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7.1 Two-Frequency Single-Photon Heterodyne Detection

COnventional heterodyne detection is useful in a number of configurations,
including the detection of scattered or reflected radiation from a moving target
(Doppler radar), communications, spectroscopy, and radiometry. Its use has
been demonstrated in many regions of the electromagnetic spectrum including
the radiowave, microwave, infrared, and optical. Its advantages as a detection
technique are well known: high sensitivity, frequency selectivity, and strong
directivity. For radar applications, it provides a major method of recovering
desired signals and removing clutter. The significant improvement in sensitivity
that it provides over direct detection arises from knowledge of the Doppler
frequency (also called the heterodyne frequency or the intermediate frequency
(IF)) which permits a narrow receiver bandwidth centered about the IF. In such
applications, obtaining a reasonably high signal-to-noise ratio (SNR) requires 1)
a good knowledge of the velocity of the source or target, 2) a stable yet tunable
local oscillator, 3) a target or source which presents a minimum of frequency
broadening and 4) at least several photons per measurement interval. These
conditions are frequently not adhered to by actual systems, particularly in the
Infrared and optical, giving rise to detection capabilities which are well below
optimum. In this chapter, we study the performance and requirements of a
Number of alternative heterodyne receiver configurations. In particular, we
consider two basic systems which are intrinsically nonlinear, the first by virtue of
the multiple-quantum detection process itself, and the second by virtue of the
mixing configuration and the electronics following the detector.

After briefly reviewing conventional optical and infrared heterodyne
detection, we examine the behavior of a multiphoton absorption heterodyne
receiver. Expressions are obtained for the detector response, signal-to-noise
ratio, and minimum detectable power for a number of cases of interest. Receiver
performance is found to depend on the higher-order correlation functions of the
radiation field and on the local oscillator irradiance. This technique may be
useful in regions of the spectrum where high quantum efficiency detectors
are not available since performance similar to that of the conventional unity
quantum efficiency heterodyne receiver can theoretically be achieved. Practical
problems which may make this difficult are discussed. A physical interpreta-
tion of the process in terms of the absorption of monochromatic and
nonmonochromatic photons is given. The double-quantum case is treated in
particular detail; the results of a preliminary experiment are presented and
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suggestions for future experiments to ascertain the usefulness of the téchnique
are provided.

We then investigate the operation and performance of a three-frequency
nonlinear heterodyne system which eliminates some of the stringent conditions
required for conventional heterodyne detection while maintaining its near-ideal
SNR. The technique is similar to heterodyne radiometry, but carefully takes
into consideration the effects of Doppler shift and signal statistics. It makes use
of a two-frequency transmitter and a nonlinear second detector, and is particu-
larly useful for signal acquisition; for signals of unknown Doppler shift, in fact,
performance is generally superior to that of the conventional system because of
a reduction in the effective noise bandwidth. While primary emphasis is on
the infrared and optical because of the large Doppler shifts encountered there,
application of the principle in the microwave and radiowave is also discussed.
For cw radar and analog communications, the signal-to-noise, power spectral
density, and minimum detectable power are obtained and compared with the
standard configuration. Both sinewave and Gaussian input signals are treated.
A variety of specific cases is discussed including the optimum performance
case, the typical radar case, and the AM and FM communications case. The
technique is shown to have similar advantages for pulsed radar and digital
communications applications, both in the absence and in the presence of the
lognormal atmospheric channel. Computer-generated error probability curves
as a function of the input signal-to-noise ratio are presented for a variety of
binary receiver parameters and configurations, and for various levels of
atmospheric turbulence. Orthogonal and nonorthogonal signaling schemes,
as well as dependent and independent fading, are considered.

In the last part of the chapter, we extend three-frequency nonlinear
heterodyne mixing to n frequencies and examine the performance of a Doppler-
insensitive radiometer that detects the radiation from known species moving
with unknown velocities. Expressions for the signal-to-noise ratio and the
minimum detectable total power are obtained for sinusoidal signals and for
Gaussian signals with both Gaussian and Lorentzian spectra. In distinction to
conventional heterodyning, knowledge of absolute line rest’frequencies and a
stable, tunable local oscillator are not required. This configuration may find use
in the detection of certain remote species such as interstellar molecules and
pollutants. A number of potential applications are examined. Finally, atten-
tion is drawn to a recently proposed variation of the technique, called hetero-
dyne correlation radiometry, that incorporates a radiating sample of the
species to be detected as part of the laboratory receiver. This configuration
should be useful for the sensitive detection of species whose radiated energy is
distributed over a large number of lines, with frequencies that are not
necessarily known, when the Doppler shift is given.
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Conventional photomixing in the infrared and optical is a useful detection
technique for applications such as optical communications, spectroscopy, and
radiometry, and it has been studied in great detail. The effect was first observed
by Forrester et al. [7.1] in a classic experiment using two Zeeman components of
a visible (incoherent) spectral line. With the development of the laser, photomix-
Ing became considerably easier to observe and was studied by Javanetal. [7.2] at
L.15pm using a He—Ne laser, and by Siegman et al. [7.3] at 6943 A with a ruby
laser. Extending this work into the middle infrared, Teich et al. used a CO, laser
at 10.6 um in conjunction with a copper-doped germanium photoconductive
detector operated at 4K [7.4), and subsequently with a lead-tin selenide
photovoitaic detector operated at 77K [7.5].

The observed signal-to-noise power ratio for these experiments was found to
behave in accordance with the theoretical expression obtained for parallel,
Plane-polarized beams incident on a quantum-noise-limited detector under ideal
Conditions [7.4-7], ie.,

SNR® =y, P,/hvd]. (.1)

Here, 1, is the detector quantum efficiency (electrons/photon), P, is the received
signal radiation power, hv is the photon energy, and Af is the receiver
bandwidth. Heterodyne detection which is Johnson-noise rather than quantum-
noise limited will be considered in Section 7.4.3. For radiation beams which are
not parallel to within an angle 8= A/d, with d the detector aperture and A the
radiation wavelength, the SNR is reduced below the value given in (7.1) by
Spatial averaging of the mixing signal over the detector aperture. This effect was
Studied in detail by Siegman [7.7], and is often referred to as “washboarding”.
Similar calculations have been effected for focused radiation beams, first
Considered by Read and Fried [7.8]. Other factors must also be accounted for
In a real system [7.8a]. Furthermore, it is clear that the signal-to-noise ratio
18 useful as a criterion only under certain conditions. Jakeman et al. [7.8b]
have recently examined homodyne detection for signal detection and estima-
tion experiments in which performance is more naturally linked to other
measures such as error probability or various estimators.

Other experimental and theoretical studies focused on the statistical
hature of the heterodyne signal resulting from the beating of a coherent wave
“{ith a Gaussian (scattered) wave [ 7.9, 10]. Although the stochastic nature of this
Signal was found to depend in detail on the irradiance statistics, the SNR turned
out to be essentially independent of the higher-order correlation functions of the
field [7.9, 10]. Furthermore, using the first-order coherent field results of Titulaer
and Glauber [7.11] for absorption detectors, an explicit calculation for the case
of two-beam photomixing showed that sum- and double-frequency components
did not appear in the detected current, and that the heterodyne process could be
Interpreted in terms of the annihilation of a single (nonmonochromatic) photon
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[7.12, 13] as was qualitatively appreciated by Forrester et al. [7.1]. A concise
review of the basic theoretical and experimental aspects of heterodyne detection
in the infrared and optical, as well as a partial review of the literature, was
prepared by Teich in 1970 [7.14]. Recently, Mandel and Wolf [7.15] used
geometrical and statistical arguments to show that an optimum receiver area
exists for conventional heterodyne detection ; this result complements Siegman’s
antenna theorem [7.7], according to which the product of the receiver area and
the angular field of view is of the order of the wavelength 4 squared. A number
of authors have also examined the photon counting statistics of the superposi-
tion of coherent and chaotic signal components, with the same or different
mean frequencies [7.15a-15f]. In short, conventional optical heterodyne
detection is well understood both theoretically and experimentally, and is a
highly useful technique from a practical point of view.

7.2 Two-Frequency Multiphoton Heterodyne Detection

Since multiple-quantum optical direct detection has also been studied in great
detail, it seems natural to investigate the behavior of such a detector in the
presence of more than one frequency [7.16]. In this section, we obtain the
response and the signal-to-noise power ratio (SNR) for a multiple-quantum
absorption heterodyne receiver, with particular attention devoted to the simplest
case, 1., the mixing of two waves in a double-quantum infrared or optical device.

After briefly considering the relevant results pertinent to multiple-quantum
direct detection (Sec. 7.2.1), we derive the combination device response for the
general multiple-quantum photomixing process (including the important two-
quantum case) in Section 7.2.2. In Section 7.2.3, we obtain the SNR for a receiver
using a multiphoton optical heterodyne device, and compare it with the SNR for
conventional optical heterodyne detection. The results of a two-photon
experiment are presented in Section 7.2.4, while a suggested setup for future

experiments, as well as the applicability of the scheme in general, is reserved for
Section 7.2.5.

7.2.1 Multiple-Quantum Direct Detection

The ordinary photoeffect was discovered by Hertz in 1887 and explained in
terms of the absorption of a single quantum of light by Einstein in his now
famous work published in 1905 [7.17]. It was not until 1959, however, that the
relationship between the statistics of an arbitrary incident radiation field and the
emitted photoelectrons was firmly established by Mandel [7.18]. Consideration
of the general photodetection process in terms of quantum-electrodynamic
coherent states of the radiation field was undertaken by Glauber [7.197] in 1963,
and by Kelley and Kleiner [7.20] in 1964, and provides a convenient starting
point for calculations involving multiple-photon as well as single-photon
absorptions.

Multiple-quantum photoemission, being a higher-order effect, is most easily
observed in the absence of ordinary (first-order) photoemission. For the two-

M. C. Teich, "Nonlinear Heterodyne Detection," in Topics in Applied Physics,
vol. 19, Optical and Infrared Detectors, edited by R. J. Keyes (Springer-Verlag,
New York, 1st ed.: 1977; 2nd ed.: 1980), ch. 7, pp. 229-300.
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quantum case, it becomes important when
t1H<hv<H, (7.2)

Where hv is the photon energy of the incident radiation, and H is the work
function of the material under consideration. (Even when (7.2) is satisfied,
however, it should be kept in mind that small amounts of single-quantum
Photoemission can arise from excited electrons in the Fermi tail [7.21].) The two-
quantum photoeffect was first experimentally observed in 1964. Using a GaAs
laser, Teich et al. [7.22] observed the effect in sodium metal, while Sonnenberg et
al. [7.23] induced it in Cs,Sb with a Nd-doped glass laser. Since that time, there
have been a number of experimental measurements of second- and higher-order
Photoelectric yields in a variety of materials [7.24-28].

Theoretical work has focused on two aspects of the problem: perturbation
theory and other calculations of the transition probabilities in the material, and
the effect on the transition probability of the statistical nature of the radiation
field. Makinson and Buckingham [7.29] were the first to predict the second-order
effect and calculate its magnitude based on a surface model of photoemission ;
this work was expanded by Smith [7.30], Bowers [7.31], and Adawi [7.32]. The
analogous volume calculation was performed by Bloch [7.33] and later
corrected by Teich and Wolga [7.24, 25].

All of the models predict a two-quantum dc photocurrent W2 (expressed in
amperes) proportional to the square of the incident radiation power P and
Inversely proportional to the irradiated area A. Using the results of a number of
authors [7.24, 25, 30-33], we can therefore write the double-quantum dc
photocurrent as

WD = A3, T)PocIP. (7.3)

Here A? is the two-quantum yield expressed in amperes/watt [7.8], A is the
radiation wavelength, T is the sample temperature, P is the radiation power
expressed in watts, and I is the irradiance at the detector expressed in watts/cm?.
The two-quantum efficiency (electrons/photon) is denoted by 1,, and is related
to the two-quantum yield by the relationship

AD =(e/hvyy, ol . (7.4)

Here, the quantity (hv/e) is the incident photon energy expressed in €V and is of
order unity. For the k-photon process, defining WY, A, and , as the k-photon
analogs of the quantities defined above, the following generalized results are
obtained :

Wi =AML T)PocI*~'P (7.5)
and
A® = (e/hvmc L. (7.6)

Typical numerical values for the two-quantum vyield are [7.25] AE (8450 A,
300K)~8x 107 '] and AR, (106004, 300 K)~5x 10~ '] amperes/watt.
Again ] represents the irradiance at the detector in watts/cm?. These values, even
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when precisely measured, can vary by a factor (usually <2) depending on the
coherence properties of the inducing radiation, as we now consider.
Theoretical work relating to multiple-quantum statistical effects began in
1966 with an examination of the higher-order field correlation functions by Teich
and Wolga [7.34] and by Lambropoulos et al. [7.35]. This was followed by more
detailed calculations by Mollow [7.36] and by Agarwal [7.37]. All of these
studies predicted a factor of k! enhancement for the magnitude of certain
k-quantum processes induced by chaotic (rather than coherent) sources. This
enhancement was later observed in the two-quantum photoeffect by Shiga
and Imamura [7.26], and in second harmonic generation (SHG) by Teich et al.
[7.38]. The theoretical relationship between two-quantum photocurrent
spectra and the incident radiation statistics was then obtained by Diament
and Teich {7.39], and compared with the analogous single-quantum results
previously given by Freed and Haus [7.40]. In 1969, two-quantum photo-
counting distributions were calculated for amplitude-stabilized, chaotic, and
generalized laser sources by Teich and Diament [7.41]. This work was extended
to higher-order photocounting distributions by Barashev in 1970 [7.42], who
also wrote a comprehensive review article on multiple-quantum photoemission
and photostatistics in 1972 [7.43]. Detailed calculations of the generalized

higher-order photocounting statistics have also been reported by Pefina et al.
[7.15¢].

7.2.2 Theory of Multiphoton Photomixing

We begin this section by considering a two-quantum absorption detector
initially in the ground state. The detector response W'? at the space-time point

X, =¥,,t, may be written in terms of the second-order correlation function G?
[7.19, 34, 36, 41], and is given by

WP octr{oE~ (x,)E " (x)E* (x,)E* (x,)} = G¥(x,x,X,X,). 7.7

a""a""a

Here, ¢ is the density operator for the field, and E~ and E™ represent the
negative- and positive-frequency portions of the electric field operator E,
respectively. We assume that the final state of the detector is much broader than
the bandwidth of the incident radiation, and that a broad band of final states is
accessible [7.36, 37].

If we specifically consider the mixing of two single-mode, amplitude-
stabilized, first-order coherent waves, both of which are well collimated, parallel,
plane polarized along a common unit vector, and normally incident onto a
photosensitive material, we may write the positive portion of the electric field
operator E* as the superposition of two scalar fields

E* =gle ioit gl eion (7.8)

with angular frequencies w, and w, This is equivalent to assuming a
semiclassical approach which makes use of the analytic signal [7.44].‘The
complex wave amplitude g? can be expressed in terms of its absolute magnitude
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0 .
le?| and a phase factor exp(ix,) such that
&= le9l e (7.9)
&3 =leg| e’ .
Un_der these conditions, the quantum-statistical detector responses can be
Written in terms of the fields as

tr{QE " E* }=>[ef|2 + (312 + 2169 Je3] cos[ (@, — w,)t +(B—a0)] (7.10)
and
tr{gE"E"E*E™"}
= {]&912 + (312 + 21e] |e3] cos (@ — )t + (B — )]} (7.11)

These expressions are scalar quantities and contain no spatial dependence
_beCause of the assumptions of plane polarization, parallel beams, and normal
Incidence.

Generalizing these results to sinusoidal beam photomixing in which the -
Photon detector response is the normally ordered product [7.19]

WO cctr{o[E~(x,)J'[E* (x)]'}, (7.12)
and using the binomial theorem leads to a heterodyne signal given by
WO =0, ({1912 + 312"
+EH1ET1 + 163171 {2led] 1e3) cos[(w, — )i+ (B~ )1}
+ {1912 + 12921 2 {219 |e9] cos[(w, —w )t +(B—o) 1} + ... +
+ {1212 + 1291231 (219 e cos[(w, —w, )t +(B—a)]} + ... +
+{2lef] le3] cos[(w, —wy)t + (B —a)1}¥). (7.13)

Here ¢, represents a proportionality constant for the k-photon process. The
leading dc terms are proportional to [¢9)2* and 2|, and may be associated with
the absorption of k monochromatic photons, each of which arises from a given
beam (1 and 2, respectively). The highest frequency current component is
Proportional to |?[*le3]* cos[k(w, —w, )t + ¢], and corresponds to the absorp-
tion of k nonmonochromatic photons, each of which must be associated with
both of the beams. It is evident from the above that multiple- and sum-frequency
terms do not appear in the k-photon absorption heterodyne detector output, in
analogy with the result for the one-quantum case [7.12-14].

Inserting the constants { for the one- and two-quantum cases in (7.13) above,
the detector responses for coherent signal mixing are, respectively,

W =, {16912+ [e31> + 2/l |e3] cos[(w; —@,)t +(B—a)T} (7.14)
and
W® = {169]* +e31* + 216912 |e94? + 41e213 |3 cos[(w, — w, )t + (B — o))
+4ie]| |3(2)|3 cos[(w; —~w,)t+(B—a)]
+41e9]? [e3]2 cos? [(w, — w )t + (B —a)]} . (7.15)
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Using the double-angle formula for the last term in (7.15), W*» may also be
written as

W= {lel]* + leal* + 4ledf? 16317 + 41e2)® |e3] cos[ (w0, — )t + (B — )]
+dle]] l£31° cosl(w, ~ w,)i + (B —a)]
+2e21? €312 cos[2(w, —w,)t+ 2B — )]}, (7.16)

when this cos? term is present. As noted previously, double- and sum-frequency
terms are absent.

It is not difficult to associate various second-order correlation functions
GP(x,x,x.x5)=[abcd] with (7.15). (When two beams are present, we must
consider a space-time point for each of the beams so that the index in G'? takes
on two values [7.34].) Thus, the first term, |£9]*, may be associated with [1111],
the second with [2222], the third with {12217 and [2112], the fourth with the
four permutations of [1112], the fifth with the four permutations of {2221], and
the sixth with the four permutations of [ 1212], with b % ¢. The coefficient of each
term in (7.15) is therefore equal to the number of permutations in the appropriate
form of the correlation function for that term. The physical interpretation
follows immediately : the first two dc terms in (7.15) arise from the absorption of
two monochromatic photons, both from the same beam. The third dc term,
which exists in two permutations with b=, arises from the two ways in which
two single monochromatic photons can be absorbed, one from each beam. The
fourth and fifth terms correspond to the absorption of a single monochromatic
photon from one of the beams plus a single nonmonochromatic photon which
must be associated with both beams. These terms therefore contribute currents
at the difference frequency (w, —w,), in analogy with the single-quantum
heterodyne interference term [7.12-147. The final term corresponds to the
absorption of two nonmonochromatic photons, and therefore varies at double
the difference frequency, ie., at 2(w, —w,); clearly there is no analogous process
possible in the one-quantum case. -

We note that the absorption of two nonmonochromatic photons imparts an
additional dc value to the double-difference-frequency term, as may be seen by
comparing (7.15) and (7.16). This additional term, of magnitude 2[e}? Je3]?,
appears in the presence of double-quantum photomixing ; in the absence of such
photomixing, we must obtain W*? from (7.15) and not from (7.16). In this latter
case, the detector response reduces to the previously obtained result {7.34]

W(mixing absent)={,(le* +[e3|* + 21e212 {312 = {5, +1,)%, (7.17)

where I, represents the intensity of the ith beam and , is a new proportionality
constant.

The results presented above can be expanded to modulated, noncoherent,
and nonparallel beam mixing. As an example, we consider two ideal amplitude-
stabilized nonparallel (8> 4/d) plane traveling waves impinging on a two-
quantum detector, so that washboarding can occur. In contrast to the one-
quantum case, the detector responds to the square of this spatiotemporal
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Intensity variation, resulting in a factor of 2 enhancement in the dc cross term, as
Obtained with pure temporal mixing. Thus, the two-quantum dc photocurrent
Will in general be enhanced due to spatiotemporal intensity variations
(interference fringes); the magnitude of this enhancement depends on
the system configuration. Experimental evidence for two-quantum enhance-
Ment due to spatjal variations has, in fact, been provided by Shiga and Imamura
[7.26] and by Teich et al. [7.38). o

. As a final example, we consider mixing due to radiation which is non-
Sinusoidal (ie., not coherent to all orders). We consider two parallel, plane-
polarized normally incident supetimposed beams of radiation from the same
chaotic source, one of which is a time-delayed version of the other (delay 1)
entering one double-quantum detector. This was previously shown to be
€quivalent to a self-integrating Hanbury-Brown-Twiss device {7.34]. For a
thermal source in the absence of a beat signal, we find

W mixing absent)=20,(1% + 21,1, +13), 1,<T,
and

Wl mixing absent)=2{,(2+1 1, +13), 1;> 1.,

Where t_is the coherence time of the source. For 7,<7,, (7.18) represents the
enhancement of both the single-beam and the mixed-beam counting rates,
arising from the tendency of these photons to arrive in correlated pairs
{assuming that the detector intermediate state lifetime 7,<€1,). For 1,>1,
hoWever, there is no correlation between the arrival time of a photon froxp one
beam and the arrival time of a photon from the other. Thus, the absqrptlon of
two photons from a single beam is enhanced by a factor of 2 relative to the
absorption of one photon from each beam, leading 1o a Cross term pf 1. This can
also be qualitatively understood from the point of view of additive Gaussian
fields ; the sum of two fully correlated Gaussian random processes (1<t )hasa
greater variance than that of two independent Gaussian random processes
(T.s>rc) leading to an enhanced value for the cross term when 1;<1,. An
arrangement to observe spatial effects of a similar type has also been proposed
[7.44a].

From the foregoing, it is clear that the doublq—quantum c.urre.nt can be
Calculated for a variety of configurations involving dlfferqnt.relatlve fime s;a}es,
angular separations, polarization properties, and statistical characteristics.
Some additional examples are treated in [7.34]. Clearlyz the seco'n(.‘l-order
correlation functions of the field play an important role in determining the
Mmagnitude of the signal, in distinction to the one-quantum case.

(7.18)

(7.19)

7.2.3 Signal-to-Noise Ratio and Minimum Detectable Number of Photons

We now follow the usual procedure used for the single-quantum case [7.4—6,<10]
tocalculate the approximate SNR for k-photon sinusqidal heterodyne Qetectnon.

€ begin with two-quantum photomixing, negleptmg .the double-difference-
frequency component and assuming that the ac signal is at the fundamental-
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difference-frequency (IF) between the two waves. Thus, considering the mixing
of two parallel, coherent waves as described earlier, (7.16) yields

Wi = 40,1651 251+ [e]] [e31*) cos[(w, — w )t + (B — )] (7.20)
and

Wi =011 + [e31* + 41e21% 16312, (7.21)
so that

W= 4 4(1e9)? 1e9] + 1691 1€51?) cos[{w, — w )t +(B— )]}W(Z)
1% + €91 + 4191 |32|2 do -

(7.22)

We now assume that one of the waves (which we call the local oscillator or
LO) is strong, i.e., E; > E |, in which case

W2 =~ 4(1e9|/|e3) W2 cos[(wy — w,)t + (B —a)] (7.23)
and
IWE®) = 8(ef 119 Wa2 ] (7.24)

The noise power can be obtained from the two-quantum photocurrent spectrum
[7.39] which, in turn, is related to the stochastic nature of the radiation source.
For a coherent and strong LO, however, the k-quantum counting statistics will
be Poisson [7.41,42], and the two-quantum (shot) noise power is then

(WS =2e[W2NAS . (7.25)
Thus, using (7.3), (7.24), and (7.25), the two-quantum SNR can be written as
4P, Wd‘f’ __ 4P,

ed f T edf

Using the relatlonshlp between the two-quantum yield A'® and the two-
quantum efficiency #, given in (7.4), we finally obtain

SNR? ~47,P /hvAf. (1.27)

We recall from (7.4) that 5, is itself proportional to the irradiance of the LO, and
we must have 45, <1. The result is therefore similar to that for the single-
quantum heterodyne detector given in (7.1); in that case, however, #, is
independent of the LO. The two-quantum minimum detectable power (MDP)
[7.4,5] therefore becomes

SNR®@ ~ AP (7.26)

MDP® ~ hvAf/4y,. (7.28)

This corresponds to a minimum number of photons 472 detectable in the

resolution time of the receiver [z, ~(4f)™ '], given by

NP ~(dn,) T (7.29)

min

In contradistinction to the single-quantum case, performance is not limited by
the detector (single) quantum efficiency since #, may be increased by increasing
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the LO irradiance. This technique may therefore be useful in regions of the
electromagnetic spectrum where detectors with high (single) quantum efficiency
are not available.

We note that the SNR at the double-difference-frequency, corresponding
to the absorption of two nonmonochromatic photons, is reduced by the factor
(P,/P,). Clearly, using methods similar to those presented above and in [7.34]
and [7.10], we can obtain analogous SNR expressions for photomixing with
nonsinusoidal beams.

The SNR at the fundamental-difference-frequency (o, - w,) may also be
obtained for coherent beam mixing in the k-photon absorption heterodyne
detector. Following a series of steps similar to those given above, we find

SNR® ~c,n, P, /vAf, (7.30)

MDP® ~hva f/cn, (7.31)
and

A=)t (7.32)

where ¢, is a constant (dependent on k), and , is proportional to I~ !, where I is
the LO irradiance [see (7.6)]. Here ¢y, < 1.

7.2.4 Experiment

In this section we describe a preliminary set of experiments in which double-
quantum photoemission was observed from a sodium surface simultaneously
illuminated by two superimposed beams of laser radiation. While ac photomix-
ing terms were not observed in these experiments, the measurements are
consistent with the theoretical calculations given in Section 7.2.2.

The apparatus used for the experimental measurement of two-quantum photomixing is shown

in the block diagram of Fig. 7.1. The radiation source was a pulsed Ga As multimode semiconductor
on laser operated at 77 K and emitting a peak radiation power of 400 mW at about 8450 A_
Mode shifts due to laser heating occurred during the pulse duration, which was about 35 ps. The
radiation was collimated by a 10-cm focal length lens, passed through an iris and then through a
configuration of dielectric beam splitters and antireflection coated prisms resembling a Mach-
Zender interferometer. The beam splitters were approximately 2/3 transmitting and were flat only to
about 1 wavelength; the optical phase across the beam could therefore be considered to vary. The
purpose of the interferometer configuration was to allow the irradiance of each beam (denoted as 1
and 2) to be independently controlled by means of calibrated attenuating filters, Beam 1 could also be
time delayed with respect to beam 2 by means of a sliding prism (sce Fig. 7.1), but this capability was
not important in these experiments where 7, was always greater than t, due to the very small value of
7. After passing through a second iris and a (6-cm focal length) focusing lens, the radiation was
allowed to impinge on a specially constructed Na-surface photomultiplier tube, which has been
described previously [7.22, 24, 25]. A Polaroid type HN-7 sheet polarizer was almost always placed
at the front face of the photomultiplier as shown in Fig. 7.1 (the one exception will be noted later), The
electron-multiplied current was passed through a 1-MQ load resistor which fed a Princeton Applied
Research (PAR) low-noise preamplifier followed by a PAR lock-in amplifier. Phase-sensitive
detection was performed as 2.2 kHz, which is the fundamental repetition frequency of the pulsed
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Fig. 7.1. Block diagram of the double-quantum photomixing experimental arrangement

laser output. Large integration times were used so that only the dc or average value of this current
component was measured. The reference signal for the lock-in amplifier was obtained directly from
the silicon-controlled-rectifier power supply [7.45] used to drive the laser.

Radiation from the other leg of the interferometer was focused onto a 25-pm diameter pinhole
which acted as an aperture stop at the face of a standard Dumont 6911 type S-1 photomultiplier.
This provided a relatively accurate method for superimposing the two beams [7.24]. This is critical
since the double-quantum response is inversely proportional to the illuminated area A. The beams
were adjusted to achieve maximum output from the 6911 photomultiplier tube, a procedure which
was often difficult and required a great deal of care.

The following procedure was used in making a measurement: 1) The beams were aligned to
provide maximum current from the 6911 photomultiplier. 2) Beam 1 was blocked and the double-
quantum current W{? from beam 2 was maximized by imaging the laser junction on the sodium
surface, and then recorded. Using a calibrated attenuating filter, it was ascertained that pure two-
quantum emission was occurring, i.e., that Wi% oc I3, where I, represents the irradiance of beam 2.
3)Beam 2wasblockedand the double-quantum current from beam 1 was recorded, after verifying that
it was oc{Z, (The constant of proportionality was taken to be the same in both cases.) 4) Both beams
were then unblocked and, after once again verifying that pure double-quantum emission was
occurring, the total average double-quantum current W' (at the fundamental repetition frequency
of 2.2kHz) was recorded.

Experiments were performed with different values of {,/1,, obtained by attenuating one of the
beams relative to the other by means of thin gelatin (Kodak Wratten) filters. Ordinary glass filters
could not be used to provide the decrements of light intensity because refraction in the glass caused
the imaged spot size and position to change thus altering the two-quantum current in an
unpredictable way.
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The total average fundamental-repetition-frequency two-quantum photo-
electric current W, for different intensity ratios of the two constituent beams
(I,/1,),1s presented in Fig. 7.2. The solid curve represents the equation W oc(I,
+1,)* which is simply the parabola (1+1,/I,)* when the intensity I, is
normalized to unity. This represents a cross term of 21, I,, and is so labeled. The
cross term of 41, I,, on the other hand, is shown by the dashed line in Fig. 7.2.
Only the highest observed values of W™ are plotted in Fig. 7.2, many more
points having been found to lie below the curves. This has been attributed to the
difficulty in obtaining precise alignment of the two radiation beams, and
therefore superposition of the focused spots on the sodium surface.

The triangles in Fig. 7.2 represent data for linearly or partially polarized
radiation, while the circle is for cross-polarized radiation (this is the one
exception mentioned previously). The experimental measurements are con-
sistent with the following interpretation. The laser output consists of a number
of more-or-less independent Fabry-Perot modes which are changing during the
pulse width due to heating of the laser junction [7.24]. The radiation may
therefore be considered to behave as a Gaussian source with a coherence time
7, ~(4v)"'~10" 35, Since the intermediate-state lifetime for the double-
quantum sodium photodetector is much shorter than the radiation coher-
ence time, the irradiance fluctuations result in a factor of 2 enhancement of
the single-beam photocurrents. As far as the irradiance cross-term is concerned,
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the two-quantum current will also be enhanced by a factor of 2 owing to the
random spatial irradiance fluctuations across the detector for the superimposed
beams. Thus, we obtain a relative cross term of 2, i.e, W% ocI? +21 1, + 13, in
agreement with the data.

7.2.5 Discussion

From the foregoing, it is clear that multiple-quantum heterodyne detection is
somewhat more complex than the analogous single-quantum process. In
particular, the average detector response and the SNR are found to depend on
the higher-order correlation functions of the radiation field and on the LO
irradiance. From a physical point of view, it has been possible to associate
various terms in the detected current with specific kinds of photon absorptions.
Calculations of the SNR and MDP for a number of cases have been carried out.
The results of a preliminary two-quantum photomixing experiment are in
agreement with the theory.

Although it appears that the k-photon heterodyne detector can be made to
perform as well as or better than the single-photon heterodyne detector by
simply increasing the LO intensity, a number of practical problems would
likely make this difficult. In as much as the transition probabilities decrease
rapidly as k is increased, and are furthermore proportional to A % it appears
that very high LO intensities would be required to place 5, anywhere in the
vicinity of 0.1 for k> 2. Aside from alignment problems, these high intensities
could result in thermionic emission from cathode heating, or possibly cathode
damage.

The two-quantum case is therefore likely to be the most interesting, and also
the easiest to examine experimentally. A possible arrangement for studying the
effect in a more detailed and controlled fashion is the following. The radiation
from a 0.5mW He-Ne laser, operating at a wavelength of 1.15 um, is passed
through an acoustooptic modulator (which splits it into two frequencies) and a
focusing lens. A Sum focused spot size, corresponding to an area of
2.5%x 1077 cm?, would then provide an incident irradiance I ~2 x 10 W/cm?2.
Using a Cs,Sb photocathode with a work function ~2.05¢V and a yield [7.23]
~5x 107! I amperes/watt, a two-quantum current ~5 x 10~ !! amperes may
then be obtained. An experiment of this nature would allow the validity of (7.15),
(7.16), and (7.27) to be examined. A YAG :Nd laser could be substituted for the
He-Ne laser for an even simpler experimental configuration, since focusing
would not then be required.

Although the emphasis in this section has been on linearly polarized incident
radiation, considerable enhancement of the k-quantum photocurrent may occur
for circularly (or elliptically) polarized radiation, as recently discussed by a
number of authors [7.46]. We note that information relating to the
intermediate-state lifetime of the detector (z;) can be obtained by measuring the
two-quantum detector output for various values of z..
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Finally, we observe that the use of a two-quantum photomixer in a three-
frequency nonlinear heterodyne detection receiver would result in a reduction of
the SNR by the factor (P,/P,), corresponding to the absorption of 2
nonmonochromatic photons as discussed earlier. It therefore does not appear to
be suitable for this application. The next section is devoted to a discussion of the
three-frequency technique, but using a single-photon detector, in which case the
nonlinearity is derived from a circuit element rather than from a multiphoton
process and the (undesirable) reduction factor does not appear.

7.3 Three-Ffequency Single-Photon Heterodyne Detection Using
a Nonlinear Device

The extension of conventional microwave heterodyne techniques into the
infrared and visible, and the attendant increase in the Doppler shift by many
orders of magnitude for a target of a given velocity, has provided improved
target resolution capabilities [ 7.47], but there have been attendant difficulties as
indicated previously. If the radial velocity of a target or the frequency difference
between the transmitter and LO in a communications system has not been
established, for example, then the heterodyne frequency is not known and it may
be very difficult indeed to acquire a weak signal using the standard single- or
multiphoton heterodyne technique. An unknown IF necessitates the use of
broad bandwidth detection and electronics, resulting in a degraded signal-to-
noise ratio, or perhaps the use of frequency scanning of the receiver or of the LO.
The rate of such scanning is of course limited by the time response of the system.
In order that the heterodyne signal remain within the electrical passband of the
system, furthermore, the LO frequency must be relatively stable with reference to
the signal frequency, and yet tunable so that it can track the Doppler shift, which
varies in time. These various difficulties are more acute in the infrared and
optical where large values of the IF are encountered (Doppler shift is
proportional to the radiation frequency).

In this section we discuss the operation of a three-frequency single-photon
nonlinear heterodyne detection scheme useful for cw and pulsed radar, and for
analog and digital communications. The concept, which is similar to heterodyne
radiometry, was first proposed in 1969 by Teich [7.48], and experimentally
examined in 1972 by Abrams and White [ 7.49]. Applications for the system have
since been studied in detail from a theoretical point of view [7.50-52]. The
system appears to provide the near-ideal SNR offered by conventional
heterodyne detection, while eliminating some of the difficulties discussed
above. It often obviates the need for high-frequency electronics, improving
impedance matching, system noise figure, and range of operation over the
conventional case.

The usual frequency scanning is eliminated as is the necessity for a stable LO.
And, it allows targets to be continuously observed with Doppler shifts of
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considerably greater magnitude and range than previously possible. This is
particularly important in the infrared and optical, where Doppler shifts are
generally large [7.47], and the importance of this technique is expected to be
emphasized in these regions. Furthermore, it is possible for the three-frequency
system to have a higher output SNR than the conventional system by providing
a reduced noise bandwidth, as we will show later.

Asdefined by our usage in this section, the designation “nonlinear” refers to
the electronics following the detector, and not to the process itself, which could
be referred to as nonlinear in any case since it involves mixing or multiplication.
This is again a different kind of nonlinearity than that discussed previously in
Section 7.2. In this system, two signals of a small, but well-known difference
frequency A4v are transmitted. With the LO frequency f;, we then have a three-
frequency mixing system. Aside from the heterodyne mixer, a nonlinear element
such as a square-law device is included to provide an output signal at a frequency
very close to Av regardless of the Doppler shift of the transmitted signals.

The over-all system configuration is presented in Section 7.3.1. In Sections
7.3.2,7.3.3, and 7.3.4, we consider applications of the system to a cw radar with
sinewave, Gaussian/Gaussian, and Gaussian/Lorentzian input signals, re-
spectively. Section 7.3.5 deals with its use in an analog communications system,
whereas Section 7.3.6 is concerned with low-frequency applications of the
technique. A numerical example in Section 7.3.7 is followed by evaluations of
system performance for binary communications and pulsed radar in the vacuum
channel (Sec. 7.3.8) and in the lognormal atmospheric channel (Sec. 7.3.9). A
discussion is presented in Section 7.3.10. The main results are expressed as the
output SNR for the system in terms of the input SNR.

7.3.1 System Configuration

In Fig. 7.3, we present a block diagram for a radar version of the system. A
transmitter emits two waves of frequencies f; and f, whose difference
f.=Ifi—fo]=A4v is known to high accuracy. (This is particularly easy to
accomplish if the transmitter is a two-mode laser, since the modes tend to drift
together keeping f, constant, or if it is a single-frequency laser modulated into
two frequency components.)Thewaves areDoppler shifted by the moving target,
the nature of which is unimportant. Thus, a wave of frequency f will return with
a frequency f* given by the standard nonrelativistic Doppler-shift formula

f=fd£2/0, (7.33)

where v;, is the radial velocity of the target and c is the speed of light. Therefore,
after scattering from the target, and choosing f, > f,, the new frequency
difference between the two waves f_ is given by

L =11 -fl=L£Qu /0 f.. (7.34)
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Fig. 7.3. Block diagram of the three-frequency nonlinear heterodyne system for radar application

Aside from the frequency shift which results from the Doppler effect, there may
be a frequency broadening of each wave associated with the scattering by a
moving target in a typical radar configuration. For a rotating target, this
broadening is of the order 4Rw /A, where R is the “radius” of the target, v, isits
component of angular velocity perpendicular to the beam direction, and 1 is the
wavelength of the transmitted signal [7.9]. For practical systems, as will be
shown later, the difference f;—f, may be made much smaller than the
broadening effects and thereby neglected. We can therefore choose f) = f, with
high accuracy.

The receiver includes a heterodyne mixer with an LO followed by a blocking
capacitor and a bandpass filter with bandwidth 4 f = f, — f.. Here f, and f are the
upper and lower cutoffs, respectively, of the bandpass filter. When Doppler
information is poor (in which case the three-frequency system is particularly
useful), Af will be large so that it will cover a wide frequency range. In the
following, we therefore pay particular attention to the case where f;—0 so that
Af = f,. The noise arising from the strong LO is assumed to be shot noise which,
in the high current limit, becomes Gaussian as illustrated by Davenport and Root
[7.53]. To good approximation, the spectrum may be taken to be white. The
latter part of the receiver is a square-law (or other nonlinear) device and a narrow
bandpass filter centered at frequency f, =|f; — f,|. The details of the system are
given below.

The mixer consists of a photodetector and a local oscillator. We are
interested in determining the signal-to-noise ratio at the output of the
photodetector. The input electric field consists of three plane, parallel, coincident
electromagnetic waves, which are assumed to be polarized and to impinge
normally on the photodetector. Spatial first-order coherence is assumed over the
detector aperture. The total incident electric field E, may therefore be written as

E,=A, cos(w,t+¢,)+ A, cos(w,t+¢,)+ Ay cos(w, t+ ). (7.35)
Here @, and w, are the angular frequencies of the two incoming signals (we have

omitted the primes for simplicity), ¢, and ¢, are their phases, and o, is the

M. C. Teich, "Nonlinear Heterodyne Detection," in Topics in Applied Physics,
vol. 19, Optical and Infrared Detectors, edited by R. J. Keyes (Springer-Verlag,
New York, 1st ed.: 1977; 2nd ed.: 1980), ch. 7, pp. 229-300.

OuTPUT
|——»



246 M. C. Teich

angular frequency of the LO beam, The quantities 4,, A,, and A, are the
amplitudes of the three waves, all of which are assumed to have the same plane
polarization. In the infrared and optical, the output of a photodetector or mixer
is proportional to the total intensity of the incoming waves. Taking into account
the quantum electrodynamics of photon absorption by optical and infrared
detectors [7.10, 12-147, the output signal r consists only of difference-frequency
terms and dc terms. Thus, for f; < f, f3 or fi, > f], f3,
r=PB{A}+ A3+ A} +24, A  cosl(w, —w )t +(d, — )]

+2A4,A; cos[(w, —w )t +(¢, — ¢.)]

+24,4; cos[(w, —wy)t +(d; —¢,)]}, (7.36)
where B is a proportionality constant containing the detector quantum
efficiency. If the incident waves are not spatially first-order coherent and/or
polarized in the same direction, the usual decrease in r will occur [7.5-8, 15].

Since the LO beam may be made much stronger than the two signal beams,
ie, A, > A,,A,, we can write

rpA{ 1+ 2 cosfo, ~w ) +(6,~ 0]

L

+ ‘2;141 cos[(w, —wp )t +(¢, — ¢L)]} . (7.37)

L

The term containing w; —w, has been neglected because of its relatively small
amplitude. We now define

rae=P(A2+ A2+ AP~ BAL, (7.38a)
and

re=2pA AL cosl(w, —o )t +(d, — )]
+2BA4,A4, cos[(w, —w )t +(¢,— )]

2
=Ty {7/41_ cos[(w, —w )t +(d; — P)]
24,
+ A—COS[(CUz —w )t + (P, “‘¢L)]}~ (7.38b)
L

The mean-square photodetector response is then given by

247 242 P,+P,
(rE>= (A—fl + —-ﬁ) r2 =2r2 IPL , (7.39)

where P, P,, and P, are the radiation powers in the two signal beams and in the
LO beam, respectively.

M. C. Teich, "Nonlinear Heterodyne Detection," in Topics in Applied Physics,
vol. 19, Optical and Infrared Detectors, edited by R. J. Keyes (Springer-Verlag,
New York, 1st ed.: 1977; 2nd ed.: 1980), ch. 7, pp. 229-300.



Nonlinear Heterodyne Detection 247

1f we consider the noise response r,, of the detector as arising from shot noise,
which is the case for the photoemitter and the ideal reverse-biased photodiode
[7.5, 10, 14], the mean-square noise response is given by the well-known shot-
noise formula [7.5, 54]

(riy= 2er, Af, (7.40)

in which 4 is the noise response bandwidth and is determined by the Doppler
uncertainty, and e is the electronic charge. For a comparatively strong LO, we
have

ne
Tge= EPL, (7.41)

where n=#, is the quantum efficiency and h is Planck’s constant.
From (7.39), (740), and (741), the signal-to-nois€ power ratio

(SNR),,,,..=SNR™ is given by

_ {rie) _nlP,+Py)

(SNR)power— <r§> - hfLAf ’

(7.42a)

which is seen to be independent of P;. If we define P,=P,+P,, and let

v=f.= f= f,, and (SNR),=(SNR),,,,.,, we obtain
_nb
(SNR),= af (7.42b)

This is similar to (7.1), except that now P_ is the total input signal power. (SNR), is
referred to as the input signal-to-noise ratio to the square-law device following
the photodetector.

By use of a blocking capacitor, the dc part of the photodetector response r,,
can be filtered out. The signal, which then has zero mean, is sent to a full-wave
square-law device. If we let s,(t) =24, 4, cos[(w; —o )t +(¢; —¢1)] and sy(r)
=28A4,A, cos[(w, —w )+ (¢, — ¢ )], and let n(r) be the noise, then using a
generalization of the “direct method” of Davenport and Root [7.55] for the sum
of three signals, we can write the input to the square-law device x(t) as

x(t)=s,(t)+ sp() +n(t). (7.43)
The output of the square-law device y(t) is then given by

w)=ax?(t)
=afs2(t) + s2(t) + n2(£) + 25,(8)s, (1)
+ 2s,(t)n(t) + 25, (t)n(1)] , (7.44)
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where « is a scaling constant. For a stationary random process, the expectation
value of y(t) is

E(y)=al E(s3)+ E(s?) + E(n?)]
=a(o? + 0% +a2) (7.45)

for all ¢, where E denotes the expectation value. In (7.45), we have set 2 = E(s?),
o2 =E(s?), and ¢ = E(n?). Furthermore,

yA(t)=a?[s,(2) +se() +m(e)]*, (7.46)
from which the mean-square value of y(t) is evaluated to be

E(y*)= o[ E(s]) + E(s{) + E(n*)
+ 60202 + 60202 +60202]. (747)
In obtaining (7.45) and (7.47), we have assumed that s,(¢), 5,(¢), and n(¢) are all
independent of each other, and that E(s,)= E(s,) = E(n)=0.
The autocorrelation function of the output of the square-law device is
R(t,,t,)=E(y,y,) =a®E[(s,; +Spy + 1) (5,5 + 8p2 +12)]. (7.48)

For stationary processes, setting t=t¢, —t,, we obtain

R,(1) =R, «4(1)+ Ry x (1) + Ry o) + R, x5(7)

+ R, x (1) + Ry 1(1), (7.49)
in which

R, .. t)=a’R,:(7), (7.50a)
R, (1) =a?R,a(1), (7.50b)
R, o(0)=0*R(7), (7.50¢)
R, (1)=4a’R (1)Ry(1) + 20’020, (7.50d)
R, (t)=40*R (t)R (1) + 20?6202, (7.50e)
Ry, (1) =402 Ry(T)R (1) + 20%6203, (7.509)

with R,x(t)= E(s?,52,), R,(t)=E(s,,s,,), etc.

If we know the exact forms of these correlation functions, we can use the
Fourier transform to obtain the power spectral density of the output which will,
in turn, enable us to evaluate the final output signal-to-noise power ratio for the
three-frequency system.
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7.3.2 Application to cw Radar with Sinewave Input Signals

We now assume that the two inputs to the photodetector are pure sinusoidal
waves with constant phase over the spatial extent of the photodetector. This
would be the case, for example, when the combining beam splitting mirror is
optically flat and all broadening effects may be neglected. We let 4, =28A4,A4,,
A, =2BA,A;, 0, =0, —0, Wy=0, =0, p,=¢; — ¢, and ¢,=¢, —¢,. The
signal input to the square-law device is then

s(t)=s,(1) + s(t)
= A, cos(w,t + ¢,)+ A, cos(wyt +¢y) . (7.51)
The amplitudes A, and A, are in this case constant, and the phases ¢, and ¢, are

taken to be random variables uniformly distributed over the interval (0, 2nt) and
independent of each other. We easily obtain

R,(t)=E(s,,5,,) = AZE[cos(w,t, + ¢,) cos(w,t, + ¢,)]
=1A42cosw,t, (7.52)

with t=t, —¢,. Similarly
R(t)=E(sy,5y2) =5 AZ cosw,T. (7.53)

The total correlation function of the input signal R(z) is the sum of the
individual correlation functions

R (1)=R,(t)+Ry(1)=3A42 cosw,t + 3 A2 coswyrt. (7.54)
Taking the Fourier transform, we obtain the power spectral density for the input
signal:

S.f)= T8 = )+ + 01+ S T8 — )+ + 4T, (1.55)

where f,=w,/2n=f, — f, and f, =w,/2n = f, — f,. The shot noise arising from
the strong LO is taken to be white Gaussian over the frequency band [0, f,].
Thus, the noise spectrum is

N, forO<|fl<f,,

0, elsewhere. (7.56)

5.0

The total input power spectral density S, (f) including the noise is shown in Fig,
7.4. We arbitrarily assume that f, > f, or f,> f, and 4,>A4,.
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Sx(f)=Se(f)+Snlf)

AREA=A %4

AREAsA ¥4 Fig. 74. The power spectral
density seen at the input to the
I I Sn(f) square-law device for the sine-
N z wave case. If A4,+4,, we
arbitrarily choose 4,> 4, as

L L § shown

-fn -fa ~fb o] fb fa fn

From (7.50), we obtain

R, . (t)=0?E(s%;s2,) =o*E[ A2 cos*(w,t, + ¢,) cos*(w,t, + @,)]

o? o’ ‘
= TA:+ —8—A;‘ cos2w,T. (7.57a)
Similarly
a? a?
R, ,(1)= -4—A§+ —8—A§ 082w, 7. (7.57b)
Also

R, . (t)=40E(s,,s,,) E(sy,5,,) +2¢%c 262

2

o a?
— 2 42
=—A;A; cos(w, —w,)T + =

5 5 AlA} cos(w, + w, )t

aZ
+ o AIAL. (7.57c)

We note that because of the zero means,

AZ
o2=R0)=2% and o= b(0)_’1—b (7.58)

The total signal-by-signal correlation function R,, (t) is therefore given by

Rs X s(T) = Ra X a(T) + Rb X b(T) + Ra x b(T)

2 2

a? o« o
= —4—(A§ +AH*+ ?A: cos2w, T+ ?A: cos2w,t

2 2
+ % Az A% cos(w,— wy )t + % A2 A% cos(w, +wy)t. (7.59)
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Ssxs(f)
AREA=%—2~ (a2+a2)2
a2ALAE/a
__________________ alay16
——————————————— alagv/1e
B il i e i - Fig. 7.5. The signal-by-signal power
spectral density at the output of the
f square-law device (sinewave case)
5,1y -2fy ftfy O fofp 21y Tt 21,

The signal-by-signal part of the power spectral density S, , (/) is then, by taking
the Fourier transform of R, (1),

m(f)— (A2+A )?8(f)

2 4
X Lo =20+ 8/ +2£)]

X 2E L8~ 2£)+ 8+ 2f)]

2 2 42
EE A S~ fyt )+ + = )

2A A2
S/ = fi =S+ + L+ 1)) (7.60)
Equation (7.60) is shown in Fig. 7.5.
For the signal-by-noise part, we have from (7.50e) and (7.50f) that
Rs X n(T) = Ra X n(T) + Rb X n(T)
=40¢?R(1)[R,(7) + Ry(1)] + 2¢%02(a% + 0})
=202A2R (1) cosw,T + 202 A2R (1) cos wy T
+o*(AZ+ Aol (7.61)
The corresponding power spectral density is then
SexaN=AZS(f — L)+ S(f + )]
(7.62)

+a?AG[S,(f = fo) +8alf + )]+ (A2 + Ao l8(f),

where S (f — f,) indicates that f, replaces 0 as the center frequency. This spectral
density is plotted in Fig. 7.6.
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Suxnf)

AREA 2a%(A 2+ AR N

28AE +A2IN : . :
F‘l__——!:lﬂ“ AN Fig. 7.6. The signal-by-noise power
|

' a2(A2+AZIN spectral density at the output of the
: ; L o2 ALN square-law device (sinewave case)
Tty Fotfa O fo-fa) tn+ fo
by -fythy forfy  fotip
Spxntf)
AREA= 4a2N2fs2
=z~ — 4a?N®t, Fig. 7.7. The noise-by-noise power
/ spectral density at the output of
1 § the square-law device
'2fn “Tn 0 fn 2fﬂ

Since R,.(t)=2R2(t)+ a? for Gaussian noise [7.56], (7.50c) for the noise-by-
noise part becomes

R, «o()=20?R2(1) + o’0%, (7.63)
whence
SoxalN) =202 S(S(f — fdf +a’ard(f). (7.64)

For the input noise spectrum described by (7.56), we have
o2=", SNdf=2f,N. (7.65)
Equation (7.64) can therefore be simplified to

202N22f,—IfD), for [fI<2f,,

7.
0, elsewhere, (7.66)

S, o) =422 fIN?6(f) + {

which is shown in Fig. 7.7.

The total output power spectral density S,(f) is the sum of S, ,(f), S, xn(f),
and S, ,.(f) and is plotted in Fig. 7.8, where we have assumed that f, = f, — f,
= f, — f, lies in the region between the origin and f,— f,. In fact, f, could be
anywhere over the band f,. We will consider two extreme cases: (a)

O<fi<fo—fiand ) fi—fo<[f<fo
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Sy(f)

2
AREA=Z-[(Ag+AS P+8(AZ+AZ) N +IEN 7]

a?a2A2/ 4
________ PALATA
azagt/1e
i 2AY16
P 20(A2an2
B | o 2a° N(AF +A; +2Nfq)
! | ] ] |
E :i ,:li i !
A BC DEFGHI J Ok LMNPQRS T u f

Fig. 7.8. The total power spectral density at the output of the square-law device for the sinewave case
(not to scale). Correspondence between letters in figure and abscissa frequencies are: (A) — 2, (B)
~ fo= £ () = f,— £, (D) =2, (B) = £, (F) = f,— £,(G) = 2f, (H) = fu+ o ) = fu + £, 0) = fy+ f;
K) fy— fo (L) fom £ M) f,— o (N) 265 (P) o+ £, (Q) £, (R) 2, (8) fy + f, (T) £, + £, (U) 2f,, The cross-
hatched area represents the final bandpass filter, of bandwidth B

Since f, = f, — f, is known with great accuracy we can place a bandpass filter,
with center frequency f,, after the square-law device and obtain an output signal
at this frequency. We wish to obtain the output signal-to-noise ratio (SNR), in
terms of the input signal-to-noise ratio (SNR); =(SNR)_,.., for the two extreme
cases indicated in the previous section.

From (7.60) along with Fig. 7.5 (or Fig. 7.8), we see that the output signal
power S, at the frequency f; is

2424}

So >

(7.67)

For a bandpass filter with bandwidth B, and for 0 < f, < f, — f,, the output noise
power is the area under the power spectral density curve enclosed by B (see Figs.
7.6-8), which we choose to be rectangular for simplicity. Although strictly
speaking, the rectangular function B {as well as 4 f) is not realizable, this is not
critical since it is the integrated area under the curve which is important rather
than the detailed shape. The result is

No=4a>NB(A2 + A2)+4a>N2BQf, - fi+ 1),
O<f.<fi—f.. (7.68)

The first term is due to the s x n interaction, while the second term is due to the
n x n interaction. Equation (7.68) can also be obtained from (7.62—66).

M. C. Teich, "Nonlinear Heterodyne Detection," in Topics in Applied Physics,
vol. 19, Optical and Infrared Detectors, edited by R. J. Keyes (Springer-Verlag,
New York, 1st ed.: 1977; 2nd ed.: 1980), ch. 7, pp. 229-300.



254 M. C. Teich

The final signal-to-noise ratio at the output of the bandpass filter for this first
case is therefore given by

(SNR), = So. _ Aoy
® N, 8NB[(AZ+A)+NQf,—fi+f)]

O<f.<fuo— 1, (7.69)

The input signal power S; and noise power N, are, from Fig. 7.4,
S;=R(0)=1(42+ A}), (7.70a)
N;=02=2fN. (7.70b)

Thus, in terms of the input signal-to-noise ratio (SNR),=S,/N,=(42 + A})/4f.N,
(7.69) can be written as

— ko(SNR)?

, O<f.<f.— 1., (7.71)

fo— 1,
(1_ ot ) +2(SNR),

n

with

k = an:Ag - anng =£ éP }
PUBAZ+AY? T B(AZ+43)F  Bl(1+&)Y

(1.72)

where £, represents the ratio of the signal power levels in the two beams, ie.,
éP=A%/ A%-

The output signal-to-noise ratio is therefore inversely proportional to B,
indicating that a small value for the final bandwidth is desired. Actually, B
should be chosen much smaller than f, in order that the above results be exactly
correct, although results for an arbitrary value of B can easily be obtained from
Fig. 7.8 and its associated equations.

If f,=f,— f,—0, the minimum value for (SNR), is obtained:

min _ kP(SNR)lz
(SNR)™ = {1 2GNR)” (7.73)

Alog plot of (7.73) is shown in Fig. 7.9. Since (SNR), will increase as f, increases,
the curve will be shifted up as f, increases from zero. The degenerate case f, = f,
should be avoided in practice because of additional noise contributions.

We now consider the second case, where f, — f, < f. < f,. Following the same
procedure as above, we obtain

No=202NB(A2 + A2)+42N*BRf,— i+ 1), fa—fo<fo<fus (7.74)
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Fig. 7.9. The (1/kp) (SNR), vs. (SNR), curve. The
actual signal-to-noise ratio depends upon the

Q.1
relative values of (f,— f,) and f,, and lies in the
shaded region. This curve also applies to the
Gaussian signal case, provided that the quantity
kp is replaced by kg or k;, for Gaussian and
Lorentzian spectra, respectively (see text)
so that
ke(SNR)?
(SNR)p= 7ty i fo<fo< o (7.75)
(1 - m—b) +(SNR),
2fs
If we choose f. = f, ~ f, = f,, @ maximum value for the (SNR), is obtained:
2k (SNR)?
SNR)max = P 7.76
(SNR)g 1+2(SNR), (7.76)

The log plot of (7.76) is also given in Fig. 7.9; the result is the (SNR)" curve
shifted vertically upward by log2. It now becomes clear that, for intermediate
cases, i.e., 0< f, < f,, the (SNR), curve will lie in between the curves (SNR)T™" and
(SNR)?** Thus, from a signal-to-noise ratio point of view, it is preferable to
maintain the known difference frequency 4v at a maximum value close to f,. For
all cases, decreasing B will always yield improvement.

We can easily show that equal received power in each beam leads to optimum
operation. From (7.72), we see that kpoc AZAZ/(A2+ A%)?. Because of the
symmetry between A, and 4,, we maximize k, by calculating the derivative
(0kp/OA 4, = const. =0- This leads to the relation 4, = A,.

From (7.73) and (7.76) the output signal-to-noise ratio (SNR), is seen to be
bounded as follows:

kp(SNR)? 2kp(SNR)?
——————— <(SNR), £ — i, 7.77
14+ 2(SNR); = Jo = 14+2(SNR), (7.77)
again assuming f; < f1, f; or f.> f1, f3. For LO frequencies between the two
signal frequencies, however, the output of the square-law device at | f; — f,] arises
from the sum-frequency rather than the difference-frequency term and therefore
falls in a region of lower noise. This, then, is the most desirable configuration
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from an SNR point of view, and allows us to comfortably realize the upper
bound. (We recall, however, that the degenerate case should be avoided.)
Nevertheless, we proceed under the more conservative assumption that the LO
frequency is either greater than or less than both received signal frequencies. If
we examine the specific (and optimum) case of 4, = A4, so that k,= f,/4B, with
(SNR),=nP /hvf, as given by (7.42b), we obtain

fo | P /hvf)? fo | P /hvf)
o | AN 7] Sl da) L 7.78
4B |1+42nP_ /hvf, S(SNR)jo= g 2B |1 +2nP /hvf,| (7.78)
This yields an approximate average value given by
So | P /Ry )
7.79
(SNR)o =~ 3B{1+2qP jhvf,| (7.79)

The case where A, + 4, will be considered in Section 7.4.

To obtain the minimum detectable total power (MDP), for this three-
frequency system, we set (SNR),=1 and solve for P_. Thus,

= e )
Vn n n n
Since B< f,,

(MDP), 3B  (3B\"?( 3B 33)”’

e ) (=% (7500

and therefore

(MDP), ~ |/3B. (hv/n)-—\/?P(m n), (1.81)

with.Pr(min)= f,hv/n as the standard minimum detectable power for the
"conventional heterodyne system with Doppler uncertainty f, [7.4,5]. By
choosing B < f,, therefore, it is possible to achieve a reduced minimum detectable
power

(MDP), <P (min), B</f, (7.82)

using three-frequency nonlinear heterodyne detection. Equations (7.77-82)
represent the key results obtained in this analysis.

In the limit of large (SNR), (strong input signals and/or small Doppler
uncertainty), P,/f, > hv/n, and (7.78) yields the relationship

nP, np, 783
%B=6 )=%w' (783)
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This can be approximated, then, as

(SNR),~ 1P _ fo (nP,)

6hvB ~ 6B \hvf,
Ja
= gE(SNR),,m,, (7.84)

where (SNR), .., =nP,/hvf, is the signal-to-noise ratio for the conventional
heterodyne system as given in (7.42b). Again, we can provide that

(SNR), > (SNR) (7.85)

power

by choosing B< f,.

7.3.3 Application to cw Radar with Gaussian Input Signals (Gaussian Spectra)

The sinusoidal signal assumption is, in many cases, an idealization which
provides simple physical and mathematical insights into a problem. In most real
situations, however, the heterodyne signal will have a narrowband character
[7.2,5,9,10, 14]. This may be due to the surface roughness of a scattering target
in a radar system, or due to the modulation imposed on the carrier in a
communications system. For a scatterer returning Gaussian radiation, experi-
ments show that the power spectral density is also frequently in the form of a
Gaussian [7.9, 14, 57, 58]. It is the purpose of this section to investigate this case.

We assume that the two signal inputs to the photodetector, E,(t) and E, (),
take the form of narrowband Gaussian processes:

E ()=A,(t)cos(wt+ ¢,), (7.86a)
E,(t)= A,(t) cos(w,t + ¢,), (7.86b)

where, for any given ¢, the two independent amplitudes A ,(t) and A4,(¢) are
random variables with Rayleigh distributions, and the two independent phases
¢, and ¢, are uniformly distributed over the interval (0, 2r). It should be pointed
out that the independent amplitude case considered here is appropriate only for
a sufficiently large value of Av and for sufficiently large targets. After mixing
with a stable LO and filtering out the dc portion, the signal input to the square-
law device is easily found to be [7.9,10, 14]

s(t)=2BA A (t)cos[{w, — @)t +(p; — P)]
+28 A4, A (t)cos[(w, —wp )t +(py — )] (7.87)

Since f and A, are constant, the new amplitudes A,(1)=28A4,A4,(t) and A(?)
=2fA, A,(t) remain Rayleigh distributed. Similarly, the new phases ¢, = ¢, — ¢
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and ¢, =¢,— ¢, can be easily shown to possess uniform distributions over
(0, 2m). Therefore the narrowband Gaussian nature of the signals is preserved,
provided that the envelope variations are slower than the intermediate
frequencies w, —w; and w, —w, [7.9,10,14] and we write

s(t) = A, (1) cos(w,t + p,) + Ay(t) cos(wyt + py). (7.88)

The power spectral densities for the narrowband Gaussian inputs are also
taken to be Gaussian. Thus

SN =8+, (7.89a)
with
S.(N)="P, exp{ nt 27;")2} + P, exp { - (—f;—v{ﬁ] (7.89b)
S,(f)=P, exp [~ v ;y{b)z] +Pbcxp[—— Q'z*y—é’f , : (7.89¢)
b b

where P, and P, represent the peak values of the Gaussian distributions, and y,
and y, are their standard deviations. The signal powers are then given by

o= S,(Ndf=2)/2ny,P,= <—Az“—>, (7.90a)
2
ot= {7, Sy(Ndf =2)/2ny,P,= <é"> : (7.90b)

The noise input once again is assumed to be white Gaussian over the real
frequency band [0, f,], and therefore has the same spectral density as the
sinewave input case. The total power spectral density at the input to the square-
law device is presented in Fig. 7.10 (compare with Fig. 7.4 for the sinewave case).

Because the signals are stationary Gaussian processes, the signal-by-signal
correlation functions at the output of the square-law device are given by [see

(7.63)]

R, ., (t)=202R2(1)+a’a?, (7.91a)

Ry, o(7)=202R}(1) +a’af. (7.91b)
From (7.64), the Fourier transform of R, , (1) is

SaxaN=202 7 S8, (f = [df +a*a38())

=2 1/;"‘27’ P2le V- a2 l4vE o g~ m 2127870 4 e~ [H4vE)
+a’e8(f), (7.92)
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S,(f)=8,(£) +8,(f)

AREA= /Z7 ¥, Py
P
AT Ty
T P
Pa J, Fig. 7.10. The power spectral density
i N ,/5"(” at the input to the square-law device
for the Gaussian signal case. We arbi-
L L f trarily choose P> P,
-fn -fa -fb o fy fo n

with the identical result for §, () (b replaces a). Furthermore, using (7.50d) we
obtain

2 (7 Pa) (7o Py )( _ [f—(ﬁ.+fb)]2}
axb(f 41/_d ——-—‘—,—__.ya +Yb exp{ 2(y32+y§)
+exp {— Lf_Lfa-’;fl’Bi} +exp{— [f_(fa_fb):lz}

262 +79) 2y; +v3)
_ 2
a b

The total signal-by-signal power spectral density S, .(f) is, of course, given by

Ssxs(f)=saxa(f)+beb(f)+SaXb(f)’ (794)

and is shown in Fig. 7.11 (compare with Fig. 7.5 for the sinewave case).
For the signal-by-noise part, we have

R (1)=R, «o(1)+ Ry (1), (7.95)

and, from (7.50e), we write

R, (1) =4 R (1)R () + 20%a 0], (7.96)
which Fourier transforms to
S, xalf) 4a2f IS Sf—=Hdf + 2a20 6(f). (7.97)

This can be readily evaluated to yield

f+f,,—f;) _¢(f—fn—n)
Ya

S.xa()=4)/2na*NP,y, [45(

o (ALY (It

Ya

a

)] +20%02025(f), (7.98)

Va
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S sxslf)
2
AREA=a2(0 +0¢)
8
DUE TO 2 2
axa and bxb —~--a T Py +Y Py)
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axb SARIALS
_____________ — -4\/2_-”- aZ_LL_
2 /12 + n2
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Fig. 7.11. The signal-by-signal power spectral density at the output of the square-law device
(Gaussian signal case). Areas under curves: AREA 1=8ra(p2P? +y2P2?); AREA2
=8na’(y,P,) (y,P,); AREA3=4na?y2P2; AREA 4=4na?y?P?

where @(x) is the normal distribution function

()= —— %, e~ Mdx'. (799)
2n

Ve

Similarly, we obtain the identical result for S, , , (b replaces a). The total signal-
by-noise power spectral density S, . .(f) is just the sum of S, . (f)}and S, ,(f), or

Soxa() =8, xalf)+ Sy xalf)-

A sketchof S, .(f)is given in Fig. 7.12, Assuming that the standard deviations y,
and yp, are small in comparison with the width of the plateau regions in Fig. 7.6,
the plot will be very similar to that of the sinewave case. The only notable
difference is the rounding of sharp corners. Small values of y, and vy, also guard
against spectrum overlap which would make the solution of the problem more
difficult.

The noise-by-noise power spectral density is the same as that for the pure
sinewave case (Fig. 7.7). The total output power spectral density S,(f) is plotted
in Fig. 7.13 where we arbitrarily have assumed that f,> f, and f,— f,<

fn"fa<fn‘

sXn

(7.100)

Sexn(f)
AREA=8./Z7 ¥ YoPy+Yy Pyl faN

B./ZT BN(YaPy+YpP)

A /T PN, P+ 27Ry)
4 /ZF a® N(YaPa+7} Py)

IR
BE XA ~fatly

Fig. 7.12. The signal-by-noise power
spectral density at the output of the
square-law device (Gaussian signal
case)
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S,(f)

Fig. 7.13. The total power spectral
density at the output of the square-
law device for the Gaussian signal
case. Note the smoothing of all
sharp edges. This figure is similar
to Fig. 7.6 except that the delta
functions are replaced by
f Gaussians

Here again, we place a bandpass filter of bandwidth B and center frequency
f.=f,— 1, after the square-law device. Referring to Fig. 7.11 and (7.93), we find

2y P P 29002 4 2
S0=8a 2r(y,P,) (vpPy) [_['_’/;/ze‘f/w'”b)df]

Vvi+vi

= 16m22(y,P,) (75 Py) [24& (_1:;_{) - 1] . (7.101)
2 ya + yb

The input signal power is, from (7.90), given by
5,=2)2n(y,P, +7sPs)- (7.102)

The input noise power is the same as for the sinewave case. Referring to Figs. 7.7
and 7.12, the output noise power can be very well approximated by

No=16]/2n0’ NB(,P, +7,Py) + 40> N>B(2f, — [, + i),

0<fi=fo<hi— L (7.103a)
No=8]/2na*NB(y,P, +y,P,) +42*N?BQ2f,— f. + 1),

S fo<lo—fo<ha (7.103b)

The input signal-to-noise ratio (SNR), is simply

Vo

(SNR);= - T (7P + 7P (7.104)
while the output signal-to-noise ratio (SNR), can be easily evaluated:
(SNR), = fkf(beNR)‘z , O<f—-fi<fi— 1o (7.105a)
(1 - iz—f:—) +2(SNR),
(SNR), = fki(iz\m)‘z . i fo<fimfu<ta (7.105b)
(1 — “—2f—n—) +(SNR),
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These equations are identical to (7.71) and (7.75) with the exception that the
factor k, [(7.72)] has been replaced by the factor kg given by

fn (’yaPa) (ybe) {1 }
ko= —[2(u)—1
© 2219 PPy uL220-1
Ja (71 P1) (72 P,)

1
= S 2dw) -1 }
ez (v1P1+v2P2)2{u[ (=11

1
= Jo { ‘fG, 2}{— [2®(u)— 1]}. (7.106a)
21/ y3 +y2 (1+<¢6)° ) lu
Here
B
u= B = (7.106b)
2V vi+ve 2)vitvi
and &g, which is the ratio of the beam powers, is
Eo=72P2/71P. (7.106¢)

Now, if f, — f,—0in (7.105a) and choosing f, — f, = f, in (7.105b), we obtain
the following bounds for (SNR},

ko(SNR)?

min —_ 7.107
SNRYG™ = T 3ENR),” (7.1072)
2k (SNR)?
NR™* = G i 7.107
(SNR)F™= 0 CRR). (7.107b)

in analogy with (7.73) and (7.76). Again we note that when the LO frequency is
between the received signal frequencies, the upper bound can be safely used: The
results presented in Fig. 7.9 are therefore also appropriate to this case with the
substitution of kg for kp.

Since (SNR), is the same for the Gaussian case as it is for the pure sinewave
case [7.10], the results presented in Section 7.3.2 apply directly with the simple
replacement of kp by kg; thus

1 1 20— 1

Y orwwr: {% [20(u)— 1]} TR (7.108a)
with

A2-4)/2ny,P,, (7.108b)

A254)/2ny,P,. (7.108c)
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For equal powers in both beams, therefore, the final signal-to-noise ratio for the
Gaussian case is degraded in comparison with the sinewave case by the factor
[2&(u)—1]=[P(u)— P(—u)] < 1. It is clear that the spectral width, as de-

termined by the quantity |/y2+yZ, should be minimized if possible. An
expression for the MDP is given in Section 7.4.3.

We now consider the variation of the quantity kg; with the bandwidth B,
assuming that the parameters f,, v,, v,. P,, and P, are fixed. Since uccB and
kgoc(1/u) [20(u) — 1] = z(u), it is sufficient to examine the function z(u) sketched
in Fig. 7.14. 1t is apparent that kg, and therefore (SNR),, increases with
decreasing B. This evidences the fact that the noise power decreases more rapidly
than the signal power as the bandwidth B is narrowed on f, = f, — f,. This effect
can be observed in Fig. 7.13. For both sinewave and Gaussian signal inputs,
therefore, it is desirable to minimize B. The limitation, of course, is provided by
the unequal Doppler shifts of the two input signals. For a given bandwidth B,
furthermore, it is understood that all of the signal will be detected in the sinewave
case, while only a portion of it will be detected in the Gaussian case.

If we let y, and y,—0 while keeping the power constant (i.e., |/2ny, P, = A2/4
and |/2ny,P,=A/4), the Gaussian spectra shrink to delta functions. In this
limit, we observe that

2A2A2 242 42
lim S (Gaussian)= a—?"—"— [2d(c0)—1]= 9‘%’ (7.109)
a0
Yo 0

which is, as expected, the expression obtained for the output power for the
sinewave case [(7.67)].

7.3.4 Application to cw Radar with Gaussian Input Signals (Lorentzian Spectra)

In those cases where the narrowband Gaussian signal inputs possess Lorentzian
power spectra rather than Gaussian power spectra, the input power spectral
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densities are given by

D.r DF
S = a a
= = G (7.110a)
S.(f)= Dyl Dol (7.110b)

AU+ T AT+ +TE

Here D, and D, are arbitrary constants, while I', and I', are constants reflecting
the spectral width. Performing the inverse Fourier transform, the autocor-
relation functions are found to be

R,(t)=nD,e” "=l cos2n f 7, (7.111a)
R, (t)=nD e el cos2n fiz, (7.111b)

whereas the input signal powers are given by

oi= |, S(ndf=nD,= L2, (7.1122)
1 (@ 4D
oy =7 SuNdf =rDy =25 (7.112b)

With the same noise input as considered in the previous section, and making use
of (7.50), (7.91), (7.97), and (7.111), the output power spectral densities are

2r, r, r,
Sexalf)=a’nD 2[f2+4FZ T =2 +art T (fr 2y Tar
+a?ats(f), (7.113a)
beb(f)=Saxa(f)lsub.a—'sub.b’ (7113b)
., r,+T, r,+r,
Saslf) =0 ”DaD"[(f—J;—fb)2+(ra+r,,)2 T+ Lt ) - (1T
+ r,+r, r,+r, }
f —fa.+fl,)2+(1“a+r,,)2 (f+fi— P+ (T, +T,)?
+202a20id(f), (7.113¢)

A2+ 2+ 1) }
=L+ = A+ L)+ = fA1-41T7

+2u262028(f), (7.113d)

S, xn(f)=20*ND,tan™! {

ben(f)=SaXn'sub.a-'sub.lw (7113@)
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with O <tan™!x <m (negative angles excluded). For narrow spectral widths
(I",, 'y, small), it is clear that the power spectral densities for the Lorentzian case
should look just about the same as those for the Gaussian case. We may simply

replace 2)/2ny,P, and 2}/ 2ny, P, respectively, by nD, and nD, [see (7.90) and
(7.112)].

We may calculate the output signal and noise to obtain (SNR), as follows.
Let

r +r
So=2na2’D,D, jﬂ/z 2" b

- B/2 f2+(I‘a+Fb)2df

_| 4B, +r)

2 1 atln) 7.11

2ra*D,Dy tan AT AT —Bz] s ( 4)
with 0 <tan™'x<n. For small B, the output noise power is
No= [t o [Syxnl)+Suxal )+ Saxa (£)1dS

e e [Syxal )+ Spwal) + SuxalN1AS

2 BIS, olfs= J) + Suxal— fot F)+ Suxalfy = S+ Synl— fu + £3)]
+402N2BQRf, — f,+ fy)- (7.115)

As an approximation, we use the replacements 2}/2ny,P,—»nD, and
2)/2ny, P ,—nD, in Fig. 7.12 to obtain

No=8n0>NB(D, + D)+ 40> N*B(2f, ~ f,+ £,),

0<f,—fo<fo—fos (7.116a)
No=4na?NB(D, + D) +4a*N*BQ2f,— f,+ ,),

fi—fh<fi—fu<fs. (7.116b)

Using an input signal-to-noise ratio (SNR), [see (7.112)] given by

(D, + D)

(SNR),= =5,

(7.117)

and using (7.114), (7.116), and (7.117), we find the output signal-to-noise ratio
(SNR), to be

2
(SNR), = ka(;’NR)‘ . O<fi-fui<fi— L (7.118a)
a__Jb
(1 BT ) +2(SNR),
2
(SNR), = fki(S}NR)" . S fo<fimfu< e (7.118b)
(1 - -i-f—E) +(SNR),
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This result is therefore the same as that for both the sinewave case and the
Gaussian spectrum case [see (7.71), (7.75), (7.105)] except that we now use the
factor k; given by

tn"‘( 4p )
4 p,p, M \a=?
LY n(r,+r,) (D,+D,)? v
tan‘l( 4v )
. D,D, 4— 2
T, +T,) (D, +D,)? v
tan_l(—4—v——>
_ < 4—v*
= n(r1+r2){<1+:u2} v (7.1152)
where
v=B/I',+T,)=B/T, +T5) (7.119b)
and
¢.=D,/D;. (7.119¢)

Thus the results presented in Fig. 7.9 apply also to this case with k; replaced by
ky.
For small v (small B), the quantity 4v/(4 —v?)~v. It is not difficult to show
that the behavior of the function (tan~!v)/v is similar to that of z(u) (see Fig.
7.14). The maximum value occurs at the origin so that in this case too, optimum
operation occurs for B—0.
Furthermore, using the replacements nD,— A2/2 and nD,— 4%/2 and letting
r,,r,—0,(7.119) reduces to

S AlAL lim 1tan_1 4B(I,+1T)
L7 B (A2+ A2 \ravre—oT AT, +T,)*—B?
fo AAY

=-2__ 20 k. .

B (A2 +A42* * (7.120)
Thus, the present case also reduces to the sinewave case as the spectral width
approaches zero with the power fixed. Similarly it is clear from the above that for
fixed B the spectral width, as determined by the quantity (I', +I',), should be
minimized if possible.

7.3.5 Application to an Analog Communications System

Use of the three-frequency method for a communications system (in which the
transmitter and receiver may be moving relative to each other) is similar to the
radar already described, and is indicated in Fig. 7.15. Note, however, that only

M. C. Teich, "Nonlinear Heterodyne Detection," in Topics in Applied Physics,
vol. 19, Optical and Infrared Detectors, edited by R. J. Keyes (Springer-Verlag,
New York, 1st ed.: 1977; 2nd ed.: 1980), ch. 7, pp. 229-300.



Nonlinear Heterodyne Detection 267

-~ = = = = - = - —/ - - - - — - — — — — — — —/
! | | |
TRANSMITTER NONLINEAR NARROWBAND
| | mobuLaToR [ | LO FILTER |-
1 DEVICE
AT f
() l | [
l . | | [
1
1 | ! |
l | f |
| |TRANSMITTER | "] HETERODYNE “‘H" BANDPASS vevoouLaTor | |
2 t "CHANNEL' MIXER FILTER
P ] ] | J
OUTPUT
L _ _ Lo o e R
TRANSMITTER RECEIVER

Fig. 7.15. A three-frequency nonlinear heterodyne analog communications system

one of the carrier waves (f,)is modulated, and that a demodulator is included. By
modulating only one of the beams, the sxs component reaching the de-
modulator results from the convolution of a delta function (at f;) with the
modulated signal (centered at f;), which is simply the original undistorted
spectral information ready for demodulation by a suitable device such as a
mixer, an envelope detector, or a discriminator. The maximum rate at which
modulation may be decoded (or the information capacity) of the system will, of
course, depend upon the time response of the system which is usually governed
by the final bandwidth B. We could, in the alternative, construct an analog FM
communication system in which a single frequency laser beam is split into two
frequencies by a modulator (e.g., an acoustooptic modulator [7.49]). In that case,
the frequency difference f, will carry the information. In the absence of
information (i.e., f, constant), f, will be spectrally very pure (it should be as
narrow as the spectral width of the modulator drive signal). Thus the three-
frequency nonlinear system could provide the advantage of lower deviation and
thereby provide bandwidth compression.

7.3.6 Operation at Low Frequencies and in Various Configurations

Thus far, we have been especially concerned with absorption detectors operating
in the optical and infrared regions of the electromagnetic spectrum (hv> kT,
where k is the Boltzmann constant and T is the detector temperature). In this
case, the intensity of the incoming wave is obtained from the analytic signal and
excludes double- and sum-frequency components [7.10, 12-14]. Nevertheless,
(7.77) is a general result for intensity detection which applies also to the
microwave and radiowave regions (hv <kT).

For low frequencies, the intensity is related to the square of the electric field,
I'ec E2. For a diode mixer which is either operating in the square-law regime or in
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the linear regime followed by a square-law device, the detector response r for a
three-frequency system is then given by the classical expression

r=BE>=B[A, cos(wt+¢d,)+ A, cos(@,t +¢,)+ A cos(w t+¢,)]*
=p{A2cosH(w t+¢,) + A3 cos*(w,t+ ¢,)+ A2 cos*(w t + ¢, )
+ A, A, cos[(w; — @)t +(@, — @)1+ A, A; cosf(w +wy)t+(e, +¢,)]
+ A4, A cos[(w; —o )t +(d, — )1+ A, AL cos[(w, + o)t +(d; + )]

+ Ay Ay cos[(@; — o)t +(¢, — ¢+ 4,4, cos[(@, + o )i+, +d )1}
(7.121)

Note that 42 cos?(wt + ¢)=(A42/2)[1 + cos(2wt +2¢)]. Now, since the detector
generally does not follow the instantaneous intensity at double- and sum-
frequencies (2w,, @, +,, ...), only dc and difference-frequency terms remain.
Hence (7.121) will in practice reduce to (7.36). The calculations leading to (7.121)
will remain correct, provided of course, that we insert the proper relation for
(SNR), in the classical low frequency detection regime. Generally, this is
obtained by replacing hv by kT and # by 1/F., where F is the noise figure of the
receiver.

Once the target is ascertained to be present, a wide bandpass filter can be
gradually narrowed about 2|f] — f;| or 2|f;— f,| and thereby used to obtain
Doppler information. Alternatively one could, of course, switch to a con-
ventional configuration.

It is of interest to examine the operation of the three-frequency nonlinear
heterodyne system in a variety of configurations [7.59] different from those
assumed earlier. In this section, we consider the behavior of the system under the
following conditions: 1) at zero frequency (dc), 2) without a final bandpass filter,
3) with increased Doppler information, 4) as an optimum system with no
uncertainty in Doppler shift, and 5) with a vth law nonlinear device other than
square-law. We also consider the consequences of four-frequency nonlinear
heterodyne detection; this will be examined in greater detail in Section 7.4.

Assuming that B—0, a calculation of (SNR), for the final filter centered at
zero frequency rather than at f; yields the result given by (7.73) with k=1, thus
independent of f,, A,, A,, and B. The advantageous factor f, /B therefore does not
appear in the equation. For B >0, the noise increases while the signal does not so
that the above result is optimum for zero frequency. It must be kept in mind,
however, that this result has been obtained for a system containing a blocking
capacitor (see Fig. 7.3).

If we altogether omit the final bandpass filter, a rather complicated
expression for (SNR), obtains. Assuming that f, and f, are much smaller than f,,
and with 4, = 4,, the MDP is calculated to be (MDP), ~2.9hv f,/n, approximate-
ly a factor three worse than the conventional system.

We now consider the case in which the bandpass filter barely encompasses f,
and f, so that f,= f, and f, = f,, with f, > f,. Clearly, decreasing this bandwidth
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should decrease the overall noise and thereby improve system performance, but
this requires knowledge of the Doppler shifts involved. A calculation of the
average MDP yields the result (MDP),~3hvB/n, which is considerably lower
than the result given in (7.81), as it should be.

A calculation for the case in which complete Doppler information is
available displays clearly the additional noise introduced by the three-frequency
System over the conventional system, by virtue of the nonlinear processing. The
result for the MDP in this case is (MDP), =~ 1.8hvB/n, which is a factor of 1.8
greater than the MDP for the conventional heterodyne receiver with band-
width B.

General considerations [7.60] show that all vth law detectors behave in an
essentially similar manner to the full-wave square-law detector in terms of the
ratio of (SNR), and (SNR),. For large values of (SNR),, therefore, (SNR), is
expected to be directly proportional to (SNR).. Thus, if a half-wave linear device
were used instead of the full-wave square-law device considered previously, we
would expect results similar to those obtained earlier. This provides a wide
choice for designing a heterodyne-nonlinear detector combination, perhaps in a
single package.

Finally, we consider the consequences of four-frequency mixing. This would
have the advantage of making the transmitter and LO identical. Assuming that
only one of the sidebands of the LO is strong (4, ), the (SNR), is still given by
(7.73) and (7.76), but in this case

4 fuAGAs foATAS

PT B+ AL+ AL BAL+ A+ AL (1122)

with A4 /A,=A,,/A,. If A;=A,=A,,, we obtain *k,=f,/9B which is to be
compared with the value *k, = f,/4B for the three-frequency case. Thus a single
unit may be used both as transmitter and local oscillator without a great deal of
loss, provided that one of the two sidebands of the LO beam is attenuated down
to the level of the received signal. From (7.122), it is seen that the LO optimally
consists of a single frequency, however.

The worst case, in which the 1O consists of two strong frequencies separated
by f., gives rise to very large s x n terms arising from the beating between the two
LO frequencies. Aside from other terms not contained in (7.122), this case would
make the A2 term in the denominator of (7.122) very large, leading to a factor
{(P./P.)? in (SNR), (P, and P, are typical signal and LO powers, respectively).
Thus, in other than very large input SNR situations, the transmitter cannot be
directly used as an LO without attenuation of one of its sidebands.

7.3.7 Numerical Example: A CO, Laser Radar

As an example of three-frequency nonlinear heterodyne detection, we consider a
CO, laser radar operating at 10.6 pm in the infrared [7.14, 61, 62] (see Fig. 7.3). If
we assume that we wish to acquire and track a 1-m-radius satellite with a
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rotation rate of 1 rpm, the expected bandwidth (resulting from rotation) of the
radar return is of order 4R, /A ~40kHz [7.9]. We therefore choose a difference
frequency f, at a (convenient) value of 1 MHz, which eliminates spectrum
overlap. If the satellite has a radial velocity ~ 10 km/s, the Doppler frequency is
~2GHz, yielding a value f; — f, =2v, f./c ~ 60 Hz. This shift is very small indeed
compared with general frequency modulations in an ordinary heterodyne
system, justifying the assumption that f; — f.—0. Thus, assuming we have only
an upper bound on the satellite velocity, i.e., its velocity may be anywhere in the
range 0-10km/s, we choose 4 f = f, ~2 GHz and B~ 20kHz. The MDP for this

system would, therefore, be ~([/§hv/r7) (Bf,)''? which is equivalent to the MDP
obtained from a conventional setup with a bandwidth of approximately
10 MHz. If the Doppler shift is more confined, the MDP is correspondingly
reduced. For strong returns, of course, the SNR will show an enhancement
commensurate with the bandwidth B. Thus, the advantages of the three-
frequency heterodyne system may be secured with such a radar. Similar results
would be obtained at other frequencies ; in the microwave, for example, f, may be
made as small as tens of Hz. In some cases, it may be possible to reduce clutter by
the insertion of an extremely sharp notch filter at exactly f..

7.3.8 Application to Binary Communications and Pulsed Radar
(Vacuum Channel)

The previous subsections were primarily concerned with the behavior of the
three-frequency nonlinear heterodyne system for applications in cw radar and
analog communications. As such, a determination of the output signal-to-noise
ratio (SNR), was adequate to characterize the system. In this subsection, we
investigate applications in digital communications and pulsed radar, and
therefore examine system performance in terms of the error probability P,.
Evaluation of the probability of error under various conditions requires a
decision criterion as well as a knowledge of the signal statistics; we now
investigate operation of the three-frequency nonlinear heterodyne scheme in the
time domain rather than in the frequency domain.

Because of the added complexity of dealing in the time domain, we limit our
investigation to sinewave signals, Gaussian local oscillator (LO) noise, and
envelope detection. The configuration of such a receiver is therefore similar to
that considered previously, with the addition of an envelope detector (see Figs.
7.3 and 7.15). We therefore examine the case of a particular “square-law envelope
detector”, consisting of a square-law device, a narrowband filter, and an
envelope detector [7.63]. Although envelope detection is generally suboptimum
because it is insensitive to phase, it is easy to implement practically and is
therefore widely used [7.64].

We begin with an investigation of binary communications and pulsed radar
for both nonorthogonal and orthogonal signaling formats in the vacuum
channel. In Section 7.3.9, we examine envelope probability distributions and
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binary signaling for sinewave signals in the lognormal channel (clear air
turbulent atmosphere). The advantages of the three-frequency nonlinear
heterodyne scheme in the digital communications/pulsed radar configuration
are similar to those cited for cw radar/analog communications.

We assume here, as previously, that when a signal is present the fields
incident on the mixer are parallel, plane polarized, and spatially first-order
coherent over the detector aperture. In general, therefore, the input to the
square-law device, as previously [see (7.51)], will be two narrowband signals plus
white Gaussian noise with zero mean resulting from the LO, over the band
[0,£.]. Thus

5(t)= A, cos(w,t + ¢,) + Ay cos(@pt + Py), (7.123)

with 4., A, ¢,, and ¢,, stochastic processes. The amplitudes are assumed to be
independent of the phases. We first treat the specific case of sinusoidal signals,
le., 4, and A, constant and ¢,, ¢, independent random variables uniformly
distributed over (0, 2m).

In the time domain, the white Gaussian noise, which arises from the LO, can
be expressed as [7.65]

n()= Y, _ wcosml+ Y, v sinwt. (7.124)

Here, w, = kw, with w, = 2r/2T If the input signal is a pulse, the pulse duration is
the time interval (— T, T). The coefficients u, and v, may therefore be written as

U, = %fiTn(t) cosw,tdt, (7.125a)
and
v, = % T n(e)sine,tdt . (7.125b)

(In the alternative, a narrowband representation could be used.) Since #, and v,
are linear transformations of the Gaussian random variable n(t), they are also
Gaussian random variables [7.66] ; furthermore it can be shown that for Tlarge,
ally,’s and v,’s are uncorrelated and independent of one another [7.67]. Since the
mean of n(t) is taken to be zero, we find

Cupd = <% §I, n() coswktdt> =0 (7.126a)

and similarly
{v>=0, (7.126b)
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while the variance {u}) is given by

1 N

Cuty = e §7, 57, <ntn(e)) cosw,t cos o, tdedt = T (7.127a)
Similarly,

(v = % (7.127b)

In calculating these quantities, we have assumed that the Gaussian noise n(t) is
stationary, and that the band [f;, f,] is sufficiently large so that the noise can be
approximated to be completely white (over an infinite band) leading to an
autocorrelation function R (t —t)~NJ(t —t'). Here N is the height of the white
noise spectrum.

The input x(t) to the square-law device can now be written as

x(t)=s(t)+ n(r)
= A, cos(w,t+ ¢,)+ A, cos(wyt + ¢p)
+ Y ucoswt+ Y, v sinawgt. (7.128)

We note that since w,, is small, it is always possible to find integers m and n such
that mw, and nw,, are very close to ®, and w,, respectively. This implies that T'is
much larger than 2n/w, and 2n/w,,

By direct substitution, we find the output of the square-law device y(¢) to be

He)=ax?(z)
=a(} ¥, uf(L+cos2wm,t) + 33, v (1 —cos2wyt)

+ Y sin2w,t + Y 3 suufeos(w; — )t +cos(w; + w))t]
+ 3 Y s v [cos(@; — w))t — cos(w; + w )t]
+ Y3 s jup[sin(w; 4 w )t — sin(w; — w))t]
+ 3 )< Isin(w; + w))t + sin(w; — w,)t]
+3A2[1+cos(Rw,t +2¢,)} + 3 AZ[1 +cosQuwyt +2¢,)]
+ A, Ap{cos[(w, + wp)t + ¢, + ¢y, ] +cosl(w, —w )t + @, — Py}
+ A4, Y wlcos[(w, +w)t + ¢, ] +cos[(w, —w, )t — .1}
+ A, Y fcos[(w, + )t + @, ] +cos(wy, — wp )t — ¢ 1}
+ A4, T (sinl(oy + 0,0 +¢,] +sin[(@, — )t — ¢}
+ Ay, Y v dsin[(w, + wy)t + ¢y ] +sin[(w, —wy )t~ $,1}), (7.129)
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where we have used the following symmetrical relations:
320 s itk Leos(w; + w )t + cos(w; — w))t]
=32 X< juLeos(w; + w )t +cos(w; — w )], {7.130a)
and
1YY v, lcos(w; + )t + cos(w; — w))t]
=33 %< ;vv;lcos(w; +w )t + cos(w; — w))t] . (7.130b)

Since it is the effective bandwidth rather than the shape of the final
narrowband filter which is important, we choose a realizable impulse response
for this filter given by

1
h(t)=2Bcos2nft O<t< 3 (7.131)

This choice facilitates the computation in the time domain and provides accord
with signal-to-noise ratios calculated previously. Assuming B is very small, the
time output from the bandpass filter z(z) is given by

2(t)= ;" h(t—t)y()dt

= A cos{w t+@)+ucoswt+vsinwt. (7.132)

Here
A=0d A,, (7.133a)
¢=0¢,— ¢y, (7.133b)

and after a great deal of calculation, u and v turn out to be the sum of an infinite
number of random variables, and therefore Gaussian. The means and variances
of u and v are found to be [7.59]

{ud={(v)=0 (7.134)
and

(> = (0% 4o L [N +(AD + D, (1.139)

assuming f,, f, < f,. It is also found that
Cuvy =(upy {v) =0, (7.136)
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indicating that u and v are uncorrelated and independent processes. Equations
(7.134), (7.135), and (7.136) indicate that the last two terms in (7.132), ucosw_!
+vsinw,t, constitute a narrowband Gaussian random process with zero mean
and center frequency .. In fact, (7.135) represents the output noise power N,

We can corroborate this rather broad result [7.59] for a specific case by
generalizing the results obtained by Kac and Siegert [7.68] and Emerson [7.69],
who have treated a related problem. We assume the output of the heterodyne
mixer to consist of two sinewave signals plus uncorrelated (white) Gaussian
noise. The system, in this case, consists of a realizable IF Gaussian bandpass
filter, with arbitrary width 4 f and a center frequency around f, or f, (which is
large in comparison with f,), the usual square-law device, and a realizable final
narrowband filter with bandwidth B. Under the restrictions f, < f,, f, and
B < f, < Af,it may be shown that the output of the final narrowband filter will be
a sinewave signal plus a Gaussian random process. For noise alone, the
output will simply be Gaussian. Thus the envelope distribution for noise
will be Rayleigh, while that for signal-plus-noise will be Rician. This is we
might add, the same result obtained for conventional two-frequency heterodyne
detection, although the means and variances will not have the same relationship
in that case.

For f, < f,, as prescribed previously, it is not difficult to verify that the above
description in the time domain is in accord with the frequency-domain results
presented previously. Since the relationship between the pulse width T and the
minimum bandwidth of the final filter is governed by the Fourier transform
property TB~1[7.70], (7.135) for the noise power in this regime may be written
as

ut) =(v*)=N,~40’NB[2f N +({A2) +<{4)]. (7.137)
Using (7.133a), we therefore obtain for the output signal-to-noise ratio

Sy A CAZAY

_So _ _ . 7.138
(SNR), N, 2uy _ 8NBL((AZ +<{Ay)2[.N] 7139
Using an input signal-to-noise ratio given by
AN +<AD
SNR),= —2——>" 7139
( R): 4an ’ ( 13 )
we finally obtain
k,(SNR)?
— oW T
(SNR), = T+ 2SNR),’ (7.140)
with
2 42 2 42
b SSARAD fiCATAD) (7.141)

27 BAD +<AD) T BLAD +<AD)
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These expressions are valid in the regime f, < f,, and are analogous to (7.72) and
(7.73) of Section 7.3.2. Our treatment is therefore consistent with that presented
previously.

According to (7.132) and the discussion following, in the presence of signal
plus noise the output of the narrowband final filter z(t), after being passed
through the envelope detector, is given by the Rician distribution [7.71]

2 AZ
fl(r)=;’710 (g;)exp(— r ;;2 ) (7.142)

Here, r represents the envelope of z(t), o%=<{u?)=4a>NB[2f,N +({A>)
+<A2»)], and I,(x) is the modified Bessel function of the first kind and zero
order, also expressible as

Iy(x)= % {2 exp(x cos0)do. (7.143a)

We may use the asymptotic expansion for x <1 [7.72],
x? 2

Io(x) =1+ 7 + ... ~e™%, (7.143b)

while for x> 1,
ex

|/ 2mx .

In the presence of noise alone, ie., for 4,=A, =0, the probability density
function for the envelope f,(r) is the Rayleigh distribution

Iy(x)=~ (7.143c)

2
for)= aigexp (— %) (7.144)

Here o7 is the noise power in the absence of signal, ie.,
03 =<4 cgy=0=80*Bf N>. (7.145)

We note that in our nonlinear problem 62 # 63 because of the presence of s x n
terms in o2, In the usual linear systems problem, these terms do not appear, and
at=qgl.

Given the probability distributions for the output signals, we can proceed to
investigate binary communications and pulsed radar systems performance upon
choosing a decision rule. In the following, we consider both orthogonal and

nonorthogonal formats for digital signaling.
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Nonorthogonal Signaling Formats

We first consider pulse-code modulation where it is the intensity which is
modulated. This simple nonorthogonal scheme is frequently referred to as
PCM/IM [7.73]. The signal is considered to be present when a 1 is transmitted,
and absent when a 0 is transmitted. To evaluate system performance, we choose
the likelihood-ratio criterion [7.72, 73]. If Q represents the a priori probability
that a 1 is transmitted, the signal is judged to be present if

0fi(nz21-Q)fo(r). (7.146)

For simplicity, we assume throughout that the different types of errors are
equally costly. Since the signals are pulse coded, the value of r chosen is the
average value over the pulse width. The decision threshold ry, is the value of 7 for
which the equality in (7.146) holds. Using (7.142), (7.143a), and (7.144) for
sinewave signals and Gaussian noise, ry, is therefore the solution to the
transcendental equation

L exp (i:_’;: cos G)de

2n 70
1-0\o? .5 -0} ,
=(—=|2 a - ) 7.147
(g7 el = 7147
Using (7.137) and (7.141), it is clear that
ot =c3(1+2)/¢o/ky), (7.148)
where
(4%
=7 7.149
b= 5,5 (7.149)

For sinewave inputs, 4, 4,, and A4,, are constant and the quantity k, is identical
with the quantity k;, introduced earlier [see (7.72), Sec. 7.3.2]. Defining r, =r/0,
(7.147) can be rewritten as

Lj;"ex ( Zéorocose)de
2n 1+2)/&ofky

(2 onlism

_ ol Eolke 7.150)
CXP( 1+21/¢0/—k,,)' (
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Therefore, with k, and Q fixed, the solution to (7.150) for r,, which we call 7, is a
function only of éo If we further define

4%

¢'=(SNR), = 22

(7.151)

then the quantity &' =(05/0%)¢ o =¢o/(1 +2]/¢o/kp) is also a function only of &,.
Thus, #, is a function only of ¢’. The decision threshold r = o7, is therefore a
function of both ¢ and o,

The probability of a decoding error P, is given by

P,=0Q (" fi)dr+(1—Q) [ fo(rdr, (1.152)

which in the present case, may be written as

m b [Ary A
PezQJ‘o ?10(;{)0 22 dr

1—Q)j -t ~143 dr. (7.153)

Replacing r/o by 7', we can rewrite the first integral I, in (7.152) as follows

1= rI()/28r)e (540 (7.154)

Since fy0,/0=F/(1+2]/&y/kp)!/? is a function only of £, which, in turn, is a
function only of the output signal-to-noise ratio &, this integral is a function only
of &, The second integral in (7.153) can be easily evaluated as follows:

roo_ a0 2 -
[T e 98 dr= " xe *dx=—e 2
rp/oo

g2 rp/oo

=g B2 =¢770/2, (7.155)

which is also a function only of &'

Therefore, with fixed ky(oc f,/B) and fixed Q, the probability of error P, is a
function only of the output signal-to-noise ratio & =(SNR),. By use of (7.141),in
turn, P, can be written in terms of (SNR),. Computer results for the probability
of error are presented in Fig. 7.16 [(7.143) has been used for the computer
calculation], in which P, is plotted against (SNR), for several values of f,/B, with
the usual choice @ =0.5 and A, =A,. The solid curves represent this PCM/IM
scheme. For fixed f,, the advantage of using small B is obvious.

Also shown in Fig. 7.16 is the P, versus SNR curve for the conventional two-
frequency heterodyne system in which no square-law device is used and £, must
be narrowed to 4 f to provide a detectable signal. The output for this case is again
a sinewave signal plus a narrowband (4f) Gaussian noise [7.73]. Thus the
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Fig. 7.16a. Probability of error vs (SNR),
for the three-frequency binary com-
munication system in the vacuum channel.
The input signals are assumed to be sin-
usoidal while the noise is Gaussian. The
result for the conventional heterodyne
system is shown for comparison (log vs
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Fig. 7.16b. Same curves as Fig. 7.16a on a linear vs log plot

computation is the same as for the three-frequency heterodyne case with 6% = o2
and & =¢,=(SNR),. The probability of error at a given signal-to-noise ratio for
the ordinary heterodyne system is seen to be higher than for the three-frequency
system. This results from the exclusion of noise demanded by the final bandpass
filter where f,/B > 1, thus providing higher (SNR), and lower P, for the three-
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frequency system. Since the Rician and Rayleigh distributions have been
calculated only for B < f, (hence B < f,) and for white noise, the optimum three-
frequency case considered previously is not shown in Fig. 7.16.

Pulsed Radar Application

The three-frequency nonlinear heterodyne system can also be used for pulsed
radar applications. The configuration is similar to that considered previously.
Pulses are sent to the target and the maximum-likelihood test is used to
determine whether the target is or is not present (reflected or scattered signal
deemed present or absent). For a detailed treatment of conventional range-gated
pulsed radar applications, the reader is referred to the book by Davenport and
Root [7.74].

Orthogonal Signaling Formats

We consider a number of orthogonal signaling formats—we begin with
frequency shift keying (FSK) which is also referred to as PCM/FM. In such a
scheme, the frequency of one of the transmitted beams is fixed at the value f,
while the frequency of the other is caused to shift between two values, f, and f;
(not to be confused with the Doppler shifted f, considered earlier). When a 1(0) is
transmitted, the second carrier will be at frequency f,(f;). The difference
frequency will therefore shift between f,= f, — f, and f.=f, — f; (assuming
1> f,, f3). The frequencies |f; — f.|, |f,— fil, and |f; — f,| will all lie within the
band f,. A block diagram for such a system is shown in Fig. 7.17. Two narrow
bandpass final filters with center frequencies at f, and f; (not to be confused with
the Doppler shifted f] considered earlier) are used. Following each bandpass
filter is an envelope detector. If a 1(0) is transmitted, the signal will ideally pass
through the top (bottom) narrow bandpass filter along with the noise ; only noise
will be present at the other filter.

Forsuch an orthogonal format, the optimum single detector receiver chooses
the largest signal as the correct one. Let the outputs of the first and second
envelope detectors be represented by r, and r,, respectively, while the probability
density functions for r, and r, are h,(r,) and h,(r,), respectively. If we assume
that a 1 is transmitted, we have

hy(r))=fi(ry), (7.156a)
hy(ra) = fo(r2), (7.156b)

where f,(:) and f,(-) are given by (7.142) and (7.144), respectively. Using the
decision rule of the largest, error occurs during times when r, >r,. The error
probability P, is, therefore,

P = f: drltfl(rl)f: dr, fo(ry)]

2
0o

= - 4228+ 0?)
=———c¢ . 7.157
o3+ ( )
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Fig. 7.17. Block diagram for the PCM/FM three-frequency nonlinear heterodyne receiver

This can be readily shown to be a function only of £. In exactly the same manner,
the error probability P, , when 0 is transmitted, is given by the same expression;
thus P, =P, . The overall probability of error P, is therefore given by

P,=QP, +(1-Q)P, =P, (7.158)

which is presented in Fig. 7.16 in dashed form with the same parameters as for
the PCM/IM case. The conventional heterodyne case is also shown [7.73]. The
improvement obtained by using the orthogonal PCM/FM signaling format is
seen to be substantial.

Another binary orthogonal pulse-code modulation scheme is polarization
modulation (PCM/PL). Thus the bit 1(0) is represented by right (left) circular or
vertical (horizontal) linear polarization. At the transmitter, a polarization
modulator converts the laser beam into one of two polarization states. At the
receiver (see Fig. 7.18), the circularly polarized beam may be passed through an
optical filter and then be converted to horizontal or vertical linear polarization
by a quarter-wave plate. The linear polarization components are spatially
separated (e.g., by a Wollaston prism) so that the vertically polarized component
will strike the upper photodetector and the horizontally polarized component
will strike the lower photodetector. With 100 % modulation, when the bit 1 is
transmitted, only vertical polarization will appear at the receiver and the
radiation will ideally strike only the upper detector. When a 0 is transmitted, only
horizontal polarization will appear and a signal will ideally strike only the lower
detector. The “choice of largest” decision rule is used for decoding. It is not
difficult to see that the results for P, in this case are identical to those for the
PCM/FM system. Depolarization effects of the atmosphere, which are not
generally large, will result in a decrease of (SNR), and thus (SNR), [7.75-78].

The final orthogonal format which we consider is binary pulse-position
modulation (PPM/IM). In this scheme, each bit period is divided into two equal
subintervals. If a 1(0) is transmitted, the pulse is caused to occur in the first
(second) subinterval. A block diagram for one implementation of such a system
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Fig. 7.18. Block diagram for the PCM/PL three-frequency nonlinear heterodyne receiver

is presented in Fig. 7.19. The upper (lower) gate is open for every initial (final)
subinterval, and closed for every final (initial) subinterval. A time delay equal to
the subinterval length is provided for the signal in the upper gate so that the
outputs for both intervals can be compared at the same time. The rule of largest
decision is used for decoding. The results for the probability of error are again
the same as those for the PCM/FM system.

The input signals for the PCM/FM, PCM/PL, and PPM/IM systems possess
the orthogonality property

§Z, 8,(6)S4(0)dt=0, (7.159)

where S, (¢) is the signal waveform representing a 1 state, and S() is the signal
waveform representing a 0 state. Depending on specific definitions, such
orthogonal modulation schemes are generally superior to nonorthogonal
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Fig. 7.19. Block diagram for the PPM/IM three-frequency nonlinear heterodyne receiver
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schemes in terms of error probability performance [7.76-78] and have the
further advantage of requiring no more than a simple comparison for optimum
reception. The M-ary signaling case is a straightforward generalization of the
binary case [7.79].

7.3.9 Application to Binary Communications and Pulsed Radar
(Lognormal Atmospheric Channel)

Whereas the previous section (7.3.8) was concerned with the calculation of
system performance for the vacuum channel, we now turn to the error
probabilities for three-frequency nonlinear heterodyne detection for the atmo-
spheric channel. The behavior of the clear-air turbulent atmosphere as a
lognormal channel for optical radiation has been well documented both
theoretically and experimentally [7.76-78, 80-82]. We therefore choose the
amplitudes 4, and A, to be lognormally distributed, and the phases ¢, and ¢, to
be uniformly distributed over (0,2n). Since A4,ocA, and A,ocA4,, while

¢,=¢, — ¢, and ¢, =¢, — ¢, we can write
A,=u,.B,, (7.160a)
A,=u,B,, (7.160b)

where B, and B, are constants, and u, and u, have the same lognormal
distribution

2

1
Py(u)= exp —Z’?(lnui——m) , i=ab. (7.161)

1
oyn)/2n

Here gy is the logarithmic-amplitude standard deviation which is related to the
logarithmic-irradiance standard deviation ¢ by the formula 462 =02 [7.82].
Assuming energy is conserved and that there is no scattering of radiation out of
the beam, we choose

{uly=1 (7.162)

which is equivalent to setting m= —g2.
Using (7.133a) the output amplitude A is given by

A=aA,A,=aB Bu,u,. (7.163)
If u, and u, are independent, we obtain

(A*> =a?B?B{u?) (u?>=u?B?B?, (7.164a)
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or

aB,B, = )/<{A® = |/a>{A2A]) . (7.164b)
Furthermore,

InA=Inu, +Inu, +InaB,B,. (7.165)

Since the quantities y, =lnu, and y, =Inu, will both be normally distributed as

(7.166)

1 i 22
)= Wem[ %07 (y;+0o7)

if u, and u, are independent, the variable y, =InA4 will have the normal
distribution

1
fL(yL)= - m(yL+2U%—lnaBaBb)2:| N (7167)
X

1
i

from which we obtain the probability density for 4

+ 205)2}, (7.168)

1 1 A
JA)= mﬁp[— ‘Q(ln m

u,, u, independent, where we have made use of (7.164b).

We also consider the situation u, =u, =u, which would arise if both incoming
signals were sufficiently close in frequency and space such that they suffered
precisely the same fluctuations at each instant of time [7.83]. This case is more
likely to occur in a practical situation than the independent case. For dependent
fluctuations, then,

A=0Ad,A,=aB,Bu*, (7.169)
whence

(Ay=alA,A,>=oB,B,, (7.170)
and

InA=In{A>+2Inu. (7.171)

Since Inu has the normal distribution f; (1) as given by (7.166), we find that the
variable y; =In A has the normal probability density function

o) = 8 3 (y.+207 ~In{AD)? (7.172)

AT
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By variable transformation, we obtain the probability density function for A4 as

1
Ja(A)= —————exp|—
4 2nA P

2
+ 201)

1( oD U=y (7.173)

This equation appears similar to (7.168) ; we note that |/{ A% is replaced by (4>
and the effective variance has been doubled. This results in a flattening and
broadening of the probability density for the case of identical disturbance to
both beams, u, =u,,.

For atmospherlc fluctuations which vary slowly in comparison with the
pulse time T (this is the usual case, see [7.76-78, 81-83]) the three-frequency
system envelope output will be Rician during each time interval. The over-all
envelope distribution in the presence of the atmosphere f, ,(r) will therefore be a
Rician smeared over all possible values of A,

fian)= 3 frl ) f(A)dA, (7.174)

where fi(r|A) is given by (7.142). In the absence of signal, the envelope
probability density remains as it was before [see (7.144)] since the noise alone
arises from the local oscillator which is unaffected by atmospheric fluctuations.
Thus,

Joa)=fo(r). (7.175)

Under the assumptions leading to (7.174), and considering the various
modulation schemes discussed previously, the probability of error in the
presence of the lognormal turbulent atmosphere is given by

P, (turbulent) = j: P_(quiescent) f,(A)dA. (7.176)

This quantity was calculated using the Columbia University IBM-OS 360
computer, and the results are presented in Figs. 7.20-23. In Figs. 7.20 and 7.21,
the quantities A, and 4, were assumed to be independent with the same signal
power {A2>={AE>. The error probability curves displayed in these figures
correspond to two values of the log-amplitude variance, 0 =0.25 and ¢ =0.57.
These correspond approximately to =1 and ¢=1.5 (saturation value)
[7.81, 82]. Other parameters are identical to those for the quiescent atmosphere
as shown in Fig, 7.16. Figures 7.22 and 7.23 are analogous to Figs. 7.20 and 7.21,
with the exception of the fact that A,=A,. For all cases, the results for
conventional heterodyne operation are also shown in Figs. 7.20 and 7.21. For
oy —0, the results properly reduce to the quiescent atmosphere data presented in
Fig. 7.16. Computer results also indicate that the probability of error curves
depend only on the signal-to-noise ratio and not on the absolute noise level in the
presence of the lognormal channel, as well as in its absence.

From the graphical data presented in Figs. 7.16, 7.20-7.23, it is clear that
orthogonal signaling formats yield better performance than nonorthogonal
PCM/IM (this is also the case for direct detection [7.76-787). Error probabilities
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are seen to increase with increasing atmospheric turbulence levels. Independent
fluctuations in the two signal beams serve as a kind of diversity and thereby
improve receiver performance. In all cases, furthermore, it is evident that three-
frequency nonlinear heterodyne detection can provide improved performance
over conventional heterodyne detection, particularly as the ratio f,/B increases.
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Finally, receiver performance for the cases of phase detection with a maximum-
likelihood criterion [7.84] and phase-shift keying (PSK) have also been obtained
[7.59]. While PSK is definitely superior to phase detection, neither scheme
provides very satisfactory error probabilities.

The next section (7.3.10) presents an over-all discussion of the usefulness of
the three-frequency nonlinear heterodyne technique for radar and com-
munications applications.
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7.3.10 Discussion

The three-frequency nonlinear heterodyne detection scheme has certain advan-
tages over the conventional single-photon two-frequency configuration for both
analog and digital systems. One advantage is the possibility of increasing the
detection sensitivity, and minimizing the probability of error, particularly when
little Doppler information is available. It provides an output signal at a well-
known difference frequency regardless of the Doppler shift of the transmitted
signals. Frequency scanning of the LO or receiver may therefore be eliminated. It
allows a target to be continuously observed with Doppler shifts of greater
magnitude and range than previously possible. The system is also angle
independent in the sense that the Doppler shift is proportional to the radial
velocity and therefore is generally a function of angle. A wide bandpass filter
following the square-law device can be gradually narrowed about 2|f] — f; | or
2|f;— fi| in order to obtain Doppler information. If Doppler information is
increased, we find that the receiver performance can be improved, in accordance
with our expectations.

Since the use of a two-frequency transmitter can be considered as a special
case of a modulated single-frequency beam, the system can be thought of as a
heterodyne version of signal extraction at a predetermined modulation fre-
quency. Thus, the technique is similar to conventional heterodyne radiometry,
but carefully takes into consideration the effects of Doppler shift and signal
statistics. Since Doppler shift is generally not an important parameter in the
usual heterodyne radiometry detection scheme, the final filter bandwidth
{associated with the integration time) can almost always be made arbitrarily
small; furthermore, it is often possible to maintain a fixed phase relationship
between the reference and detected signals, so that an additional factor of 2
(arising from coherent detection) becomes available. These specific benefits are
not available for three-frequency nonlinear heterodyne detection.

Under the usual conditions of Doppler uncertainty, optimum operation
occurs with the known difference frequency f, at a maximum value close to f, or
with the LO frequency between the received signal frequencies, and requires that
the radiation power be equally divided between the two received beams.
Processing of the dc output from the square-law device was not found to be
useful when a blocking capacitor is included in the system. Four-frequency
mixing was found to provide acceptable performarnce only when one of the LO
frequencies is substantially attenuated.

Signals of three varieties were considered: a) sinewave input signals, b)
Gaussian input signals with Gaussian power spectra, and ¢) Gaussian input
signals with Lorentzian power spectra. Taking the pure sinewave case as a
standard, the output signal-to-noise ratio for Gaussian signals is degraded
by the factor [2&(u)—1]<1 (for Gaussian spectra) or by the factor
{(1/m)tan"![4v/(4—v?)]} <1 (for Lorentzian spectra), where u and v are quantities
proportional to the bandwidth B of the final narrowband filter. In all cases,
decreasing B serves to increase the signal-to-noise ratio and decrease the
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minimum detectable power. In the Gaussian cases, it was found desirable to keep
the width of the spectra as small as possible in order to maximize the signal-to-
noise ratio.

The digital results, in particular, may be easily extended in a number of
directions. Stochastic signals, rather than sinewave signals, could be treated in
the binary communication problem. An extensive treatment of M-ary com-
munications is possible, as is the generalization from a single detector to an
array of detectors [7.76-78]. Consideration could be given to the optimum
matched filter detector rather than the envelope detector discussed earlier. While
the present treatment consists of a per-symbol analysis, prediction could be used
to estimate the atmospheric turbulence level over a time period from a particular
symbol, for example. In short, the usual variations possible with the con-
ventional heterodyne system may be extended and/or modified for application
to the three-frequency nonlinear heterodyne technique.

The principle appears to be applicable in all regions of the electromagnetic
spectrum where conventional heterodyne detection is useful. In the next section
(7.4), we consider two versions of the system useful for the detection of remote
species.

7.4 Multifrequency Single-Photon Selective Heterodyne
Radiometry for Detection of Remote Species

The radiation from known remote species, such as extraterrestrial molecules and
smokestack effluents, is generally shifted as well as broadened in frequency when
detected at a receiving station. Shifts in the center frequency can be attributed to
a number of effects, including Doppler shift arising from the mass motion of a
group of molecules and red shift arising from emission in the presence of a strong
gravitational field. The magnitude of the Doppler shift is proportional to
velocity and can be quite large, leading to an uncertainty in the appropriate
frequency at which to search for a weak signal. This problem is magnified at high
frequencies since Doppler shift is also proportional to frequency.

In this section, we consider using a passive version of the three-frequency
single-photon heterodyne technique for partially eliminating the effects of
Doppler shift in detecting remotely radiating objects. It is useful where a pair (or
pairs) of emission lines exists with a definite and well-known frequency
separation, such as those produced by two transitions of a given molecular
species or by a given transition of two isotopes of that species. If the two radiated
frequencies are close to each other, they are Doppler shifted by essentially the
same amount (as with the active system) so that the effects of Doppler shift can
be made to nearly cancel in the difference frequency. By employing two signal
frequencies instead of one, an effective modulation of the source is achieved so
that the bandwidth of the receiver can be narrowed about the difference
frequency, in a manner similar to that accomplished by using a radiometer. But
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Fig. 7.24. Block diagram for the Doppler-independent three-frequency selective heterodyne
radiometer. Dotted lines represent radiation signals, solid lines with arrows represent electrical
signals, and dashed lines enclose a Dicke radiometer which can be added to the system if required.
For clarity, amplification stages are omitted

whereas the modulation occurs at the detector in the classical radiometer (which
is therefore nonspecific), the modulation frequency in the system described here
is directly related to the remote species being detected. The system can,
furthermore, be coupled with a classical Dicke radiometer [7.85-89] to provide
improved performance where warranted. The technique will be most useful in
the infrared and optical where the Doppler shifts are large; conventional
heterodyne radiometry and spectroscopy have recently begun to find use at these
frequencies [7.88-91]. A variation of the system, useful when the Doppler
shift is known, is described at the very end of the discussion section (Sec. 7.4.5).

7.4.1 Configuration for Two Received Frequencies

The simplest example of the three-frequency system, useful in the acquisition
and tracking of radar and communications signals, has been discussed in Section
7.3. In Fig. 7.24, we show a block diagram for the selective heterodyne
radiometry version. The remotely radiating source emits two waves at frequen-
cies f, and f, whose rest difference frequency f,=|f, — f;| is known to high
accuracy. The waves experience a Doppler shift arising from the mass motion
(Doppler feature) of the source. (They are also broadened due to the constituent
particle velocity distribution.) Thus, a wave whose center frequency is f is
detected at the receiving station with a frequency f'. Assuming that the velocity
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of the cloud is much smaller than the speed of light c, the nonrelativistic Doppler
formula provides

f'=fxv/c), (7.177)

where v, is the radial component of the over-all velocity vector v. This expression
differs from that given in (7.33) by a factor of 2 in the second term ; the radiation
in the passive system makes only a one-way trip. The frequency difference
between the two received waves f; is therefore given by

f=IR-Al=ft@/of~1; (7.178)

thus, the radiated and received difference frequencies are independent of
Doppler shift to good approximation when v)/c<1.

The two radiation fields f{ and f; are again mixed in a heterodyne detector
with a strong, coherent, and polarized LO signal (at frequency f; ) yielding two
electrical beat signals at | f] — f, | and | f; — £, |, along with a dc component which
is blocked. The third signal at | f; — f;|, arising without benefit of the LO, is weak
and may be neglected. The ac output of the heterodyne mixer is then broadband
coupled, through a filter of bandwidth Af, to a nonlinear device. The value
chosen for A f should be as small as possible in order to maximize the signal-to-
noise ratio (SNR), but must encompass the (somewhat unknown) difference
frequencies generated in the mixer. The nonlinear device, which also has a
response over 4f, then generates a component at the frequency

fe=\—1il- (7.179)

Since the output of the nonlinear device is essentially independent of the Doppler
shift as well as the LO frequencies, variations in these quantities have little effect
on the system output. In many instances, therefore, the necessity for a stable and
tunable LO may be eliminated. Again, the reception in this system is angle
independent.

The narrowband filter centered at f,~ f, and of bandwidth B, placed after
the nonlinear device, achieves the low noise bandwidth. Thus, amplifiers and
other detection apparatus process electrical signals at (usually) moderate
frequencies, which provides ease of matching as well as good receiver noise
figure. This, in turn, decreases the LO power necessary for optimum coherent
detection. Only the heterodyne mixer and the nonlinear device need have high-
frequency response in many instances. For clarity, amplifiers have been
eliminated from the block diagram. If warranted, the output of the narrow
bandpass filter may be fed into a standard Dicke radiometer (dashed box in Fig.
7.24) consisting of a (third) detector, a phase-sensitive (synchronous) detector,
and an integrator with time constant t. (Although we specify that this detector
is square-law in Fig. 7.24, its characteristic is not critical and, in fact, a linear
detector will often provide the cleanest signal) The modulation may be
obtained from a chopper as indicated. This technique can sometimes provide
improvement in the SNR and has been coupled with a conventional infrared
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heterodyne radiometer in a number of instances [7.88-91]. It may also be
advantageous to use a balanced mixer in this configuration [7.89].

The SNR at the output (o) of the three-frequency nonlinear heterodyne
system (SNR), is given by [see (7.76) and (7.107b)]

(SNR), =2k'(SNR)?/[1 +2(SNR),], (7.180)

assuming the use of an LO which produces no excess noise (and lies between the
two signal frequencies), a bandpass filter close to low-pass (4f—f), and a
square-law nonlinear device for which it is easy to carry out the calculation.
Here (SNR); represents the SNR at the input (i) to the square-law device (see
Fig. 7.24) which will generally be <1. The factor k' appearing in (7.180) is
discussed in the next section.

7.4.2 n Received Frequencies and the Factor k'

For the system involving two signal frequencies, the quantity k' has been
previously shown to depend on the magnitude and on the statistical and spectral
nature of the received radiation, as well as on the widths of the two bandpass
filters. Inasmuch as the radiation from remote molecular species may contain
multiple frequencies, we consider operation of the system in the more general
case when n(=2) lines with equal frequency spacing are passed through the
broad bandpass filter and detected. Again, a number of cases are of interest:
sinusoidal signals (P), independent Gaussian signals with Gaussian spectra (G),
and independent Gaussian signals with Lorentzian spectra (L). The Gaussian
signal case is considered in detail since radiation from astronomical sources is
generally Gaussian [7.92]. The effect of multiple lines is included in the
parameter k' by generalizing the previously obtained expressions for k [see
(7.72), (7.106), and (7.119)]. For the cases considered above, this quantity can
be written as

n:11A2A2+
ki’_L{z(}:, , 2)2‘}, (7.181a)
, Y21 (GP) P, +1)}[2¢> (B/)/8) —1]
ki~ J (7.181b)
¢ Vy{ (ZFWP, (B/)/3y)
and
IL{ZS’;}D!‘D,-H}
(Q3-1D)?
~tan~Y{(2B/I')[4—(B%/4I'})] "'}
X [ BT ] (7.181c)

Here, A; represents the amplitude of the jth line in the sinusoidal case, P;
represents the peak value of the Gaussian spectral distribution and y is its
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standard deviation, whereas D; and I' represent the height and width of the
Lorentzian spectrum, respectively. The quantity & is the error function. It has
been assumed for simplicity that all spectral widths are identical, ie.,y;=y;, , =7
andI';=T;,, =T ;similar but more complex expressions are obtained when this
is not the case.

Inasmuch as the quantities in large square brackets in (7.181b) and (7.181c)
above are of order unity for B <y(I'), it is the larger of B and y(I') which limits &’
and therefore the SNR in the Gaussian signal case. In particular, for the
Gaussian spectrum case with B= [/gy, [2&(1)—1]=0.68 whereas for the
Lorentzian spectrum case with B=4(]/§~ D ~1.66", n~*tan"'1=1/4. Thus
the SNRs for the Gaussian and Lorentzian cases are reduced below that for the
sinewave case (delta-function spectrum), for the same bandwidth B. This is
understood to arise from the fact that some signal is being excluded in the
Gaussian and Lorentzian cases in comparison with the delta-function case, but
the noise is approximately the same. For fixed y(I'), the best SNR for the
Gaussian and Lorentzian cases is obtained as B—0, since the noise decreases
faster than the signal, as B decreases, in the approximation v —0. Of course, B
cannot be decreased below the Doppler shift of the frequency difference |f] — £
=(v”/c) f., which is unknown but can generally be estimated. For B> y(I),
essentially all of the signal is included, and the results reduce to those obtained in
the sinewave case. If possible, therefore, lines should be chosen for which the
{Doppler) width and the Doppler shift are minimized, i.e., the lines should be
narrow and closely spaced in frequency.

In the case where all such lines are of equal spacing, power, and width
(A;j=A;.,; Pj=P;,y, y,=Y;+1=7; D;=D;,,, I'j=T;,,=T), the braces in
(7.181) can be replaced by

{‘YpoL—m—1/m*, n=234.. (7.182)

For fixed input radiation power, the best operation is clearly achieved for n=2
{so that {-}; g =1/4), since additional lines increase the (signal-by-noise
contribution to the) total noise more than they do the signal. When increased
radiation power becomes available by virtue of the additional lines, however
(e.g., the detection of more than one Doppler feature), n> 2 can be advantageous.

We also consider the case in which n equal-power, equal-width lines are
allowed through the broad bandpass filter, these not being equally spaced,
however, so that only one pair of lines contributes to the output signal. In this
case, the braces in (7.181) must be replaced by

{'}P.G.L_)l/nz’ n=2’3’4"--' (7183)

Performance in this case is degraded for n>2 since the additional lines
contribute only to the noise.
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Finally, we consider the case in which only two lines (n=2) of arbitrary width
are received and detected. Recalling that £ represents the ratio of received power
in these two lines, ie., &p=A3/AL, E;=v,P,/v,P,, and & =D,/D,, the ex-
pressions in braces in (7.181) become

{deo=C1+972, (7.184)

which is again equal to 1/4 for equal-power received signals (¢ =1).

7.4.3 SNR and MDP for Two Gaussian Signals

The expression for the SNR at the output of the three-frequency system (SNR),
for two Gaussian signals with Gaussian spectra (standard deviations y, and y,) is
obtained by using (7.180), (7.181b), (7.184), and (7.106). To good approximation,
assuming (SNR), <1, this is given by

~ fn éG
(SNR)o =~ Cz mym {(1 T cG)Z}

26{B/[2(y +7y2)"?]} ~1
[ B/[2(yf+y2§)1/2] }(SNR)f (7.185)

For quantum-noise limited detectors such as photoemitters and reverse-biased
photodiodes operating in the infrared and optical [7.4—7, 10, 14, 15], assuming
that the incident radiation and the coherent LO are polarized in the same
plane, the input SNR to the nonlinear device is [see (7.1) and (7.42b)]

(SNR),=#P/hvdf, hv»kT. (7.186)

Here n=#, is the detector quantum efficiency. P, is the total received signal
radiation power, and kT is the thermal excitation energy (k is Boltzmann’s
constant and T is the detector temperature). For photovoltaic and photo-
conductive detectors, the input SNR is generally one-half that given in (7.186)
[7.5,14)].

Heterodyne detectors in the microwave and millimeter regions (hv <kT)
include square-law mixers such as the crystal diode detector [7.93], the InSb
photoconductive detector [7.94-96], the Golay cell [7.95], the pyroelectric
detector [7.95], the metal-oxide-metal diode, and the bolometer [7.87]. The
latter three types of detectors have also been used successfully in the middle
infrared (at 10.6um) [7.97-100]. For this type of detector Johnson noise
generally predominates, and the input SNR is given by [7.100]

(SNR), =P, /KT, Af . (7.187)

For simplicity, we have lumped a number of detector parameters and operating
conditions into the receiver effective temperature T;,. Of particular interest in
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the mm and far-infrared regions are the low-noise fast Schottky-barrier diodes
recently used in a number of experiments for astronomical observations
[7.96,101].

Inserting (7.186) or (7.187) into (7.185), and letting (SNR), =1, we obtain a
minimum detectable total power (MDP) at the output of the three-frequency
system given by

o)~ fl ol

1 Ve

_ [ B/[23 +7)"]
20{B/1203 +1) 1) - 1

1/2
] LG+ (7.188a)

for quantum-noise limited detection, and

(MDP)o >k T, {ﬁ}

Vés
. [ B/[2(vi +73)'"*]
20{B/[2(y1 +7)'* 1} -1

1/2
] LAV o (7.188b)

for Johnson-noise limited detection.

The quantities in braces and in square brackets in (7.188) are both typically of
order unity. Since f./2(y]+y)'*~@]/c)*(fy)'? for y>B while it is
~ @™/ Lf(f, — f)]"? for y < B, where vf}** is the maximum expected radial
velocity, the system provides increasing advantage at higher radiation frequen-
cies f (since the effective bandwidth~ f'/?) for fixed y and (f; — f;). Small
linewidths and close spacing of the lines are also important. For certain choices
of parameters, which are determined by the species which it is desired to detect,
the SNR at the output of the three-frequency selective system will provide a
sufficient confidence level for detection. For situations in which this is not the
case, further improvement in the SNR could be obtained by using a multichan-
nel receiver and/or a classical radiometer, as mentioned previously.

7.4.4 Numerical Example: Astronomical Radiation from CN

As an example of the use of the system in the mm region, we calculate the MDP
for astronomical radiation arising from the following N=1-0, J=3/2-1/2
hyperfine transitions of the CN radical: F=5/2-3/2 (f; =113490.9+0.2 MHz)
and F=3/2—-1/2 (f,=113488.1+0.3 MHz) [7.102]. Recent radiometric obser-
vations of this radiation made use of the simple and sharply defined velocity
structure of the Orion-A molecular cloud ; a measurement of the N =1-01line of
13C1%0 provided the Doppler effect correction due to the cloud’s motion, Using
Doppler-independent heterodyne radiometry, on the other hand, requires only a
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bound on the velocity range. A radial velocity within the (substantial) range
—200 km/s S vy <200 km/s, for example, yields a Doppler shift uncertainty of
2|y | f/c~151.2 MHz. In this case, the detected frequencies would be bounded by
1134153 MHz £ f{ £113566.5MHz and 113412.5MHz< f; £113563.7 MHz.
Choosing f, somewhere between the rest frequencies, e.g., at 113490.0 MHz, we
obtain (f]— f.|<76.5MHz and |f;— f;|<77.5MHz, inducing us to choose
4f=f =78 MHz. Depending on the actual velocity of the cloud, this might
allow the beat signal of the LO with other hyperfine lines to be passed to the
nonlinear device, which will not impair operation if these other lines are
relatively weak. The narrowband filter is centered at the rest difference
frequency f.=|f,—/f,/=28MHz, with a minimum width B=2y|f/c
~1.87 kHz. Since B<2(y% +72)'/%, the MDP is essentially determined by f, and
y {we choose y= 1.5 MHz since 7, ~y,~ 1.5 MHz). Inasmuch as {g=v,P, /y, P,
~1/2 for these lines [7.102], the MDP given in (7.188b) becomes MDP
~KkT, ¢ {2.12} [1.11] (8.80 x 10%)(1.45 x 10%) = kT, 0 F, with 6 F ~ 30 MHz repre-
senting the effective bandwidth for the calculation. Using the conventional
system with this uncertainty in Doppler shift, and assuming that a one-channel
receiver is used, the MDP would be kT, A f with 4 f ~78 MHz, indicating that
improvement is possible with the proposed system.

For situations in which B > y, a multichannel receiver using a bank of narrow
bandwidth filters could be used in place of the narrow bandpass filter (B),
compressing the number of channels below that required in the conventional
system. In the infrared and optical, an unknown Doppler shift provides a greater
range of uncertainty in the received frequencies than at longer wavelengths; this
system should therefore be useful in detecting atomic and molecular radiation at
these higher frequencies, particularly in those wavelength regions where
atmospheric windows exist. For example, strong CN optical transitions from
interstellar sources were first observed in 1940 [7.103, 1047 ; one could attempt to
definitively detect the presence of the CN R(2) line, which would provide an
improved estimate for the cosmic blackbody radiation at 1.32mm [7.104].
Particular attention might also be given to possible infrared emission from CO,
which exists in relatively high densities and with a very broad range of velocities
in interstellar regions, as determined by its mm-wave emission [7.105, 106].
Clearly, the same considerations apply to the detection of maser radiation from
astronomical sources [7.103, 107-109], and to the detection of remote poliutants
[7.110, 111].

7.4.5 Discussion

We have described a selective heterodyne radiometer potentially useful in the
detection of remote species such as pollutants and interstellar molecules. The
system operates on the basis of the difference frequency between two radiated
lines which, for closely spaced lines, is relatively insensitive to Doppler shift. This
allows for the sensitive detection of known species moving at unknown
velocities. The two frequencies may be obtained from individual transitions or
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from two isotopes of the same species. The system introduces little loss over the
conventional heterodyne radiometer and has a number of specific advantages. In
particular, it requires knowledge only of rest difference frequencies and not of
line rest frequencies which are sometimes difficult to determine [7.112], and
it requires neither a stabilized nor a tunable LO. Clearly it requires little
knowledge of the source velocity and consequently is generally unsuitable
for spectroscopy. Changes in the source velocity or direction do not alter
system detectability appreciably. This is particularly important in the infrared
and optical where Doppler shifts are generally large.

The SNR and MDP at the output of the system have been obtained for a
number of cases of interest including sinusoidal signals and Gaussian signals
with both Gaussian and Lorentzian spectra. A configuration involving multiple
(n=2) signal frequencies has also been considered. Other desirable operating
conditions are as follows: 1) The LO frequency should be chosen to be nearly
between the signal frequencies, 2) Lines with minimum broadening (low y) and
minimum frequency separation (low B) are most desirable, 3) 4 f(f,) should be
minimized by bounding the expected Doppler shift as closely as possible, and 4)
The strongest pair of lines consistent with the above conditions should be
chosen.

The detection of CN radiation provided an example of the use of the
technique in the mm region: an indication of possible uses at higher frequencies
was provided. For the submillimeter region, it may be possible to use a
combination Schottky barrier diode/harmonic mixer which would provide an
output at low frequencies as long as the high-frequency beat signals are
generated and mixed within the detector. LO harmonics are also readily
generated in these devices [7.101] so that harmonic-mixing selective heterodyne
radiometry could be performed [7.113]. Josephson junctions, which can
sometimes be made to produce their own LO power [7.96], and metal-oxide-
metal diodes could also be used. An IMPATT solid state oscillator could
conveniently be used as an LO in these regions since frequency stabilization,
which is difficult to achieve in these devices [7.96], is not required. At higher
frequencies, some fixed-line lasers could possibly be used since the LO frequency
need not be tunable.

Disadvantages of the system include the lack of Doppler information,
the difficulty of observing absorption lines and continuum radiation,
and the added complexity. Use of a calibration load is also more
complicated than in the conventional case. Finally, there will be an uncertainty
that the detected difference-frequency signal can be properly identified, in
analogy with the identification problem for the Doppler shifted signal in the
conventional configuration. Thus, the system should be used for the application
in which it is most effective : the search for a known emitting weak remote species
with an unknown Doppler feature.

Finally, we draw attention to a vanation of this scheme, called heterodyne
correlation radiometry [7.114] that should be useful for the sensitive detection
of radiating species whose Doppler shift is known, but whose presence we wish
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to affirm. Such radiation (which may be actively induced) can arise, for example,
from remote molecular emitters, impurities and pollutants, trace minerals,
chemical agents, or a general multiline source. A radiating sample of the species
to be detected is physically made a part of the laboratory receiver, and serves
as a kind of frequency-domain template with which the remote radiation is
correlated, after heterodyne detection. This system is expected to be especially
useful for the detection of sources whose radiated energy is distributed over a
large number of lines, with frequencies that are not necessarily known. Neither
a stable nor a tunable local oscillator is required. The minimum detectable
power is expressible in a form similar to that for conventional heterodyning
{for both quantum-noise-limited and Johnson-noise-limited detectors). The
notable distinction is that the performance of the proposed system improves
with increasing number of remotely radiating signal lines and increasing
locally produced radiation power. Performance degradation due to undesired
impurity radiation is not a problem in general.
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