METHODS & DESIGNS

Intensity fluctuations produced by multimode lasers in combination with dielectric beam splitters

MICHAEL E. BRETON, MALVIN CARL TEICH, and LEONARD MATIN
Columbia University, New York, New York 10027

The combination of an unpolarized multimode laser with standard dielectric beam control devices can give rise to large intensity fluctuations that can be troublesome in visual science experiments. A number of ways to avoid this problem are discussed.

This research note is directed to a specific gap in the current technical literature that is readily available to the behavioral researcher. In setting up a recent experiment, we encountered large unexplained intensity fluctuations in our laser-optical system. This system employs what is generally referred to as an unpolarized multiple-longitudinal-mode (TEM_{000}) He-Ne laser (operating at a wavelength of 632.8 nm) in combination with dielectric optical path control devices (ordinary beam splitters and pellicles). For a beam reflected from a dielectric surface in this system, the light intensity was observed to vary by about 25% on a time scale of the order of minutes. This compares unfavorably with the less than 5% variability measurable directly from the laser output with no intervening dielectric surfaces at angles other than normal to the output beam (see Table 1). Table 1 shows that a totally reflecting aluminized surface will impart negligible intensity fluctuations to the reflected laser beam. On the other hand, where reflection is totally accounted for by an uncoated dielectric surface, the maximum fluctuation will be observed. The magnitude of the fluctuation varies approximately inversely with the percentage of reflection accounted for by non-dielectric means such as partial aluminizing of the dielectric surface.

The existence of this problem is known to some involved in laser design and is a subject of current research (Duardo, Wang, & Hug, 1976). However, new users of lasers as a research tool may not be aware of this troublesome characteristic until they find themselves confronted with large intensity fluctuations for no discernible reason. Of course, a laser system exhibiting such fluctuations would prove difficult to adapt to many experimental situations. What is more important, a lack of awareness of the problem may introduce artifacts into the design as well. For other reasons, the intensity is not being carefully monitored. This is a particular hazard since the laser specifications show that minimal intensity fluctuations should be expected. Yet even a 25% variation is not discernible when the beam is visually observed by scattering from a diffuse surface.

The explanation of this effect involves the nature of polarization of the multimode laser output (Yoshino, 1972) and the polarizing properties of reflection from a dielectric surface. The output of the "unpolarized" multimode laser often consists of several polarized components which slowly pass through the Doppler line (Duardo, Wang, & Hug, 1976; Mas, Blancher, & Roig, 1974; Berg, Note 1). This light, therefore, is not unpolarized in the sense that all polarizations are simultaneously represented. When incident on a dielectric surface at angles near the polarizing or Brewster angle (cf. Jenkins & White, 1957), the reflectivity for the beam may be substantially altered as its effective axis of polarization rotates relative to the plane of the reflecting surface. Since there are commonly only three to five principal modes in the usual laboratory laser of this variety, substantial variability in the reflected intensity can occur. Fluctuations in the transmitted beam also occur, but are of much less relative amplitude, as expected (see Table 1).

In fact, a similar problem of intensity variability will be found in systems employing a multimode unpolarized laser in conjunction with polarizing mechanisms other than dielectric reflection (e.g., dichroism, birefringence). Unless the polarizing agent can be oriented to select equally from the two orthogonally polarized laser output components, selective attenuation by the external polarizer, and therefore variable intensity fluctuations, will be produced in a manner analogous to the original problem.
INTENSITY FLUCTUATIONS IN LASER-OPTICAL SYSTEM

Table 1

<table>
<thead>
<tr>
<th>Surface Between Laser and Intensity Measuring Instrument</th>
<th>Angle of Incidence (Deg)</th>
<th>Unpolarized Multimode He-Ne Laser</th>
<th>Polarized Multimode He-Ne Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated Glass Slide, Reflected Beam</td>
<td>45</td>
<td>22.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Uncoated Glass Slide, Transmitted Beam</td>
<td>45</td>
<td>3.6</td>
<td>*</td>
</tr>
<tr>
<td>Uncoated Glass Slide, Transmitted Beam</td>
<td>90</td>
<td>1.5</td>
<td>*</td>
</tr>
<tr>
<td>100% Aluminized First Surface, Reflected Beam</td>
<td>45</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>35% Aluminized First Surface, Reflected Beam</td>
<td>45</td>
<td>7.7</td>
<td>*</td>
</tr>
</tbody>
</table>

Lasers: Coherent radiation, He-Ne (632.8 nm), 2.5 mW, longitudinal mode spacing 566 MHz; Model 80-S (unpolarized), Model 80-SP (polarized).

In all cases, neutral density filters providing between .5 and 1.5 log units of attenuation were inserted normal to the beam.

Over a period of the order of minutes depending on how long the laser has been on.

Readings taken with a silicon solar cell (Centralab 110 CLVC) fed into a digital voltmeter (DVM) and counter (Beckman Eput and timer Model 6144); sample duration = .1 sec, sample rate = 11.25 sec⁻¹, 100 samples.

Same solar cell and DVM as specified in d; sample duration = .1 sec, sample rate = 111 sec⁻¹, 100 samples.

Reading not taken.

Besides proper orientation of an external polarizer, which generally has the drawback of limiting usable output power, there are a number of technically feasible solutions to the problem. The simplest is to substitute a laser that produces a single nonrotating polarized output. Such lasers are commonly available and are usually constructed with windows at the Brewster angle internal to the resonant cavity of the laser (Siegmund, 1971). The windows act to encourage oscillation with a particular polarization prescribed by the plane of the windows. Thus, all oscillating modes display the same polarization. This solution will be effective regardless of the polarizing procedures used in the external system. A second (partial) solution, applicable where only dielectric reflection is the polarizing agent, is to avoid reflectance angles close to Brewster's angle (e.g., 56 deg for refractive index 1.50). For this solution to begin to be effective, angles of incidence less than 30 deg are generally required. Intensity fluctuations can also be eliminated (or minimized) by the use of magnetic fields, quarter-wave plates, and specially oriented polarizers, as Mas, Blancher, and Roig (1974) have discussed.

REFERENCES

REFERENCES

(Received for publication November 12, 1976.
Revision accepted February 1, 1977.)
Behavior Research Methods & Instrumentation
A Journal of THE PSYCHONOMIC SOCIETY, Inc.

Joseph B. Sidowski, Editor
Department of Psychology
University of South Florida
Tampa, Florida 33620

Consulting Editors
Doris Aaronson
New York University
New York, New York

Norman H. Anderson
University of California, San Diego
California, California

William R. Biersdorf
Ohio State University
Columbus, Ohio

J. V. Brady
Johns Hopkins University
Baltimore, Maryland

Irwin Brown
Maryland Psychiatric Research Center
Baltimore, Maryland

Judson S. Brown
University of Oregon Medical School
Eugene, Oregon

David A. Grant
University of Wisconsin, Madison
Madison, Wisconsin

Marshall M. Haith
University of Denver
Denver, Colorado

Herschel W. Leibowitz
Pennsylvania State University
University Park, Pennsylvania

James McGaugh
University of California, Irvine
Irvine, California

William R. Utral
University of Michigan
Ann Arbor, Michigan

Steven G. Vandenberg
University of Colorado
 Boulder, Colorado

William T. Woodard
University of Hawaii
Honolulu, Hawaii

Sharon Tarver
Managing Editor

Published bi-monthly by THE PSYCHONOMIC SOCIETY, Inc.
1108 West 34th Street
Austin, Texas 78705

Publication No. 703229
Second Class Postage paid at
Austin, Texas 78705
Copyright © 1977 by THE PSYCHONOMIC SOCIETY, Inc.

Yonovitz, A., & Michaels, R.
356
Durable, Efficient, and Economical Toilet-Training Devices for Use With Retarded Children

Braddick, O.
359
Real-Time Generation of Random-Element Motion Displays

Robertson, S. A.
363
A BASIC Program to Produce Random Expressions Without Replacement

Fisher, M. A.
365
Simulation of the Fisher-Zeaman Multiple-Ladd Attention Theory

Stricklin, W. R., Graves, H. B., & Wilson, L. L.
367
DISTANGLE: A FORTRAN Program to Analyze and Simulate Spacing Behavior of Animals

(continued on back cover)

INFORMATION FOR CONTRIBUTORS AND SUBSCRIBERS

BEHAVIOR RESEARCH METHODS & INSTRUMENTATION is published bimonthly by The Psychonomic Society, Inc., a nonprofit organization. It publishes articles, as its name implies, in the area of the methods, techniques, and the instrumentation of research in experimental psychology. It also has a section on computer technology. Its Editor is Joseph B. Sidowski.

MANUSCRIPTS should be sent in quadruplicate to the Editor, Joseph B. Sidowski, Department of Psychology, University of South Florida, Tampa, Florida 33620. Manuscripts should be numbered consecutively from the abstract on. Manuscripts should be typed with double spacing (3 lines to the inch) in columns 6 in. wide. Include an abstract of 100 to 150 words in the form used by the American Psychological Association. The abstract should be on a separate page. So also should each table, references, and a list of figure legends. Manuscripts should adhere to the conventions concerning references, preparation of tables, manuscript format, etc., described in the Publication Manual of the American Psychological Association, except that, in the abbreviation of physical units, the style of the American Institute of Physics is followed. When in doubt, consult a recent issue of the journal or write to the Editorial Office (1108 West 34th Street, Austin, Texas 78705) for a copy of this journal’s style guide.

FIGURES AND ILLUSTRATIONS should be given special attention. Legibility figures should be composed of letters and numbers between 12-point and 14-point size in Helvetica, Trade Gothic, or similar type style of medium weight (not light or thin). Lines and symbols should be proportionately the same weight. Open circles should be about twice the size of other circles. The size of the original may be reduced such that reduction is no less than 40% of the original. Thus, for a single-column figure (60 mm), the width of the original must be between 175 and 200 mm. Figures should be reduced to a 70- to 80-mm width and are welcome. Single-column figures are preferred. Halftones require special attention both detail and figure-ground contrast. Submit the original or a PMT stat or optical reproduction. See Note to Contributors.

SUBSCRIPTIONS are $20 per year for institutions and $10 per year for individuals. Subscriptions ordered by institutions are charged at the institutional price regardless of the use intended. Add $1 for postage to foreign countries. Single issues are $5. Remittance must be in U.S. dollars. Send all subscription orders and changes of address to the Publications Office, The Psychonomic Society, 1108 West 34th Street, Austin, Texas 78705. Individuals and organizations in Texas that are not tax-exempt should add 5% sales tax.