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12.1. INTRODUCTION

Photon-number-squeezed light, by definition, exhibits a photon-number
uncertainty that is squeezed below the minimum classical value, which is
associated with the Poisson distribution [1, 2]. Such light is therefore also
called sub-Poisson light. Photon-number-squeezed light is expected to find
use in a variety of applications, ranging from lightwave communications
[3, 4] to biology [5], where the capacity of light to carry information is
limited by photon-number uncertainty. Indeed, the use of a fixed number
of photons to represent a bit of information can, in principle, provide
noise-free direct-detection lightwave communications [3, 4]. The noise is
squeezed into the phase fluctuations, which are not reglstered by the
process of direct detection.

Photon-number-squeezed light may be generated in many ways. When
it is desired to impart information on the phase of a light beam, the use of
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quadrature-squeezed light [6, 7] that is mixed with coherent light at a
beamsplitter [8] is particularly useful. The homodyne process converts the
quadrature-squeezed light into photon-number-squeezed light [9]. The
distinction between quadrature-squeezed and photon-number-squeezed
light has been elucidated elsewhere [2, 10, 11].

Techniques in which photon-number-squeezed light is directly gener-
ated are sometimes preferable because of their simplicity. Such techniques
are useful when information is to be imparted directly to the photon
number. Yamamoto and his colleagues have considered several schemes
that in principle permit the synthesis of light with a particular quantum
state [10]; these include unitary transformation from a coherent state,
nonunitary state reduction by measurement, the combination of measure-
ment and feedback, and lasing with suppressed pump-noise fluctuations.
The latter approach is considered in the context of semiconductor injec-
tion lasers in the previous chapter of this book [11].

An alternative approach, initially used by us {1, 12] and considered in
this chapter, focuses on the point process that characterizes the generation
and detection of photons in terms of their arrival times. It is most readily
applied to a description of incoherent photon-number-squeezed light. This
approach is meritorious in the physical intuition that it provides and the
fact that it includes time dynamics, but it does not provide a framework
that allows for the synthesis of light of a particular quantum state.

Most sources of laser light produce a statistically independent stream of
photons represented by the Poisson point process. The generation of
photon-number-squeezed light requires that anticorrelations be intro-
duced into the photon stream. These anticorrelations may be manifested
in the times at which the radiators emit photons (excitation control) or
they may be derived from the emitted photons themselves (photon control}
1, 2]

In this chapter, we focus on the generation of photon-number-squeezed
light by techniques that rely on excitation control (Section 12.2). Excitation
control may be imparted by mechanisms that rely either on a physical
process (Section 12.3), or on an externally provided feedback control
signal (Section 12.4). Both of these techniques can be used in conjunction
with semiconductor light sources. Two proposed applications of photon-
number-squeezed light are briefly considered in Section 12.5. An analysis
of the generation of photon-number-squeezed light from a stochastic point
process point of view is detailed in the Appendix.

In principle, these techniques can be used to generate ideal photon-
number-state light (which has no uncertainty in its photon number).
However, it is important to note that photon-number squeezing is a fragile
effect. Once produced it is readily diluted by the ever-present random loss
of photons and by contamination arising from the presence of (un-
squeezed) background photons [1, 13].
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The generation of photon-number-squeezed light by excitation control
may be visualized in terms of the schematic representation shown in
Figure 12.1. Two key effects regulate the photon-number-squeezing possi-
bilities for light generated by a two-step process of excitation and emis-
sion: (1) the statistical properties of the excitations themselves and (2) the
statistical properties of the individual emissions. The role of these two
factors is heuristically illustrated in Figure 12.1 and analytically examined
in the Appendix (which is drawn from Section 3.4 of Ref. 1).

In Figure 12.1a, we show an excitation process that is Poissonian.
Consider each excitation as generating photons independently. Now if
each excitation instantaneously produces a single photon, and if we ignore
the effects of interference, the outcome is a Poisson stream of photons,
which is obviously not sub-Poisson. This is the least random situation that
we could hope to produce, given the Poisson excitation statistics. If
interference is present, it will redistribute the photon occurrences, leading
to the results for chaotic light [14]. On the other hand, the individual
nonstationary emissions may consist of multiple photons or random num-
bers of photons. In this case, we encounter two sources of randomness,
one associated with the excitations and another associated with the emis-
sions. The outcome will then be super-Poisson; that is, it will exhibit
photon-number fluctuations greater than those associated with the Poisson
distribution.

In particular, if the emissions are also described by Poisson statistics,
and the counting time is sufficiently long, the result turns out to be the
Neyman Type-A counting distribution, as has been discussed in detail
elsewhere [15, 16]. Even if the individual emissions comprise deterministic
numbers of photons, the end result is the fixed-multiplicative Poisson
distribution, which is super-Poisson [16]. Related results have been ob-
tained when interference is permitted [14]. It is quite clear, therefore, that
if the excitations themselves are Poisson (or super-Poisson), there is no
hope of generating photon-number-squeezed light by such a two-step
process.

In Figure 12.1b we consider a situation in which the excitations are
more regular than Poisson. For illustration and concreteness, we choose

‘the excitation process to be produced by deleting every other event of a

Poisson pulse train. The outcome is the gamma-2 (or Erlang-2) renewal
process, whose analytical properties are well understood (see Appendix).
Single-photon emissions, in the absence of interference, result in sub-Pois-
son photon statistics. Poisson emissions, on the other hand, result in
super-Poisson light statistics. Of course, the presence of interference can
introduce additional randomness. Clearly, a broad variety of excitation
processes can be invoked for generating many different kinds of light. A
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Figure 12.1. Schematic representation of a two-step process for the generation of light,
illustrating stochastic excitations (first line) with either single-photon emissions (second line)
or Poisson multiple-photon emissions (third line). Interference effects are ignored in this
simple representation. (a) Poisson excitations; (b) sub-Poisson, antibunched excitations
(gamma-2); (c) pulse-train excitations (random phase). After Teich et al. [12].
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process similar to the gamma-2, and for which many analytical results are
available, is the nonparalyzable dead-time-modified Poisson process (see
Appendix). Resonance fluorescence radiation from a single atom is de-
scribed by a process of this type since, after emitting a single photon, the
atom decays to the ground state, where it remains for a period of time and
cannot radiate. Short and Mandel used such a scheme to produce condi-
tionally photon-number-squeezed emissions from isolated atoms [17].

Finally, in Figure 12.1c, we consider the case of pulse-train excitations
(with random initial time). This is the limiting result both for the gamma
family of processes and for the dead-time-modified Poisson process. In the
absence of interference, single-photon emissions in this case yield ideally
sub-Poisson photon statistics. Interference does not destroy the sub-Pois-
son nature in the long-counting-time limit. Poisson emissions give rise to
Poisson photon statistics.

The illustration presented in Figure 12.1 is intended to emphasize the
importance of the excitation and emission statistics as determinants of the
character of the generated light. To produce sub-Poisson photons by direct
generation, both sub-Poisson excitations and sub-Poisson emissions are
required.

The statistical properties of light generated by sub-Poisson excitations,
with each excitation leading to a single-photon emission, has been exam-
ined in considerable detail by Teich et al. [12]. These authors also ad-
dressed the effects of different locations for the different emissions and
the rates of photon coincidence at pairs of positions in the detection
plane. Some of the results are summarized in the Appendix.

The sub-Poisson excitations are characterized by a time constant 7, that
represents the time over which excitation events are anticorrelated (anti-
bunched). The single-photon emissions, on the other hand, are character-
ized by a photon excitation—emission lifetime 7,. The detected light will
be photon-number-squeezed provided T > TesTpy A > A, where T is
the detector counting time, A is the detector counting area, and A, is the
coherence area. Different methods of sub-Poisson excitation result in
different values of 7, whereas different mechanisms of photon generation
result in different values of 7, and A4..

Invoking these limits assures that all memory of the fields from individ-
ual emissions lie within the detector counting time and area, in which case
the randomization of photon occurrences associated with interference
does not extend beyond these limits. Consequently, the photon-counting
statistics are determined by the only remaining source of variability, which
is the randomness in the excitation occurrences. In this limit the photons
behave as classical particles.

To recapitulate, a stationary stream of photon-number-squeezed light
can be generated by a two-step process if sub-Poisson statistics are obeyed
both by the excitations and by the individual emissions. For sufficiently
large counting times and large detection areas, interference effects are
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washed out and the photons behave as classical particles. If the emissions
are single photons, the overall photon statistics then directly mimic the
statistics of the excitations.

7
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bination photons in a semiconductor. These methods all generate photon-
number-squeezed light by transferring the anticlustering properties of the
electrons, ultimately arising from Coulomb repulsion, directly to the
photons.
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12.3.1. Space-Charge-Limited Franck-Hertz Experiment

The space-charge-limited Franck-Hertz effect [18-20] provided the first
source of unconditionally photon-number-squeezed light. The essential
element of this experiment is a collection of Hg atoms excited by inelastic |
collisions with a low-energy space-charge-limited (“quiet”) electron beam. f
The space-charge reduction of the usual shot noise associated with ;
thermionically emitted electrons can be substantial [21, 22]. A convenient |
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Figure 12.2. Block diagram of the space-charge-limited Franck—-Hertz experiment. The use of Hg

resulted in ultraviolet photon-number-squeezed light at a wavelength of 253.7 nm. After Teich and

Saleh [20].
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measure of the noise reduction is provided by the Fano factor, which is
defined as the ratio of the variance Var(m) to the mean (m} of a random
variable: F,, = Var(m)/{m). Fano factors for the electron stream with
values F, < 0.1 are typical, and values as low as 0.01 are possible. After
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excitation, each atom emits a (sub-Poisson) single photon via the
Franck-Hertz (FH) effect.

A block diagram of apparatus originally used to carry out this experi-
ment is shown in Figure 12.2. The light was generated in a specially
constructed 25-mm-diameter UV-transmitting Franck—-Hertz tube, filled
with 0.75 g of Hg. The radiation impinged on a UV photon-counting
photomultiplier tube (PMT) in a special base that provided preamplifica-
tion, discrimination, and pulse shaping. The output of this circuitry was
fed to electronic photon-counting equipment that measured the probabil-
ity distribution p(n, T) for the detection of n photoelectrons in time 7.
The mean count (n) and the Fano factor F,(T) were calculated from
p(n, T). The photon count was only slightly sub-Poisson, but the result was
statistically significant. The small degree of photon-number squeezing
resulted principally from optical losses in the experimental apparatus. The
details of the experiment and the experimental results have been de-
scribed elsewhere [19, 20].

12.3.2. Space-Charge-Limited Excitation of Recombination Radiation

A useful source of photon-number-squeezed light should exhibit a photon
Fano factor that is substantially below unity while producing a large
photon flux, preferably in a directed beam. It should also be small in size
and rapidly switchable.

This has led us to propose a semiconductor device structure in direct
analogy with the Franck—Hertz experiment described above. Sub-Poisson
electron excitations are attained through space-charge-limited current flow
and single-photon emissions are achieved by means of recombination
radiation [23]. A device of this nature will emit incoherent photon-num-
ber-squeezed recombination radiation and should be far more efficient
than its vacuum-tube cousin. The energy-band diagram for such a space-
charge-limited light-emitting device (SCLLED) is illustrated in Figure
12.3. Sub-Poisson electrons are directly converted into sub-Poisson pho-
tons, as in the space-charge-limited Franck-Hertz experiment, but these
are now recombination photons in a semiconductor. In designing such a
device, carrier and photon confinement should be optimized and optical
losses should be minimized. The basic structure of the device is that of a
pT—-i-n* diode. Recombination radiation is emitted from the LED-like
region.

The current noise in such a space-charge-limited diode [24] can be quite
low. It has a thermal (rather than shot-noise) character [25-27]. The
current noise spectral density S,(w) for a device in which only electrons
participate in the conduction process is given by [23]

S(w)  8ko
2e(l,y eV,

(12.1)
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®

Figure 12.3. Energy-band diagram of a specially designed solid-state space-charge-limited
light-emitting device under (a) equilibrium conditions and (b) strong forward-bias conditions.
The curvature of the intrinsic region under forward-bias conditions indicates the space-charge
potential. After Teich et al. [23).

where (I,) is the average forward current in the device, (V,) is the
applied forward-bias voltage, k is Boltzmann’s constant, 6 is the device
temperature in kelvins, @ is the angular frequency, and e is the electronic
charge. '

The degree of photon-number squeezing of the detected photons is
then expected to be given by [23]

F(T)=1+n (12.2)

8k6
Vi 1)

provided that background light is absent. For a space-charge-limited
diode, such as that shown in Figure 12.3, it is estimated that 8k68 /e(V,) =
0.1 when 6 = 300 K and (V,) = 2 V (corresponding to (I,) = 33 mA).
This ratio can be further reduced by cooling the device. If a dome-shaped
surface-emitting GaAs/AlGaAs configuration and a Si p—i—n photodetec-
tor are used, the overall quantum efficiency is estimated to be n = 0.113,
yielding an overall estimated postdetection Fano factor F(7) = 0.90. A
commercially available standard LED should provide F(T) = 0.97. In
both cases, T can be as short as = 1 ns. In principle, the degree of
photon-number squeezing of the recombination radiation from the
SCLLED is limited only by the geometrical collection efficiency.

12.3.3. Sub-Poisson Excitations and Stimulated Emissions

The properties of the light generated by the SCLLED could be improved
if stimulated emissions were permitted. The advantages include improved
beam directionality, switching speed, spectral properties, and coupling to
an optical fiber. This could be achieved by use of an edge-emitting (rather
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than surface-emitting) LED configuration, with its waveguiding geometry
and superfluorescence properties (single-pass stimulated emission). The
theoretical results associated with the simple model presented in Section
12.2 (see Appendix) will apply provided that T > 7,,7.; A > A_, where
7. and A, are now the coherence time and coherence area of the
superfluorescent emission, respectively. The effect of the stimulated emis-
sions is to extend 7, into 7. and to reduce the coherence area 4. From a
physical point of view, the photons still behave as classical particles in this
regime since each electron gives rise to a single photon and there is no
memory beyond the counting time 7.

There will likely be further advantage in combining space-charge-limited
current injection with a semiconductor laser structure rather than with the
LED structure considered above. This could provide increased emission
efficiency as well as additional improvement in beam directionality, switch-
ing speed, spectral properties, and coupling. This will be beneficial when
the laser can be drawn into a realm of operation in which it produces a
state that exhibits photon-number squeezing [28], such as a number-phase
minimum uncertainty state [10, 11, 29]. Yamamoto and his colleagues
[30, 31] have shown that this mode of operation can be attained in a
semiconductor laser oscillator, within the cavity bandwidth and at high
photon-flux levels, but in their case the pump fluctuations are suppressed
below the shot-noise level by means of externally provided excitation
control (see Section 12.4.4). Suggestions of this kind have also been made
by Smirnov and Troshin [32] and by Carroll [33].

12.4. EXTERNALLY PROVIDED EXCITATION CONTROL

External mechanisms can also be used to ensure that the current flowing
in a circuit is sub-Poisson. These include both optoelectronic and current-
stabilization schemes. In Section 12.4.1 we discuss the use of two schemes
that rely on the use of a light source and photodetector in a negative-
feedback loop. The use of a beamsplitter to extract a portion of these
in-loop photons is not useful for producing photon-number-squeezed light,
as discussed in Section 12.4.2.

In Section 12.4.3 we discuss the possibility of generating sub-Poisson
photons from sub-Poisson electrons by making use of an externally pro-
vided feedback control signal and an in-loop auxiliary optical source.
Sub-Poisson electrons flow through the auxiliary source and produce
sub-Poisson photons en route. Finally, in Section 12.4.4 we discuss the
generation of sub-Poisson electrons by means of a purely electronic
scheme, external current stabilization.

12.4.1. Optoelectronic Generation of Sub-Poisson Electrons

Two optoelectronic experiments incorporating externally provided excita-
tion control have been used to generate sub-Poisson electrons. One of
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Figure 12.4. Generation of sub-Poisson and antibunched electrons by external feedback, as
studied by Walker and Jakeman [34].

these was carried out by Walker and Jakeman [34]; the other, by Machida
and Yamamoto [35, 36]. The simplest form of the experiment carried out
by Walker and Jakeman is illustrated in Figure 12.4. The registration of a
photoevent at the detector operates a trigger circuit that causes an optical
gate to be closed for a fixed period of time 7, following the time of
registration. During this period, the power P, of the (He-Ne) laser
illuminating the detector is set precisely equal to zero so that no photo-
events are registered. This is a dead-time optical gating scheme. Sub-Pois-
son photoelectrons were observed.

Machida and Yamamoto’s experiment [35] has a similar thrust, al-
though it is based on rate compensation. They used a single-longitudinal-
mode GaAs/AlGaAs semiconductor injection laser to generate light (LD)
and a Si p-i-n photodiode (PD) to detect it, as shown in Figure 12.5a.
Negative feedback from the detector was provided to the current driving
the laser diode. A sub-shot-noise spectrum and sub-Poisson photoelectron
counts were observed.

The similarity in the experimental results reported by Walker and
Jakeman and by Machida and Yamamoto can be understood from a
physical point of view [37]. In the configuration used by the latter authors,
the injection-laser current (and therefore the injection-laser light output)
is reduced in response to peaks of the in-loop photodetector current i,.
This rate compensation is essentially the same effect as that produced in
the Walker-Jakeman experiment where the He—Ne laser light output is
reduced (in their case to zero) in response to photoevent registrations at
the in-loop photodetector. The feedback acts like a dead time, suppressing
the emission of light in a manner that is correlated with photoevent
occurrences at the in-loop detector. -

12.4.2. Extraction of In-Loop Photons by a Beamsplitter

These simple configurations cannot generate usable sub-Poisson photons
since the feedback current is generated from the annihilation of the
in-loop photons. Any attempt to remove in-loop photons by means of a
beamsplitter (BS), such as that illustrated in Figure 2.5b, will lead to
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Figure 12.5. (a) Generation of sub-Poisson
and antibunched electrons by external feed-
back using rate compensation, as investi-
gated by Machida and Yamamoto [35]. (b)
The removal of in-loop photons by a beam-
splitter leads to super-Poisson light at the
out-of-loop detector (Dg). After Machida
and Yamamoto [35].

super-Poisson light. This result can be understood in terms of the argu-
ments of Walker and Jakeman [34] and Shapiro and coworkers [37, 38] and
is confirmed by the experiments of Walker and Jakeman [34].
Nevertheless, under special circumstances, and when components other
than beamsplitters are used, the feedback technique can be useful in
generating photon-number-squeezed light. These involve the use of quan-
tum-nondemolition measurements and correlated photon pairs [1, 38].

12.4.3. Use of an In-Loop Auxiliary Optical Source

One of the more direct ways of producing photon-number-squeezed light
from a system making use of external feedback is to insert an auxiliary
optical source in the path of the sub-Poisson electron stream, as suggested
by Capasso and Teich [39]. Two alternative configurations are shown in
Figure 12.6. The character of the photon emitter is immaterial; it has been
chosen to be an LED for simplicity but it could be a laser. In Figure 12.6a
the photocurrent derived from the detection of light is negatively fed back
to the LED input. It has been established both experimentally [35] and
theoretically [37] that, in the absence of the block labeled ‘“source,”
sub-Poisson electrons (i.e., a sub-shot-noise photocurrent) will flow in a
circuit such as this. This conclusion is also valid in the presence of this
block, which in this case acts simply as an added impedance to the
electron flow.

Incorporating this element into the system offers access to the loop and
permits the sub-Poisson electrons flowing in the circuit to be converted
into sub-Poisson photons by means of electronic transitions. This is
achieved by replacing the detector used in the feedback configurations of
Machida and Yamamoto [35] and Walker and Jakeman [34] with a struc-
ture that acts simultaneously as a detector and a source. The sub-Poisson
electrons emit sub-Poisson photons and continue on their way. The

———
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Figure 12.6. Generation of photon-number-squeezed light by insertion of an auxiliary
source into the path of a sub-Poisson electron stream, as proposed by Capasso and Teich
[39]. Wavy lines represent photons; solid lines represent the electron current (r, signifies the
feedback time constant). The schemes represented in (@) and (b) make use of the sub-Pois-
son electron production methods illustrated in Figures 12.5 and 12.4, respectively. After
Capasso and Teich [39].

configuration presented in Figure 12.6b is similar except that the (nega-
tive) feedback current gates the light intensity at the output of the LED in
the manner of Walker and Jakeman, rather than the current at its input in
the manner of Machida and Yamamoto. Any similar scheme, such as
selective deletion [1, 40}, could be used instead.

Two possible solid-state detector—source configurations have been sug-
gested [39]. The scheme shown in Figure 12.7a makes use of sequential
resonant tunneling [41] and single-photon dipole electronic transitions
between the energy levels of a quantum-well heterostructure. The device
consists of a reverse-biased p*—i-n* diode where the p*-and n* heavily
doped regions have a wider band gap than ‘the high-field, light-
absorbing /emitting i region. This arrangement ensures both high quan-
tum efficiency at the incident photon wavelength (to which the p* window
layer is transparent) and high collection efficiency (due to the waveguide
geometry) for the light generated by the electrons drifting in the i layer.
An edge-emitting geometry is therefore appropriate. To maximize the
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Figure 12.7. (a) Representative energy-band diagram of a quantum-well detector—source
device (see Figure 12.6). The energy of the incident photon emitted by the LED is denoted
hwg. Detection and source regions are shown. Photons of energy hw;, are emitted via
electronic quantum-well transitions. (b) Representative energy-band diagram of a
detector-source device with electroluminescent centers impact-excited by energetic photo-
electrons, emitting photons with energy #w;. After Capasso and Teich [39].

collection efficiency, some of the facets of the device could be reflectively
coated. The scheme shown in Figure 12.7b is similar except that it uses the
impact excitation of electroluminescent centers in the i region by drifting
electrons. Of course, the ability of configurations such as these to generate
photon-number-squeezed light requires the usual interrelations among the
various characteristic times associated with the system.

An estimate of the degree to which this mechanism will give rise to
photon-number-squeezed light is provided by the Fano factor. The rele-
vant relations are similar to those for the Franck—Hertz source. However,
in this situation a single electron may give rise to multiple photons since
there are u stages of the device (see Appendix). Numerical estimates for
the Fano factor turn out to be similar for both structures illustrated in
Figure 12.7, namely, F, = 0.97 (under the assumption that the photodetec-
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tor has an efficiency of 0.8). This is not as good as the value attainable by
the SCLLED, principally because of low radiative efficiency in the tunnel-
ing scheme. Furthermore the external feedback mechanism may well be
slower than the internal feedback scheme of the SCLLED.

12.4.4. Use of a Current Source with External Compensation

Steady-state current stabilization can be achieved by use of a constant’
voltage source in series with an external resistor R [29], or in series with
some other optoelectronic component with suitable I-V characteristic.
Strong photon-number-squeezed light has been generated in two exper-
iments that make use of external compensation. Tapster et al. [42] carried
out an elegantly simple experiment, using a high-efficiency commercial
GaAs LED fed by a Johnson-noise-limited high-impedance current source.
They achieved a Fano factor F, = 0.96 over a bandwidth of about 100
kHz, with a current transfer efficiency in excess of 11%. Machida et al.
[30] fed an InGaAsP/InP single-longitudinal-mode distributed-feedback
laser oscillator, operating at a wavelength of 1.56 um, with a current
source whose fluctuations were suppressed by the use of an external
high-impedance element. In their first experiments, these authors obtained
an average Fano factor F, = 0.96 over a bandwidth of about 100 MHz,
with a minimum Fano factor F, = 0.93. They calculated that the radiation
produced by their device is in a near number-phase minimum-uncertainty
state, in the frequency range below the cavity bandwidth (which is in
excess of 100 GHz for a typical semiconductor laser). Further results,
which are indeed impressive, have been reported more recently [11, 31].

12.5. APPLICATIONS

We consider two specific examples where the use of photon-number-
squeezed light might prove beneficial. In an idealized direct-detection
lightwave communication system, errors (misses and false alarms) can be
caused by noise from many sources, including photon noise intrinsic to the
light source [1, 3]. If photon noise is the limiting factor, the use of
photon-number-squeezed light in place of coherent light can bring about a
reduction in this noise, and thereby the probability of error. For a
coherent source each pulse of light (which carries a bit of information)
contains a Poisson number of photons so that the pheton-number stan-
dard deviation o, = (n)'/2. For photon-number-squeezed light, each pulse
contains a sub-Poisson number of photons so that g, < (n)'/2. This noise
reduction results in a decrease of the error probability. In a simple binary
on-off-keying system whose only source of noise is assumed to be binomial
photon counts (with Fano factor F,), the mean number of photons per bit
{n'y required to achieve an error probability of 10~? decreases below its
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coherent-light “quantum limit” of 10 photons/bit as F, decreases below
unity [1, 3, 43]. The “quantum limit” of a lightwave communication system
should therefore more properly be designated as the “shot-noise limit.”

The use of photon-number-squeezed light in visual science [5] could
serve to clarify the functioning of ganglion cells in the mammalian retina.
These cells transmit signals to higher visual centers in the brain via the
optic nerve. In response to light, the ganglion cell generates a neural
signal that takes the form of a sequence of nearly identical electrical
events occurring along the time axis. The statistical nature of this neural
signal is generally assumed to be governed by two nonadditive elements of
stochasticity: the incident photons (which are Poisson-distributed in all
experiments to date) and a randomness intrinsic to the cell itself [44]. If
the statistical fluctuations of the photons could be controlled by exciting
the retina with photon-number-squeezed light, the essential nature of the
randomness intrinsic to the cell could be isolated and unambiguously
determined. The use of photon-number-squeezed light as a stimulus in
visual psychophysics experiments could also be helpful in clarifying the
nature of seeing at threshold [5].

APPENDIX GENERATION OF PHOTON-NUMBER-SQUEEZED AND
ANTIBUNCHED LIGHT FROM INDEPENDENT RADIATORS

Consider an arbitrary (in general non-Poisson) excitation point process.
Let each event of this process {t,¢,,...,%,...} initiate a statistically
independent and identical emission, so that the radiated light is the
superposition of these emissions [12]. Even though the individual emis-
sions typically take the form of pulses lasting a short time, and are
therefore nonstationary, the overall radiation is stationary because of the
assumed stationarity of the excitation process.

Characterization of the Excitation Point Process

Two important descriptors of a stationary point process are the rate u
(events per unit time) and the rate of coincidence u’g®(r) of pairs of
events at times separated by 7. These descriptors are not sufficient to
characterize an arbitrary point process completely [45, 46]; in general
knowledge of the probability of multicoincidences of events at k points,
for k = 1,2,...,%, is required. If m is the number of events that occur in
a time interval [0, T}, then its mean is

(m) =puT (12.A1)
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and its Fano factor (ratio of variance to mean) is

F(T) = X%n()i) =1+ <An;> (12.A2)
where
2 © T
it = (31 F)lee@ - 1lar 2ay

The simplest example is the Poisson point process, for which gd(r) =1
and F,(T) = 1. If gX0) < 1, the excitation process is said to be anti-
bunched or anticorrelated, whereas if g?(0) > 1 it is said to be bunched
or correlated. The characteristic time associated with the function [g® —
1] is denoted 7,. Similarly, if F,(T) < 1, the excitation counts are said to
be sub-Poisson (for this counting time 7T), whereas if F,(T) > 1, the
counts are said to be super-Poisson. The Poisson point process has neither
memory nor aftereffects.

For the self-exciting point process (SEPP), on the other hand, the
probability of occurrence of an event at a particular time depends on the
times and numbers of previous occurrences [46]. Renewal point processes
(RPPs) form an important subclass of SEPPs for which the rate u and the
normalized coincidence rate g?(r) do characterize the process completely
[45]. These are processes for which the interevent time intervals are
statistically independent and identically distributed. The following are
important examples of renewal point processes that exhibit antibunched
events and sub-Poisson counts:

1. The Gamma-#" Process. This process is obtained from a Poisson
process by decimation, that is, by selecting every .#'th event and discard-
ing all others [45, 47], as illustrated in Figure 12.1b for .#'= 2. The
process is so named because the interevent time distribution P(r) is a
gamma distribution of order .#. For the particular case when /"= 2, it
turns out that [12]

gP(r) =1—exp(—dulr) - (12.A4)
F(T) =3 (12.A5)
2. The Nonparalyzable Dead-Time-Modified Poisson Process. This pro-

cess is obtained from a Poisson process by deleting events that fall within a
specified dead time 7, following the registration of an event [45-51]. It is
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characterized by [12]

A PYC 11',,)]1_l

gP(7) = ;E] = xp[ —A(r — I7,)]U(7 - I7;) (12.A6)
F(T) = (1 - p1,)’? (12.A7)
with
A= (12.A8)
1—-pur,

where U(t) is the unit step function, A is the initial rate of the process,
and p is the rate after dead-time modification. [Equation (12.A6) replaces
Eq. (3.43) in Ref. 1, which has a typographical error.] Its interevent-time
density function is a decaying exponential function displaced to the mini-
mum permissible interevent time 7,.

Another example is a pulse train with random time of initiation [12, 52].

Photon Statistics for Emissions at Antibunched Times

When the underlying excitation process has known rate u and normalized
coincidence rate g(r), but is otherwise arbitrary, what can be said about
the statistics of the radiation? Because of their finite lifetime, emissions
overlap and interfere. To determine their bunching properties it is neces-
sary to know not only the rate of coincidence of the excitation process at
pairs of time instants but also the coincidence rates at triple points, and so
on. If such information is not available, the bunching properties of the
superposed radiation cannot be determined.

However, in the limit in which the counting time T is much longer than
the lifetime 7, of the individual emissions, interference has a negligible
effect on the total number of collected photocounts. The total number of
photons »n is then simply the sum of the number of photons emitted
independently by the individual emissions. If m is the number of emissions
and a, is the number of photoevents associated with the kth emission,
then n = =7 ,a,. Using the fact that the {a,} are statistically indepen-
dent and identical, it is not difficult to show that the mean and variance of
n are

(n) = {a)(m) (12.A9)
Var(n) = (a)* Var(m) + (m)Var(a) (12.A10)
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from which it follows that the corresponding Fano factors are related by
=<{a)F, +F, (12.A11)

or
F,=1+[F, -1+ <(a)] +{(a)F,—-1) (12.A12)

Equation (12.A10) is known as the cascade variance formula [53-55].

Equation (12.A12) shows that the Fano factor comprises three contribu-
tions. The first term is that of a Poisson process. The second term (in
square brackets) represents excess noise due to randomness in the number
of photons per emission (if @ = 1, then F, = 0 and it vanishes). The third
term admits the possibility of noise reduction due to anticorrelations in
the excitation process. This term vanishes if the excitation process is
Poisson (since F,, = 1), whereupon Eq. (12.A11) assumes the well-known
form

=(a) +F, (12.A13)

We now consider an example in which each of the individual emissions
is described by a one-photon number state (i.e., single-photon emissions
with @ = 1). This corresponds to ¢(a) = 1 and F, = 0, from which Eq.
€12.A11) yields

F =F

" - (12.A14)
This is to be expected. For single-photon emissions, the number of
photons counted over a long time interval is approximately equal to the
number of excitations (assuming there are no losses). If the excitation
point process is sub-Poisson, the photons will also be sub-Poisson. It is of
interest to note that we need not go outside the domain of linear
(one-photon) optics to see such uniquely quantum-mechanical effects.

Equations (12.A11) and (12.A12) reveal the key to obtaining sub-Pois-
son photons from sub-Poisson excitations. In order to have F, <1, F,
must be < 1, as is apparent from Eq. (12.A11). Furthermore, a necessary
condition for F, < 1 is that F,, < 1 (because the term in square brackets
in Eq. (12.A12) is nonnegative). It follows that for F, to be less than unity,
both F, and F, must be less than unity. Therefore, the generation of a
stationary stream of sub-Poisson photons from a superposition of indepen-
dent emissions requires that both the excitation process and the photons
of the individual emissions be sub-Poisson.

Physical mechanisms that provide control of the excitation point pro-
cess, and that are well described by the model presented here, have been
discussed in Sections 12.3 and 12.4.
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Bunching / Antibunching Properties of Emissions Initiated’
at Antibunched Times

Determination of the short-time behavior of the photoevents requires
knowledge of the normalized photocoincidence rate g@(r). This is not
possible unless the excitation point process is completely specified
(higher-order multicoincidence rates specified). Teich et al. [12] examined
this problem under the assumption that the excitation point process is a
renewal point process. Using the assumption of single-mode individual
emissions, they showed that

g?(r) =1 +|g(1)(1-)‘2 + (%)g(z)(f) +r(7) (12.A15)

p

The first three terms on the right-hand side of Eq. (12.A15) emerge from a
Poisson excitation process. The fourth term, which is given by

r(r) = [0“./,(7, O[e@(e) - 1] dt (12.A16)

with

W(r,1) = [0“[10(:')100' + 1= 1)+ VE(EW(t +7)
XVg(t + )Wt + ' + 7)] dt’ (12.A17)

represents the effects of deviation of the excitation process from Poisson.
When the excitation point process is antibunched, this term is negative,
thereby introducing anticorrelations into the photon process. If it is
sufficiently strong, it can counterbalance the bunching effects due to wave
interference [second term in Eq. (12.A15)] and due to the randomness of
the individual emissions [third term in Eq. (12.A15)].

With the availability of Eq. (12.A15), the Fano factor for the photon
counts in a time interval of arbitrary duration can be determined. The
result can be put in the form [12]

(n) + F(*) -1+ (a) + (n)
M M M

F(T)=1+ (12.A18)

where M, .#, and .#' are degrees-of-freedom parameters, the latter
associated with the term r(7). The parameter .#’ depends, in a complex
way, on the relation between the counting time 7, the emission lifetime 7,
and the excitation point process memory time 7, (which is the width of the
function [gP(r) — 1]. For counting times that are long (T > 7,,7,),
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however, it turns out that M = « and wavelike (interference) noise is
washed out; .# = 1 so that the role of noise in the individual emissions is
enhanced; and .#’ is given by the degrees-of-freedom parameter for the
excitation process M, given in Eq. (12.A3). It then follows that Eq.
(12.A18) reduces to Eq. (12.A12), which was directly obtained by use of
the cascade variance formula.
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