) shows the expansion to be a geometric

series:
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k=0 3 k
= 1+ax y12+ax k
o.s) - 3 ( 1+y12+aX)( 1+Ym+ax) sk,

(96)
It is now easy to construct psychometric functions expressing the
relation between detection probability and increment intensity for
various values of a detection criterion, i.e., "critical number",
in the burst of impulses emerging at the chain’s output. These

curves are built into the coefficients of s* in Eq.(96).

Notice that our combined adaptation-level y,, is not determined
completely by the noise components of the first amplifier step.
Adaptation-level includes an added source of noise from the
balanced line in Step-2. False alarms can be suppressed more
effectively by setting the amplifier’s adaptation-level some
distance above average background intensity. This is especially
clear when the background happens to be an acoustic noise. Hence,
our two-step detection mechanism controls false alarms by trading

off its detection criterion k against its adaptation-level ¥,,.

Based on the constants developed in Eq.(95), the output counting
distribution of a two-step increment detector as depicted in
Egs.(93) and (94), i.e., a birth-death amplifier feeding a balanced

transmission line, should be given by:
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Yiz
1+y,,+ax’

p,(0) =
Px(k) = (1-p,(0))P-(1-p)*1,
k=1,2,3,...

(97)

where B is the branching chain parameter defined in Eg. (95).

Evidently, output counting distributions developed from all such
two-step devices are intimately related. Family resemblances
appear because all have the same relation to a simple branching
chain. The parameters p,(0) and B differ from case to case, but
each separate device generates an output having a characteristic
geometric, or as it is often called, Bose-Einstein form. The
latter is imposed by a characteristic noise added to message-events

passing through a continuously branching Markov chain.

Increment-detection devices such as these work in essentially the
same way at all background-levels (including zero background at or
near absolute threshold). When background level increases, our
internal noise parameter y,, will increase along with it. These
changes alter the resolving power of a detector, undercutting its
ability to discriminate increments of fixed size as background

intensity increases. Nearly all branching chains work in this way.
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Hence, virtually the entire family of alerting signals described in

this paper are Weber’s-law devices.

Balancing Mechanisms:

We claim that two-step (i.e., amplify-transmit) detection devices
should be able to neutralize steady-state backgrounds by adjusting
parameters at the initial amplifier to establish balanced-line
conditions. We say also that adaptation levels should not be set
exactly to the background intensity, preferably some distance
above. This would be an excellent scheme for suppressing false

alarms when the background is an acoustic noise.

Requirements such as these are not trivial, and it is fair to ask
whether a relatively automatic alarm device (which is what we have
in mind for this increment detector) could know how or when to make

such complex adjustments.

Of course, a high-level controller might be reading the stimulus
environment continuously, sending out regular instructions to
update adaptation-levels over an entire range of auditory
processes. This does not seem beyond the ingenuity of a system
renowned for its ability to organize and sharpen wholesale patterns
of information flooding up from the two ears. But even a
sophisticated controller would have to deliver its instructions to
peripheral 1locations, directing structures there to make needed

adjustments. Eventually we should be able to find and identify the
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mechanisms involved in such interventions.

Laming (1986, pp. 156-167) conjectures a balance between excitatory
and inhibitory impulse trains, creating a gquiet detection unit
ready to respond to any incremental change in a continuous
background. His detailed arguments suggest that our amplifier
parameters, A, and u,, might represent opposed control systems in

a branching chain, one excitatory and the other inhibitory.

A new stimulus would drive up A, causing the chain to amplify
briefly. If the same stimulus continues, it becomes a background
condition, and u, then increases to offset the newly-elevated level
of excitation. A chain could be brought to a new equilibrium this
way. The equilibrium is said to be new because it reflects a new
internal noise-level. Sensing and neutralizing continuing
excitation is not a complicated problem. We can think of several
ways it might be done within the branching chain itself, requiring
no elaborate or sophisticated intervention from high-level control
mechanisms. Local management requires only an array of excitatory
and inhibitory control sites on each branching chain, and a means
for leaking continuous excitation into the counterpart control
sites. Machinery such as this comes into equilibrium (adaptation)

at a level set by any continuous background.

What if the stimulus happens to be a decrement? The 1line of

reasoning just developed suggests that A, should drop immediately
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to a lower value. If this new level persists, a lower value of A,

becomes the new background. This will tend to pull the counterpart

p, down as equilibrium is restored.

The problem with such adjustments is that during the branching
chain’s initial reaction to a decrement, and prior to restoration
of the balanced-line condition, our log transform in Eq.(28) would
swing negative briefly. A shift such as that tends to block
booster action at Step-1l. There would be no output cascade.
Hence, a detector using the log transform in Eq.(28) sets off an

alarm only when it sees an increment.

The implied correction of Eq.(28) makes the log transform symmetric

for both increments and decrements:

In @+laxh) = |Ac-wde.

(98)
Rectifier action such as that shown in Eq.(98) produces mirror-
image psychometric functions above and below adaptation level.
Each function starts from the same intensity. Each involves

departures of the same magnitude, up or down.

6. REPRESENTATION OR AILARM SIGNAL?

The basic building block in our study of transmission is a single

branching chain driven by a single start-up pulse. An initiating
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event multiplies and propagates through the chain, eventually
becoming a cluster of events flowing toward the output. Governing
the flow is a Markov operator applied continuously to every
message-event. At random some are multiplied, becoming two or more
pulses. Others drop out, disappearing before they can be recorded.
The result is an evolving cluster of impulses, whose total moves up
and down in a random walk as it approaches the chain’s output. The
process begins with a single input, and ends in a flurry of
outputs. Ooutput clusters are partly noise, reflecting random
losses and multiplications encountered as progeny of the initiating

event move through the chain .

Two Roads to Detection:

our basic building block can be used in at least two different
ways. A particular output can be viewed either as a tiny element
in a large-scale representation of the stimulus environment, or as
a completely self-contained alarm signal. In the first instance,
thousands of building blocks form an amplified, noisy, but
otherwise faithful, central copy of a peripheral stimulus pattern.
The branching chains we have described constitute the elementary
units used in constructing such representations. A sophisticated
central analyzer might then refine this construction producing

enhanced, sharpened images of the auditory environment.

We have concentrated on the second application of the basic

building block: a single chain, or single-chain-equivalent,
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functioning as an alert-signal. The latter is discussed and
evaluated throughout the paper, particularly in our treatment of

adaptation-levels and two-step increment detection.

Part of our interest in alerting mechanisms traces to the novelty
of the idea. These signals are psychological events conveying some
form of alarm. They do not reflect subtle calculations imposed by
decision theory. Laming (1986) was chiefly responsible for this
outlook. He introduced alerting signals into sensory analysis, and

developed their significance in increment detection.

Traditional treatments of auditory detection are representational,
invoking the full panorama of the stimulus environment. Alerting
signals are limited to a single narrow condition: a minute change

in a continuous background stimulus.

Both outlooks are important in auditory analysis. The world we
live in is filled with events to be represented and warnings to be
heeded. When man hunted to survive, the slightest snap of a twig
somewhere off in the distance conveyed instant, crucial
information. Something out there had suddenly changed, and change
was often deadly. Abrupt alarms of this sort are quite different
from, say, the beauty of Placido Domingo’s voice climbing up
through the upper reaches of "e lucevan le stelle". The latter is
a pure representational phenomenon. Analytical accuracy and broad

band fidelity are the qualities required of a representational
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transmission systenm.

The faint sound of a twig breaking comes from a more primitive
realm. Accurate detection of weak transients is the key
requirement. The process draws attention away from whatever else
may be going on, focusing it on sudden changes in the auditory
environment. Increment detection is more likely to depend on
reactions such as this than on hi-fi signal representations

subjected to mathematical scrutiny.

Representational Detection:

A quintessential representational model is Hecht, Shlaer, and
Pirenne’s (1942) treatment of absolute visual thresholds. This
important paper was mentioned earlier in our discussion of erosive

transmission. We refer to it here as HSP.

According to HSP, photons absorbed in retinal rods give rise to a
flux of nerve impulses. This neural flux is thought to be a
faithful copy of an optical flux incident on the retina. Ordinary
incandescent light is Poisson distributed. Hence, at absolute
threshold, if the neural response is a copy of the optical input,
we should find psychometric functions similar to those in Eg.(96)
but based on the Poisson distribution. A template of such
functions was constructed relating detection probability to
intensity. Each function defined a criterion or "critical number"

required for detection. Finally, HSP compared psychometric
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functions obtained experimentally with those on the template, and
extracted a critical number telling how many photon-absorptions
should be required for detection. They found the critical number

to be quite small; of the order of 5-10 events.

For HSP, the pattern of impulses at the input of a visual
transmission network was a faithful copy of the stimulus itself,
diminished slightly by random losses. Auditory alert-signals,
although triggered by stimulus events, are not copies of anything.
They follow their own growth rules. Magnitude and time course bear
no particular resemblance to sensory patterns. These are alert-

signals, not representations.

HSP used an erosive transmission mechanism (random losses - no
boosting) to convey photons from the surface of the cornea to a
point at which detection occurs. In our own approach to
representational detection, we employ balanced-lines to model the
transmission stages mapping a peripheral stimulus pattern to a
central locus. The pattern itself, not an accompanying alarm

signal, is detected centrally.

We start as HSP did with a Poisson distribution of photons incident
on the eye. A random subset of these is absorbed in the retina,
generating a distribution of neural events just behind the receptor

surface. The Poisson mean of this neural response is labelled m.
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To simplify our argument, exclude local amplification. Simply
connect each event in the Poisson start-up pattern directly to a
balanced-line conveying a representation of the event to a decision
area higher up in the system. There are as many balanced-lines as
start-up events, each adding internal noise to the transmitted
pattern. Hence, the system delivers a noisy, slightly boosted
version of the Poisson input to the decision region. Our problem

is to analyze this mapping.

Each start-up pulse in the stimulus pattern sets off a balanced-
line transmission sequence, symbolized here by:

s-1

J(S) = 1+m.

(99)

The label of the generating function in Eq. (99) is changed to J(s)
because it will be nhested in a Poisson distribution of start-up
pulses, the initial condition proposed by HSP. Whenever branching
chains are triggered by events having a probability distribution,
output can be found by nesting the transmission generating function
within the generating function of the triggering distribution.

Accordingly:

G.(8) = an(J(s)-1)
m .

(100)

Here G.(s) represents the output counting distribution at decision
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level. We know its mean to be m because individual balanced-lines
connected to start-up events, reproduce the mean value of the

Poisson input exactly. Combining Egs. (99) and (100) yields:

m{s-1)
Gm(S) = @ 1-¥{s-1)

(101)
The central representation in this instance is a compound Poisson
distribution (see Feller, 1957, p.270). It is not strictly Poisson
unless the balanced-line constant ¥y = 0. The latter would imply
noise-free transmission, an unlikely prospect. What else can be

said about Eq.(101)?

Approximation When Transmission Dominates:

In view of the basic definition of e®:

ez = lim (1+£)’",
m—o m

if the Poisson mean m is of reasonable size, G,(s) can be

approximated by:

s~1 n_ on
G,(8) <1+fI:§7;;:fr) = J"(s) .

(102)

Equation (102) shows the output as a sum over a fixed number of
balanced-lines, each derived from a packet of energy making up the

stimulus. Our approximation treats this number as fixed, whereas
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of course, it has a Poisson distribution.

Since the mean and variance of any single balanced-line are 1 and

2y respectively, statistics of the overall output must be:

mean = m ,
variance = 2my.

(103)

This type of approximation would be appropriate if our balanced-
line noise constant y were large in relation to stimulus variance.
Noise introduced in transmission would be expected to swamp the
stimulus variability. Hence, combined input and transmission noise
levels could be represented adequately in the output by transit
noise alone. The number of balanced-lines contributing to the
total output would then be proportional to the average energy of

the stimulus.

Balanced~lines mapping stimulus patterns to a central locus are
viewed as common carriers in representational models such as this.
The transmission noise constant y characterizing each balanced-line
is said to be fixed by conditions internal to the auditory systenm,

not by intensity or indeed any other stimulus property.

Evidently the Cox-Smith (1954) superposition theorem governs output

counting in Eg. (102). When many parallel transmission lines run



108

side by side as they do here, superposition effects encountered
earlier in Eg. (48) are soon rediscovered. Equation (103) finds
the mean and variance of this many-line outpu£ to be proportional,

implying square-root-law dectability.

Factorial Moments:

A little experimentation shows that branching-chain generating
functions yield counting probabilities when expanded in powers of
s, and factorial moments when expansion is carried out in powers of
s-1. This unusual property is easy to prove. It constitutes an
unexpected gratuity greatly enhancing the scope of any analysis.

For example, expanding Eq. (99) in powers of s-1 produces:

2 (S“l)3+
3!

-----

J(s) = :L+(s:—1)+2«(-L§12}-2-i

+6y

(104)

The k™ factorial moment of the balanced line distribution is then

given by the coefficient of:
(s-1)*/k!.
Our expansion of Eq.(104) provides still another way to calculate

means and variances of balanced-lines. Evidently the mean is unity

(coefficient of s-1); while the second factorial-moment
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(coefficient of (s-1)2/2!), and hence also the variance, are given

by 2y.

To find the actual (not approximate) mean and variance of the
compound Poisson distribution forming our stimulus representation,

expand its generating function, Eqg.(101), in powers of s-1:

G,(s) = 1+ m{s-1) ., ( m(s-1) )2/2! o+,

1-y(s-1) 1-y(s-1)

mz)iftgii + o+

G,(s) = 1 + m(s-1) + (2my+ >

(105)

Mean output is evidently m in precise agreement with our earlier

approximation in Eqg.(103), but output variance is somewhat larger:

mean m;

2my + m? + m - m?,
m(2y+1) .

variance

Hon

(106)

As the transmission noise constant y goes toward zero, variance

devolves on the Poisson input rather than on zero as in Eqg.(103).

Moment generation becomes feasible when branching-chain generating

functions can be expanded in powers of s-1. Accordingly, we can
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view G,(s) in Eg. (101) as a type of moment generating function.
Let m grow large while ¥y approaches zero, so that the product
remains fixed and finite. Now expand the exponent in Eg. (101) in

powers of (s-1):

132
m(s-1) +2my—(STl)- +terms approaching zero

G,(s) = e

(107)

We see that G,(s), the output of a Poisson stimulus representation
transmitted along balanced lines, can be represented as the sum of
a Poisson input variable and a symmetrical distribution with mean
zero and variance 2my. The combination resembles a normal
(gaussian) limit with mean m and variance 2my, but the variances of

the two components add to produce the result in Eg. (106).

Vision vs. Audition:

Balanced-line transmission of a Poisson stimulus pattern produces
square-root-law discrimination at a central locus provided that the
sole effect of intensity is to change the number of lines
operating. This is a key restriction underlying Eqg. (106). We
have shown in effect that HSP’s picture of Poisson detectability
can be retained even after transmission to a central decision area
if messages are conveyed on balanced-lines. Such central detection
will be a bit noisier than its peripheral counterpart, but no other

radical differences separate the two detection schemes.
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Earlier we excluded local amplification prior to balanced-line
transmission in order to simplify our comparison of erosive and
balanced-line transmissions. But now we see that preamplification
can have a profound effect on detection. With branching chains,
the initial boost of a local amplifier creates a Weber’s Law
device. Amplification affects both the size and variance of the

cascades transmitted by each separate line or chain.

Incremental intensity changes can then be viewed as producing
relatively small alterations in the number of lines operating, but
relatively large changes in the variance along each line. Hence,
local amplification transforms the detection 1law governing
incremental change from square-root form to Weber’s Law. It is
probably important to point out again that vision research has
uncovered a region of square-root-law detectability, some 4-6 log
units wide, just above absolute threshold (see Bouman, 1961, p.

385).

It appears that a case can be made for square-root-law detection in
vision, at least in the vicinity of absolute threshold. We know of
no comparable findings in audition. The point is important for
deciding whether auditory alert-signals are real. Is there any
evidence of alert-signalling in the visual field? Suitable
evidence might come from finding Weber’s law with certain sudden

changes in the visual periphery.
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Difference Discrimination:

In the transmission framework we have developed, alert-signals are
triggered by incremental shifts: abrupt departures from a steady-
state background. What happens when this same framework is applied
to difference discrimination: pairs of stimuli presented against a

background of silence?

The format of difference discrimination puts adaptation-levels at
or near zero. Each member of the stimulus pair must then trigger
off its own alert-signal as well as its stimulus representation.
Detection requires a comparison, either between these alert-signals
or the transmitted patterns themselves. Such pair-comparisons
impose entirely new rules on auditory detection. They force
comparative judgments rather than simple reactions to a change of

state.

In an earlier paper we calculated detection probabilities from
comparisons of auditory alerting signals involving simple
increments, pedestals, and pairs of isolated signals; all in two
alternative forced-choice format (McGill and Teich, 1991b). Higher
detection probabilities were found with pedestals and increments.

The differences appeared to be substantial.

These changes in detectability interact with technical problemns
posed by energy scattering in brief, isolated, auditory signals.

Together, they insure that relatively few empirical studies of
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genuine difference discrimination will be carried out. Increment
detection is much easier to set up experimentally, and is found to

be much sharper than paired comparisons of separate signals.

One of life’s little paradoxes is that for years we have turned to
decision theory in order to interpret increment detection although
narrow-band alerting signals offer a much simpler framework.
Perversely, we have generally avoided the more complex difference
discrimination experiments in which decision theory may be

significantly involved.

An unspoken principle of auditory detection 1is that the "ear"
reconstructs stimulus patterns with high precision. Signal
analysis and the search for optimum decision regions then become
the names of the games. These quantitative delights are less
frustrating than the drudgery of analyzing data propagation in
auditory networks. They might also be very productive if we knew
the key problems could be solved entirely within the stimulus

domain. But that is the point of this paper. We do not know.

We do know that a case can be made for narrow-band alerting
signals, and for balanced-lines as common carriers of sensory
information. Each contributes an interesting new twist to our

ideas on detection, but not quite in the stimulus domain.
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