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Simple Models of Sensory Transmission

William J. McGill and Malvin C. Teich

Puzzles abound in modern research on sensory thresholds.

The classical treatment of absolute visual detection devised
by Hecht, Shlaer, and Pirenne (1942) still enjoys wide acceptance
nearly 50 years after its introduction. It depicts the visual
system as essentially noiseless, arguing that threshold phenomena
are created by physical fluctuations in the energy content of the
stimulus. The idea is attractively simple but at odds with much
of what we know or suspect about the complexities of sensory

processing.

Counti Bver 11 u

A huge network exists, certainly more than 2 million neurons
(Brown, 1965), connecting our eyes to the brain. If high level
decision centers can access every photon absorbed in each retina,
this transmission system must somehow be set up to count with
perfect accuracy, permitting no variations of its own to intrude on

threshold data.
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Barlow’s subsequent (1956) amendment of Hecht et al. did allow
for an internal noise he labelled "dark light", but the interaction
is seen as purely additive. Small detection errors remain small.
They do not propagate into larger errors sowing greater confusion

as they pass on up through the system.

Ideal Detection

Or consider the early Tanner and Swets (1954) treatment of
ideal auditory detection. Why should this unique marriage of
signal analysis and decision theory have retained its popularity in
the front rank of auditory research for so many years? We knew
from the beginning that ideal detection failed to account for
either the shape or 1location of most auditory psychometric
functions. It cannot, among other problems, explain the poor
performance of the ear attempting to detect small intensity
differences between pairs of phase- locked pure tones, or bursts of
"frozen" noise, or indeed most other pairings of non-stochastic
stimuli. Yet these inadequacies have not diminished the appeal of
ideal detection in the slightest. Here again, analysis is limited
entirely to the stimulus domain, bypassing any losses or
transformations in the auditory system. The scheme finesses

sensory mechanisms.



In Search of Si icit

Evidently models that analyze thresholds by eliminating
physiological parts of the process are enduringly popular in
sensory psychology. This ought to be a mind-blowing contradiction,
but in fact it is a fairly routine occurrence arising, we believe,

from the operation of two unremarkable psychological principles.

First, a theory seldom falls out of favor Jjust because it
seems implausible. If it offers a simple, convenient calculus in
which familiar findings can be interpreted with relative ease, it
will continue in vogue even though everyone is convinced there is
something wrong with it. This argument was originally promoted in
Kuhn’s (1957 ) landmark study of the history of astronomy. It was
subsequently cast into good psychological form by Margolis (1987)

writing on the role of context in scientific pattern recognition.

A second corollary principle is that people who preach a
gospel of complexity generally end up talking to themselves, even

when nearly everyone concedes they may well be basically correct.

Whenever a theory adopts a simplistic configuration in the
face of complexity, it suggests not so much ignorance or obstinacy
as a determined effort to outmaneuver difficulties by putting an

ingenious twist on the facts. The very enormity of the reception
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and transmission systems governing the major senses suggests they
might provide a computer-like reconstruction of the external
environment. The idea is at least as old as Aristotle. Our goal
would then be to uncover stimulus dimensions decisive in human
perception. An excellent example of the process is the concept of
luminance in visual measurement, where light energy is scaled or
weighted according to its effectiveness in stimulating the human

eye (see Graham, 1965, chapter 13).

Classical Sensory Analysis

A bit less radical than disavowing the nervous system is the
classical position of sensory psychophysics. Carefully controlled
stimuli are used to explore the properties of receptor mechanisms.
Transmission phenomena, if they exist, are ignored. Decision
centers of the brain are thought capable of looking back through
the long neural chain to the periphery so as to isolate events
occurring in the sense organ. Hence, when we analyze a critical
band, i.e. the masking region associated with a pure tone, it is
almost a given that we are studying an activation pattern on the
basilar membrane. In fact the electrophysiological evidence
appears to be contrary. The critical band seems to be formed en

route up the eighth nerve (see Ehret and Merzenich, 1985)

A highly instructive example of such problems can be found in an

early attempt by Davis (see Stevens and Davis, 1938) to deduce
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activation patterns in the inner ear by measuring psychophysical
masking associated with pure tones. Later Békésy succeeded in
making direct observations (Békesy and Rosenblith, 1951),
successfully visualizing the wvibratory motions of the basilar
membrane. Receptor patterns were found to be much flatter, far
more diffuse, than comparable psychophysical data. In the latter
we appear to be examining sharply tuned responses of the entire
system rather than receptor processes in isolation. It is
possible, of course, that a transformation might be found taking
Békésy’s patterns into psychophysical data. To our knowledge no
one has done it. Margolis (1987) explains why it is so difficult
to give up on formulations yielding little progress. All of us
hope devoutly for a psychophysical key that will unlock an accurate
account of receptor processes. We keep searching for the key, and

always it lies just beyond our grasp.

New Paradigms Needed

Time has run out on many of these reductionist ideas. The major
senses are complex systems whose analysis begins in the realm of
stimulus energy and ends in decision centers of the brain. The
zones between reception and decision are mostly an uncharted
communication region where little is known of what really happens.
Sometimes messages are unaccountably lost. Some are contaminated
with noise; effects that seem to multiply as events pass up through

the systenmn. Inevitably we must come to terms with all this
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ambiguity. Ignoring critical elements of sensory mechanisms has
led to half-explanations, analytical devices that do not quite
work, and not a little frustration. It is time, we think, to move

to a new level of discourse.

A serious attempt at coming to terms with ambiguity began with
the emergence of modern versions of signal detection theory in both
vision and audition. (see Geisler, 1989; Green and Swets, 1988
/1966). The development of a new and iconoclastic sensory paradigm
took a great leap forward when Laming’s book, Sensory Analysis
(1986) appeared. Laming jettisoned much of the traditional
apparatus of stimulus and receptor analysis in favor of a few
highly sophisticated "hlack boxes", said to exist somewhere
between receptor and brain. It is not our intention to review or
restate Laming’s work here. We have attempted that elsewhere
(McGill and Teich, 1989); but some discussion of Laming is
required as a preliminary to understanding where contemporary study

of sensory processes seems to be heading.

The centerpiece of Laming’s paradigm is a mechanism he calls a
differential coupler. 1In effect, Laming argued, sensory systems
somehow manage to neutralize incoming stimulation if a continuous
background remains at constant intensity. Increments or decrements
are then detected as transients away from this neutral condition.
The important point is that the system behaves as though it were a

null detector. Laming (1986) offered a battery of arguments in



support of this view.

Differential coupling is equivalent to the creation of an
adaptation level (Helson, 1947). In fact, we prefer to speak of
the phenomenon in this more traditional psychological way, but
minor nuances of language should not divert us from the importance
of Laming’s ideas. He has managed to put an entirely new face on
the data of masking, increment detection, and intensity

discrimination, uncovering regularities no one else had noticed.

We begin our study of stochastic sensory networks with Laming’s
differential coupler because, although our own work started from
entirely different premises, and although we remain devoted to
finding a precisely defined stochastic process governing sensory
information transmission, Laming’s footprints are all over the
network mechanism we have developed. One way to describe what we
have done is to say that it appears to be an elementary realization

of Laming’s differential coupler.

Stochastic Networks

Visual and auditory psychophysics deal principally with stimuli
and receptor mechanisms; visual and auditory detection theory, with
stimuli and decision rules. We propose to add, (perhaps "insert®
would be a more accurate characterization), a third level of

analysis concentrating on information transmission, as sketched in



Fig. 1.

FIG #1

Little doubt exists as to the necessity of a step like this
given the -current state of sensory analysis, but we are also
acutely conscious of the dangers of preaching complexity. How can
such mechanisms be kept simple or even manageable? Everyone agrees
that transmission phenomena are probably important, but no ocne
other than Laming (1986) has dared offer a comprehensive view of
how they operate. Even Laming’s differential coupler is a black
box with elaborate functional properties, whereas we are searching

for something far more primitive.

Signal detection encountered initial consumer resistance because
auditory researchers did not at first see the need for a second
level of analysis distinct from the study of receptor mechanisms.
What chance exists for a third tier of analysis, especially one
proposing to take us into the depths of an uncharted sensory

communication system?

Conflicts of this sort between the demands of realism and the
requirements of clarity are typically resolved by turning to a
stochastic process. A network, even one seen as too complex to
permit tracing individual events, is nonetheless decipherable. We
need not know exactly how the network is organized or exactly how

events move from stage to stage. The stochastic process operates
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Figure 1: Flow diagram of a sensory process. Stimulus and receptor
mechanisms constitute traditional realm of psychophysics. Stimulus
and decision processes form domain of signal detection theory.
Oordinarily transmission network linking receptor to decision is

ignored. This network is focus of present paper.
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at a different level of discourse in which transmission is
represented as repetition of a probability operator. If we ever
hit upon the right form for the operator, we may be able to
construct the network functionally without exact knowledge of its
interconnections. The resulting description is couched in
probabilities of outcomes rather than precise tracings of events
from input to output. The important point is that a simple
transmission operator, applied repeatedly, generates a probability

space requiring a very complicated network for its realization.

Simple Operators - Complex Networks

A stimulus activates a sense organ. The energy content of the
stimulus is transferred to receptor cells either through chemical
absorption or some form of physical resonance. However it happens,
and whatever its efficiency, the reception process creates a
charged condition generating a discharge of primary neurons just
behind the receptor. The critical information marking the
occurrence of a stimulus is contained in this discharge, but
ordinarily it occurs against a backdrop of unanalyzed, hence
"spontaneous", noise events. These are incorporated into the
discharge leaving no way to distinguish signal from noise at the
rear end of the system. When a decision is required on whether or
not a stimulus actually occurred, it is made by counting events at
the output. A small count would indicate that nothing new happened

w hereas a large one suggests the contrary. The formulation is the
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traditional signal-noise decision option of detection theory most
clearly exemplified in Barlow’s (1956) refinement of the Hecht,

Shlaer, and Pirenne (1942) model of visual energy detection.

Oour first attempt (McGill, 1967; Teich and McGill, 1976) to
introduce a transmission 1link into this picture required one
additional step. The connecting link was said to be a Poisson
transmission line obtained by smearing together all the
information-bearing pathways 1leading back from a receptor.
Momentary stimulus intensity was viewed as driving this Poisson
rate. Counting\distributions were worked out (McGill, 1967) and
converted to detection laws for the transmission network driven by
various well-defined inputs. These expectations were then compared

with data.

Counting distributions for sinewave signals in wideband noise
proved interesting because they produced results identical to those
obtained in studies of laser energy output (Pe¥ina, 1967: Teich
and McGill, 1976). Their value as psychophysical tools was less
apparent. Poisson transmission did lead to discovery of a near-
miss to Weber’s law in pure tone intensity discrimination (McGill
and Goldberg, 1968a&b) as well as to the introduction of Neyman’s
Type A distribution in visual detection (see Teich, Prucnal,
Vannucci, Breton and McGill, 1982), but the aggregate of our first
attempt to formulate a simple transmission mechanism was not much

better than what it sought to replace (McGill and Teich, 1990).



i1

The main problem was thaﬁ Poisson transmission creates a
remarkably passive link. It fails to impose its own stamp on
information passing through it or to alter that information
significantly. Hence while the 1link behaved well where auditory
detection theory had succeeded previously, Poisson transmission
tended to fail where detection theory had previously failed.
Something more sophisticated was needed, a more complex operator

interacting with sensory messages as they pass to higher centers.

To achieve such realism we should first acknowledge that the
receptor discharge and its noise contaminants are probably not
directly available to decision centers. These initial events are
the first stages of an intricately constructed chain. The latter
does not passively transmit. It operates on its input information.
A stimulus passes into this network. If all goes well, progeny
emerge at the terminus ready for counting. We imagine the network
to consist of stages arrayed in sequence, each one more or less
like the others. Such an arrangement could easily amplify incoming
signals. The network would be adequately represented by a model
of a single stage together with an agreement that the number of
stages is sizable (although not necessarily infinite). This takes
us into near asymptotic effects produced by replicating an
operator, for example the one depicted in Fig.2.

FIG.2
A transmission network is said to consist of a sequence of r

such stages where, as we have said, r is thought to be large. At
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Figure 2: Markov operator diagram of stochastic transmission. Each

input event is converted to one of several outputs with
probabilities as indicated. A possible outcome is that an input
may completely disappear (probability p,). Multiplication occurs
whenever output number equals or exceeds 2. A single input event
starts process. Network then generates probability distribution of

progeny at output of final stage.
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each stage an input is transmitted only if it produces at least one
output. To move a single message event through the network a run
of successful transitions of the r stages is required. The network
is deemed to amplify if progeny tend to increase as they pass from
stage to stage, but passage is uncertain because there is also a
probability that a given message may die out at any point. We

characterize such a network as stochastic.

An important baseline condition is a sequence of stages that
repeatedly generates a single output event (on the average) for
each corresponding input. This 1is done by counterbalancing

expected growth against expected loss at each stage.

It would seem that messages should pass through such a network
more or less intact. But when growth and decay are perfectly
balanced in a network that is sufficiently long, virtually all
messages disappear in transit. This is a familiar result easily
proved. It furnishes the key to a stochastic version of adaptation
level or differential coupling. Long chains lose virtually all
messages unless some amplification, however small, occurs in
transmission. This implies further that a single input event
subjected to stage~-by-stage multiplication will eventually give
birth to an unbounded number of progeny at the end of a long

chain of multiplications.

At first thought no room at all seems visible between these
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polarities: complete blockage or uncontrolled growth as the
average birth rate passes from just under unity to a number just
slightly in excess of unity. There is an easy way out of the
dilemma but the very fact of its existence offers a sober warning
about the complexities of branching networks. Moreover, any
uncertainty encountered as information passes through a given stage

introduces noise into the message.

A sequence of noisy stages multiplies uncertainty with each
added stage. We cannot speak of such transition-noise as unrelated
or additive. It is a built-in property of stochastic networks,
varying in level with the length of the network. Hence, we expect
to be contending with at least two different kinds of noise: 1)
additive noise generated by unrelated events outside the
transmission system that become incorporated into its messages;
and 2) nultiplicative noise created by the hazards of message
transmission. Barlow’s "dark light"™ (1956) is an excellent example
of additive noise. Weber’s law is typical of effects expected from

multiplicative noise, as Laming has pointed out (1986 p. 71-75).

Simplest Network

The transform depicted in Fig. 2 is called a Markov operator.
It is applied indiscriminately to every message event appearing at
the input of each successive stage. A long chain of such stages

brings on asymptotic properties of the Markov process. To
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characterize the entire chain we need to work out these asymptotic
properties. They are not limited to passive transmission. For
example, the chain will amplify messages if the output of each
stage produces an average of slightly more than one event for each

input.

Even this representation is much too simple-minded. A
realistic transmission mechanism would probably involve series-
parallel chains in which different regions featured different
operations. We intend to stay with the lowest level of function.
Our goal here 1is to work out the properties of a simple

neurological amplifier.

To put flesh on these arguments we first consider an extremely
primitive network. It 1is not one'we would ever use, but it is
worth study because it was employed by Hecht et al. (1942) to
explain the loss of photons moving from a measurement locus at the
surface of the cornea to eventual absorption in retinal rods. The
process is completely passive, producing only random deletion of
message elements passing through it. This means that all
transition probabilities other than p, or p, in Fig.2 are set
equal to zero. In particular, multiplication is excluded. An
input event can either reproduce itself or disappear as it moves
through each stage. The Markov operator is diagramed in Fig.3.

Fig. 3

Transition probability from state 1 at any given stage to



IN ouTt

Figure 3: Markov diagram of a single stage in transmission network
in which outputs are either transmitted or disappear at random.
Transition from state 1 to state 1 implies that an input event is
transmitted to next stage. Transition from state 1 to state 0
means that input is lost. No transmissions occur out of zero
state. Any event entering this state is lost, terminating passage

through network.
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state 1 at the next stage is fixed at p . The corresponding
dropout probability (transition from state 1 to state zero) is then

also fixed and labeled g, where:

pt+qg-=1.

Evidently these are conditional probabilities characterizing
the statistics of passage through each stage. Successive stages
are independent and the process is multiplicative; (each step
triggers the next step.) Accordingly, the probability generating
function at any stage (see the Appendix at the end of the paper) is
obtained by applying the operator to the generating function of the
prior stage. (See Feller (1957), or Bharucha-Reid (1960) pp. 19-27
for a discussion of generating functions and their use in analyzing
branching processes). Stage-to-stage linkages constrain the
generating functions. Such constraints enable us to unravel the
output statistics of the final stage, and thus to analyze the

behavior of the entire network.

Start with a single input event. At stage 1 the transition
operator generates:

G (s) =q + ps, (1)

so that at stage 2 a fraction g of the input messages is expected
to drop out. Repeated applications of the operator produce at the

rth stage:
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G, (S) = g+p G, (s),
1+p(G ..1(5) —1) ’

G, (s)-1

G,.,(s)-1 =b-

(2)
Multiplying this out over all r stages, and remembering that the

initial condition is a single input (ie G, (s) = s), we see that:

G,(s)-1 G, (8)-1 G (s)-1  g(s)-1_
G, (8)-1 ~ G, ,(s)-1 "7

(3)

Accordingly, the generating function for the output of the entire

network must be:

G (s) = (1-p*) +p7s,

(4)
where now the iterative expression has been replaced by
unconditional probabilities at the final stage. Output proves to
have only two states: zero and unity. Probability of successful
passage (state 1 output of the final stage) is given by the transit
probability at any given stage raised to a power set by the length
of the network. As the latter lengthens, this state 1 output
probability moves inexorably toward zero. Nearly all messages end

up in state zero--lost along the way. This is, of course, not at
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all surprising, but iterative restrictions on the probability
generating function can be stated for far more complicated
branching networks in which events multiply and outcomes are not
nearly so obvious. These more challenging cases underscore the
usefulness of generating functions for attacking this kind of

problem.

Finally, a very easy extrapolation exists to a related process
in continuous time. Suppose the transition at any stage requires
a brief interval of time At. If the latter is very small, there is
little likelihood of a change of state during At. (The only
change possible would be a sudden transition to state zero.) Hence
as At decreases, g must also decrease proportionally. This
stable ratio is ordinarily expressed as a fixed loss parameter u ,

where:

lim g _,
At-0Af B

(5)

The network probability becomes:
pr=(1-BIAL,
r

(6)
and r At is the transit time for the full network:

Accordingly: lim(p ) =e-ht
=

At-0

(7)
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Length of the network is measured by its transit time t ,
regarded here as fixed, while loss or dropout probability at any
given stage is measured by p . Evidently, p is not a probability
since it may take on any positive value, whereas the limit of the
state 1 output established in Eg. (7) is a probability. As in
discrete cases, this probability moves toward zero when the network
lengthens (t increases), or when the dropout tendency grows large

( 4 increases).

Amplifier Networks

Far more sophisticated is a closely related operator

illustrated in Fig.4.
FIG 4

A network constructed from such stages will tend to amplify
its input. Single events entering a given stage may be converted
into pairs of events as they feed into the next stage. We say
"may" because a possibility exists that message events may be wiped
out in transit. There is also no requirement to stay with pairwise
multiplication. Many other possibilities exist. Pairwise
multiplication leads to a classical result in branching processes,

so it is a good place to start.

How the various possibilities play themselves out will be
determined by values assigned to the transition probabilities in

Fig. 4. The terms p, , p. , and p, are conditicnal probabilities
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Figure 4: Simple amplifier network. At left is functional diagram
of typical stage. Passage of message events moving down main
transmission channel is modified by control mechanism on far left.
Stimulus intensity sets configuration of control. Feedback may
occur within a single neurological site or these little amplifiers
may 5e arrayed in sequence. Diagram on right displays Markov
operator characterizing this mechanism. Operator shows allowable
transitions for events passing along main channel and probabilities

associated with each possible transition.
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governing the possible transitions for each message event moving

through each stage. Hence:

Dg+b+p,=1.

Whenever p, > p, the network will amplify. This conclusion follcws
because stage-to-stage birthrates are all greater than unity. The

generating function of the operator in Fig. 4 is:

G(8) =p,+D,8+D,S*.

This is the stochastic description of a single stage characterized
by pairwise multiplication (see Appendix). We wish to find the
output counting distribution for the entire network (i.e. the
output of stage r ). Since sequential networks are multiplicative,
the best way to proceed is to use the multiplicative property to
put an iterative restriction on the generating function for stage

r , just as we did with random deletion:

G, (8) =po+D,G,, (8) +D,G7.1 (8) .
(9)
Now, however, no easy way can be found to multiply the process out,
isolating a single probability. But there 1is an easy way to
construct a time derivative. First, subtract G.., (s) from both

sides:

GI(S) —GI'l (S) =p0"' (po+p3) Gr—l (S) +p2GI'2-1 (S) *

(10)
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Next set p, = y A t , p, = A A t , and let stages r and r-1
differ by At . (Notice that the coefficients of the polynomial on
the right hand side sum to zero). Now convert the time difference

between successive stages into a derivative:

lim ( G,(s) -G, ,(9)

I
At

= A (B/A=-G,_,(58)) (1-G,,(8)),
A =0 ) P'/ 1 1

(11)

GL(S) = A (B/A-G.(8)) (1-G.(8)) .

(12)

The derivative is taken with respect to time. This generating
function depicts a process requiring time t to transit all stages.
cur form for Eg (12) shows the polynomial factored so as to display
its two roots. If we integrate Eq. (12), we then have a generating
function at the output of stage r free of iterative restrictions.
Moreover, with that problem solved it becomes a simple matter to
work out the counting distribution from which the generating
function was constructed. The solution of the differential
equation is tabled in most standard tables (for example, the
Chemical Rubber Handbook (1954), #47, p.250). Before addressing

it, we first review Eqg. (12) to assess its full meaning.

The derivative is a quadratic with two distinct roots. Since
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its coefficients sum to zero, a root will be found where G, (s)=1.
This implies that as At decreases, each input making its transit
of a given stage tends to resist change (in other words, to remain
in state 1). The probability of a change up or down becomes
vanishingly small in the limiting process that converts discrete
stages to continuous time. When the coefficients of Eq (10) sum to
zero, a root appears at G, (s) = 1 in Eg. (12) reflecting such

resistance.

A second root emerges when G, (s) reaches an asymptote as ¢
increases without limit. 1In that case G,/(s) = 0 . This second

root proves to be the value of G, (s) at the asymptote, namely:

G (s) = p/A

The limiting generating function depicts the outcome of a
transmission process operating over infinite time. There is a
spike of probability in state zero but nothing corresponding to any
other finite state (since only the coefficient of s° survives at
the limit). Hence, there exists a significant probability of an
infinite count, a significant probability of a 2zero count, and

essentially nothing in between.

From the generating function at infinite time we have:

P.(0) = u/A
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for the limiting probability of a state zero output (message lost).
In branching processes this probability is known as an extinction
probability. Evidently when the loss parameter u is larger than
the gain parameter A , the extinction probability must remain fixed
at unity. Nearly all interesting cases will then arise when yu <

A .

We see that the operator in Fig. 4 has two different
asymptotic conditions. To establish the derivative in Eq. (12) r
(the number of stages) goes to infinity while t (the network
transit time) remains finite. A further limit for the generating
function is obtained by letting t go to infinity. At this second
level, the process becomes unmanageable. Every non-zero output is
found to be infinite, whereas at the intermediate limit with ¢
finite, conventional counting distributions are encountered over
the full range of positive integers. Existence of two different
limits explains many seeming contradictions that appear as we
analyze network behavior. For example, when A = u in a perfectly
balanced network, the extinction probability is found tec be unity.
This suggests that no messages can pass through the entire chain.
Yet when Eg (12) is integrated in these same circumstances, a
conventional probability distribution over nonzero counts is found.
The latter case reflects an intermediate limit (r infinite; finite
t ) whereas the extinction probability is an asymptotic limit as ¢
itself becomes infinite. It should then be the case that

probability of a zero count for finite t rises systematically up to
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the limiting extinction probability as t increases. This is

exactly what happens.

Adaptation Level

output distributions for the full network are obtained by
integrating Eq. (12) and then extracting the counting distribution
from the generating function. The original input is a single
message event at the first stage, The network counting
distribution spréads out over many values because multiplicative
noise, generated in transmission, introduces variance with each
added stage of processing. This noise variance becomes a
signature, stamping the network’s configuration on all informaticn

passing through it.

First consider the solution of the differential equation, Eqg.
(12), when expected gains just balance losses, i.e. when 4 = 4 .

We haye:

Gl(s)
(1-G,(s))?

(12a)

Integrating both sides with respect to time produces:

G (8}
1 t

e T = At.
1-G.(s) |,
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The limits on the left hand side establish that the generating

function, G , (s), becomes s as 7 = 0 , and G, (s) as 17 =1 . We
have:
1 2 1
—_— = t+______'
1-G.(s) 1-s
s-1
G.{8) = l+—mea—mm,
e (S) TToAE(s-1)
(13)

This is the generating function of a Markov process with gains and
losses precisely balanced, and operating in continuous time. To
extract the counting distribution we need a way to expand the right
hand side of Eg. (13) in powers of s. The coefficient of s* will
then be the probability, p. (k), that network output consists of
exactly k message events. The expansion is easy. We show one way
to do it in the Appendix. The output counting distribution at

adaptation level is found to be:

_[_At
P9 = (337
(ﬁ.t)k'l
ky = et k=1,2,3...,%.
p. (k) T

(14)

This distribution is actually much simpler than it looks.
There is a large "spike" of probability in state zero as we have
come to expect from transmission mechanisms with a propensity for
losing information along the way. The distribution over non-zero
states is not very significant but nonetheless there. Its form is
geometric, reflecting difficulty in achieving 1long runs of

multiplications as progeny pass from stage to stage in Fig. 4. The
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distribution of surviving messages has a characteristic geometric

or exponential form in such circumstances.

If the gain/loss parameter A can be related somehow to the
intensity of a continuous background, network output will obey
Weber’s law whenever background intensity remains constant through
repeated stimulus trials. Multiplicative internal noise created as
a steady background is neutralized, also regulates incremental

detectability.

We are not invoking a scheme, & la Hecht et al. (1942), in
which transmission parameters are fixed while stimulus intensity
sets the number of triggering events appearing at the first stage.
Instead, we conjecture a network in which stimulus properties
determine flexible parameters controlling passage of information at
every stage. The action resembles a grid in an electronic
amplifier. Such effects are probably common in the nervous system,
but it is important to pause over this one, and to underline it.
The change in perspective reflects a genuinely new outlook on
transmission of information from sense organs to higher brain
centers. It was this change in perspective that led Laming (1986)

to his concept of differential coupling.

Negligible transmission occurs at adaptation level with
L (gain) and u (loss) precisely equal at every processing stage.

The mean output is unity, while the variance is 2At . These points
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are easily verified by computing the mean and variance of the

counting distribution in Eq. (14) (see Appendix).

Mean output at adaptation level does not vary with background
intensity, but variance (noise level) does. A steady background
will set up two opposed processes, one attempting to amplify the
input, the other trying to knock it out. Multiplicative noise
generated by such a Markov operator is not quite zero on the
average nor is it gaussian as Laming (1986) prescribed, but its
effects on detectability are similar to those suggested by Laming
for the differential coupler. We would not be amiss in arguing
that a differential coupler is probably a balanced amplifier
network similar to Fig 4. 1In stochastic processes it would be
called a "birth~death" process (see Bharucha-Reid, 1960, pp.88-9i;

Feller, 1957, pp. 407-411).

Adaptation level is established at a background intensity
determined by the size of the equalized parameters. The network
rests in precise balance at this adaptation level. Very little
will then get through. Counting variance at network output will
increase with background intensity, making transients of fixed size
harder to detect as background level rises. Moreover, we now have
a solid analytical method leading directly to the counting
distribution when increments are added to the background. We need
only establish a relation linking A and p , the gain and loss

parameters, to stimulus intensity.
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Output Counting Distribution

what is the output counting distribution of an amplifier
network whose discrete form is as diagramed in Fig. 4? We no
longer restrict consideration to adaptation level. The parameters
have arbitrary values. In this circumstance the differential
equation of the transmission process was shown earlier to be:

Gl(s)
(B/A-G,(8)) (1-G,(3))

(12b)
where 7 is the (time) variable of integration. Integration is
carried out between limits 7 =0 and r =t . When 71 = O,

G, (s)=s, ie the process begins with a single input.

The solution can be found in most tables of integrals. Our

notation produces:

p/A- bﬁi&lﬁ)e‘“‘mt

G.(s) - _( /A'S)G—M—MC.
1-s
(15)
As A=>u, this generating function is identical to that for a
balanced network in Eq. (13). Hence, whatever the values of A and

i, the generating function in Eg. (15) describes a continuous

version of the process diagramed in Fig. 4.
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The counting distribution is not quite so easy to extract as
its counterpart in a precisely balanced network. Nonetheless, the
distribution is quite well-known in stochastic processes. It is
given in many sources (see for example Bharucha-Reid (1960)
r.88). We do not present it here because we now propose to

introduce an additional simplification.

A big problem is created by the exponential terms in Eq. (15).
They signal that average network output grows exponentially as the
difference between gain and loss parameters increases. This is
delightful when attempting to detect weak signals against a steady
background, but it is potentially disastrous as signal intensity
increases because a deluge of activity might easily flood the
network and paralyze it. Ideally we wish outputs to grow as a
fractional power function of stimulus intensity. Because of the
adaptation level property, even linear growth would be acceptable.
In any event a transformation is needed in order to curb

exponential growth at high intensities.

Log Transform

The average output of the mechanism in Fig. 4 and Egq (15) can
be calculated without elaborate ritual. The birthrate at any stage

is:

m = (l+p,~py) +
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Each input either rides through, or is increased to two with
probability p, , or is wiped out with probability p, . At the end

of r stages, the birthrate through the entire network should be:

m, = (L+p,=Py) .

Now apply the limiting process as A t » 0 and r - ® :

(A-p) TAENT

lim(m,) = {1+
r

m, = et
(16)
It is this exponential growth that concerns us. We might try
to alter it by changing the pattern of probabilities in the Markov
operator, but the form of the latter tends to enforce exponential
growth whenever multiplication is allowed to happen. A more
practical solution is to put stimulus intensity through a simple

transformation prior to setting the network parameters A and u .

Once transformations are contemplated the term "stimulus
intensity" becomes too vague. We need to say what is transformed

into what.

Earlier in this paper we spoke of an energy exhange in the
sense organ as if it were the primal event of the stimulus message.
This is certainly a common view in sensory psychology and

neurophysiology. Among vision researchers, for example, the
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principle that light energy carries the key stimulus information is
widely accepted. Generally, the same is true in audition although
there are significant exceptions. Green (1960b) and Green and
Swets (1988/1966) based ideal detection of sinusoids in gaussian
noise on complete reconstruction of the stimulus waveform, ending
up with amplitude (proportional to the square root of energy) as
the key variable. Jeffress (1964,1968), and Laming (1986), also
argued for amplitude as the conveyor of intensity information in

auditory perception.

Readers encountering these arguments for the first time may be
forgiven expressions of bafflement. Energy and amplitude are
simple functions of each other. If it is known how information
flows with one, it is then easy to calculate how it flows with the

other. What is the argument all about?

Typically we look for standard ocutcomes in detection data:
gaussian integrals, specific values for Weber fractions, I.T laws,
sometimes even negative masking. Which version of the intensity
variable produces them? If expectations on outcomes.are confirmed
with stimulus energy as the variable, amplitude will not work, and

vice versa. So a real question does exist.

It is brought into sharp focus by the task of converting the
generating function in Eg. (15) into a specific counting

distribution determined not by the parameters A, i, and t but by
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some still-unspecified stimulus property expressing intensity.

Linear growth can be achieved in the stimulus domain if we

let:

In (1+ax) = (A-p) ¢,

(17)
where now x is the intensity variable, a is a constant matching
intensity units on the left hand side of Eq. (17) with values of
the parameters on the right hand side. To establish linearity the

log transform is introduced into Eq. (16):

mt = e(l‘}l)t,
m, = eln(l+ax)’

l+ax.

3
0

(18)
Mean network output now increases linearly with incremental
intensity. Obviously other transforms are applicable and might be

considered.

In Eq. (17) the time parameter t is the transit time for
messages passing through the network, while ( A - u ) is the
(average) net rate at which new message events are generated. In
amplifier networks, the product ( 4 - u ).t turns out to be the
log of the mean number of messages or counts observed at the

network terminus t seconds following stimulation (see Eq. 18). But
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individual events will rarely consume exactly the same amount of
time in passing the network. An observer at the output sees a
short discharge measuring the intensity of a brief stimulus above
adaptation level. Evidently this discharge takes place over time.
Some message events lead; others straggle. The observer must be
able to accumulate a record of events over an interval long enocugh

to pick up the bulk of the discharge.

The nub of this arqgument is that the right hand side of Eq.
(17) is the lcg of a count of message events. If an energy
exchange occurs at the sense organ, the size of the discharge at
network output during an observation time t matched to the average
transit time, is a measure of stimulus energy. So the average
number of messages corresponding to an intensity x in Eq.

(17) implies that x is measured in energy units.

This finding does not suggest that energy is always the key
stimulus property. An amplifier network adapted to a background
intensity considerably above absolute threshold will exhibit
constant detectability for increments whenever the latter stand in

fixed ratio to the amplitude of the background (see, later, Eq 32).

Linear Qutput

If the log transform in Eq. (17) is applied to the amplifier

network generating function:
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w/i - ( P{{;S) e- (it

7 _(u/k-s)e-uw>t
1-s

G, (s)

(15)
so as to limit exponential growth of information and make output

linear with stimulus energy, we obtain:

m(x) - (“ (1}?3_8) ( 1+lax)

G (s8) = ~ .
1- (ngfl;s)<1jéx)

(19)
Here 7 (x) = p/A is the extinction probability corresponding

to an incremental intensity x above adaptation level.

The parameters u and A are then not fixed within the
network but set by the driving force of a particular intensity.
Extinction probability is at or very near unity in the vicinity of
adaptation level, dropping off to zero as incremental intensity

grows. Without difficulty we find:

{1+ax) (s-1)

G (s) = 1+ Ty (0 (5-1) )

(20)

Introduced here is a new variable:

ax

Y(X) = ‘——"""""1__1_: (X) ’
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a modified intensity, corrected for the probability of survival.
The generating function in Eq (20) resembles our earlier expression
for a balanced network (Eg (13)). There is a spike of probability
at the zero state representing defacto extinction, messages failing
to make it through the network, and a distribution of survivors

extending across all the positive integers.

These points are readily verified when the network counting
distribution (incorporating the 1log transform in Eg (17)) is

extracted from the generating function (see Appendix). We find:

[ m(x)y(x)
P, (0) {-—-———-—~1+y(x) } .
= [1- 1 yix -,
P (k) = [1-p,(0)] [lW(X)le(X)} ;
(21)
k=1,2,3,=" 0
where: T(X) = R, /A,
y(x) = ax/1-n(x) .

The output probability, p, (k) is again geometric and weighted by
the probability of survival. The geometric component of Eq (21) is
sometimes called a Bose-Einstein distribution (see Feller, 1957,
p.59) because it turns up as a limit of the Bose-Einstein
statistics in statistical mechanics. The mean-value parameter (in
this case y (x) ) is typically a measurement corresponding to some

expected number of events. Hence, the Bose-Einstein distribution
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is a first cousin of the Poisson distribution.

An important consequence of amplification in a transmission
network is that it alters the internal noise. Branching generates
larger variance than would be found in devices passing information
without multiplication. These effects are not subtle. They
produce modifications in network output away from Poisson form and
toward Bose-Einstein (geometric) form. They alsc affect the
detectability of signals. Hence, if amplifier networks do in fact
mediate transmission between sense organ and brain, they are iikely
to have a powerful impact on the information passing through them.
Psychophysical data would not then be simple depictions of receptor
processes but something more complicated. The caveat is hardly
surprising or unexpected. What is surprising is that our analysis

suggests the complexities may be easily managed.

Ultra~-Linear Output

To pursue manageability we consider the close resemblance
between the generating function in Eq. (20) for a linear amplifier
network and the analogous expression in Eq (13) at adaptation

level. Start with Eq (20) involving amplification:

(l+ax) (s-1)
1-v(x) (s-1)

Gy(s8) = 1+

(20)
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Now let x, the incremental intensity, go to zero. This moves the

generating function to adaptation level. We need:

lim y(x) _ ax__ _y
x-~0 1-7 (x) )

A limit develops because as X dgoes to zero, extinction prcbability
approaches unity. We let y symbolize this limit at adaptation

.level. Then:

y(x) = y+ax.

Accordingly, as x goes to zero we obtain:

(s-1)
1-y(s-1) '

G (s) = 1+
(22)
which, except for notation, is Eq. (13). Our so-called "ultra-
linear" restriction defines an extinction probability at every

intensity above adaptation level:

¥ (x)
¥ (x)

¥y +ax,
ax/1-n(x).

1|

It follows that the relation between extinction probability
and incremental intensity must be:

(23)
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w(x) = —Y .
y+ax

We are led at once to the most elementary solution for the

network differential equation (Eq (12)) currently known to us. It

is:

(1+ax) (s-1)
1-(y+ax) (s-1)

G (s) = 1+

(24)
Extraction of the output counting distribution is now a simple

matter (see Appendix):

(0) = [——L—),
Py (0) (1+y+ax)
- (1_ 1 y+ax \k 1
Dylk) = (1-p,(0)) (1+y+ax)(1+y+ax> ;
(25)
where: k= 1,2,30ce00es 07

a 1is a units constant;

x 1is an incremental intensity above adaptation
level;

¥y is an intensity parameter corresponding to

adaptation level.

The counting distribution in Eqg (25) represents the response
of a transmission network (such as the one diagramed in Fig. 4)
when a transient stimulus is introduced as an increment above a

steady background to which the network has been adapted.
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At or near adaptation level (x = 0), the network is virtually
silent. The chain of events leading back from the sense organ
guarantees that very 1little information will get through. A
transient increment in intensity generates a burst of activity
(counting) at the output of the network during a fixed observation
period following the stimulus. The size of this discharge tends to
increase with the size of the increment, although the precise
relation depends on the network. A proportional increase, in which
average count increases in parallel with the energy of the
increment, is implied by Eg (25). Our expression involves an
intensity parameter <y, determined by the adaptation level.
Evidently the magnitude of y 1is also presumed linear with
intensity, but the silent condition of the network at adaptation
level does not force the assumption. We can accept y as whatever
it turns out to be while the output discharge remains proportional
to a stimulus increment. Since the latter is typicaily guite small
in detection experiments, our ultra-linear restriction is neither
unrealistic nor disabling. In effect, an adaptation level
reproduces conditions approximating absolute threshold wherever the

adaptation level happens to be set.
Prob e Structure of a Sensory Network
The number of events in an output discharge following a

transient stimulus proves to have a Bose~Einstein (geometric)

distribution over a wide range of assumptions on details of the



39
Markov operator and its relation with intensity. The robustness of
this outcome must reflect the character of multiplicative internal
noise generated by a chain-like structure. Such chains are
conceived to be narrowband processes tracing back from minute
regions in the sense organ. A stimulus would normally activate a
number of these regions, generating an aggregate network output
having a Pascal or negative binomial distribution if individual
chains are independent. Evidently the tightly packed branching
structure of a sensory pathway offers abundant opportunity for
multiple occupancy and covariance. Independence is therefore both
highly prized and very unlikely. Even so, a network system with
the branching structure depicted in Fig. 5, replicated over a
number of adjacent receptor fields, would tend to spread out on its

journey up a sensory pathway.

FIG. 5

“Although each chain penetrates parts of other chains serving nearby
receptor units, if there were enough room to spread out, the chains
might be Xkept nearly additive. Additivity is fostered by
controlling overall activity level. This is one source of our
concern expressed earlier about explosive growth of information in

amplifier networks.

Aggregate output in such circumstances has a negative binomial
distribution when stimulus intensity is precisely constant from

trial to trial. This makes the internal noise of the proccess
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roughly gaussian but with a well-defined relation between mean and
variance prescribed by the negative binomial. The latter then
governs detectability of non-stochastic signals passing through the

network.

Stochastic signals such as wide band accustic noise or
incandescent light are more difficult to study. The statistics of
signals drive the counting distribution of the network, making its
output a compound of signal variation and network multiplicative
noise. Early research on signal detection ignored this compounding

altogether.

Some time ago we attempted to introduce compounding via a
Poisson flow process for the internal noise, but with results that
were not entirely satisfactory. Now, influenced by initial
skepticism of Laming'é (1986) position, we have constructed a full-
scale stochastic ﬁodel of an amplifier network. We discover that
it adapts to steady state backgrounds, and generates Bose-Einstein
or negative binomial (not Poisson) counting statistics under
transient pure tone stimulation. Moreover, we find unanticipated
correspondences between Laming’s analysis of differential coupling

and our treatment of branching networks.

Importance of Pure Tones

This type of stochastic network analysis is formidable. There
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are no known shortcuts outflanking the complex physiology of
sensory transmission. Redefinitions of the stimulus based upon
clever transformations of psychophysical data remain Jjust as
visionary today as they were fifty years ago. Had they existed,
shrewd investigators would have discovered them long since. No
doubt, pursuit of such easy solutions has deflected concentration
from important problens: the phenomena of transmission, €for
example. This at its core is our critique of the current state of

sensory psychoclogy.

Unavoidable complexity ought to place a high premium on
simplicity in experimental analysis. We should certainly shun
complex experimental designs and complex stimuli. VYet, in still
another paradox, the key experiments of auditory signal detection
use sinusoids masked by wide band gaussian noise. Experimental
work appears driven by a popular masker and an interesting
mathematical detection problem, but not by any imperative of the
auditory system. Important questions arise in the detectability of
noise bursts and sinusoids in noise. Interpreting results is the
critical matter. If we were entirely confident that sensory
transmission is mediated by an amplifier network, interpretation
would be straightforward. The problem would be to work out
compounds of signal statistics with the negative binomial noise
generated by such transmission. These compounds are not difficult
to unravel, but our first priority must be to assure that the basic

premises are correct.
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If analytical simplicity is the goal, visual detection
presents special problems because classical 1light is inevitably
stochastic (see Teich and Saleh, 1988). It then becomes difficult
to disentangle a stimulus from multiplicative noise generated in
transmission. In many ways this conundrum has contributed to the
longevity of Hecht et al.’s (1942) pure stimulus model of visual

detection.

Auditory research is potentially less difficult because an
analytically simple stimulus, the pure sinusoid, is relatively easy
to deliver to the ear intact, provided that signal durations are
not too short. Admittedly we do not know what the ear considers
analytically simple, but would be well-advised to avoid getting tco
cute until we understand a great deal more than we do now about

auditory transmission.

Pure tones provide excellent probes for stochastic phenomena
associated with auditory transmission. The reasons are obvious.
Stimuli can be fixed in frequency, phase-locked, and precisely
timed. Variability is thus confined to the tone generator’s error-
level which, with today’s equipment, can be made arbitrarily small.
Fluctuations must then be attributable to noise created in the
auditory system itself. This noise, especially its multiplicative

properties, becomes the focus of investigation.
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Essentially for these reasons, recent years have witnessed
revived interest in one of the traditional problems of auditory
psychophysics - pure tone intensity discrimination. We do not
attempt to review the new literature here but as a final point in
our discussion of transmission networks, we illustrate the
interplay between theory and experiment that led to Markov

operators.

Pure Tone Intensity Discrimination

The experimental relation between intensity of a pure tone
masker and size of a just-detectable increment (or decrement) is
shown in Fig. 6. Data are from McGill & Goldberg (1968b).

FIG. 6
They were obtained with pure tones at 1000 HZ and signal durations
of 15 or 20 milliseconds. Also plotted are closely related
results obtained by Campbell and Lasky (1967). The function is
developed over eight log units of masker intensity (80db). For
nearly 60db of this range, data fall along a straight line having
a slope of roughly 0.9 in log coocrdinates. It is not Weber’s law
but a "near-miss" to Weber’s law. Similar comparisons made with
short bursts of wide band gaussian noise produce a slope of unity

over the same range (see Miller (1947) and Green (1960a)).

What accounts for the difference? McGill and Goldberg sought
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Figure 6: Pure tone intensity discrimination. Abscissa is

sensation level (db. above threshold) of 1,000 Hz test tone.
Ordinate is sensation level of tone just detectably weaker than
test tone. (McGill and Goldberg (1968a,b)). Unit slope depicts
Weber’s law. Actual slope fitted by least squares is .905. Data
of three listeners shown: dark squares (15 msc tones); dark circles
(15 msc); dark triangles (20 msc). Open circles are data on 20 msc
pure tones obtained by Campbell and Laskey (1967). Campbell-Lasky
function is moved horizontally for best match to McGill~Goldberg

data.
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an explanation in a power function relating masker intensity to the
Poisson rate parameter. They worked out the details, showing: 1)
intensity discrimination should have a slope of unity with bursts
of noise; 2) their value of .9 with pure tones implies a slope of
.2 for the loudness function. Since this latter figure is not far
off typical loudness functions, and since direct measurements
arguably overestimate the loudness slope (Krueger (1989%) p.263),
McGill and Goldberg believed these indirect loudness measurements

supported their Poisson transmission hypothesis.

Others were skeptical. Starting from the fact that the theory,
even after a power-function transform, fails to predict intensity
discrimination with wide band non-stochastic stimuli (such as
"frozen" noise), Poisson transmission attracted few admirers. A
conviction grew that something else must be depressing the slope

and producing the near-miss to Weber’s law.

Viemeister (1972) discovered that when a pure tone was
centered in a slot or notch of a low-level wide band masking ncise,
Weber’s law would reappear. The masking slope was restored to
unity. Moore and Raab (1974) repeated Viemeister’s work,
concluding that restoration of Weber’s 1law for pure tones
surrounded by notched noise must mean that the barriers posed by
the boundaries of the notch effectively block listening off center-
frequency as a way to improve detection. Listening is confined to

a narrow range of frequencies dominated by the masking stimulus.
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If it could then be established that a given transmission network
shows Weber’s law detectability for individual chains stretching
back from the receptor, and also shows the near-miss phenomenon
when excitation spreads uncontrolled away from center-frequency
with increasing intensity, that network would become a serious

candidate for study.

In a recent chapter, McGill and Teich (1990) made such a
demonstration using the amplifier network and counting distribution
given here as Eq (25). Pure tone intensity discrimination follows
Weber’s law in these circumstances because of the relation between
mean and variance in a Bose-Einstein distribution. If increasing
intensity causes the signal to spread out across more and more
remote transmission chains, the near-miss will develop. Pure tones
embedded in notched noise encounter the edges of the notch as
excitation spreads, preventing recruitment of remote chains and
limiting bandwidth to the region of the notch. This maneuver
effectively fixes the degrees of freedom of the network devoted to

transmission, restoring Weber‘’s law.

In their (1990) chapter, McGill and Teich were not fully aware
of the adaptation level property of networks constructed as in Fig.
4. Their demonstration was developed for y = 1, a low adaptation
level such as might accompany a silent or nearly silent background.
Hence, the proof was aimed at conditions in which pairs of pure

tones are presented in sequence with a brief blank interval
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separating the two members - in other words classical intensity

discrimination.

This presentation format is quite different from one in which
a series of tonal increments are detected as chirps against a
steady state tonal background. Adaptation levels are different in
the two cases and we should not expect them to yield identical

results.

What happens when the two detection formats are compared?
Does Weber’s law develop in both or, better yet, is there a
predictable relation between intensity discrimination and increment
detection when identical pure tones are used to generate the
cdmparisons. Laming (1986) posed the question originally in his
chapter 13, formulating it as a general experimental issue. Our
attention for the present is focused on audition, pure tones, and

Markov operators.

The output counting distribution of an ultra-linear network is
given in Eq (25). An ideal obéerver making paired comparisons on
the basis of such counts, will generate a psychometric function
given by:

P(c)=P ( j>k )+ 1/2 . P (F=Kk), (26)
where:
P (¢) is the probability of a correct response in two-

alternative forced choice;
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j is the count generated by the incrementally stronger pure
tone;

k is the count generated by the weaker pure tone.

The probability of a correct response in 2AFC is composed of
the probability that signal count exceeds background count, added
to the probability of guessing correctly when the two counts happen

to coincide.

If Eg (25) is inserted into this formula, we find:

Plo) = ¥ 2+y+2aE; . 1+ak, 1+aE, l+2y+2ak, .
l+y+aE, | |\ 2+2y+2aE, l+y+aE, | | 1+y+aE ) | 2+4y+2aE +2aF,

(27)

This is the psychometric function of a single narrowband chain
adapted to a background determined as weak or intense by the size
of y:; and stimulated by two intensity levels, x, above that
background. In this instance x = E, , a pure tone energy, or
alternatively x = E, , incrementally larger. The complete format
is a steady background or pedestal tone with a pair of superimposed
chirps differing slightly in intensity, with all components at the
same frequency. The psychometric function describes detectability
of E, against E, , each 1lying above an adaptation level, v¥.
Counting distributions are based on the ultra-linear network

prescribed in Eq (25).

With everything simple, why should the psychometric function
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be so formidable? There are two reasons. First, prolixity
accompanies the spike of probability corresponding to a count of
zero. The first term of Eg. (27) is generated when the count k
attributable to the weaker tone is zero. The right hand term
appears when k > 0. A second reason is that we are computing a
three-parameter (E, ,E. , ¥) expression in order to encompass
several different potential experimental comparisons. For example,
when adaptation level is set for background silence (y = 0 }, the
psychometric function in Eq (27) reduces to:

1+2a8, &,

P(c) =
() 2+2aE,+2aE, E +E;

(28)

This is essentially the result obtained by McGill & Teich
{1990). It is the performance of an ideal observer discfiminating
two different levels of narrowband Rayleigh noise (see Green and
McGill, 1970, eq. (9a); and McGill and Teich, 1990, eq. (11)). We
end up with Rayleigh noise because an ultra-linear network is a
proportional counter, and the branching process composing the
network is in effect a narrowband noise generator. Listening at
the back end of the network’s terminal stage, we would find it
impossible to establish whether this noise came from inside or
outside the transmission system. The branching process converts
all deterministic inputé into stochastic outputs by infusing them

with multiplicative noise.
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Obviously, we have uncovered an important result in Eq (28).
It is easy to see how gaussian noise required by Laming’s
differential coupler would develop. If a pure tone were spread out
over a region that, in cross section, encompassed many individual
branching chains, Rayleigh noise in Eq (28) would become wide band,
provided the activity in individual chains could be kept additive.
It would then follow that Weber’s law must be fundamental in
auditory intensity discrimination, an intrinsic part of the
transmission mechanism. Before we can actually make such a claim,
we need to know how robust Egs. (25) and (28) really are. They
have been developed here under highly simplified conditions
stressing linearity and additivity. Nature is clearly not so
simpleminded, but if the result is as solid as we suspect it to be,
these additional restrictions may not make a great deal of

difference.

Suppose we let E, = 0 in Eq. (27), eliminating one member of
the pair of comparison tones. The format is then a steady state
tonal background and a series of transient chirps or burps at a
single intensity detected against the background -~ pure tone

increment detection. In that event:

p(o) =( ¥ ) 2+y+2aES) +( 1 )( 1+ak, )(1+27+2aﬁg)’

1+y/ |\ 2+2y+2aE, 1+y [\ L+y+ak )\ 2+4y+2aE,
l+y/2+ak
P(c) =r___._yi..___.__‘§’
l+y+ak,
2+ak
P(c) =>_Y_/_—._s._
y+ak,

(29)
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The second term of Eq (29) is negligible whenever adaptation
level is modestly high. Since the second term develops only when
background counts are greater than gzero, it fqllows that the
network must be virtually silent at adaptation level, a fact now

established in several different ways.

Eq (29) again portrays an observer discriminating two levels
of narrowband ncise. In increment detection the aﬁerage background
count is near zero. This suggests that detectability is- influenced
chiefly by the variance of the background count. A pure tcne
increment of fixed size is less detectable against a strong
background than against a weak one. We are in effect stating
Weber’s law for increment detection as it develops in the ultra-

linear network.

To compare intensity discrimination and increment detection we
need to test Eq (28) against Eg (29), but they do not measure
intensities from the same origin. Accordingly, let:

y = akg, .
This shifts the origin in Eq (29) from adaptation level down to
zero intensity. the same shift applied to incremental intensity

produces:

E, = Ey+AE.

32

The increment AE is then equivalent to the value of E, in Eg

(29). With these notational changes, our psychometric function for
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pure tone increment detection becomes:

E
P(c)=1-1/2-—2"
(¢) / z

g

(30)

The psychometric function is.now set up for direct comparison
with its intensity discrimination counterpart in Egq (28). Both
exhibit Weber’s law; when the intensity ratio is fixed, probability
of a correct response is also fixed. In addition, the intensity
ratio in Eq (30) corresponds precisely to the extincticn
probability defined in Eq (23). If a network is long enough to be
nearly silent at adaptation level, a strategy for increment
detection becomes clear, and psychologically it is not a comparison
of the counts associated with increment and background. The
observer listens at the output. If anything at all comes through,
even a single count, an increment is detected for the interval in
which it appears. If nothing comes through, the observer guesses.
Counts virtually never occur in both intervals. The strategy is
almost exactly that described by Sackitt (1972) for absolute visual

detection.

Of course, zero count probability is always less than
extinction probability in networks of finite length. A criterion
adjustment permitting more effective background suppression might
improve detection substantially. Such adjustments would lead to
adaptation levels some distance above background intensity. The

point is that detection strategies involving an adaptation level
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are likely to be different from those in pure intensity
discrimination where direct comparisons of numerically large counts
are almost mandatory. We know very 1little about the actual

strategies followed by sensory systems.

Comparison of the two psychometric functions, Eg (28} and Eg
(30) shows them to be separated by about 3db, with increment
detection the more sensitive of the two procedures. Not much
credence should be put in these numbers. They are based on
properties of a narrcwband process, whereas evidence exists (Moore
and Raab, 1974), that excitation begins to spread over a range of
transmitters when background intensity reaches a modest level 20 to

30db above absolute threshold.

Suppose then we carry out the same calculations assuming that
many independent chains are involved. Exact solutions for the
psychometric function are difficult but a normal approximation is
easy. McGill and Teich (1990) showed that in the ultra-linear
network (Eq 25), pure tone intensity discrimination is determined
by the energy ratio of increment to background if the spread is

uniform and degrees of freedom are fixed.

What happens in increment detection? Using paired comparisons
to model the process, we begin with the mean and variance of the
counting distribution in Eq (25) and set adaptation level directly

on the background. There is, as we have noted, a possiblity that
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the ear may not use paired comparisons in increment detection.
Sackitt’s (1972) alternative improves threshold only slightly, éven
with 5 to 10 independent chains, but the slope of the resulting
psychometric function is much steeper than its paired comparison
counterpart. We now develop the latter:
mean count = 1 + alAE,
(31)

variance

2aE, + adE (1+2aE, +aldE).

These parameters characterize a single-chain output counting
distribution when an increment AE is added to the tonal background.

Unmodified backgrounds are given by Eg (31) with AE = 0.

If the same energies are spread out uniformly across v
independent transmission channels, the counting distribution is

driven toward gaussian form and the parameters change:

mean c_'ount
variance

v + aAE,
v [2aE,/v + (aAE/v) (1+2aE,/v+alAE/v)].

(31a)

The standard normal deviate describing a paired comparison is

then:

aAE
[4aE, + (aAE) (1+2aE,/v + aAE/v)]%/?

2
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Constant terms divided by the background intensity become very
small and can be neglected. Hence:

v.AE/E,

70 g2
2+AE/E,

Thus for v , the number of independent sensory channels,
sufficiently large, and AE/E, sufficiently small, the standard
normal deviate characterizing increment detection in an ultra-

linear network may be approximated by:

(VAE/2E,)? =d.

(32)

We must remember that this process was said to have Dbeen
initiated by an energy exchange in the receptor. Yet a spread-out
amplifier network, configured as in Fig. 4 and operating in
increment detection, will havé its detectability determined by
stimulus amplitude, not enefgy. It is unnecessary to define the
stimulus as an amplitude. The result simply falls out of the
adaptation-level properties of a transmission network operating in
increment detection. Our findings confirm a long standing belief
that fundamental differences exist between intensity discrimination
and increment detection. The principal data are discussed in Green
and Swets (1988/1966, Chapter 7). They seem to accord quite well
with results presented here although formats of pedestal
experiments typically include a wideband masking noise introducing

other complexities cited in our development of Eq (27).
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Sumnmary

In this paper we have sought to show that precise,
uncomplicated models of sensory transmission are not only possible,
but capable of contributing deep meaning to psychophysical data,
especially to the study of intensity effects in audition.
Transmission systems as sophisticated as those nature installs
behind the major senses probably include a mechanism for amplifying
weak signals. Our version of the mechanism is a Markov operator
that can increase its output on each pass through an amplifier
stage. Repeated application of the operator generates a branching
network that moves information through the system, increasing in

volume and spreading out as it goes.

Nature has probably constructed its transmission networks so
that a repetitive buildup of information via cycles of branching
occurs early in transmission while later stages pass data along
more or less as received. Building a primitive model, we do not
provide for alterations of function from place to place in the
network. We concentrate on a stochastic process operating in the
same way everywhere. If the ideas are sound, there will be

opportunity for fine tuning later on.

One can argue that introducing a log transform early in
transmission eliminates most of the advantages of amplification.
The transform squeezes information and the network then amplifies

it. Counterbalanced processes generate a linear result leaving us
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more or less where we began.

Not quite. This is a subtle topic, and there may be more than
just mathematical convenience in the log transform. Rushton’s
(1961, pp. 171-181) treatment of peripheral coding in the nervous
system uses an identical transform. He bases his analysis on

experimental evidence from the visual system of the horseshoe crab.

A unique property of a birth-death stochastic process is its
adaptation level. Networks with information counts that go both up
and down at random are capable of adapting to steady state
backgrounds so that output is .virtually wiped out in such
conditions. This property causes a network to detect changes in
nearly the same way at all background levels. Linear transmission
might be unrealistic as nature’s way, but if the task is to detect
small changes in a steady background, a logarithmic relation
between increment intensity and network output rarely produces
counts large enough to invoke the squeezing action of the log
transform. At these low levels there is little difference between
log and linear scales. The main effect is likely to be in numbers
associated with adaption levels. We treat these as estimated

parameters.

The change in perspective contributed by an adaptation level is
spectacular. A stimulus is not seen as controlling the number of

triggering events transmitted by a network with fixed parameters.
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Instead stimulus intensity alters the information rate via a
control grid action that inhibits or facilitates passage of
information everywhere in the network. When a network is balanced
in this way as illustrated in Fig.4, negligible transmission

results unless a transient of some kind occurs.

What creates this control grid action? Is it opposed
processes of multiplication and inhibition, somehow built into
sensory networks by nature? Or does it happen that some parts,
perhaps even all, of the multiplied data are lost through wastage
and random dropouts. We do not know. If the phenomenon itself is
established as necessary for sensory transmission, we can

concentrate on identifying neurophysiology that produces it.

An ultimate puzzle in research on sensory thresholds is that
we must often wait until the entire conceptual structure is erected

before we can figure out how to begin to build its foundation.
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Appendix

A counting process is a stochastic mechanism whose observed
output consists of discrete events or counts. The process runs for
a fixed time producing a counting record that varies from trial to
trial in a characteristic probability distribution. Typically we
start with some idea of the basic rules and deduce from them the

expected form of the counting distribution.

Inference is materially aided by an analytical device known as
a probability generating function (p.g.f.). It is a transform of

the counting distribution constructed as follows:

G'(S) = p, + DS + p232 +p3S3 + v o4 pksk 4 e
(A.1)
The values of p, are probabilities of the various counts
(including zero), and s is an operationai variable used to generate
results. Generating functions are especially effective when the
counting probabilities combine with s to form a power series that

sums into a closed expression for G(s).

If there are two such generating functions G,(s) and G,(s)
based on independent counting distributions, the product of the
p.g.f.s proves to be the generating function of the random variable
x + y. Now if we can expand this new p.g.f. as a power series in
s, it will generate new coefficients of s* . Evidently these are

the counting probabilities in the distribution of x + y.
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Suppose as an alternative we wish to form a linear combination

of two counting processes:

G(s) = p,G,(s)+p,G, (s),

where 1 =p,+p,

(A.2)
A combination such as this would be needed when one or the
other of the two outcomes occurred at random. The probability
distribution of the composite would then be found by expanding

G(s)} in power series.

In the text of the paper we use both properties to construct
the argument leading to Eg. (9). A counting process moves from
stage r-1 to stage r by applying an operator diagramed in Fig. 4.
One of three things can happen to each message event emerging from
stage r-1. It may be wiped out at random with probability p, or
reproduced with probability p, ; or doubled with probability p, .
In the latter circumstance, we must deal with the sum of two
independent chains formed by each of the progeny. Accordingly,
even though we do not know what the generating function at stage r

is, we know it must obey the rule:

G, (8) = p +p,G,_,(8) +p2G§_1(S) .

This is Eg. (9) in the text. It is an iterative restriction

governing all transitions between successive stages.
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our text shows in Egs. (9-12) how the rule is converted into
a time-based differential equation. Eq (15) displays the soclution
of the differential egquation. The point of this maneuver is that
the solution is free of the iterative restriction. If the
resulting generating function can be expanded as a power series in
s, it will yield the output counting distribution of the process at
time t, corresponding to an arbitrary number r of processing

stages.

For example, when p, =p, (i.e. g = A) the counting process is
said to be at its adaptation level. Our argument leading to Eq

(13) shows the solution of the differential equation to be:

s5~-1

G.(8) = l+——mrrrurrree.
(8) "TRE(s-1)

(A.3)

To expand this expression as a series in s, divide through the

second term on the right by (1 + At):

) -1\ . 1
G, (s) -1+(1+“) (1— T
(1+At) N .
_ s-1 t t V2.2 ... AL k ...
G.{s) =1 +(l A.t) (1 + (———-—1+lt) S+(1+At) §2 4ot (————-l+;}t) sc + ),
- At 1 At 2 ... (AE)X? _ At A\ g
Gels) (1+Jtt)+ 10 o Taemans o T (1+A.t)k(1 e
T S L
G.(s8) = TTiE s +kﬁl TaoF sk,

(A.4)
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Eq (A.4) for the generating function displays the values of
p.(k) in Eg (14) as coefficients of s* . They form the output

counting distribution of the process at adaptation level.

Similarly, when a log transform in Eqg (17) is applied to Eg

(15) in the text, the latter becomes:

(1L+ax) (s-1)

G (s) = 1+ oy () (5-1)

(A.5)
This is Eq (20) in the text and we expand it in exactly the
same way to produce a Bose-Einstein distribution given as Eqg (21).

Finally when

v(x) = y+ax,

and the extinction probability,

T {X)

v+ax’

then Eg(A.5) for the generating function simplifies to:

(L+ax) (s-1)

Cxls) = 1+ 1-(y+ax) (s-1) ~

(A.6)
This is a so-called “ultra-linear" version of the generating
function. To expand G,(s), observe that dividing through the

second term on the right by (1+y+ax) produces:



62

G (s) =1 +(_;£i§§_) (s-1) - 1 ,
l+y+ax 1o Ytax .
l+y+ax
ke k-1
G,.(s) = A s°-+(—ik3§5—)- yrax) ™" gk,
l+y+ax l+y+ax| £ (L+y+ax)*

{A.7)
The coefficients of s* now generate the ultra-linear counting

distribution given as EQ(25) in the text.

Moments of each of these counting distributions can be found
via their generating functions. Differentiation of G(s) with
respect to s in Eq (A.l1) generates the mean value of the counting
distribution when s=1. A second differentiation produces the
second factorial moment from which the variance of the counting

distribution may be easily obtained. Specifically:

¢/(1),
G"(1)+6'(1) - (G'(1))?2.

m
02

The generating functions developed here are usually easier to

expand as functions of (s-1). Accordingly let:
z=5-1
and note that:

dG(s) _ dG(z)
ds dz '

where z=0 when s=1.
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Then the generating function in Eq (A.3) can be rewritten as:

= —Zz
G.(z) =1+ -6z’

1+ 2+ (At)z? + (AE)2z3 + »

1}

Differentiating this expansion once shows the mean to be unity when
z is set equal to zero. A second differentiation produces 2it for

the second factorial moment. Hence:

1,
2At,

non

m
o2
(A.S)

in the adaptation level counting distribution given as Eq (14) in

the text.

Finally, the ultra-linear generating function in Eq (A.6)

converted to the z variable is:

(1+ax) z
1-(y+ax) z
1+ (l+ax) z+ (1+ax) (y+ax) z%+(1l+ax) (y+ax)?z3+-

G (z) =1+

Differentiation shows:
m=1+ ax, {(A.9)

after z is set equal to zero. A second differentiation yields:

2 (1+ax) (y+ax) +(1l+ax) - (1+ax)?,
(1+ax) (2y+ax) .

Q
N
o

(A.10)
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When x, the incremental intensity, is reduced to zero, the
mean and variance regress to their respective adaptation level

values given by Eq (A.8).

If we now adjust our notation to correspond with Eg (30) in

the text:
Y = akE,,
y+ax = ak,,
ax = alE,-

we can rewrite Egs (A.9-A.10) as follows:

1+aAE,
(1+aAE) (aE +akE,) .

m
0.2
(A.11)

The latter expression for the variance can then be reworked as:

0? = (1+aAE) (2aE,+aAE),

2aE +aAE(1+2aE +alAE),

and these are the mean and variance of the ultra-linear counting

distribution (i.e. Eq (25)), given by Eg (35) in the text.
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